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Abstract. Let Mn be the minimal position in the nth generation, of a real-valued branching random walk in the boundary case.
As n → ∞, Mn − 3

2 logn is tight (see (Ann. Probab. 37 (2009) 1044–1079, Ann. Probab. 41 (2013) 1362–1426, Ann. Probab.
37 (2009) 615–653)). We establish here a law of iterated logarithm for the upper limits of Mn: upon the system’s non-extinction,
lim supn→∞ 1

log log logn
(Mn − 3

2 logn) = 1 almost surely. We also study the problem of moderate deviations of Mn: P(Mn −
3
2 logn > λ) for λ → ∞ and λ = o(logn). This problem is closely related to the small deviations of a class of Mandelbrot’s
cascades.

Résumé. Soit Mn la position minimale à la nieme génération, d’une marche aléatoire branchante réelle dans le cas frontière. Quand
n → ∞, Mn − 3

2 logn est tendue (voir (Ann. Probab. 37 (2009) 1044–1079, Ann. Probab. 41 (2013) 1362–1426, Ann. Probab.
37 (2009) 615–653)). Nous établissons une loi du logarithme itéré pour décrire les limites supérieures de Mn : sur l’événement
de la survie du système, lim supn→∞ 1

log log logn
(Mn − 3

2 logn) = 1 presque sûrement. Nous étudions également les déviations

modérées de Mn : P(Mn − 3
2 logn > λ) pour λ → ∞ et λ = o(logn). Ce problème est directement lié aux petites déviations d’une

classe des cascades de Mandelbrot.
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1. Introduction

Let {V (u),u ∈ T} be a discrete-time branching random walk (BRW) on the real line R driven by a point process Θ .
At generation 0, there is a single particle at the origin from which we generate a point process Θ on R. The particles
in Θ together with their positions in R constitute the first generation of the BRW. From the position of each particle at
the first generation, we generate an independent copy of Θ . The collection of all particles together with their positions
gives the second generation of the BRW, and so on. The genealogy of all particles forms a Galton–Watson tree T

(whose root is denoted by ∅). For any particle u ∈ T, we denote by V (u) its position in R and |u| its generation in T.
The whole system may die out or survive forever.

Plainly Θ = ∑
|u|=1 δ{V (u)}. Let ν = Θ(R). Throughout this paper and unless stated otherwise, we shall assume

that the BRW is in the boundary case, i.e.

E[ν] ∈ (1,∞], E

[ ∑
|u|=1

e−V (u)

]
= 1, E

[ ∑
|u|=1

V (u)e−V (u)

]
= 0. (1.1)
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Notice that under (1.1), it is possible that P(ν = ∞) > 0. See Jaffuel [22] for detailed discussions on how to reduce a
general branching random walk to the boundary case.

Denote by Mn := min|u|=n V (u) the minimum of the branching random walk in the nth generation (with con-
vention: inf∅ ≡ ∞). Hammersley [18], Kingman [23] and Biggins [6] established the law of large numbers for Mn

(for any general branching random walk), whereas the second order limits have attracted many recent attentions, see
[1,2,8,21] and the references therein. In particular, Aïdékon [2] proved the convergence in law of Mn − 3

2 logn under
(1.1) and some mild conditions.

On the almost sure limits of Mn, it was shown in [21] that there is the following phenomena of fluctuation at the
logarithmic scale. Assume (1.1). If there exists some δ > 0 such that E[ν1+δ] < ∞ and E[∫

R
(eδx +e−(1+δ)x)Θ(dx)] <

∞, then

lim sup
n→∞

Mn

logn
= 3

2
and lim inf

n→∞
Mn

logn
= 1

2
, P∗-a.s.,

where here and in the sequel,

P∗(·) := P(·|S),

and S := {T is not finite} denotes the event that the whole system survives.
It turns out that much more can be said on the lower limits 1

2 logn of Mn: Under (1.1) and the following integrability
condition

σ 2 := E

[ ∑
|u|=1

(
V (u)

)2e−V (u)

]
< ∞, E

[
ζ
(
(log ζ )+

)2 + ζ̃ (log ζ̃ )+
]
< ∞, (1.2)

with ζ := ∑
|u|=1 e−V (u), ζ̃ := ∑

|u|=1(V (u))+e−V (u) and x+ := max(0, x), Aïdékon and Shi [4] proved that

lim inf
n→∞

(
Mn − 1

2
logn

)
= −∞, P∗-a.s.

