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KAC-MOODY GROUPS, INFINITE DIMENSIONAL DIFFERENTIAL
GEOMETRY AND CITIES∗

WALTER FREYN†

Abstract. Minimal affine Kac-Moody groups act on affine twin buildings by isometries. However
there is no way to extend this action to any completion of the Kac-Moody groups. To remedy
this, we introduce in this paper affine twin cities, a new class of objects, whose elements behave
like completions of twin buildings. Twin cities are defined as special arrays of affine buildings
connected among themselves by twinnings. Corresponding to completed affine Kac-Moody groups
they are characterized by the type of the affine buildings and by some kind of “regularity conditions”
describing the completion. The isometry groups of affine twin cities are (completions of) affine
Kac-Moody groups. We study applications of cities in infinite dimensional differential geometry by
proving infinite dimensional versions of classical differential geometric results: For example, we show
that points in an isoparametric submanifold in a Hilbert space correspond to all chambers in a city.
In two sequels we will describe the theory of twin cities for formal completions.
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1. Introduction. The theme of affine Kac-Moody geometry is the investiga-
tion of the geometry lurking behind completions of affine Kac-Moody algebras and
Kac-Moody groups. Affine Kac-Moody groups can be described as certain torus ex-
tensions L̂(G, σ) of (possibly twisted) loop groups L(G, σ). Correspondingly affine
Kac-Moody algebras are 2-dimensional extensions of (possibly twisted) loop algebras
L(g, σ). Here G denotes a compact or complex simple Lie group, g its Lie algebra
and σ ∈ Aut(G) a diagram automorphism, defining the “twist”. Depending on the
regularity assumptions on the loops (e.g. of Sobolev class Hk), one gets families of

completions of the minimal (=algebraic) affine Kac-Moody groups L̂algG
σ
. The min-

imal algebraic loop group just consists of Laurent polynomials. Following Jacques
Tits, completions defined by imposing regularity conditions on the loops are called
“analytic completions” in contrast to the more abstract formal completion. Vari-
ous analytic completions and objects closely related to them play an important role
in different branches of mathematics and physics, especially quantum field theory,
integrable systems and differential geometry. In most cases their use is motivated
by the requirement to use functional analytic methods or by the need to work with
manifolds and Lie groups [PS86], [Gue97], [SW85], [Tsv03], [Pop05], [PT88], [Kob11],
[KW09], [HPTT95], [HL99], [Hei06] and references therein. In this article we intro-
duce affine twin cities as the appropriate generalization of twin buildings in the realm
of completions of affine Kac-Moody groups.

To describe the scope of the theory and the content of this article let us start with
some general remarks: From an algebraic point of view affine Kac-Moody algebras
and simple Lie algebras are closely related as they are both realization of (generalized)
Cartan matrices [Kac90], [Car02]. As a consequence, they share important parts of
their structure theories. The philosophy of Kac-Moody geometry asserts that this
similarity extends to all types of geometric objects whose structure reflects actions
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of those groups. More precisely Kac-Moody geometry claims the existence of infinite
dimensional counterparts to all finite dimensional differential geometry objects, whose
symmetries are described by real or complex simple Lie groups [Hei06], [Fre11b]. The
symmetries of those infinite dimensional objects are supposed to be the corresponding
complex or real affine Kac-Moody groups. Thus, let us start by recalling the finite
dimensional blueprint.

In this case the symmetry group is a simple complex or real Lie group. A complex
simple Lie group has up to conjugation a unique compact real from. All further real
forms are non-compact. Attached to any compact or complex simple Lie group, or
more generally to any symmetric space, there is a spherical building [AB08]. Com-
binatorically a building is described as a simplicial complex or as a graph, satisfying
several axioms. Geometrically the building corresponding to a symmetric space M
has a clear intuitive description [BH99]: suppose the dimension k of maximal flats
(maximal flat subspaces), called the rank, satisfies k ≥ 2 (otherwise the building de-
generates to a set of points) and choose a point p ∈ M . The building can be seen in
the tangent space TpM as follows: Consider first all k-dimensional tangent spaces to
maximal flats through the point p (for a compact simple Lie group choose p = Id the
identity, then TpM can be identified with the Lie algebra, maximal flats through the
identity are maximal tori and the tangent spaces to maximal flats are just Abelian
subalgebras of the Lie algebra g) and remove all intersection points (the so-called
singular points). Then each flat is partitioned into chambers and the set of all those
chambers for all flats through p corresponds exactly to the chambers of the building.
All other cells of the building can be seen in the set of singular points. Chambers be-
longing to one flat form an apartment. Nevertheless, in this description, one does not
see all apartments. To this end one has to pass to the sphere at infinity, to disenthral
the construction from the dependence of a base point.

Via the geometric description of the building in the tangent space the connections
between the building and polar actions become manifest: Let M be a symmetric space
and p ∈ M . The isotropy representation of M is the representation of K, the group
of all isometries of M fixing p on TpM :

K : TpM −→ TpM,

For compact Lie groups the isotropy representation coincides with the Adjoint
representation.

The principal orbits of the isotropy representation have the following properties:
1. The principal orbits meet the tangent spaces to the flats orthogonally and

have complementary dimension. In particular, the normal spaces to the orbits
are integrable. Actions with this property are called polar. Conversely, any
polar action is orbit equivalent to the isotropy representation of a symmetric
space [BCO03].

2. The geometry of the principal orbits as submanifolds of Euclidean space
is particularly nice and simple. They are so-called isoparametric submani-
folds [PT88]. Conversely, by a theorem of Thorbergsson [Tho91], isopara-
metric submanifolds are principal orbits of polar representations if they are
full, irreducible and the codimension is not 2.

To summarize the finite dimensional blueprint:
- Polar representations correspond to symmetric spaces, isoparametric subman-

ifolds correspond roughly to polar representations.
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- Chambers in buildings correspond to points in isoparametric submanifolds.
- Buildings describe the structure at infinity of symmetric spaces of noncompact

type.
- The geometric realization of buildings can be equivariantly embedded via the

isotropy representation into the tangent space of a symmetric space.

Let us now turn to the infinite dimensional counterpart: Affine twin buildings
have been investigated by Ronan and Tits as a tool to understand minimal affine
Kac-Moody groups [Ron03]. They play a similar role for affine Kac-Moody groups as
classical buildings play for finite dimensional semisimple Lie groups.

Affine Kac-Moody groups are distinguished among other classes of infinite dimen-
sional Lie groups by two important properties:

- They share the most important structure properties of finite dimensional sim-
ple Lie groups, i.e. they have BN -pairs, Iwasawa and Bruhat decompositions
and highest weight representations [PS86], [Kac90], [Kum02], [MP95]. The
main differences can be traced back to the Weyl group being finite for Lie
groups and infinite for Kac-Moody groups.

- They have good explicit linear realizations in terms of 2-dimensional exten-
sions of loop algebras and loop groups; thus they allow the use of functional
analytic methods and the definition of manifold structures. The resulting
Kac-Moody algebras and Kac-Moody groups are called of “analytic” type, in
contrast for example to formal completions [Tit84]. Depending on the type
of completions, analytic Kac-Moody algebras (groups) are Hilbert-, Banach-,
Fréchet-, etc. Lie algebras (groups) [PS86].

Work done during the last 25 years by various authors, notably Ernst Heintze
and Chuu-Lian Terng shows that analytic completions of affine Kac-Moody groups
describe the symmetries of various interesting objects, that have finite dimensional
counterparts, thus confirming the philosophy of Kac-Moody geometry [PS86], [Hei06],
[Fre11b], [KW09], [Ter89], [Ter95], [SW85], [Pop06], [HPTT95], [HL99], [Fre09].

For example, it is well known that affine analytic Kac-Moody groups are symme-
try groups of (Kac-Moody) symmetric spaces [Fre09]. The structure theory and the
classification of those spaces parallels closely the theory of finite dimensional Rieman-
nian symmetric spaces, making them the appropriate generalization. Furthermore
there is a theory of polar actions on Hilbert spaces [Ter95] and proper Fredholm
isoparametric submanifolds in Hilbert spaces [Ter89]. Principal orbits of polar ac-
tion on Hilbert spaces are proper Fredholm isoparametric submanifolds in Hilbert
spaces. Thus a broad generalization of the finite dimensional blueprint appears. We
find the same classes of objects, satisfying similar relations among each other and
sharing similar structure properties [Hei06] [Fre11b]. Nevertheless, a serious gap in
the infinite dimensional theory described so far is the lack of an object generalizing
spherical buildings to Kac-Moody geometry. For algebraic Kac-Moody groups there
are algebraic twin buildings, but they do not work well with completions as the action
of any completed Kac-Moody group does not preserve the twinning; thus affine twin
buildings are of restricted use in the realm of a Kac-Moody geometry. This problem
can be seen also on the group level, as analytic Kac-Moody groups do not allow for
the definition of a twin BN -pair or a BN -pair [AB08], [PS86].

The main purpose of this article is to find a solution for this problem. To this
end we define a new structure, called twin cities, which generalizes the twin build-
ing. Remark that we called cities “universal geometric twin buildings” in [Fre09] and
[Fre11b], but changed the denomination, being adverted of the risk of confusion with
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the universal “algebraic” twin building, introduced by Ronan and Tits [RT94]. A
twin city consists of two (usually uncountable) families of Euclidean buildings, de-
noted B+ and B−, such that each building from one family is twinned with each
building from the other family. The family of buildings becomes richer and richer,
the weaker the regularity of the loops is assumed. Thus twin cities also reflect the
regularity of the corresponding affine Kac-Moody group. For minimal Kac-Moody
groups the two families just reduce to one building each. Hence in this special case
we recover twin buildings. More precisely, we have the following result:

Theorem 1.1 (Twin cities). For each analytic Kac-Moody group G there exists
an associated twin city B = B+ ∪B−, such that

(i) Each connected component ∆ ∈ B is an affine building.
(ii) Each pair (∆+,∆−) ∈ B+ ∪ B−, consisting of a building ∆+ in B+ (“posi-

tive” building) and a building ∆− in B− (“negative” building), is an affine twin
building.

(iii) G acts on its twin city B by isometries.
(iv) “Small” twin cities, associated to Kac-Moody groups, defined by stronger regu-

larity conditions, embed into “big” twin cities, associated to Kac-Moody groups,
defined by weaker regularity conditions.

