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Abstract (French) La méthode des risques proportionnels de Cox est la méthode
semi-paramétrique la plus populaire qui est utilisée pour établir les risques dûs
aux facteurs en jeu dans une population homogène dans l’analyse de survie avec
un temps continu. Cependant, cette méthode repose sur l’hypothèse que les temps
de survie ne peuvent se répéter. La méthode logit basée sur un temps discret a été
largement appliquée pour gérer les égalités de temps de survie s’il y a une seule
cause génératrice des évènements. Dans certaines situations, un individu peut
être à risque selon plusieurs facteurs et souvent seule la survenance du premier
échec est pris en compte. Dans ce papier, le modèle logit binaire pour des risques
compétitifs, reposant sur des mélanges des fonction de risques pour des données
en grappes est étudié selon un temps discret.

1. Introduction

Survival analysis is the analysis of data measured from a specific time of origin
until an event of interest or a definite endpoint Collect (1982). The time of interest
is usually characterized by means of the hazard function, signifying the rate of
occurrence of the event at a given time t, but mostly via the survival function,
representing the probability of surviving up to time t. That is, the probability that
the event has not yet occurred before time t. In the original setting of survival
analysis, there is a single cause for the event to occur but there are situations
where several causes of failure are possible; only the occurrence of the first of them
can however be observed provided only one cause is of interest. This situation is
known as competing risks. This is because the smallest realized time, the cause
specific failure time, makes the failure times for other causes right censored. That
is, the minimum of the failure times is only observed. Clustered survival time data
are commonly encountered in scientific investigations where each study subject
may experience several types of event or when there are clustering of observational
units such that failure times within the same cluster are correlated. According to
Hougaard (2000), clustered survival analysis generally deals with survival times
of multiple individuals whose failures can be dependent, repeated occurrences of
the same event, known as multiple data and times to several events an individual
may experience known as multiple events. Competing risks analysis addresses a
type of clustered survival data that is definitely different from the types of data
which Hougaard (2000) used.

The clustered survival data concentrate on estimating the parameters of one type
of event at a time when outcomes are independent based on the theory that the
censoring mechanism is independent of the event type of interest. This assumption
is debased when multiple types of events occur but only the occurrence of the
first of them can be observed.Nevertheless, in a situation where outcomes or the
failure times are not all independent or when units cluster and more than two
outcomes are to be observed per cluster. The clustered modelling is used.
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Cox proportional hazard model is one of the common methods for analyzing
survival time data. It is a robust model and its results were closely approximate
the results for the correct parametric model (See Kleinbaum and Klein (2012)).
It is the most common semi-parametric model used to evaluate the effects of
risk factors in a population for continuous survival time data under the basic
assumption that survival times are untied Anderson and Fleming (1995). In
practice there is always some smallest time unit that ties can occur especially
when two or more individuals experience events of interest simultaneously. In this
case, continuous time model is very sensitive(See Allison (1982), Allison (2010),
Singer and Willet (1993), Singer and Willet (1995), Singer and Willet (2003) and
Hosmer and Lemeshow (1999)).

A discrete-time survival modeling for discrete-time data was then proposed
by Cox (1972), Allison (1982), Allison (2010), Singer and Willet (1993),
Singer and Willet (1995), Singer and Willet (2003) to handle ties. In trial
settings, the discrete-time survival model is use for longitudinal studies
when the data are often collected at discrete-time periods. It examines the
shape of hazards function, and it is simple to execute using the logistic
regression model (see Xie et al.(2003), McCallon (2009), Sharaf and Tsokos(2014).
Cox (1972) introduced the discrete-time hazard model in terms of logit-hazard
rather than hazard in his article and have been in use for decades (see
Allison (1982), Allison (2010),Willet and Singer (1991), Willet and Singer (1993),
Singer and Willet (1993), Singer and Willet (1995), Singer and Willet (2003)) but
they are less visible than continuous time survival model, especially in the medical
and behavioral sciences area (See Altman et al.(1995), Enderlein et al. (1986),
Barber et al. (2000), Xie et al.(2003), McCallon (2009)).