Furthermore, by following Aïdékon and Shi’s [4] methods, we established ([20]) an integral test to describe the lower
limits of Mn − 1

2 logn. As a consequence, we have that under (1.1) and (1.2),

lim inf
n→∞

1

log logn

(
Mn − 1

2
logn

)
= −1, P∗-a.s. (1.3)

In this paper, we wish to investigate how big Mn − 3
2 logn can be. The following law of iterated logarithm (LIL)

describes the upper limits of Mn:

Theorem 1.1. Assume (1.1), (1.2) and that E[∑|u|=1(V (u)+)3e−V (u)] < ∞. Then

lim sup
n→∞

1

log log logn

(
Mn − 3

2
logn

)
= 1, P∗-a.s. (1.4)

The integrability of
∑

|u|=1(V (u)+)3e−V (u) will be used only in the proof of Lemma 4.2, see Remark 4.3, Section 4.
Usually, to establish such LIL, the first step would be the study of the moderate deviations:

P∗
(
Mn − 3

2
logn > λ

)
, when λ = o(logn) and λ,n → ∞.

Denote by pj = P(ν = j), j ≥ 0, the offspring distribution of the Galton–Watson tree T. Concerning the small
deviations of the size of T, there exist two cases: either p0 + p1 > 0 (namely the Schröder case) or p0 = p1 = 0
(namely the Böttcher case), see e.g. Fleischmann and Wachtel [15,16] and the references therein. Basically in the
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Schröder case, the tree T may grow linearly whereas it always grows exponentially in the Böttcher case. For the
branching random walk, we shall prove that the moderate deviations of Mn decay exponentially fast or double-
exponentially fast depending on the growth rate of T.

Let q := P(T is finite) = P(Sc) ∈ [0,1) be the extinction probability. We introduce two separate cases:
(The Schröder case) If the following hypotheses hold:

E

[
1(ν≥1)q

ν−1
∑
|u|=1

eγV (u)

]
= 1, for some constant γ > 0, (1.5)

and

E

[ ∑
|u|=1

eaV (u)

]
< ∞, for some a > γ . (1.6)

(The Böttcher case) If the following hypotheses hold:

p0 = p1 = 0, (1.7)

sup
|u|=1

V (u) ≤ K, for some constant K > 0. (1.8)

Remark 1.2.

(i) When a.s. ν ≥ 1 in the Schröder case, the condition (1.5) just amounts to

E

[
1(ν=1)

∑
|u|=1

eγV (u)

]
= 1, if q = 0. (1.9)

(ii) Under (1.1), the condition (1.6) or (1.8) implies that E[ν] < ∞. The technical conditions (1.6) and (1.8) are
made to avoid too large jumps of Θ in the moderate deviations.

(iii) In the Böttcher case, we can define a parameter β > 0 by

β := sup

{
a > 0: P

( ∑
|u|=1

e−aV (u) ≥ 1

)
= 1

}
. (1.10)

Note that β < 1 if we assume (1.1).

The parameters γ and β will naturally appear in the small deviations of a class of Mandelbrot’s cascades. Under
(1.1) and (1.2), the so-called derivative martingale (with convention:

∑
∅ := 0)

Dn :=
∑
|u|=n

V (u)e−V (u), n ≥ 0,

converges almost surely to some limit D∞ which is P∗-a.s. positive (see e.g. Biggins and Kyprianou [7] and
Aïdékon [2]). The non-negative random variable D∞ satisfies the following equation in law (Mandelbrot’s cascade):

D∞
law=

∑
|u|=1

e−V (u)D(u)∞ , (1.11)

where conditioned on {V (u), |u| = 1}, (D(u)∞ )|u|=1 are independent copies of D∞. The moderate deviations of Mn will
be naturally related to the small deviations of D∞ which were already studied in the literature, see e.g. Liu [25,26]
and the references therein.
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We shall work under a more general setting in order that Theorem 1.3 could also be applied to the non-degenerated
case of Mandelbrot’s cascades. Instead of (1.1), we assume that there exists some constant χ ∈ (0,1] such that

E

[ ∑
|u|=1

e−χV (u)

]
≤ 1, and E[ν] ∈ (1,∞], (1.12)

where as before, ν := ∑
|u|=1 1.