Like the spherical buildings associated to finite dimensional symmetric spaces,
one can realize the twin city associated to an affine Kac-Moody symmetric space
(group) in its tangent space (Lie algebra). This realization is constructed via the
isotropy representation. Thus twin cities occur “in nature”. This is the main topic
of the second part of the paper. Recall that the natural bilinear form of an affine
Kac-Moody algebra is of Lorentz-type. Denote by c and d the generators of the
2-dimensional extension of the loop algebra. c and d have both length 0 (they are

“light like”). The loops algebra L̂(g, σ) is “space like”. Thus the set Hr of vectors of
length r is in fact an infinite dimensional hyperbolic space with two sheets, say H±r .
The tangent spaces to the flats are still finite dimensional and decompose each sheet
H±r into apartments and chambers as in finite dimensions. These are moreover related,
since each flat intersects both H+

r and H−r , which finally yields the twinning. But it
turns out that the corresponding “affine buildings” in H+

r and H−r are not connected,
more precisely not any two chambers are connected by a gallery. First of all H±r both
decompose into families H±`,r of parallel horospheres, which can be identified with
vector spaces and each connected component of the buildings lies in one horosphere
H±`,r. Each horosphere H±r,` decomposes into a family of buildings, whose size depends
on the regularity, scilicet into a city.

More precisely we have the following result:

Theorem 1.2 (Embedding of cities). Denote by H`,r the intersection of the

sphere of radius l ∈ R of a real affine Kac-Moody algebra L̂(g, σ) with the horospheres

rd = ±r 6= 0, where rd ∈ R is the coefficient of d in L̂(g, σ). There is a 2-param-

eter family ϕ`,r, (l, r) ∈ R × R+ of L̂(G, σ)-equivariant immersions of the twin city

B+ ∪B− into L̂(g, σ). ϕ`,r embeds the geometric realization of B into H`,r. The
two parts of the city B+ and B− are embeds into the two sheets of H`,r described by
rd < 0 resp. rd > 0 of the space H`,r.

We describe the content of this article in more detail:
In section 2 we introduce various common regularity conditions and study the em-

beddings of smaller Kac-Moody groups (defined using stronger regularity conditions)



KAC-MOODY GROUPS AND CITITES 611

into bigger ones (defined using weaker regularity conditions). We call a subgroup of
L(G, σ), which is isomorphic to LalgG

σ, a quasi-algebraic group. The main result of
section 2 is that all quasi-algebraic subgroups are conjugate. Furthermore we study
the relationship between Borel subgroups in LalgG

σ and Borel subgroups in L(G, σ)

(resp. L̂(G, σ)).
Section 3 is devoted to a short summary of the theory of affine twin buildings.
Section 4 contains the core of the article: we define geometric BN -pairs and their

cities, which are the generalizations of BN -pairs and buildings to completed groups,
and study group actions on them.

In section 5 we describe the connection between polar actions and cities. In
particular we prove that points in isoparametric proper Fredholm submanifolds in a
Hilbert space, as introduced in [Ter89], correspond to chambers in the twin city of
H1-regularity. We start with the investigation of the case of Kac-Moody groups and
extend the result in a second step to include all s-representations of affine Kac-Moody
algebras.

In section 6 we investigate the topology of the space of chambers, the space of
affine buildings and the twin city. We define an ultrametric pseudo distance on the
space of buildings of a city.

In section 7 we describe in detail the twin city of type A
(1)
1 .

Two sequels to this paper will be devoted to the description of the spherical
building at infinity, develop an abstract theory of cities and investigate the relationship
with universal algebraic twin buildings, introduced by Marc Ronan and Jacques Tits
in [RT94] and [RT99].

2. Regularity and Kac-Moody theory. To an affine Cartan matrix and a
field F ∈ {R,C} there is attached a great variety of different but closely related infi-
nite dimensional Lie algebras: The minimal one is the algebraic Kac-Moody algebra,
corresponding to a Lie algebra of polynomial maps. All further Kac-Moody algebras
arise as completions: On the one hand, understanding this algebra as an extension of
a Lie algebra over the abstract polynomial ring F[t, t−1], we can turn to the formal
completion and study the resulting Kac-Moody algebras. On the other hand, tak-
ing the point of view of polynomial maps on S1 resp. C∗, we get a great variety of
“analytic” completions and Kac-Moody algebras associated to them [Tit84].

Let g be a simple complex or compact Lie algebra and σ a diagram automorphism.
Denote the associated loop algebra by

L(g, σ) := {f : R −→ g|f(t+ 2π) = σf(t), f satisfies some regularity condition} .

The associated Kac-Moody algebra is defined by L̂(g, σ) = L(g, σ) ⊕ Fc ⊕ Fd
where d acts on L(g, σ) as a derivative and c is a central element. Hence [d, f ] = f ′,
[c, d] = [c, f ] = 0 and [f, g] = [f, g]0 + ω(f, g)c, where [f, g]0 denotes the Lie bracket
of L(g, σ) and ω is a certain antisymmetric 2-form. We define the derived algebra as

L̃(g, σ) = [L̂(g, σ), L̂(g, σ)] ∼= L(g, σ)⊕ Rc .

Similarly we can attach a variety of different Kac-Moody groups to a given affine
root datum. In his overview [Tit84], Jacques Tits describes realizations of a root
datum at the algebraic, the formal and the analytic level. In this article, aside from
the algebraic Kac-Moody groups, we will encounter various Kac-Moody groups of the
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analytic level. These groups are closely related: The algebraic one is contained in
all other Kac-Moody groups. At the analytic level, Kac-Moody groups defined using
stronger regularity conditions embed naturally into Kac-Moody groups defined using
weaker regularity conditions. Nevertheless, all those embeddings are by no means
unique.

Similarly to affine Kac-Moody algebras that can be viewed as 2-dimensional ex-
tensions of certain loop algebras, affine Kac-Moody groups can be realized as torus
extensions L̂(G, σ) of groups of maps

L(G, σ) = {f : R −→ G | f(t+ 2π) = σf(t), f satisfies some regularity condition} ,

where G denotes a simple complex or compact Lie group and σ a diagram au-
tomorphism of G. We construct first L̃(G, σ) as a central S1- resp. C∗-extension,
corresponding to the c-term of the Kac-Moody algebra, then we take a semidirect
product with S1 resp. C∗ whose action on L(G, σ) is defined to be a shift of the ar-
gument: w · f(t) = f(t+w). For this shift to be well defined we need in the complex
setting a continuation of f to C∗ For details see [PS86], [Pop05], [Fre09], [KW09] and
various other references there-in.

Depending on their loop realizations, affine Kac-Moody algebras (resp. groups)
break up into two subclasses: the twisted ones, i.e. those with σ 6= Id, and the
untwisted ones (i.e. those with σ = Id). Twisted affine Kac-Moody algebras (resp.
groups) can be described as subsets of untwisted ones. Hence it is sufficient to describe
the regularity conditions for untwisted Kac-Moody algebras (resp. groups).

Let us mention several widely used regularity conditions. For the description of
most of them we need only the analytic structure of the Lie group G. Examples are
the groups of continuous loops LG, k-differentiable loops LkGσ, smooth loops L∞Gσ,
real analytic or complex analytic loops MGσ resp. AnG

σ on X ∈ {C∗, An := {z ∈
C|e−n ≤ |z| ≤ en}} (for the last two cases to make sense, we need G to be a complex
Lie group).

In contrast the precise meaning of algebraic (or polynomial) loops into a Lie group
is not clear a priori.

The algebraic loop (resp. Kac-Moody) group is the smallest group, we are inter-
ested in: We put

LalgG
σ := {f ∈ L(G, σ)| has a finite Fourier expansion},

where the Fourier expansion is defined via the adjoint representation of G. If G is
complex, we can identify this group with a group of matrix-valued Laurent polyno-
mials [PS86]. By construction, this group is isomorphic to the group G(C[t, t−1]), the
realization of the affine algebraic group scheme corresponding to the Lie group G over
the ring C[t, t−1] (for the definition [AB08] or [Wat79]. Remark that G(C[t, t−1]) is
the group acting in a natural way on a twin building [Ron03], [Rém02].

Let us now investigate some relationships between these regularity conditions.
If G is semisimple compact or complex, then LalgG is dense in the group of con-

tinuous loops LG [PS86], chapter 3.5. Hence L̂algG
σ

is dense in L̂(G, σ). Thus the

Kac-Moody groups L̂(G, σ) for G semisimple are completions of the corresponding

algebraic Kac-Moody groups L̂algG
σ
. Conversely L̂algG

σ
is in a natural way a sub-

group of L̂(G, σ). Call a subgroup of L̂(G, σ) which is abstractly isomorphic to the
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group of algebraic loops LalgG
σ a quasi-algebraic subgroup — denoted L̂qalgG

σ
— of

L̂(G, σ).

L̂algG
σ

is clearly not the only quasi-algebraic subgroup of L̂(G, σ). For example

for any f ∈ L̂(G, σ) the subgroup L̂algG
σ

f := fL̂algG
σ
f−1 is quasi-algebraic.

We want to show that all quasi-algebraic groups are conjugate. To this end we
need the following definition:

Definition 2.1. A group L̂(G, σ) satisfies the conjugation property iff all tori of
finite type are conjugate.

The conjugation property is satisfied for example by the groups M̂G
σ
, ÂnG

σ
and

their compact real forms by the following theorem:

Theorem 2.1. All tori of finite type in X̂G
σ

, X ∈ {An,M} are conjugate.

Proof. [Fre09].

Remark that the conjugation property is satisfied for most interesting regularity
classes, among them the groups of H1-Sobolev loops [Ter95], of k-times differentiable
loops [Fre09] and of smooth loops [Pop05], [Fre09].

Theorem 2.2 (Algebraic subgroups). Let G be a simple, simply connected,

compact or complex Lie group. Suppose L̂(G, σ) satisfies the conjugation property.

Let L̂qalgG
σ
⊂ L̂(G, σ) be a quasi-algebraic subgroup. Then there is f ∈ L̂(G, σ) such

that L̂qalgG
σ

:= fL̂algG
σ
f−1.

For the proof we use the following observation [PS86], proposition 5.2.5:

Lemma 2.1. If G is a simple, simply connected compact Lie group of rank l, then

the l+1 subgroups iα(SU(2)) corresponding to the simple affine roots generate L̃algG.

Remember, that L̃algG denotes the central extension of LalgG. If G is not simply
connected, then LG is not connected. In this case the subgroups iα(SU(2)) generate

the identity component (L̃algG)0. The proof of [PS86] generalizes to the case of
twisted loop groups, as it relies only on the algebraic structure of generators and
relations of the Kac-Moody algebra.