The discrete-time survival model have been in use for decades, but they are
less visible than continuous time survival model, especially in the medical and
behavioral sciences area (See Altman et al.(1995), Enderlein et al. (1986)). The
discrete-time survival model was proposed by Cox (1972), and it is a type of logistic
regression. The discrete-time models often used for survival analysis are logit,
probit and complementary log-log. The analysis for this type of model needs a
properly structured data set with multiple records per subject. The discrete-time
model are used more appropriately in the situation with large number of ties when
more than two individuals experience an event at the same time (see Allison (1982),
Allison (2010)) when the time are truly discrete and when the time of experiencing
event is hard to tell. Most studies handle ties when there is single cause for the
event to occur. But there are situations where an individual can experience several
causes of failure (competing Risk) and more than one individual experience their
first event at the same time. Due to this, there is a need to manage the ties with
discrete-time competing risk model using a person-period format in order to avoid
biased estimates.
’
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In this study, a clustered discrete-time binary logit model under competing risk
setting is proposed and then compared with Cox model under the mixture of
baseline hazard distributions marginally and jointly.

2. Theoretical background

2.1. Competing Risk Formulation with Cox model

Consider M independent clusters (m = 1, . . . ,M ), and there are nm individuals
(subjects) in cluster m. Suppose that for jth individual (subject), G types of failure
may occur. Let T gij , C

g
ij and Xg

ij be the independent failure time, censoring time
and p-vector of possible covariates respectively for jth individual in ith cluster
experiencing gth type of failure(i = 1, . . . ,m ; ; j = 1, . . . , nm, g = 1, . . . , G). Let Tij = tij
and Cij be the time to failure and the censoring time for jth individual in ith

cluster respectively and xij be a vector of covariates. Assume that Tij and Cij are
independent conditional on the covariate vector, Xij. We define Tij = min (tij , cij)
and dij = I (tij ≤ cij) where I(.) is an indicator function which indicates whether
or not the main event of interest has occurred; it is equal to one if the condition is
true and zero otherwise.

In survival modeling, an appropriate method must be chosen to handle the
different event types when both events are of interest. In the competing risks
approach, a separate model is specified for the timing of each type of event and
each of these models can be estimated separately for single event. The proportional
hazards model with competing risk for jthindividual in ith cluster can be written
as:

ξ
(
tgij/xij

)
= ξo (tij) exp(β

g′
xgij) (1)

where ξ(tgij/xij) is the hazard at time t for jth individual in ith cluster having event
type g with covariate value xgij, ξo(tij) is the baseline hazard at time t, g′xgij is the
effect of the covariate on the hazard for event type g.

2.2. Proposed Discrete-Time Logit Model with Competing Risk

Suppose that the timeline for individual is partitioned into l mutually exclusive
intervals [0, a1) , [a1, a2) , [a2,a3) , [a3, a4) , . . . , [at−1, at) , [at, a∞) in each cluster so
that we observe discrete time T ∈ 1, . . . , t where T = t denotes failure within
the interval[ai−1, ai]. In discrete time, for each time interval t, a vector of binary
response is defined as ygtij =

(
y1tij , y

2
tij , . . . , y

k
tij

)
, where tij is the observed time in the

interval for which individual j in the cluster i is observed and a binary response
ygtij is created for each event time interval t up to cij which is coded as follows
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ygtij =


0 t < cij

0 t = cij , dij = g

1 t = cij , dij 6= g

(2)

All individuals regardless of whether or not their duration is censored will have
ygtij = 0 for interval t = cij.Then the time tgij (g = 1, . . . k) is the time at which
event type g occur to an individual j in the cluster/group i, for uncensored
individual tgij = min

(
t1ij , . . . , t

k
ij

)
.

The failure process of individual i with failure event type g can then be considered
as a sequence of binary response outcomes which follow a binomial distribution.
The binary event indicator can then be define as:

ygtij =

{
1 if t = tgij and dij = 1

0 Otherwise
(3)

where dij is the censoring indicator which takes value 1 if individual j in cluster i
has failure event type g at time t and value 0 if otherwise. Let pr(ygtij=1)

pr(ygtij=0)
be the odds

of event type g occurring in interval [at−1, at).

Cox (1972) proposed an extension of the proportional hazards model to discrete
time by working with the conditional odds of an event of failure occurring at each
time tij given survival up to that point. Extending this to competing risk setting,
the discrete-time for clustered survival time data for event type g can be obtained
as

ξgtij |x
g
ij

1−ξgtij |x
g
ij
=e(a

g
ij+β

g
i x

g
ij)

and

ξ(tgij/xij) =
e(a

g
ij+β

g
i x

g
ij)

1 + e(a
g
ij+β

g
i x

g
ij)

(4)

1− ξ(tgij/xij) =
1

1 + e(a
g
ij+β

g
i x

g
ij)

(5)

ξ(tgij/xij)

1− ξ(tgij/xij)
= e(a

g
ij+β

g
i x

g
ij)

ξ(tgij/xij)

1− ξ(tgij/xij)
=

ξo(tij)

1− ξo(tij)
exp

{
βg

′
xgij

}
(6)

Logit

[
ξ(tgij/xij)

1− ξ(tgij/xij)

]
= agij + βg

′
xgij (7)
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where ξ(tgij/xij) is the hazard at time t for jthindividual in ith cluster having event
or failure type g with covariate value xgij, ξo(tij) is the baseline hazard at time t
and βg

′
xgij is the relative risk associated with covariate values xgij.