The condition (1.12) ensures that there exists a non-trivial non-negative solution Z to the following equation:

Z
law=

∑
|u|=1

e−V (u)Z(u), (1.13)

where conditioned on {V (u), |u| = 1}, (Z(u))|u|=1 are independent copies of Z, see Liu [26], Proposition 1.1.
Denote by f (x) 
 g(x) [resp.: f (x) ∼ g(x)] as x → x0 if 0 < lim infx→x0 f (x)/g(x) ≤ lim supx→x0

f (x)/g(x) <

∞ [resp.: limx→x0 f (x)/g(x) = 1]. The following result may arise an interest in Mandelbrot’s cascades.

Theorem 1.3. Assume (1.12). Let Z ≥ 0 be a non-trivial solution of (1.13).
(The Schröder case) Assume (1.5) and (1.6). Then

P(0 < Z < ε) 
 εγ , as ε → 0, (1.14)

and E[e−tZ1(Z>0)] 
 t−γ as t → ∞.
(The Böttcher case) Assume (1.7), (1.8) and that

∑
|u|=1 e−χV (u) �≡ 1. Then

E
[
e−tZ

] = e−tβ+o(1)

, t → ∞, (1.15)

and P(Z < ε) = e−ε−β/(1−β)+o(1)
, as ε → 0, with β defined in (1.10).

Obviously we can apply Theorem 1.3 to Z := D∞ with χ = 1. In the Böttcher case, the two conditions (1.12) and∑
|u|=1 e−χV (u) �≡ 1 imply that β < χ , hence β < 1; moreover, ess inf

∑
|u|=1 e−βV (u) = 1.

Let us mention that (1.14) confirms a prediction in Liu [26] who already proved that if q = 0, then for any a > 0,
E[Z−a] < ∞ if and only if a < γ . When all V (u), |u| = 1, are equal to some random variable, (1.15) is in agreement
with Liu [25], Theorem 6.1. If furthermore, all V (u) are equal to some constant, then (1.14) and (1.15) give some
rough estimates on the limiting law of Galton–Watson processes, see Fleischmann and Wachtel [15,16] for the precise
estimates. We refer to [5] for further studies of the conditioned Galton–Watson tree itself. For instance, we could seek
the asymptotic behaviors of the BRW conditioned on {0 < D∞ < ε}, as ε → 0, but this problem exceeds the scope of
the present paper.

Our moderate deviations result on Mn reads as follows:

Theorem 1.4. Assume (1.1), (1.2). Let λ,n → ∞ and λ = o(logn).
(The Schröder case) Assume (1.5) and that (1.6) hold for all a > 0. Then

P∗
(
Mn >

3

2
logn + λ

)
= e−(γ+o(1))λ. (1.16)

(The Böttcher case) Assume (1.7) and (1.8). Then

P

(
Mn >

3

2
logn + λ

)
= exp

(−e(β+o(1))λ
)
. (1.17)

The same estimates hold if we replace Mn by maxn≤k≤2n Mk .
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We refer to Aïdékon [2], Proposition 4.1, for the precise estimate on P(Mn < 3
2 logn − λ) as λ ≤ 3

2 logn and
λ → ∞.

Comparing Theorem 1.1 and Theorem 1.4, we remark that the almost sure behaviors of Mn are not related to the
moderate deviations of Mn. This can be explained as follows: Define for all λ ≥ 0 and u ∈ T,

τλ(u) := inf
{
1 ≤ i ≤ |u|: V (ui) > λ

}
(with convention inf∅ = ∞), (1.18)

where here and in the sequel, {u0 = ∅, u1, . . . , u|u| := u} denotes the shortest path from ∅ to u such that |ui | = i for
all 0 ≤ i ≤ |u|. We introduce the stopping lines:

£λ := {
u ∈ T: τλ(u) = |u|}, λ ≥ 0. (1.19)

Roughly speaking, the almost sure limits of Mn (lim sup of Mn) are determined by those of #£λ, whereas the
moderate deviations of Mn are by the small deviations of #£λ. By Nerman [30], P∗-almost surely, #£λ is of order
e(1+o(1))λ; however, to make #£λ to be as small as possible (and conditioned on {#£λ > 0}), in the Schröder case,
£λ will be essentially a singleton or a set of few points with exponential costs (see Lemma 5.3), which is no longer
possible in the Böttcher case. To relate #£λ to D∞, we shall use the martingale (Dn) at the stopping line £λ:

D£λ :=
∑
u∈£λ

V (u)e−V (u), (1.20)

which, as shown in Biggins and Kyprianou [7], converges almost surely to D∞ as λ → ∞. For u ∈ £λ, V (u) ≈ λ,
hence D£λ ≈ λe−λ#£λ. Then the problem of small values of #£λ will be reduced to that of D£λ and D∞ as λ → ∞.
The hypothesis (1.6) and (1.8) are made to control the possible overshoots.