A similar result holds for complex Lie groups:

Lemma 2.2. If GC is a simple, simply connected complex Lie group of rank l,
then the l+ 1 subgroups iα(SL2(C)) corresponding to the simple affine roots generate

L̃algGC.

This is the loop group version of the description of complex affine Kac-Moody
groups as the amalgam of its SL2(C) subgroups [Cap09], [Rém02].

Hence a quasi-algebraic subgroup L̂qalgG
σ

of a group L̂(G, σ) is completely de-

scribed by the choice of a maximal torus. An embedding ϕ : L̂algG
σ
−→ L̂(G, σ) is

determined by the choice of an isomorphism of a torus and the family of isomorphisms
of the SU(2)- resp. SL2(C)-subgroups corresponding to the simple roots. Hence we
get the following lemma:

Lemma 2.3. Let G be a simple, simply connected compact or complex Lie group

and let ϕi : L̂algG
σ
−→ L̂(G, σ), i = {1, 2} be two embeddings, let T̂ be a maximal

torus in L̂algG
σ

and iα(SU(2)) the subgroups associated to the simple roots.
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If ϕ1(T̂ ) = ϕ2(T̂ ) and ϕ1(iαSU(2)) = ϕ2(iαSU(2))∀α, then ϕ1 = ϕ2.

Proof. Two group isomorphisms are equivalent iff they coincide on a set of gener-

ators. By lemma 2.1 (for compact G) resp. 2.2 (for complex G), L̂algG
σ

is generated
by a torus and the SU(2)- resp. SL2(C)-subgroups associated to the simple roots.
This proves the lemma.

We are now in a position to prove theorem 2.2:

Proof. Let Gi ⊂ L̂(G, σ), i ∈ {1, 2} be two quasi-algebraic subgroups of L̂(G, σ).

Choose two tori of finite type T̂1 ⊂ G1 and T̂2 ⊂ G2. By the conjugation property,
there is g ∈ L̂(G, σ) such that T̂1 = gT̂2g

−1. Define H2 := gG2g
−1. The groups G1

and H2 share the maximal torus T̂1. Hence they have the same root system with
respect to T̂1. Choose in both groups the same system of simple roots. The SU(2)
resp. SL2(C)-subgroups associated to those simple roots are well defined. Hence they
coincide. Thus by lemma 2.1, G1 and H2 coincide. Thus G1 and G2 are conjugate.

Next we investigate Borel subgroups and parabolic subgroups.

Definition 2.2 (countably solvable subgroup). A subgroup S ⊂ L̂(G, σ) is called
countably solvable if the upper central series converges to the identity.

Definition 2.3. A Borel group of L̂(G, σ) is a maximal connected, closed, count-

ably solvable subgroup of L̂(G, σ).

Other equivalent definitions are proposed in [Rém02] and [Kum02].

As usual, two Borel subgroups B+ and B− in a Kac-Moody group L̂(G, σ) are

opposite, iff B+ ∩ B− ' T̂ . Call N̂ the normalizer of T̂ and put W = N̂/T̂ . N̂ and

hence also W are independent of the regularity of L̂(G, σ).

Let B+ and B− be two opposite Borel subgroups. Then they describe a unique
quasi-algebraic subgroup G(B+, B−) ⊂ L̂(G, σ): We construct this group by tak-

ing the torus T̂ = B+ ∩ B− and taking the group generated by T̂ and the simple
root groups. This group has a twin BN -pair consisting of (B+ ∩ G(B+, B−), B− ∩
G(B+, B−), N,W, S).

Hence, given a pair of opposite Borel subgroups, we get in each of the two Borel
subgroup a Borel subgroup corresponding to the quasi-algebraic group G(B+, B−).
We call this Borel subgroup the algebraic kernel of Bε (ε ∈ ±) with respect to B−ε.

More generally, let B be a Borel group. As B is a countably solvable group, we
get a series of subgroups B(i+1) = [B(i), B(i)]. Those groups are well defined. But we
don’t get complementary subspaces. Those have to be chosen explicitly. We denote
by T (i) a series of subspaces such that B(i+1) ' T (i) ⊕B(i).

T (0) is just a maximal torus of finite type. T (0) uniquely determines a set of root
subgroups. Define T (1) to be the union of the root subgroups of simple roots and
similarly for T (i) := {ab|a, b ∈ T (i−1)} ∩ B(i+1), i > 0. From now on, by T (i) we will
denote this set of subspaces.

Definition 2.4 (T -algebraic subgroup). The T -algebraic subgroup BTalg of a
Borel subgroup B with respect to a maximal torus T is the subgroup of elements f ⊂ B

such that there exist some n ∈ N such that f ⊂
n⋃
i=0

T (i).
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Lemma 2.4. Let G(B+, B−) be a quasi-algebraic subgroup of L̂(G, σ) and T a
torus in G(B+, B−) that is a complement to B+,(1) in B+. Then

B+ ∩G(B+, B−) = B+,T
alg .

Proof. Let T be a torus inG(B+, B−) as described in the lemma. We claim: There

is a Borel subgroup B̃− such that T = B+∩ B̃− and G(B+, B̃−) = G(B+, B−). Then
the lemma follows from the definitions. Hence we are left with proving our claim: We
construct B̃− explicitly to be the completion of the negative root subgroups.

Lemma 2.5. All positive (resp. negative) Borel subgroups B+ (resp. B−) of

L̂(G, σ) are conjugate.

In the case of GL(n,C), the proof proceeds as follows: Each Borel subgroup fixes
a unique maximal flag. Hence the result follows as GL(n,C) is transitive on maximal
flags. If G ⊂ GL(n,C) the proof follows using the embedding.

Proof. The proof studies the action of L(G, σ) on a suitable vector space and
shows that it is transitive on spaces of periodic flags. For details [PS86], section 7 and
8 and [Fre11a].

We summarize our results: Each pair of two opposite Borel subgroups B± defines
exactly one maximal torus and hence a quasi-algebraic subgroup of L̂(G, σ). We
denote this group G(B+, B−). Quasi algebraic subgroups, such that a given Borel
group B is the completion of an algebraic Borel subgroup Balg, contain a torus which
is a complement to B(1) in B.

3. Summary of the algebraic theory. In this section we gather some basic
results about affine twin buildings for minimal Kac-Moody groups. Two references
for this section are [AB08] and [Rém02].

Definition 3.1 (Twin BN -pair). Let L̂algGC be a complex Kac-Moody group.

Let B̂+ and B̂− be opposite Borel subgroups T = B̂+ ∩ B̂−, N the stabilizer of T , W
the Weyl group and S a set of generators for W . The quintupel (B̂+, B̂−, N,W, S) is

a twin BN -pair for L̂algGC iff:

1. (B̂+, N,W, S) is a BN -pair (called B+N),

2. (B̂−, N,W, S) is a BN -pair (called B−N),
3. B+N and B−N are compatible, i.e.

(a) If l(ws) < l(w) then B̂εwB̂−εsB̂−ε = B̂εwsB̂−ε for ε ∈ {+,−}, w ∈
W, s ∈ S,

(b) B̂+s ∩ B̂− = ∅ ∀s ∈ S.

We use the notation w(f) (resp. in case of ambiguity: wε(f), w±(f), w∓(f))
to denote the class of f in the corresponding Bruhat decomposition. The existence

of the twin BN -pairs yields Bruhat decompositions for L̂algGC similar to the finite
dimensional case:

Theorem 3.1 (Bruhat decomposition). Let L̂algG be an affine algebraic Kac-
Moody group with affine Weyl group Waff. Let furthermore B± denote a positive (resp.
negative) Borel group. There are decompositions

L̂algG =
∐

w∈Waff

B̂+wB̂+ =
∐

w∈Waff

B̂−wB̂− .
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Theorem 3.2 (Bruhat twin decomposition). Let L̂algG be an affine algebraic
Kac-Moody group with affine Weyl group Waff. Let furthermore B+ denote a positive
Borel subgroup and B− its opposite negative Borel group. There are decompositions

L̂algG =
∐

w∈Waff

B̂εwB̂−ε for ε ∈ {+,−} .

For proofs of those results see any book about Kac-Moody groups, i.e. [Rém02],
chapter 1. What we call in this work Bruhat twin decomposition is sometimes called
Birkhoff decomposition.

Note that the Bruhat decompositions and the Bruhat twin decompositions are

defined on the whole group L̂algG. For the associated buildings, this translates into
the fact that any two chambers in B+ resp. B− have a well-defined Weyl distance
and a well-defined Weyl codistance (compare definition 3.4).

The same results hold for LalgG.

Definition 3.2 (BN -flip). An involution ϕ of a Kac-Moody group is called a
BN -flip iff

1. ϕ2 = 1,
2. ϕ(B̂+) = B̂−,
3. ϕ centralizes the Weyl group.

A BN -flip swaps the two BN -pairs. The existence of a BN -flip is a sign of
symmetry of the group structure, which can be lost for non-algebraic Kac-Moody
groups.

Similarly to the two conjugacy classes of Borel subgroups, the set of affine
parabolic subgroups breaks up into two classes. The first one consists of affine
parabolic subgroups containing a conjugate of B̂+, the second one of those containing
a conjugate of B̂−. The two sets of parabolic subgroups admit a partial order relation
exactly as in the finite dimensional case. To this complex, one can associate a simpli-
cial complex, which has the structure of an affine Tits building. The apartments are
Coxeter complexes for Waff.

A big difference between affine buildings and spherical ones is that chambers in
affine buildings do not have opposite chambers (recall that two chambers are called
opposite if their Weyl distance is maximal, which is not possible in an affine Weyl
group). As the existence of opposite chambers is a necessary ingredient for various
structure results, this is a serious detriment. The most important consequence of the
existence of opposite chambers for spherical buildings is the following theorem:

Theorem 3.3. In a spherical building, apartments are exactly the convex hulls
of a pair of opposite chambers.

Proof. [AB08].

This theorem implies the corollary:

Corollary 3.1. The apartment system in a spherical building is unique.

In contrast affine buildings have various different apartment systems, reflecting
the different completions of the associated Kac-Moody groups.

So there is a need for a version of the concept of opposite chambers for affine
buildings, which should then lead to a generalization of theorem 3.3. It is clear that
an opposite chamber cannot be in the same building, as it would have a Weyl distance



KAC-MOODY GROUPS AND CITITES 617

of maximal length. Thus the solution lies in a twinning of the two buildings associated
to the two BN -pairs. The resulting object, called a twin building, behaves in many
respects like a spherical building.
We quote the W -metric definition of a building from the monograph [AB08], chapter 5.