By taking the log, a model on the logit of the hazard or conditional probability of
experiencing event type g at tgij given survival up to that time is given as follows;

Log

[
ξ(tgij/xij)

1− ξ(tgij/xij)

]
= agij + βg

′
xgij . (8)

where ξ(tgij/xij) is the hazard at time t for jthindividual in ith cluster having event
or failure type g with covariate value xgij, a

g
ij=log(

ξo(tij)
1−ξo(tij)

) is the baseline effect and
βg

′ is the relative risk associated with covariate values xgij.

Clearly, (8) can be written as

logit
[
ξ(tgij/xij)

]
= agij + βg

′
xgij . (9)

where agij=logit[ξo (tij)],

3. Simulation study

Survival times were generated to simulate Cox models with known regression
coefficients considering the Exponential, the Weibull, the Gompertz and the
Lognormal distribution as baseline hazard. The general relationship between the
hazard and the corresponding survival time of the usual Cox model was developed
as in Bender et al. (2005).

The Cox proportional hazards model is given by

T = H−1o

[
−log (U) exp

(
−βg

′
xgij

) ]
i.e.

T = H−1o

[
−log(U)

exp
(
βg′xgij

)] ,
where U is the random variable with U ∼ uni(0, 1), βg′xgij is the effect of the
covariates on the hazard for failure event type g=1,2, H−1o is the inverse of a
cumulative baseline hazard function.

We assume that the baseline hazard Ho can be Weibull, Exponential, Lognormal
or Gompertz distribution.
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3.1. Weibull Distribution

T = λ−1
[
−log (U) exp

(
−βg

′
xgij

) ]1/v

=

[
−log(u)

λexp
(
βg′xgij

)]1/v, λ > 0, v > 0,

with baseline hazard function ho (t) = λvtv−1 where λ is scale parameter and v is
the shape parameter

3.2. Exponential Distribution

T = λ−1
[
−log (U) exp

(
−βg

′
xgij

) ]

=

[
−log(u)

λexp
(
βg′xgij

)] , λ > 0,

with constant baseline hazard function ho (t) = λ

3.3. Gompertz Distribution

T =
1

α
log
[
−α
λ
(log (U) exp

(
−βg

′
xgij

)
) + 1

]

=
1

α
log

[
1− αlog(u)

λexp
(
βg′xgij

)] , λ > 0 −∞ < α <∞,

with baseline hazard function ho (t) = λexp(αt)

3.4. Lognormal Distribution

This is one of the commonly used distributions in survival time but do not have
property of proportional hazards like the other parametric distributions above.
David and Albert (2014) derived lognormal survival time as follows;

T = exp (µj + s (log (µ) − log(1− u))) , s>0; t>0 where µj =
(
βg

′
xgij

)
with baseline hazard function ho (t) = (ts)

−1

Data that follow various survival distributions were generated to compare the
model under different scenarios. Simulation studies were carried out for two events
type with mixture of the baseline hazard distributions with fixed parameters.
Dataset with two covariates X1 from a Normal N[0; 1] and X2 from a Binomial
B[1, 0.5] was generated. The corresponding true regression coefficients are fixed
as β1 = 1, β2= -1. Sample sizes are 100, 200,500, 1000 and 2000 with a censoring
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rate of 35%. For each parameter combination, all simulated data was replicated
1000 times. The simulated datasets were expanded into a person-period format
in order to fit the discrete time logit survival model for the models specified for
each event and minimum of the two events. All of the datasets were simulated and
modeled in R statistical software.

4. RESULTS

The summary of results are presented in the tables below where the mixtures
of parametric baseline hazard distributions are Weibull-Lognormal (WL),
Weibull-Exponential (WE), Lognormal-Exponential (LE), Weibull-Gompertz (WG),
Lognormal-Gompertz (LG), Exponential-Gompertz (EG).