The rest of the paper is organized as follows: In Section 2, we collect some facts on a one-dimensional random
walk and on the branching random walk. In Section 3, we study the cascade equation (1.13) and prove Theorem 1.3.
In Section 4, we first prove some uniform tightness of Mn − 3

2 logn (Lemma 4.5) and then Theorem 1.1. Finally, in
Section 5, we prove Theorem 1.4 in two separate subsections on the Schröder case and on the Böttcher case.

Throughout the paper, we adopt the usual conventions that
∑

∅ := 0, sup∅ := 0,
∏

∅ := 1, inf∅ := ∞; we also denote
by (ci,1 ≤ i ≤ 15) some positive constants, and by C, C′ and C′′ (eventually with a subscript) some unimportant
positive constants whose values can vary from one paragraph to another one.

2. Preliminaries

2.1. Estimates on a centered real-valued random walk

We collect here some estimates on a real-valued random walk {Sk, k ≥ 0}, under P, centered and with finite variance
σ 2 > 0. Write Px and Ex when S0 = x. Let Sn := min0≤i≤n Si , ∀n ≥ 0. The renewal function R(x) related to the
random walk S is defined as follows:

R(x) :=
∞∑

k=0

P(Sk ≥ −x,Sk < Sk−1), x ≥ 0, (2.1)

and R(x) = 0 if x < 0. Moreover (see Feller [14], p. 612),

lim
x→∞

R(x)

x
= c1 > 0. (2.2)

Lemma 2.1. Let S be a centered random walk with finite and positive variance. There exists some constant c2 > 0
such that for any b ≥ a ≥ 0, x ≥ 0, n ≥ 1,

Px

(
Sn ∈ [a, b], Sn ≥ 0

) ≤ c2(1 + x)(1 + b − a)(1 + b)n−3/2. (2.3)
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For any fixed 0 < r < 1, there exists some c3 ≡ c3,r > 0 such that for all b ≥ a ≥ 0, x, y ≥ 0 and n ≥ 1,

Px

(
Sn ∈ [y + a, y + b], Sn ≥ 0, min

rn≤i<n
Si ≥ y

)
≤ c3(1 + x)(1 + b − a)(1 + b)n−3/2, (2.4)

Px

(
Sn ≥ 0, min

rn≤i<n
Si > y,Sn ≤ y

)
≤ c3(1 + x)n−3/2. (2.5)

For any a > 0, if E[S2
1 eaS1 ] < ∞, then there exists some Ca > 0 such that for any b ≥ 0,

P(Sτb
− b > x) ≤ Cae−ax, ∀x ≥ 0, (2.6)

where τb := inf{j ≥ 0: Sj > b}.

Proof. See Aïdékon and Shi [4] for (2.3) and (2.4). To get (2.6), note that E[S2
1eaS1 ] < ∞ if and only if

E[(S+
1 )2eaS+

1 ] < ∞. By Doney ([11], p. 250), this condition ensures that E[Sτ0eaSτ0 ] < ∞. Then in view of Chang
([9], Proposition 4.2), we have that uniformly on b > 0, E[ea(Sτb

−b)] ≤ Ca for some constant Ca > 0, which implies
(2.6) by Chebychev’s inequality.

It remains to check (2.5). Let f (x) := P(S1 ≤ −x), x ≥ 0. It follows from the Markov property at n − 1 that the
probability in LHS of (2.5) equals

Ex

[
1(Sn−1≥0,minrn≤i<n Si>y)f (Sn−1 − y)

]
≤

∞∑
j=0

f (j)Px

(
Sn−1 ≥ 0, min

rn≤i≤n−1
Si > y,y + j < Sn−1 ≤ y + j + 1

)

≤ C(1 + x)n−3/2
∞∑

j=0

f (j)(2 + j) (by (2.4))

≤ C′(1 + x)n3/2,

yielding (2.5). �

2.2. Change of measures for the branching random walk

In this subsection, we recall some change of measure formulas in the branching random walk, for the details we refer
to [4,7,10,19,28,31] and the references therein.