Definition 3.3 (building). A building of type (W,S) is a pair (C, δ) consisting
of a nonempty set C whose elements are called chambers together with a map δ :
C × C −→ W , called the Weyl distance function, such that for all C,D ∈ C the
following conditions hold:

1. δ(C,D) = 1 iff C = D.
2. If δ(C,D) = w and C ′ ∈ C satisfies δ(C ′, C) = s ∈ S then δ(C ′, D) = sw or

w. If in addition l(sw) = l(w) + 1 then δ(C ′, D) = sw.
3. If δ(C,D) = w then for any s ∈ S there is a chamber C ′ ⊂ C, such that

δ(C ′, C) = s and δ(C ′, D) = sw.

This definition coincides with the classical definition of a building as a simplicial
complex. For a proof [AB08]. The construction of the apartments is somewhat
involved.

Definition 3.4 (Twin building). A twin building of type (W,S) is a quintuple
(C+, C−, δ+, δ−, δ∗) such that

1. (C+, δ+) is a building of type (W,S),
2. (C−, δ−) is a building of type (W,S),
3. δ∗ is a codistance, i.e. for X ∈ Bε and Y,Z ∈ B−ε,

a) δ∗(X,Y ) = δ∗(Y,X)−1,
b) δ∗(X,Y ) = w, δ(Y, Z) = s ∈ S and l(ws) = l(w) − 1, then δ∗(X,Z) =

ws,
c) δ∗(X,Y ) = w and s ∈ S. Then there is Z ∈ B− such that δ∗(Y, Z) = s

and δ∗(X,Z) = ws.

Definition 3.5. X and Y are called opposite iff δ∗(X,Y ) = 1.

For a pair of affine buildings the twinning is in general not uniquely determined.
There are uncountable many non-isomorphic twinnings. In the case of rank 1-buildings
– that is trees –, a universal twin building has been constructed by Mark Ronan and
Jacques Tits [RT94], [RT99]. For more general classes of buildings this is an open
problem.

A twinning can be described via twin apartments. Here, we have again the result
that the system of twin apartments is well defined. Furthermore twin apartments are
the convex hulls of opposite chambers [AR98].

4. Twin cities. In this section we construct cities associated to simple geometric
affine Kac-Moody algebras L̂(g, σ) and their Kac-Moody groups L̂(G, σ).

There are two major obstacles:
1. Twin buildings correspond only to the subgroup of algebraic loops, or taking

into account that the subgroup of algebraic loops is just one distinguished
element in the conjugacy class of quasi-algebraic groups.

2. The completions of Kac-Moody groups do not act properly on twin buildings.
To resolve those problems, we define geometric BN -pairs and their associated

cities. Those cities are chamber complexes such that B+ and B− each consist of an
infinite number of connected components, each of which is an affine building, such
that each pair consisting of a building ∆+ in B+ and a building ∆− in B− is a twin
building in the classical algebraic sense.
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4.1. Geometric BN-pairs.

Definition 4.1 (Geometric BN -pair for L̂(G, σ)).

Let L̂(G, σ) be an affine Kac-Moody group. (B+, B−, N,W, S) is a twin BN -pair

for L̂(G, σ) iff there are subgroups L̂(G, σ)+ and L̂(G, σ)− of L̂(G, σ) such that

L̂(G, σ) = 〈L̂(G, σ)+, L̂(G, σ)−〉 is subject to the following axioms:

1. (B+, N,W, S) is a BN -pair for L̂(G, σ)+ (called B+N),

2. (B−, N,W, S) is a BN -pair for L̂(G, σ)− (called B−N),

3. (B+ ∩ L̂(G, σ)−, B− ∩ L̂(G, σ)+, N,W, S) is a twin BN -pair for L̂(G, σ)+ ∩
L̂(G, σ)−.

The subgroups L̂(G, σ)+ and L̂(G, σ)− of L̂(G, σ) depend on the choice of B+

and B−. A choice of a different subgroup B+′
(resp. B−

′
) gives the same subgroup

L̂(G, σ)+ (resp. L̂(G, σ)−) of L̂(G, σ) if B+′ ⊂ L̂(G, σ)+ (resp. B−
′ ⊂ L̂(G, σ) if

B−
′ ⊂ L̂(G, σ)−). For all positive (resp. negative) Borel subgroups the positive (resp.

negative) subgroups L̂(G, σ)+ resp. L̂(G, σ)− are conjugate. Hence without loss of
generality we can think of B± to be the standard positive (resp. negative) affine

Borel subgroup. The groups L̂(G, σ)± — called the standard positive (resp. negative)
subgroups — are then characterized by the condition that 0 (resp.∞) is of finite order
for all elements.

Remark 4.1. For an algebraic Kac-Moody group a geometric BN -pair coincides
with a BN -pair. Hence we get L̂(G, σ)+ = L̂(G, σ)− = L̂(G, σ).

We use the equivalent definitions for the loop groups L(G, σ).
The W -metric description of buildings shows that the structure of a twin building

is intimately related to the Bruhat and the Bruhat twin decomposition. For completed
Kac-Moody groups, those decompositions need no longer be globally defined. This
new feature is crucial for the disconnected structure of cities.

Lemma 4.1.
1. The groups L(G, σ)+ (resp. L(G, σ)−) have a positive (resp. negative) Bruhat

decomposition and a Bruhat twin decomposition.
2. The group L(G, σ) has a Bruhat twin decomposition but no Bruhat decompo-

sition.

Proof. The Bruhat decomposition in the first part follows by definition, the
Bruhat twin decomposition by restriction and the second part. The second part is a
restatement of the decomposition results in chapter 8 of [PS86].

Compare also similar decomposition results stated in [Tit84].

Theorem 4.1 (Bruhat decomposition). Let L̂(G, σ) be an affine Kac-Moody
group with affine Weyl group Waff. Let furthermore B± denote a positive (resp.
negative) Borel group. There are decompositions

L̂(G, σ)+ =
∐

w∈Waff

B+wB+

and

L̂(G, σ)− =
∐

w∈Waff

B−wB− .
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Proof. This is a consequence of lemma 4.1.

Theorem 4.2 (Bruhat twin decomposition). Let L̂(G, σ) be an affine algebraic
Kac-Moody group with affine Weyl group Waff. Let furthermore B± denote a positive
and its opposite negative Borel group. There are two decompositions

L̂(G, σ) =
∐

w∈Waff

B±wB∓ .

Remark 4.2. Note that the Bruhat twin decomposition is defined on the whole
group L̂(G, σ). For cities, this translates into the fact that any two chambers in B+

resp. B− have a well-defined Weyl codistance — see subsection 4.2. In contrast,
Bruhat decompositions are only defined for the subgroups L̂(G, σ)±. This translates
into the fact that there are positive (resp. negative) chambers without a well-defined
Weyl distance, hence that the buildings will be disconnected.

Example 4.1. Shrawan Kumar studies formal completions of Kac-Moody groups
and Kac-Moody algebras. Those groups complete in only “one direction”/ i.e. with
respect to one of the two opposite BN -pairs. Similarly in the setting of affine Kac-
Moody groups of holomorphic loops we could use holomorphic functions with finite
principal part. There is an associated twin BN -pair; the positive Borel subgroups
are completed affine Borel subgroups while the negative ones are the algebraic affine
Borel subgroups. Thus for a geometric twin BN -pair we have to use: L̂(G, σ)+ =

L̂(G, σ) and L̂(G, σ)− = L̂algG
σ

(Kumar studies only the affine building associated to
BN+ [Kum02]).

Definition 4.2. An involution ϕ : L̂(G, σ) −→ L̂(G, σ) is called a BN -flip iff
1. ϕ2 = 1,
2. ϕ(B+) = B−,
3. ϕ centralizes W .

Definition 4.3. A geometric twin BN -pair is called symmetric iff it has a
BN -flip.

Example 4.2. For a twin BN -pair to be symmetric we need that B+ and B− are
isomorphic groups. More precisely this means that the completion has to be symmetric
in both directions. Thus the groups of example 4.1 have non symmetric geometric twin
BN -pairs.

Example 4.3. An algebraic affine twin BN -pair is symmetric.

Example 4.4. The geometric BN -pair associated to any group L̂(G, σ) is sym-
metric.

Lemma 4.2. The intersection L̂(G, σ)0 of L̂(G, σ)+ with L̂(G, σ)− is a quasi-
algebraic subgroup. For the standard affine Borel subgroups, it is the algebraic Kac-
Moody group

L̂(G, σ)0 ' L̂algG
σ
.

Proof. L̂algG
σ

is the maximal subgroup of L̂(G, σ) having both Bruhat decom-
positions.
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4.2. Combinatorics of cities. We now define a twin city using the W -metric
description:

Definition 4.4 (Twin City). Let L̂(G, σ) be an affine Kac-Moody group with

a geometric BN -pair and a Weyl group Waff. Define C+ := L̂(G, σ)/B+ and C− :=

L̂(G, σ)/B−.

1. The distance δε : Cε × Cε −→ Waff, ε ∈ {+,−} is defined as usual via the

Bruhat decompositions: δε(gBε, fBε) = w(g−1f) if g−1f ∈ L̂(G, σ)ε. Other-
wise it is ∞.

2. The codistance δ∗ : C+×C−∪C−×C+ −→W is defined as usual via the Bruhat
twin decompositions: δ∗(gB−, fB+) = w∓(g−1f) (resp. δ∗(gB+, fB−) =
w±(g−1f)).

The elements of C± are called the positive (resp. negative) chambers of the twin
city. The building is denoted B = B+ ∪B−. One can define a simplicial complex
realization in the usual way. We define connected components in B± in the following
way: Two elements {c1, c2} ∈ B± are in the same connected component iff δ±(c1, c2) ∈
Waff. We will check that this is an equivalence relation. Denote the set of connected
components by π0(B) resp. π0(B±).

Remark 4.3. Let L̂(G, σ) be an algebraic affine Kac-Moody group. Then each
city consists of exactly one building: Hence the twin city coincides with the twin
building.

Lemma 4.3 (Properties of a twin city).

1. The connected components of Bε are affine buildings of type (W,S).
2. Each pair consisting of one affine building in B+ and one in B− is a twin

building of type (W,S).
3. The connected components of Bε are indexed by elements in

L̂(G, σ)/L̂(G, σ)ε.

Proof.