The results of simulation study are summarized in Tables 1-6 for the estimates of,
mean absolute bias (MAB) and mean square error for prediction (MSEp) for Cox
model and discrete-time logit model (DTLM) with mixture of distributions for the
baseline hazards under different sample sizes.
The results in Table 1 above shows that estimated values are close to the true
values. Increase in sample size decreases the estimates and mean absolute bias
(MAB) for both the Cox and Discrete-time model. The results also showed that
increase in sample size decreases the MSEp for both models, although the MSEp
were rapidly decrease for DTLM compare to Cox model.

When considering the Overall Event, the estimated values are closer to the true
values but DTLM provides more precise estimates than Cox Model. Also, Discrete-
time model performs better than Cox model in terms of estimated values.
The estimate mean values from Table 2 are close to true parameter values. The
estimated mean value and mean absolute bias (MAB) decreases as sample size
increases but DTLM estimates are overestimated. The MSEp for both the Cox
model and DTLM decrease as the sample size increases.

For the Overall Event, DTLM has more precise estimates compared to Cox model,
there is no loss of efficiency in terms of MSEp. Considering the two models in term
of estimated mean values, Discrete-time model performs better than Cox model.

The results in Table 3 above indicate that estimate mean values are consistently
close to the true values with minimum MSEp. Also, mean absolute bias (MAB)
and the MSEp are decreasing as a result of increase in sample size but DTLM
gives a minimum MSEp compare to Cox model.

In view of the Overall Event, the estimated mean values are close to the true values
but DTLM gives an over-estimated values. Comparing the estimates of the two
models, Discrete-time model performs well than Cox model in term of estimates.
Table 4 results reveal that estimate mean values are close to the true values.
Increase in sample size decreases the estimates and mean absolute bias (MAB).
The Cox model are underestimated for Event2 (Lognormal) with large MSEp.
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Table 1: Estimates, Absolute Bias and Mean Squared Errors for Weibull-
Exponential mixture of distributions as baseline hazards (β1 = 1 and β2 = −1)
Legend : Event 1 (Weibull), Event 2 (Exponential)

Model Effect estimates β̂ (MAB) MSEp

Sample Size/Model Cox Discrete-Time Cox Discrete-Time

Event 1

100 β̂1 0.951(0.092) 0.996(0.077) 0.013 0.009
β̂2 -1.093(0.165) -1.164(0.193) 0.043 0.056

200 β̂1 0.998(0.055) 1.185(0.185) 0.005 0.039
β̂2 -0.807(0.200) -0.972(0.103) 0.052 0.017

500 β̂1 1.094(0.095) 1.161(0.161) 0.012 0.028
β̂2 -0.884(0.121) -0.916(0.097) 0.020 0.014

1000 β̂1 0.948(0.053) 1.074(0.074) 0.004 0.007
β̂2 -1.021(0.048) -1.147(0.147) 0.003 0.025

2000 β̂1 0.915(0.085) 1.015(0.022) 0.008 0.003
β̂2 -0.954(0.050) -1.040(0.045) 0.003 0.003

Event 2

100 β̂1 0.960(0.090) 0.989(0.080) 0.013 0.010
β̂2 -1.106(0.176) -1.155(0.194) 0.049 0.055

200 β̂1 1.002(0.055) 1.157(0.157) 0.005 0.029
β̂2 0.820(0.189) -0.957(0.105) 0.047 0.017

500 β̂1 1.093(0.095) 1.132(0.132) 0.011 0.020
β̂2 -0.867(0.135) -0.877(0.127) 0.024 0.021

1000 β̂1 0.943(0.058) 1.033(0.038) 0.004 0.002
β̂2 -1.022(0.047) -1.114(0.115) 0.003 0.016

2000 β̂1 0.915(0.085) 0.989(0.020) 0.008 0.001
β̂2 -0.959(0.046) -1.024(0.037) 0.003 0.002

Overall Event

100 β̂1 0.977(0.049) 1.030(0.050) 0.004 0.004
β̂2 -1.124(0.136) -1.204(0.205) 0.025 0.051

200 β̂1 1.021(0.035) 1.226(0.226) 0.002 0.053
β̂2 -0.833(0.168) -1.011(0.056) 0.032 0.005

500 β̂1 1.126(0.126) 1.199(0.199) 0.017 0.040
β̂2 -0.897(0.103) -0.933(0.070) 0.013 0.006

1000 β̂1 0.971(0.030) 1.100(0.100) 0.001 0.010
β̂2 -1.048(0.049) -1.181(0.181) 0.003 0.033

2000 β̂1 0.940(0.060) 1.045(0.045) 0.004 0.002
β̂2 -0.983(0.021) -1.077(0.077) 0.001 0.006

The MSEp for both Cox model and DTLM decreases as sample size increasing, but
the MSEp were higher for Cox compare to the DTLM model.