1. Call two elements equivalent iff they are in the same connected component.
This relation is clearly symmetric and self-reflexive. To prove transitivity,
let fB±, gB± and hB± be such that there are wfg, wgh ∈ W such that
f−1g ∈ B±wfgB

± and g−1h ∈ B±wghB
±. Then f−1h = f−1gg−1h ∈

B±wfgB
±wghB

±; hence the distance is in W and thus finite. Connected
components are exactly subsets with finite codistance. We have to check that
each connected component fulfills the metric definition of a building.
(a) If δ(fBε, gBε) = w — hence there are b1, b2 ∈ Bε such that f−1g =

b1wb2 —, then g−1f = b−1
2 w−1b−1

1 . Hence δ(gBε, fBε) = w−1.
(b) If δ(fBε, gBε) = w and δ(f ′Bε, fBε) = s, then δ(f ′Bε, gBε) =

w(f
′−1g) = w(f

′−1ff−1g) ⊂ w(f
′−1f)w(f−1g) ∪ w(f−1g) ∈ {sw,w}.

If l(sw) = l(w) + 1, then δ(f ′Bε, gBε) = sw.
(c) Let δ(fBε, gBε) = w and denote by Cs be the s-panel containing fBε.

There are two possibilities:
i. Either w has a representation such that w = sw′ and l(sw′) > l(w′)

— i.e. the first letter of any reduced word representing w′ in the
generators si is not s. As the last letter of w is s, the last chamber
of the gallery connecting fBε and gBε, denoted f ′Bε, is contained
in the s-panel Cs. Hence δ(f ′Bε, gBε) = w′ = sw.
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ii. If w has no representation of the form w = sw′ such that
l(sw′) > l(w′), then any chamber fBε in the panel C(s) satisfies
δ(f ′Bε, gBε) = sw.

2. Each pair consisting of one connected component in B+ and one in B−

fulfills the axioms of definition 3.4. As the Bruhat decomposition is defined
on L̂(G, σ), the codistance is defined between arbitrary chambers in Bε resp.
B−ε.

3. L̂(G, σ) has a decomposition into subsets of the form L̂(G, σ)ε. Those subsets

are indexed with elements in L̂(G, σ)/L̂(G, σ)ε. The class corresponding to

the neutral element is L̂(G, σ)ε ⊂ L̂(G, σ). Thus it corresponds to a connected
component and a building of type (W,S). The result follows via translation by

elements in L̂(G, σ)/L̂(G, σ)ε: a connected component of Bε containing fBε

consists of all elements fL̂(G, σ)εBε as δ(fhBε, fh′Bε) = w((fh)−1fh′) =

w(h−1f−1fh′) = w(h−1h′) ∈W as h, h′ ∈ L̂(G, σ).

Definition 4.5. A twin city B is symmetric iff there is a simplicial complex
involution ϕB : B −→ B such that ϕB(Bε) = B−ε.

Lemma 4.4. A twin city is symmetric iff its geometric BN -pair is symmetric.

Proof. The BN -pair involution induces a building involution.

4.3. Group actions on the twin city. This section studies the action of
L̂(G, σ) on the twin city associated to it.

We recall the special case of an algebraic Kac-Moody group: Borel subgroups in
an algebraic Kac-Moody group are exactly the stabilizers of chambers while parabolic
subgroups are the stabilizers of simplices. Furthermore the action is isometric with
respect to the Weyl distance.

Lemma 4.5 (Action of L̂(G, σ)).

1. The action of L̂(G, σ) on B by left multiplication is isometric.
2. The Borel subgroups are exactly the stabilizers of the chambers, the parabolic

subgroups are the stabilizers of all simplices.
3. L̂(G, σ)ε acts on the identity component ∆ε

0 ⊂ Bε by isometries.
4. Let ∆+

1 ∪∆−1 be an arbitrary twin building in B. Suppose D± are two opposite
Borel subgroup stabilizing simplices in ∆±0 . The group G(D+, D−) acts on
∆+

0 ∪∆−0 by isometries.
5. Let fBε and gBε be two chambers in the same connected component of Bε,

and h, h′ ∈ L̂(G, σ)−ε. The left translates hfB−ε and h′gB−ε are in the same

connected component iff f−1h−1h′g ∈ L̂(G, σ)ε.

Proof.
1. G acts isometrically on a twin building if the action on both parts preserves

the distances and the codistance [AB08], section 6.3.1. Hence the first asser-

tion follows from the definition of C± as coset spaces of L̂(G, σ) and a direct
check:

δ(hfB±ε, hgB±ε) = w(f−1h−1hg) = w(f−1g) = δ(fB±ε, gB±ε) .

2. The chamber corresponding to fBε is stabilized by the Borel subgroup
Bεf := fBεf−1. The converse follows as each Borel subgroup is conjugate
to a standard one. Analogous for the parabolic subgroups.
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3. The identity component is described by L̂(G, σ)εBε. Hence it is preserved by

left multiplication of L̂(G, σ)ε — thus the action is well defined and isometric
by the first statement.

4. The group L̂(G, σ)ε = BεWBε acts by the last statement on ∆ε
0 by isometries.

Hence G(B+, B−) = L̂(G, σ)+ ∩ L̂(G, σ)− acts on ∆+
0 ∪ ∆−0 by isometries.

Let fB+ ∈ ∆+
1 and gB− ∈ ∆−1 be the chambers stabilized by D±. Then

D+ = fB+f−1 andD− = gB−g−1. By theorem 2.2 there is some h ∈ L̂(G, σ)
such that G(D+, D−) = hG(B+, B−)h−1. The groups B

′± = hB±h−1 are
Borel subgroups in G(D+, D−). As all positive resp. negative Borel subgroups
in G(D+, G−) are conjugate in G(D+, G−), there are elements f ′ and g′

in G(D+, G−) such that D+ = f ′B′
+
f ′
−1

= f ′hB+h−1f ′
−1

and D− =

g′B′
−
g′
−1

= g′hB−h−1g′
−1

. Hence f = f ′hbf with bf ∈ B+ and g = g′hbg
with bg ∈ B−.
Now we can prove that ∆+

1 is invariant under G(D+, D−): For k ∈
G(D+, D−) we define k0 = h−1kh (hence k0 ∈ G(B+, B−) ⊂ L̂(G, σ)+):

δ(kfB+, fB+) = w(f−1k−1f) =

= w(f−1hk−1
0 h−1f) =

= w(bfh
−1f ′hk−1

0 f ′hbf ).

As bf ∈ B+ ⊂ L̂(G, σ)+, h−1f ′
−1
h ∈ G(B+, B−) ⊂ L̂(G, σ)+, k0 ∈

G(B+, B−) ⊂ L̂(G, σ)+, we find that w(bfh
−1f ′hk−1

0 f ′hbf ) ∈ W . Hence
G(D+, D−) preserves ∆+

1 . Analogously we conclude for ∆−1 . This proves the
claim.

5. f−1h−1h′g ∈ L̂(G, σ)ε is equivalent to δε(hfB−ε, h′gB−ε) ∈Waff.

As quasi-algebraic subgroups are in bijection with algebraic twin buildings in B,
we give a geometric characterization of them.

Theorem 4.3. Let H ⊂ L̂(G, Id) be a subgroup conjugate to G and h its Lie
algebra. Then the group

LHG := {etX1etY1 . . . etXnetYng | g ∈ H, Xi, Yi ∈ h, etXietYi = e}

is quasi-algebraic. Conversely for each quasi-algebraic subgroup L̂qalgG there are H

and h such that L̂qalgG is of this form.

Before describing the proof, let us note as a corollary an application: We give a
characterization of the connected components of Bε.

Corollary 4.1. Two simplices f̄Bε and ḡBε ∈ Bε are contained in the
same connected component ∆ε

1 of Bε iff there are representatives f, g ∈ L̂(G, σ),

{X1, . . . , Xn, Y1, . . . , Yn ∈ h|etXietYi = e} where g ' h ⊂ L̂(g, σ) and a constant c
such that fBε = f̄Bε gBε = ḡBε and f(t) = etX1etY1 . . . etXnetYnc · g(t).

Proof. [Proof of corollary 4.1] Choose a quasi-algebraic subgroup G(∆ε
1) acting

transitively on ∆ε
1. Choose g to be an arbitrary representative of ḡ. Then there is

f ′ ∈ G(∆1) such that f ′g is a representative for f̄ . Put f := f ′g, choose an embedding

ϕ : L̂algg −→ G(∆ε
1) and put h = ϕ(g). Now the corollary follows from theorem 4.3.
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The theorem is a consequence of the following lemma, due to Ernst Heintze, which is
the special case for H := G.

Lemma 4.6 (Characterization of LalgG).

LalgG := {etX1etY1 . . . etXnetYng | g ∈ G, Xi, Yi ∈ g, etXietYi = e}.

Proof of theorem 4.3.

1. Choose k ∈ L(G, σ) such that H = kGk−1. Then h = kgk−1. Hence LHG =
kLGGk

−1 = kLalgGk
−1.

2. Let LqalgG be a quasi-algebraic subgroup of L(G, σ). Then there is some
k ∈ L(G, σ) such that LqalgG = kLalgGk

−1. Put H = kGk−1 and h = kgk−1

and we have reduced the statement of theorem 4.3 to the lemma 4.6.

We now give the proof of lemma 4.6:

Proof of Lemma 4.6. Define:

L′algG := {etX1etY1 . . . etXnetYng | g ∈ G, Xi, Yi ∈ g, etXietYi = e}.

We have to show: L′algG = LalgG.

- We show: L′algG ⊂ LalgG. First remark that L′algG is a group of periodic

mappings c : R→ G with period 1. As getX = etAd(g)Xg, the product of two
elements is again in L′algG. Checking the group axioms is then elementary.
Thus L′algG is a subgroup of LG. From theorem 4.7. in [Mit88] it follows that
c(t) = exp tX exp tY is in LalgG iff exp tX exp tY = e. As each element in
L′algG is generated by elements in LalgG, we get: L′algG ⊂ LalgG.

- We show: LalgG ⊂ L′algG. To prove this direction, we study the action of
L′algG on the building. We show:

1. L′algG acts transitively on the set of chambers.
2. The isotropy group of a chamber is the same for LalgG and L′algG.

Those two assertions contain the theorem, as for g ∈ LalgG we find the
existence of a g′ ∈ L′algG such that g∆0 = g′∆0 for some fixed chamber ∆0.

Thus g′−1g∆0 = ∆0. Thus the product g′−1g is in the isotropy group of ∆0

with respect to the LalgG-action, called LalgG∆0
.