For the Overall Event, increase in sample size decreases the estimates with MAB
for Cox model but has no effect for DTLM and there is no loss of efficiency in terms
of MSEp. Comparing the two models, Discrete-time model performs well than Cox
model in term of estimated mean values except Event2 (Lognormal) that we have
under-estimated value.
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Table 2: Estimates, Absolute Bias and Mean Squared Errors for Weibull-Gompertz
mixture of distributions as baseline hazards (β1 = 1 and β2 = −1)
Event 1 (Weibull), Event 2 (Gompertz)

Model Effect estimates β̂ (MAB) MSEp

Sample Size/Model Cox Discrete-Time Cox Discrete-Time

Event 1

100 β̂1 0.948(0.092) 0.992(0.077) 0.013 0.009
β̂2 -1.097(0.166) -1.158(0.189) 0.044 0.054

200 β̂1 1.003(0.055) 1.183(0.183) 0.005 0.038
β̂2 -0.810(0.197) -0.970(0.103) 0.051 0.017

500 β̂1 1.094(0.096) 1.157(0.157) 0.012 0.027
β̂2 -0.882(0.124) -0.910(0.101) 0.021 0.015

1000 β̂1 0.950(0.052) 1.072(0.072) 0.004 0.006
β̂2 -1.022(0.048) -1.144(0.144) 0.004 0.024

2000 β̂1 0.915(0.085) 1.012(0.020) 0.008 0.001
β̂2 0.955(0.050) -1.037(0.043) 0.003 0.003

Event 2

100 β̂1 0.957(0.091) 0.985(0.080) 0.013 0.01
β̂2 -1.111(0.178) -1.149(0.190) 0.05 0.053

200 β̂1 1.007(0.055) 1.155(0.156) 0.005 0.029
β̂2 0.823(0.186) -1.955(0.106) 0.046 0.018

500 β̂1 1.093(0.095) 1.124(0.124) 0.011 0.018
β̂2 -0.861(0.141) -0.866(0.137) 0.026 0.024

1000 β̂1 1.944(0.057) 1.031(0.037) 0.004 0.002
β̂2 -1.023(0.047) -1.111(0.112) 0.030 0.015

2000 β̂1 0.914(0.086) 0.982(0.023) 0.008 0.002
β̂2 -0.963(0.044) -1.023(0.036) 0.030 0.02

Overall Event

100 β̂1 0.974(0.049) 1.027(0.049) 0.004 0.004
β̂2 -1.127(0.138) -1.198(0.200) 0.026 0.048

200 β̂1 1.026(0.037) 1.225(0.225) 0.002 0.052
β̂2 -0.836(0.164) -1.009(0.056) 0.031 0.005

500 β̂1 1.126(0.126) 1.191(0.191) 0.017 0.037
β̂2 -0.892(0.108) -0.922(0.079) 0.014 0.008

1000 β̂1 0.972(0.029) 1.099(0.098) 0.001 0.010
β̂2 -1.049(0.050) -1.178(0.178) 0.003 0.032

2000 β̂1 0.940(0.060) 1.039(0.039) 0.004 0.002
β̂2 -0.986(0.020) -1.075(0.075) 0.001 0.006

The estimate mean values are close to true parameter values. Also, the mean
absolute bias (MAB) and the MSEp for both the Cox model and DTLM are
decreasing with an increase in sample size but the two events (Lognormal and
Weibull) for the Cox model are underestimated with large MSEp.

For the Overall Event, we have precise estimates and there is no loss of efficiency
in terms of MSEp. DTLM are over-estimated while Cox model are underestimated.
Considering the two models for the estimates, Discrete-time model performs better
than Cox model.
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Table 3: Estimates, Absolute Bias and Mean Squared Errors for Weibull-Lognormal
mixture of distributions as baseline hazards (β1 = 1 and β2 = −1)
Event 1 (Weibull), Event 2 (Lognormal)

Model Effect estimates β̂ (MAB) MSEp

Sample Size/Model Cox Discrete-Time Cox Discrete-Time

Event 1 (Weibull)

100 β̂1 0.972(0.097) 1.027(0.085) 0.015 0.012
β̂2 -0.935(0.163) -0.961(0.167) 0.042 0.044