Now the second assertion tells us: g′−1g ∈ L′algG∆0
= LalgG∆0

Set g′′ :=

g′−1g ∈ L′algG. Then g = g′g′′ ∈ L′algG. Thus LalgG ⊂ LalgG
′ and the

lemma is proved. Thus we are left with checking assertions 1. and 2.:
- We prove: The isotropy group of a chamber is the same for LalgG and
L′algG. Let Balg be the affine building, associated to LalgG, X ∈ B a
cell of type I, PI its stabilizer in LGC. We know from [Mit88]:

LalgG ∩ PI = {h ∈ LalgG|h(t) exp(tX)h−1(1) = exp(tX)} =

= {h ∈ LalgG|h(t) = exp(tX)h(1) exp(−tX)} ⊂
⊂ L′algG.

The last inclusion is true, as exp(tX)h(1) exp(−tX) =
exp(tX) exp(tY )h(1) with Y = −Adh(1)X and [h(1), exp(tX)] = 0.
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- We prove: L′algG acts transitively on the set of chambers. To this end,
we remark that the action of LalgG ∩ Pi ' SU(2) is transitive on the
chambers having the panel corresponding to i in its boundary. Tran-
sitivity on the building follows now as every pair of chambers can be
connected by a gallery, which we can follow by repeated application of
the transitivity on the chambers surrounding a panel.
As those groups are in L′algG, the action of L′algG is transitive on B —
the result follows now.

Remark 4.4. The strategy of this proof is similar in spirit to the amalgam-based
local-global constructions in the Kac-Moody theory.

5. Twin cities and Kac-Moody algebras. This section is devoted to the
construction of an explicit realization of twin cities via the Adjoint action.

Define the two simplicial complexes:

B+ = (L(GC, σ)/B+ ×∆)/ ∼ ,
B− = (L(GC, σ)/B− ×∆)/ ∼ .

In this description B+ and B− denote opposite Borel subgroups, ∆ denotes the
fundamental alcove in a fixed torus t ⊂ g and ∼ is the equivalence relation defined by
(f1, Y1) ∼ (f2, Y2) iff Y1 = Y2 ' Y and f1 ' f2(mod (Fix exp tY )). Using the Iwasawa
decomposition of L(GC, σ) we get a second description:

B+ = (L(GR, σ)/T ×∆)/ ∼ ,
B− = (L(GR, σ)/T ×∆)/ ∼ .

Furthermore we set

B = B+ ∪B− .

Definition 5.1 (Apartment). By abuse of notation, let Waff ⊂ L(GC, σ)/B =

L(GR, σ)/T be a realization of the affine Weyl group of GC, W f
aff := fWafff

−1. An

apartment A±f ∈ B± is the simplicial complex

A±f := (W f
aff ×∆)/ ∼ .

Proof.
- To check that the embedding Waff ⊂ GC/B = GR/T is well defined, let t ⊂ g

be a maximal Abelian subalgebra. Let H := {g ∈ G|gtg−1 = t}. H is a group.
Let X ∈ t be a regular element, K := Fix(X) ' T . Then W = H/T ⊂ G/T .

- A±f is a thin Coxeter complex of type W . Thus A±f is an apartment.

Lemma 5.1. Two elements (f,X), (g, Y ) ∈ B± are contained in the same con-

nected component iff f−1g ∈ L̂(G, σ)±.

Proof. This is a restatement of lemma 4.3.
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We want now to embed the twin city in the compact real form L̂(gR, σ) of a
Kac-Moody Lie algebra. It will appear as a tessellation of a space H`,r defined as
the intersection of the sphere of radius l, l ∈ R, with a horosphere rd = ±r. The two
sheets of this sphere will correspond to B+ resp. B−.

We require that the regularity of L̂(G, σ) is such that the restriction of the gauge

action of L(G, σ) on L(g, σ) to H`,r is polar. This condition is fulfilled for ÂnG
σ

and

for M̂G
σ

as is shown in [Fre09]. For Kac-Moody groups of H1-loops acting on the
Kac-Moody algebra of H0-loops it is a consequence of Terng’s work [Ter95].

To construct the embedding, we start with the conjugation action:

ϕ̂ : L̂(G, σ)× L̂(G, σ) −→ L̂(G, σ), (g, h) 7→ ghg−1.

By differentiation we get the adjoint action on the Lie algebra:

ϕ̂ : L̂(G, σ)× L̂(g, σ) −→ L̂(g, σ), (g, û) 7→ gûg−1.

In contrast to the finite dimensional theory it is not possible to cover L̂(g, σ) with
maximal conjugate flats.
Nevertheless, the polarity assumption shows this to be possible for the restriction to
H`,r (which is invariant under the adjoint action). Hence we conclude that H`,r is
covered with finite dimensional conjugate Abelian subalgebras. So in the end the
situation is exactly as in the finite dimensional case; hence the algebra works out
exactly the same way:
We find for a Cartan subalgebra ĥ

ϕ̂ : L̂(G, σ)× H`,r −→ H`,r, (g, û) 7→ gûg−1 ,

ϕ̂ : L̂(G, σ)× ĥ ∩ H`,r −→ H`,r, (g, û) 7→ gûg−1 .

Taking ĥ to be the standard Cartan subalgebra (i.e. for non-twisted groups, h
consists of the two dimensional extension of a Cartan subalgebra of G, interpreted as
constant loops), we find that hH := ĥ ∩ H`,r consists of triples X̂ = (X, rc, rd) where

rc is defined by the condition |X̂| = l.

The exponential image of ĥ is a torus T̂ ' T ⊕ S1 ⊕ S1 ⊂ L̂(G, σ). As ĥ is fixed

by T̂ , we get a well defined surjective action

ϕ̂ : L̂(G, σ)/T̂ × hH −→ H, (g, uH) 7→ guHg
−1 .

The surjectivity of this map follows from the polarity of the adjoint action (see theo-
rem 2.1).

Using the equivalence L̂(G, σ)/T̂ ' L(G, σ)/T we get:

ϕ : L(G, σ)/T × hH −→ H, (g, uH) 7→ guHg
−1 .

Now the inner automorphisms of ĥ are the elements of the affine Weyl group
Waff := N(T )/T , so we may further restrict ĥH to a fundamental domain of the
action of Waff, denoted ∆. Then the map

ϕ : L(G, σ)/T ×∆ −→ H, (gT, ûH) 7→ gûHg
−1

is again surjective.
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We can now construct a chamber complex by identifying ∆ with a simplex B
with boundary and taking its L̂(G, σ)-translates.

This construction proves the following theorems:

Theorem 5.1 (Embedding of the twin city). For each algebra L(g, σ) there is a
2-parameter family of embeddings for the twin city, parametrized by r and the norm
l. Those embeddings are equivariant in the sense that:

BG

L̂(G,σ) //

ϕlr

��

BG

ϕlr

��
L̂(gR, σ)

Ad(L̂(G,σ)) // L̂(gR, σ)

We call this 2-parameter family the thick twin city.
This construction yields the following result:

Corollary 5.1. Suppose the adjoint action of L̂(G, σ) induces a polar action.

Every torus in a Kac-Moody group L̂(G, σ) corresponds to a complete twin apartment
of the twin city.

More generally, we have:

Theorem 5.2. There is a correspondence between twin apartments in the twin
city and tori of finite type in L̂(GC, σ).

Remark 5.1. Bertrand Remy proves a similar result for arbitrary algebraic Kac-
Moody groups, showing a correspondence between twin apartments and Cartan subal-
gebras [Rém02], section 10.4.3. .

Remark 5.2. For Kac-Moody groups of the classical type, theorem 5.2 can be
proven by linear representations of the twin cities as complexes of periodic flags in
Hilbert spaces [Fre09] for the case Ãn and a sketch for the other types and [Fre11a]
for the details. The possibility of a similar construction for Kac-Moody groups of the
exceptional types is an interesting open problem.

Proof of theorem 5.2. The embedding shows this theorem for twin apartments

corresponding to tori in the Kac-Moody group M̂G
σ
. We have to prove two directions:

- Let A be an arbitrary twin apartment in the affine twin building ∆+ ∪∆− ⊂
B+∪B−. LetG(∆+,∆−) be the quasi-algebraic group associated to ∆+∪∆−.
By Bertrand Remy’s result, A corresponds to a torus in G(∆+,∆−). The

embedding of G(∆+,∆−) as a subgroup in L̂(G, σ) identifies A with a torus

in L̂(G, σ).

- Let T ′ be a torus in L̂(G, σ). As all tori of finite type are conjugate, there is
a g such that T ′ = gTg−1, where T is the standard torus. T ′ corresponds to
the apartment that is the translate by g of the apartment corresponding to
T .

Remark 5.3. A second possible proof of theorem 5.2 consists in identifying the
stabilizers of twin apartments in B and of tori in L̂(G, σ). This is an adaption of the
strategy used by Bertram Remy in [Rém02] to our setting. A third proof is implicit in
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the description of apartment systems in section [AB08]. A fourth proof constructs for
each apartment a compact real form such that the apartment corresponds to a torus
of this compact real form. Then the result follows from corollary 5.1.

Let us now generalize this result to s-representations of Kac-Moody symmetric
spaces. For an overview of the theory and the definition of Kac-Moody symmetric
spaces see [Fre07], for a detailed description see [Fre09]. Their adjoint actions in-
duce s-representations of involutions of affine Kac-Moody algebras. Christian Gross
proved in [Gro00] those to be a polar representation for the action of H1-Kac-Moody
groups on H0-Kac-Moody algebras. The result extends to all other regularity con-
ditions, mentioned in this paper especially smooth loops, k-differentiable loops and
holomorphic loops on An resp. C∗. The last case corresponds to the s-representations
of Kac-Moody symmetric spaces [Fre09].

Let L̂(g, σ) be an affine Kac-Moody algebra of compact type and ρ̂ and involution.

Let L̂(g, σ) = K⊕P be the decomposition into the ±1-eigenspaces of ρ̂. Let K̂ be the
Kac-Moody group associated to K and K its loop group part. The s-representation
of K (resp. K̂) is the action of K on P induced by the adjoint action of L̂(G, σ) on

L̂(g, σ) by restriction to K (resp. K̂) and P. As usual, we allow for K, K̂, K and P
all regularity conditions, we have introduced so far.

Then the result of Christian Groß[Gro00] and its extension to all other regularity
conditions can be stated as follows:

Theorem 5.3. The s-representation of K and K̂ on the Hilbert space Pr,` is a
polar representation.

Hence P`,r is covered with finite dimensional conjugate Abelian subalgebras hi. So
the situation is exactly the same as in the Kac-Moody group case.
We find for a Cartan subalgebra ĥ

ϕ̂ : L̂(G, σ)× ĥ ∩ P`,r −→ P`,r, (g, û) 7→ gûg−1

is surjective. Taking ĥ to be the standard Cartan subalgebra (i.e. for non-twisted
groups, h consists of the two dimensional extension of a Cartan subalgebra of P,
interpreted as constant loops), we find that h`,r := ĥ ∩ P`,r consists of triples X̂ =

(X, rc, rd) where rc is defined by the condition |X̂| = l.

Defining CK ⊂ K (resp. ĈK ⊂ K̂) to be the centralizer of ĥ we get a well defined
surjective action

ϕ̂ : L̂(G, σ)/ĈK × h`,r −→ P`,r, (g, uH) 7→ guHg
−1 .

The surjectivity of this map follows from the polarity of the adjoint action (see theo-
rem 2.1).

Using the equivalence K̂/ĈK ' K/CK we get:

ϕ : K/CK × h`,r −→ P`,r, (g, uH) 7→ guHg
−1 .

Now the inner automorphisms of ĥ are the elements of the affine Weyl group
Waff := NK(h)/CK(h), where NK(h) denotes the normalizer of h, so we may further

restrict ĥ`,r to a fundamental domain ∆W for the action of Waff. Then the map

ϕ : K/CK ×∆ −→ P`,r, (gT, ûH) 7→ gûHg
−1
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is again surjective.
Using the description B = (K/CK ×∆) / ∼ and identifying ∆W with a funda-

mental simplex ∆ of the city, we get the embedding result:

Theorem 5.4 (Embedding of the twin city). For each subspace P ⊂ L(g, σ)
there is a 2-parameter family of embeddings for the twin city, parametrized by r and
the norm `. Those embeddings are equivariant in the sense that:

BG

L̂(G,σ) //

ϕ`r

��

BG

ϕ`r

��
P`,r

Ad(L̂(G,σ)) // P`,r

We got explicit realization for the affine twin cities in tangential spaces of Kac-
Moody symmetric spaces, thus showing, that twin cities appear “in nature”.

6. Topology and geometry of B. There are three sundry ways to define a
topology (resp. geometry) on the twin cities:

1. A structure on the geometric realization of B.
2. A structure on the set of chambers in B.
3. A structure on the set of buildings in B.

We will discuss these 3 ways in the following three subsections.

6.1. The structure on the geometric realization of B. The embedding of
the twin city into spaces H`,r shows:

Theorem 6.1. Let L̂(G, σ) be a Hilbert-, Banach- or Fréchet-Lie group. The
geometric realization of the positive (resp. negative) component B+ (resp. B−) of the
twin city carries the same structure.

Using the results about the analytic structure of the various Kac-Moody groups,
as developed in [PS86], [Ter95], [Pop05], and [Fre09], we get the following corollary:

Corollary 6.1 (The most important examples).

1. Each city associated to M̂G carries a natural tame Fréchet structure.

2. Each city associated to ÂnG carries a natural Banach space structure.

3. Each city associated to L̂∞G carries a natural tame Fréchet structure.

4. Each city associated to L̂1G carries a natural Hilbert space structure.

Using the description of M̂g as inverse limit of the algebras Âng [Omo97] and
[Fre09], we find this structure reflected in an inverse limit system {B

M̂G
, lim
←−

BAnG}.

Thus the twin city for M̂G is surrounded by a cloud of buildings corresponding to
groups of weaker regularity.

6.2. The structure on the set of chambers in B. As chambers in B corre-
spond bijectively to elements in the quotient MG/T , the space of chambers inherits
the tame Fréchet topology of MG/T . Study the gauge action of MG on Mg. By
theorem 2.1 it is a polar action. Let X ∈ t be an element in the Lie algebra of
T , such that {MG · X} is a principal orbit. As the stabilizer of X is T , we have
{MG ·X} 'MG/T .

Hence the space of chambers can be identified with an isoparametric submanifold.
So the structure of the space of chambers is well understood.



KAC-MOODY GROUPS AND CITITES 629

Theorem 6.2. Let S be an isoparametric PF-submanifold of a Hilbert space.
Suppose S is homogeneous and it is the principal orbit of the gauge action of a Hilbert
loop group L1Gσ. Then the points in the isoparametric submanifold correspond bijec-
tively to chambers in the associated city. Furthermore curvature spheres correspond
to panels.

For the definition of isoparametric submanifolds see [Ter89] and [PT88]. All
known isoparametric submanifolds with higher codimension are of this type.

Conversely Ernst Heintze and Xiaobo Liu [HL99] — prove the following theorem:

Theorem 6.3. A complete, connected, full, irreducible isoparametric submanifold
M of an infinite dimensional Hilbert space V with codimension 6= 1 is a principal orbit
of a polar action.

The set Q constructed in [HL99] has the structure of an affine algebraic build-
ing. For more details [Ter95], [HPTT95], [Fre11b], and the references therein. It is
conjectured that all polar actions on Hilbert spaces correspond to P (G,H) actions
under suitable assumptions on the cohomogeneity. Very promising partial results in
this direction due to Claudio Gorodski, Ernst Heintze and Kerstin Weinl exist. If this
is the case one gets an equivalence between cities and isoparametric submanifolds of
codimension 6= 1 mirroring the situation described by Thorbergsson’s theorem in the
finite dimensional situation — [Tho91].

6.3. The structure on the set of buildings in B. While the space of cham-
bers and the simplicial realization allow a metric structure similar to the one of the
subjacent Lie group, i.e. a Hilbert, Banach or Fréchet space structure, the situation
is completely different for B itself. The simple fact that the chambers belonging to a
single building are dense in the space of all chambers shows that no refinement of a
topology on the space of chambers will give a topology on the space of buildings.

As we choose to define the twin city in terms of the geometric Kac-Moody groups,
we will also describe the geometry and topology of those groups. We want two build-
ings in B to be close iff there is a small group L̂(G, σ), i.e. a group defined using strong
regularity conditions, containing both of them. As the product of two functions of a
given regularity is of the same regularity, we find that a distance defined in this way
will be ultrametric.

Hence we will show that a twin city carries a ultrametric pseudo distance.

For f̂ ∈ L̂(G, σ) let f =
∑
akz

k be the (matrix valued) associated Fourier series
of the loop part. Recall that convergence conditions on the series

∑
|ak| correspond

to regularity conditions on f [GW84] for an extensive overview:

- f is in LrG iff
∑
|ak|kr <∞.

- f is smooth iff
∑
|ak|kr <∞ ∀r ∈ N.

- f is holomorphic on An iff
∑
|ak|ekn <∞.

- f is holomorphic on C∗ iff
∑
|ak|ekn <∞ ∀n ∈ N.

At the moment of this writing, it is unclear if there is a suitable distance function
which is meaningful in the whole range of regularity conditions.

The {An,C∗}-setting.

To metrize the “cloud” of buildings surrounding the tame twin city associated to
a Kac-Moody symmetric space, we propose the following definition:
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Definition 6.1. For ∆0,∆1 ∈ B± and x ∈ ∆0, y ∈ ∆1 define

ν(x, y) = maxn{There is f ∈ AnG such that f(x) = y}

and d(x, y) = e−ν(x,y). Then we put d(∆0,∆1) = d(x, y).

This is equivalent to

ν(x, y) = maxn{There is a function f such that f(x) = y satisfying
∑

|ak|ekn <∞}.

Lemma 6.1 (pseudo distance). d is a ultrametric pseudo distance on the space
of buildings in Bε.

Proof of Lemma 6.1.

1. We prove that d is a ultrametric pseudo distance on the space of chambers.
To this end let x, y, z ∈ Bε be chambers. We have to check:

- symmetry: f ∈ AnG ⇔ f−1 ∈ AnG. Thus ν(x, y) = ν(y, x) and
d(x, y) = d(y, x).

- strong ∆-inequality: Let d(x, y) = e−ν(x,y), d(y, z) = e−ν(y,z). Thus
there is a function fxy ∈ Aν(x,y)G such that f(x) = y and a function
fyz ∈ Aν(y,z)G such that f(y) = z. Without loss of generality sup-
pose ν(x, y) ≤ ν(y, z). Thus Aν(x,y)G ⊃ Aν(y,z)G. So fxz = fxyfyz ∈
Aν(x,y)G. Thus d(x, z) = e−ν(x,z) ≤ e−ν(x,y) = d(x, y).

2. We have to check that the distance on the space of buildings is well defined.
To this end let x, x′ ∈ ∆0. There is a quasi-algebraic subgroup G(∆0) acting
transitively on ∆0. Let h ∈ G(∆0) such that x′ = h(x). Clearly d(x, x′) = 0.
The result follows now from the triangle inequality.

The Hilbert space setting: H1-loops acting on H0-spaces. In many
papers describing the geometry of Kac-Moody groups (see [HPTT95], [Ter89], and
[Ter95]), the setting of H1-loops with values in a compact simple Lie group G, acting
on the space of H0-loops in g, is used. Our results carry over to this setting:

Nevertheless, describing B± = (LG×∆)/ ∼, it seems meaningful to make some
changes in the definition of the pseudo distance. As we defined it, the distance between
two buildings depends on the convergence radius of the functions transforming one
building into the other. For H1-functions this definition is useless: The space of
buildings such that the distance is 0 is just to big. So it seems meaningful to introduce
another distance function:

Definition 6.2 (H1-distance). Let ∆1,∆2 ∈ Bε. Let fBε ∈ ∆1, gBε ∈ ∆2

and let fg−1 =
∑
ake

ikt be the Fourier series expansion. Then νr(fB
ε, gBε) =

maxr{
∑
krak <∞} and dr(∆1,∆2) = e−ν(fBε,gBε).

Lemma 6.2. The H1-distance is a ultrametric pseudo distance.

Proof. The proof follows the pattern of the proof for lemma 6.1.

7. An example: Type A
(1)
1 . The affine Kac-Moody algebra L̂sl(2,C) is the

two dimensional extension by a derivation and a central element of the algebra of
2π-periodic H0-Sobolev functions on R into the simple Lie algebra sl(2,C). sl(2,C)
is a 3-dimensional complex Lie algebra of rank 1. Choose generators e, f and h of
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sl(2,C) satisfying the usual commutation relations

[h, e] = e

[h, f ] = −f
[e, f ] = h.