200 β̂1 0.899(0.111) 0.915(0.099) 0.017 0.014
β̂2 -0.935(0.163) -0.961(0.167) 0.042 0.044

500 β̂1 0.874(0.126) 0.981(0.045) 0.018 0.003
β̂2 -0.944(0.087) -1.048(0.092) 0.012 0.013

1000 β̂1 0.854(0.146) 0.966(0.042) 0.023 0.003
β̂2 -0.741(0.259) -0.829(0.172) 0.071 0.034

2000 β̂1 0.865(0.135) 0.997(0.022) 0.019 0.001
β̂2 -0.864(0.136) -0.972(0.044) 0.020 0.003

Event 2

100 β̂1 0.830(0.177) 0.898(0.123) 0.042 0.022
β̂2 -0.849(0.197) -0.898(0.183) 0.059 0.053

200 β̂1 0.742(0.258) 0.807(0.194) 0.074 0.043
β̂2 0.895(0.144) -1.016(0.121) 0.031 0.023

500 β̂1 0.747(0.253) 0.896(0.105) 0.067 0.014
β̂2 -0.856(0.148) -1.025(0.080) 0.029 0.010

1000 β̂1 0.754(0.246) 0.895(0.105) 0.062 0.012
β̂2 -0.650(0.350) -0.761(0.239) 0.126 0.061

2000 β̂1 0.773(0.227) 0.941(0.059) 0.052 0.004
β̂2 -0.775(0.225) -0.929(0.074) 0.053 0.007

Overall Event

100 β̂1 0.899(0.106) 0.994(0.057) 0.016 0.005
β̂2 -0.881(0.136) -0.951(0.107) 0.027 0.019

200 β̂1 0.811(0.189) 0.922(0.081) 0.039 0.009
β̂2 -0.989(0.070) -1.183(0.186) 0.008 0.043

500 β̂1 0.824(0.176) 1.031(0.041) 0.032 0.003
β̂2 -0.932(0.073) -1.175(0.176) 0.008 0.035

1000 β̂1 0.821(0.179) 1.029(0.033) 0.033 0.002
β̂2 -0.711(0.289) -0.878(0.122) 0.085 0.017

2000 β̂1 0.837(0.163) 1.077(0.077) 0.027 0.006
β̂2 -0.842(0.158) -1.070(0.070) 0.026 0.006

The results in Table 5 above reveal that estimate mean values are precisely close
to the true values. Also, mean absolute bias (MAB) and the MSEp are decreasing
as a result of increase in sample size except the estimates and mean absolute bias
(MAB) for Event2 (Gompertz) under the discrete-time model that are increasing.
The Cox model are underestimated with large MSEp.
Considering the Overall Event, the estimated mean values are close to the true
values but DTLM overestimated. Comparing the estimates of the two models,
Discrete-time model performs well than Cox model.
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Table 4: Estimates, Absolute Bias and Mean Squared Errors for Exponential-
Gompertz mixture of distributions as baseline hazards (β1 = 1 and β2 = −1)
Event 1 (Exponential), Event 2 (Gompertz)

Model Effect estimates β̂ (MAB) MSEp

Sample Size/Model Cox Discrete-Time Cox Discrete-Time

Event 1

100 β̂1 0.965(0.086) 0.992(0.076) 0.011 0.009
β̂2 -1.104(0.170) -1.137(0.176) 0.046 0.048

200 β̂1 1.003(0.055) 1.154(0.155) 0.005 0.029
β̂2 -0.821(0.187) -0.956(0.106) 0.047 0.018

500 β̂1 1.096(0.097) 1.131(0.131) 0.012 0.019
β̂2 -0.860(0.143) -0.868(0.136) 0.026 0.024

1000 β̂1 0.945(0.057) 1.031(0.037) 0.004 0.002
β̂2 -1.019(0.047) -1.107(0.108) 0.003 0.014

2000 β̂1 0.915(0.085) 0.984(0.022) 0.008 0.001
β̂2 -0.960(0.046) -1.020(0.034) 0.003 0.002

Event 2

100 β̂1 0.957(0.091) 0.985(0.080) 0.013 0.010
β̂2 -1.111(0.178) -1.149(0.190) 0.050 0.053

200 β̂1 1.007(0.055) 1.155(0.156) 0.005 0.029
β̂2 -0.823(0.186) -0.955(0.106) 0.046 0.018

500 β̂1 1.093(0.095) 1.124(0.124) 0.011 0.018
β̂2 -0.861(0.141) -0.866(0.137) 0.026 0.024

1000 β̂1 0.944(0.057) 1.031(0.037) 0.004 0.002
β̂2 -1.023(0.047) -1.111(0.112) 0.003 0.015

2000 β̂1 0.914(0.086) 0.982(0.023) 0.008 0.001
β̂2 -0.963(0.044) -1.023(0.036) 0.003 0.002

Overall Event

100 β̂1 0.979(0.047) 1.026(0.049) 0.004 0.004
β̂2 -1.129(0.140) -1.192(0.194) 0.027 0.046

200 β̂1 1.026(0.037) 1.217(0.217) 0.002 0.049
β̂2 -0.839(0.162) -1.005(0.055) 0.030 0.005

500 β̂1 1.126(0.126) 1.184(0.184) 0.017 0.035
β̂2 -0.886(0.114) -0.911(0.090) 0.015 0.010

1000 β̂1 0.971(0.030) 1.089(0.088) 0.001 0.008
β̂2 -1.047(0.049) -1.167(0.167) 0.003 0.029

2000 β̂1 0.940(0.060) 1.032(0.032) 0.004 0.001
β̂2 -0.987(0.019) -1.070(0.070) 0.001 0.005

In order to compare the performances for the different combinations of
distributions for each parameter estimates with 200 sample sizes. The results are
summarized in tables below for the estimates of mean value, mean absolute bias
(MAB) and mean square error for prediction (MSEp) for Cox model and discrete-
time logit model (DTLM).
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Table 5: Estimates, Absolute Bias and Mean Squared Errors for Lognormal-
Exponential mixture of distributions as baseline hazards (β1 = 1 and β2 = −1)
Event 1 (Lognormal), Event 2 (Exponential),

Model Effect estimates β̂ (MAB) MSEp

Sample Size/Model Cox Discrete-Time Cox Discrete-Time

Event 1

100 β̂1 1.017(0.109) 1.054(0.108) 0.019 0.019
β̂2 -0.882(0.197) -0.914(0.206) 0.061 0.066

200 β̂1 0.827(0.175) 0.931(0.097) 0.038 0.014
β̂2 -0.879(0.162) -0.979(0.143) 0.039 0.032

500 β̂1 0.813(0.187) 1.005(0.049) 0.038 0.004
β̂2 -0.829(0.176) -1.008(0.095) 0.040 0.014

1000 β̂1 0.766(0.234) 0.969(0.044) 0.056 0.003
β̂2 -0.809(0.191) -1.001(0.045) 0.041 0.007

2000 β̂1 0.764(0.236) 0.987(0.028) 0.056 0.001
β̂2 -0.821(0.179) -1.017(0.047) 0.034 0.003

Event 2

100 β̂1 1.037(0.109) 1.081(0.138) 0.019 0.031
β̂2 -0.870(0.207) -1.130(0.241) 0.067 0.089

200 β̂1 0.903(0.110) 0.971(0.087) 0.017 0.012
β̂2 -0.974(0.129) -1.070(0.168) 0.026 0.044

500 β̂1 0.849(0.151) 1.070(0.077) 0.026 0.009
β̂2 -0.816(0.186) -0.921(0.113) 0.044 0.020

1000 β̂1 0.883(0.217) 1.004(0.036) 0.048 0.002
β̂2 -0.834(0.166) -1.089(0.099) 0.032 0.014

2000 β̂1 0.775(0.225) 1.043(0.045) 0.051 0.003
β̂2 -0.836(0.164) -1.027(0.050) 0.029 0.004

Overall Event

100 β̂1 1.074(0.098) 1.250(0.250) 0.014 0.072
β̂2 -0.907(0.130) -1.049(0.141) 0.027 0.030

200 β̂1 0.892(0.110) 1.157(0.158) 0.016 0.030
β̂2 -0.957(0.087) -1.251(0.253) 0.012 0.008

500 β̂1 0.866(0.134) 1.257(0.257) 0.020 0.069
β̂2 -0.881(0.121) -1.267(0.267) 0.018 0.079

1000 β̂1 0.821(0.179) 1.227(0.227) 0.033 0.053
β̂2 -0.878(0.122) -1.289(0.289) 0.017 0.087

2000 β̂1 0.811(0.189) 1.235(0.235) 0.036 0.056
β̂2 -0.880(0.120) -1.291(0.291) 0.015 0.086
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Table 6: Estimates, Absolute Bias and Mean Squared Errors for Lognormal-
Gompertz mixture of distributions as baseline hazards (β1 = 1 and β2 = −1)
Event 1 (Lognormal), Event 2 (Exponential)