Each element g = (gh, ge, gf ) ∈ Lsl(2,C) has a Fourier series expansion
g =

∑
n gnt

n such that gn = (gh,n, ge,n, gf,n). The subalgebra of algebraic loops

Lalgsl(2,C) (resp. its extension L̂algsl(2,C)) is the subalgebra of loops whose Fourier

series is finite. L̂algsl(2,C) is isomorphic to the abstract algebra A
(1)
1 [Kac90], defined

as the realization g(A) of the affine Cartan matrix

A =

(
2 −2
−2 2

)
.

A basis for Lsl(2,C) is given by (e · tn, h · tn, f · tn, n ∈ Z). sl(2,C) can be

embedded into L̂sl(2,C) as the subalgebra of constant loops. For a constant function
g(t) ≡ g0 the derivative g′(t) = 0 vanishes. In consequence the 2-form ω (compare 2),
describing the c-component of the Lie bracket of two functions, vanishes on elements
of sl(2,C) ⊂ L̂sl(2,C). Hence sl(2,C) is a subalgebra.

h = Ch is a Cartan subalgebra in sl(2,C). The relation [d, g] = 0 for g any

constant function together with c being central makes ĥ = h ⊕ Cc ⊕ Cd a Cartan
subalgebra in Lsl(2,C). All further Cartan subalgebras of Lsl(2,C) are conjugate to

ĥ.
Let L̂SL(2,C) be the corresponding affine complex Kac-Moody group. This group

has a structure as a torus bundles over the loop group LSL(2,C). Details of the

technical construction may be found in [PS86]. Let B̂ be the standard positive Borel

subgroup of L̂SL(2,C) that is, B̂ is the subgroup of L̂SL(2,K) corresponding to
loops whose Fourier coefficients are non-negative and whose constant term is upper
triangular. Hence a loop f ∈ L̂SL(2,C) is in B̂ iff f =

∑
n≥0 fnt

n such that

fn =

(
fn,11 fn,12

fn,21 fn,22

)
and f0 =

(
fn,11 fn,12

0 fn,22

)
is upper triangular.

Similarly we denote by L̂algSL(2,C) the subgroup of algebraic loops. By construc-
tion, the loop group LalgSL(2,C) of this group is isomorphic to the linear algebraic
group corresponding to the affine algebraic group scheme SL2 evaluated over the ring
C[t, t−1]. The affine Weyl group of the group L̂SLalg(2,C) is the reflection group

W ≡Waff = 〈s, t|s2 = t2 = 1〉 ∼= Z o {±1} .

The adjoint action of L̂SLalg(2,C) on L̂sl(2,C) preserves the subalgebra L̂algsl(2,C).

Let us now turn to the compact real forms: The compact real form of L̂sl(2,C)

is L̂su(2), the two dimensional extension of the algebra of 2π-periodic loops into

su(2). Similarly, L̂SU(2) is the — up to conjugation unique — compact real form

of L̂SL(2,C). We define the subalgebra (resp. subgroup) of algebraic loops as in

the complex case. The Adjoint action of L̂SUalg(2) on L̂su(2) fixes the subalgebra

L̂algsu(2).
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There is a unique Ad-invariant scalar product on L̂su(2), defined as follows:

〈g, h〉 =

∫ 2π

0

〈g(t), h(t)〉dt for f(t), g(t) ∈ Lsu(2)

〈c, d〉 = −1

〈d, d〉 = 〈c, c〉 = 0.

This is a Lorentz scalar product. c and d define lightlike directions, Lsu(2) is
spacelike while c + d is a timelike direction. Cartan subalgebras of this Lie algebra
are 3-R-dimensional. Let ĥ = h⊕Rc⊕Rd denote the standard Cartan subalgebra in
Lsu(2). The restriction of 〈 , 〉 is a Lorentz scalar product. The space h`,r := {x ∈
ĥ| |x| = l, rd = ±r} consists of the two components, h+

`,r = {x ∈ h`,r, rd > 0} and

h−`,r = {x ∈ h`,r, rd < 0}, each isomorphic to R and each one preserved by the adjoint

action. Let rd = ±1 and define an isometry ϕ : R −→ h+
`,1, 0 7→ (0,−l, 1). The Weyl

group is generated by the reflections s0 at ϕ(0) and s1 at ϕ(1). Hence

s0(ϕ(x)) = ϕ(−x) ,

s1(ϕ(x)) = ϕ(2− x) .

A fundamental domain for the Weyl group action is thus the interval [ϕ(0), ϕ(1)] ⊂
h`,r.

In the sequel we will work out the embedding construction for non algebraic
loop groups. Performing the construction for nonalgebraic groups yields twin cities,
performing them for the algebraic groups yields a single twin building.

The building associated to LSL(2,C) is an R-tree. It can be described as

B = (LSL(2)/B ×∆) / ∼ ,

where ∆ denotes a fundamental simplex. In the case of LSL(2,C) the fundamental
simplex ∆ consists of a 1-simplex (0, 1) and two vertices (0) and (1) in its bound-
ary. The equivalence relation ∼ describes the stabilizers of the various cells in the
fundamental simplex. Hence with s′0 denoting the reflection at the vertex (0) and s′1
denoting the reflection at the vertex (1) in the standard apartment, we get:

1. On the 1-simplex, the equivalence relation is trivial, i.e. (fB, (0, 1)) ∼
(gB, (0, 1)) iff fg−1 ∈ B.

2. On the simplex (0) two elements (fB, (0)) ∼ (gB, (0)) iff fg−1 ∈ Ps′0 =
B ∪Bs′0B.

3. On the simplex (1) two elements (fB, (1)) ∼ (gB, (1)) iff fg−1 ∈ Ps′1 =
B ∪Bs′1B.

The Iwasawa decomposition LSL(2,C) = LSU(2)AN where A is diagonal with
constant coefficients and N consists of all functions g ∈ LSL(2,C) whose Fourier
series g =

∑
n≥0 gnt

n has only positive coefficients and additionally

g0 =

(
1 g0,12

0 1

)
.

Using furthermore B = TAN , where T is a torus in the compact real form, this yields
the equivalence

LSL(2,C)/B = LSU(2)/T.
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Hence we get for the building the equivalent description:

B = (LSU(2)/T ×∆) / ∼ .

Using the decomposition of parabolic subgroups Psi in products of their respective
Levi components Lsi with Borel subgroups [Gar97], we can describe the equivalence
relation ∼ again explicitly.

1. On the 1-simplex, the equivalence relation is trivial, i.e. (fT, (0, 1)) ∼
(gT, (0, 1)) iff fg ∈ T .

2. On the simplex (0) two elements (fT, (0)) ∼ (gT, (0)) iff fg−1 ∈ Ls′0 =
T ∪ Ts′0T .

3. On the simplex (1) two elements (fT, (1)) ∼ (gT, (1)) iff fg−1 ∈ Ls′1 =
T ∪ Ts′1T .

Define now the 2-parameter family ϕ`,r of embeddings of the Tits building in the
Kac-Moody algebra as follows:

1. The vertex (Id, (0)) is mapped to the coordinate v0 =
(
(0, 0, 0), −`r , r

)
. Here

the first coordinate denotes the point in the loop algebra, the second the
c-coefficient rc and the third the d-coefficient rd. The vertex (gPs0 , (0)) is
mapped onto Ad(g)(v0). It is straight forward, to check that this is well
defined. As the d-coefficient is preserved by the adjoint action and the c
coefficient may be reconstructed by the isometry condition, it is sufficient to
calculate the loop coefficient. We have the formula [Ter95]

Ad(gLs0)(v0) = gv0g
−1 − rg′g−1 = rg′g−1.

2. We do a similar job for (gPs1 , (1)), mapping (Id, (1)) onto v0 =(
(1, 0, 0),− `−1

r , r
)
, where (1, 0, 0) describes the element in the basis (h, e, f)

of su(2).

Ad(gLs1)(v0) = gv0g
−1 − rg′g−1 = rg′g−1.

3. The cell (Id, (0, 1)) is mapped onto the interval e0 =
(

(α, 0, 0), 1− ||α||r , r
)

.

The cell (gLs0) is mapped onto the translates

Ad(gT )(e0) = ge0g
−1 − rg′g−1 .

Let X denote the Tits building. Then for each r > 0, ϕ0,r(X) lies in the future
lightcone of the Kac-Moody algebra G. In particular, ϕ0,r(X) lies in the intersection
of the lightcone of G with the the plane rd = r, while ϕ0,−r(X) lies in the past
lightcone. Moreover, ϕ−1,r(X) is future directed timelike and ϕ−1,−r(X) is past
directed timelike, while ϕ1,±r(X) are spacelike. The images of the 2-parameter family
fill thus the whole Kac-Moody algebra with the exception of the subspace {rd ≡ 0},
where rd denotes as usual the coefficient of d. This subspace contains images of the
spherical building at infinity of B. We will study this topic in a sequel to this article.

REFERENCES

[AB08] P. Abramenko and K. Brown, Buildings, volume 248 of “Graduate Texts in Mathe-
matics”, Springer Verlag, New York, 2008.

[AR98] P. Abramenko and M. Ronan, A characterization of twin buildings by twin apart-
ments, Geometriae Dedicata, 73 (1998), pp. 1–9.



634 W. FREYN

[BCO03] J. Berndt, S. Console, and C. Olmos, Submanifolds and holonomy, volume 434 of
“Research Notes in Mathematics”, Chapman & Hall, Boca Raton, 2003.

[BH99] M. R. Bridson and A. Haefliger, Metric spaces of non-positive curvature, volume 98
of “Grundlehren der mathematischen Wissenschaften”, Springer Verlag, Berlin,
1999.

[Cap09] P.-E. Caprace, “Abstract” homomorphisms of split Kac-Moody groups, Mem. amer.
Math. Soc., 198 (924):xvi+84, 2009.

[Car02] R. Carter, Lie Algebras of Finite and Affine Type, volume 96 of “Cambridge studies
in advances mathematics”, Cambrigde university press, Cambridge, 2002.

[Fre07] W. Freyn, A general theory of affine Kac-Moody symmetric spaces, Kongressberichte
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Fig. 1. This figure shows H0,1. The fat line is the intersection of the lightcone with the planes
rd = ±1
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Fig. 2. This figure shows H−1,1. The dotted lines represent the sphere of radius −1. The fat
line is the intersection with the planes rd = ±1

h

cd

d=1

d=-1

Fig. 3. This figure shows H1,1. The dotted lines represent the sphere of radius 1. The fat line
is the intersection with the planes rd = ±1