Model Effect estimates β̂ (MAB) MSEp

Sample Size/Model Cox Discrete-Time Cox Discrete-Time

Event 1

100 β̂1 1.017(0.109) 1.052(0.107) 0.019 0.018
β̂2 -0.882(0.197) -0.912(0.206) 0.061 0.066

200 β̂1 0.827(0.175) 0.931(0.097) 0.038 0.014
β̂2 -0.879(0.162) -0.979(0.143) 0.039 0.032

500 β̂1 0.813(0.187) 1.004(0.049) 0.038 0.004
β̂2 -0.829(0.176) -1.008(0.095) 0.040 0.014

1000 β̂1 0.766(0.234) 0.967(0.045) 0.056 0.003
β̂2 -0.810(0.190) -1.001(0.065) 0.041 0.006

2000 β̂1 0.764(0.236) 0.986(0.028) 0.056 0.001
β̂2 -0.822(0.178) -1.017(0.046) 0.034 0.003

Event 2

100 β̂1 1.037(0.109) 1.187(0.197) 0.019 0.055
β̂2 -0.870(0.207) -0.968(0.209) 0.067 0.070

200 β̂1 0.903(0.110) 1.018(0.079) 0.017 0.010
β̂2 -0.974(0.129) -1.091(0.162) 0.026 0.043

500 β̂1 0.846(0.154) 1.063(0.074) 0.026 0.008
β̂2 -0.813(0.190) -0.988(0.094) 0.045 0.014

1000 β̂1 0.783(0.217) 1.006(0.037) 0.048 0.002
β̂2 -0.835(0.165) -1.050(0.078) 0.032 0.010

2000 β̂1 0.771(0.229) 1.018(0.029) 0.053 0.001
β̂2 -0.838(0.162) -1.058(0.068) 0.029 0.007

Overall Event

100 β̂1 1.074(0.098) 1.248(0.248) 0.014 0.072
β̂2 -0.907(0.130) -1.047(0.140) 0.027 0.030

200 β̂1 0.892(0.110) 1.157(0.158) 0.016 0.030
β̂2 -0.957(0.087) -1.251(0.253) 0.012 0.008

500 β̂1 0.866(0.134) 1.255(0.255) 0.020 0.068
β̂2 -0.880(0.122) -1.265(0.265) 0.019 0.077

1000 β̂1 0.821(0.179) 1.225(0.225) 0.033 0.052
β̂2 -0.879(0.121) -1.289(0.289) 0.016 0.087

2000 β̂1 0.810(0.190) 1.232(0.232) 0.036 0.055
β̂2 -0.881(0.119) -1.291(0.291) 0.015 0.086
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5. DISCUSSION AND CONCLUSION

Based on Tables 1-6, we compared the Cox model and Discrete-time Logit
model(DTLM) with competing risk marginally and jointly under the mixture of
different baseline hazard distribution functions and sample sizes. The results
reveal that estimated mean values are close to the true parameter values. The
mean of the estimated values of small sample sizes compared with those of large
sample sizes indicate overestimation when the sample size is small which means
the smaller the sample size, the greater impact of covariates. The performance
improved mostly among small sample sizes for both Cox and Discrete-time logit
models.

The mean absolute bias (MAB) and MSEp decreased as a result of increase in
sample size. In terms of precision, it can be remarked in the estimates that
Discrete-time logit model exhibit less mean absolute bias (MAB) although, the
MSEp were slightly higher than the Cox model. The noticeable pattern lies in
MSEp, larger sample sizes indicate lower MSEp.

The Overall Event (mixture of the baseline distributions) provides precise estimates
in terms of mean estimates; mean absolute bias (MAB) and MSEp that are more
convergent to the true value of the parameters than when each event follows
individual baseline distribution.

In comparison between the mixture of the distributions for the Overall Event, WE
(Weibull-Exponential), EG (Exponential-Gompertz) and WG (Weibull-Gompertz)
gives a precise estimates with minimum MSEp. In respect to the baseline hazard
distribution, all the mixture of baseline hazard with Lognormal distribution that
has no property of proportional hazard gives over-estimated values.

Comparing the estimates of the two models, estimated mean values of covariate
effects with the Cox model were obviously lower than the discrete-time logit
model likewise in terms of mixture of baseline distributions, DTLM gives precise
estimates.
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