At first let us fix some notations: For |u| = n, we write as before {u0 := ∅, u1, . . . , un−1, un = u} the path from the
root ∅ to u such that |ui | = i for any 0 ≤ i ≤ n. Define V (u) := max1≤i≤n V (ui) and V (u) := min1≤i≤n V (ui). For

any u,v ∈ T, we use the partial order u < v if u is an ancestor of v and u ≤ v if u < v or u = v. We also denote by
←
u

the parent of u and by ν(u) the number of children of u. Define �(u) := {v:
←
v = ←

u , v �= u} the set (eventually empty)
of brothers of u for any u �= ∅. For any u ∈ T, we denote by Tu := {v ∈ T: u ≤ v} the subtree of T rooted at u.

Under (1.1), there exists a centered real-valued random walk {Sn,n ≥ 0} such that for any n ≥ 1 and any measurable
f : Rn →R+,

E

[ ∑
|u|=n

e−V (u)f
(
V (u1), . . . , V (un)

)] = E
(
f (S1, . . . , Sn)

)
, (2.7)

which is often referred as the “many-to-one” formula. Moreover under (1.2), Var(S1) = σ 2 = E[∑|u|=1(V (u))2 ×
e−V (u)] ∈ (0,∞). We shall use the notation

τ0 := inf{j ≥ 1: Sj > 0}. (2.8)
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Denote by (Fn, n ≥ 0) the natural filtration of the branching random walk. Under (1.1), the process Wn :=∑
|u|=n e−V (u), n ≥ 1, is a (P, (Fn))-martingale. It is well-known (see [4,7,10,19,28,31]) that on some enlarged prob-

ability space (more precisely on the space of marked trees enlarged by an infinite ray (wn, n ≥ 0), called spine), we
may construct a probability Q such that the following statements (i), (ii) and (iii) hold:

(i) For all n ≥ 1,

dQ

dP

∣∣∣∣
Fn

= Wn, and Q(wn = u|Fn) = 1

Wn

e−V (u), ∀|u| = n.

(ii) Under Q, the process {V (wn), n ≥ 0} along the spine (wn)n≥0, is distributed as the random walk (Sn,n ≥ 0)

under P. Moreover, (
∑

u∈�(wk)
δ{
V (u)},
V (wk))k≥1 are i.i.d. under Q, where 
V (u) := V (

←
u ) − V (u) for any

u �= ∅.
(iii) Let Gn := σ {u,V (u):

←
u ∈ {wk,0 ≤ k < n}}, n ≥ 0. Then G∞ is the σ -algebra generated by the spine. Under

Q and conditioned on G∞, for all u /∈ {wk, k ≥ 0} but
←
u ∈ {wk, k ≥ 0} the induced branching random walk

(V (uv), |v| ≥ 0) are independent and are distributed as PV (u), where {uv, |v| ≥ 0) is the subtree Tu.

We mention that the above change of measure still holds for the stopping line £λ (see e.g. [3], Proposition 3, for
the detailed statement): i.e. replace |u| = n by u ∈ £λ, Fn by F£λ the σ -filed generated by the BRW up to £λ, and Wn

by

W£λ :=
∑
u∈£λ

e−V (u). (2.9)

For brevity, we shall write Q[X] for the expectation of some random variable X under the probability Q.

3. Proof of Theorem 1.3

The following result is due to Liu [26]:

Lemma 3.1 (Liu [26]). Assuming (1.5), (1.6) and (1.12). Let Z ≥ 0 be a non-trivial solution of (1.13). For any
0 < ε < γ , there exists some positive constant c4 = c4(ε) such that

E
[
e−tZ1(Z>0)

] ≤ c4t
−γ+ε, ∀t ≥ 1. (3.1)

Proof. At first we remark that

P(Z = 0) = q. (3.2)

In fact, we easily deduce from (1.13) that the probability P(Z = 0) is a solution of x = E[xν] which only has two
solutions q and 1 for x ∈ [0,1]. This gives (3.2).

In the case q = 0, namely Z > 0 a.s., γ is defined through (1.9), it is easy to check that P(
∑

|u|=1 e−V (u) �= 1) > 0,
then (3.1) follows exactly from Liu [26], Theorem 2.4, after a standard Tauberian argument (see Lemma 4.4 in [25]).
We only need to check that the case q > 0 can be reduced to the case q = 0.

For brevity, let us denote by {Ai,1 ≤ i ≤ ν} the family {e−V (u), |u| = 1} [the order of Ai is arbitrary]. Then Z

satisfies the equation in law

Z
law=

ν∑
i=1

AiZi, (3.3)

with (Zi, i ≥ 1) independent copies of Z, and independent of (Ai)1≤i≤ν . Let {ξ, ξi, i ≥ 1} be a family of i.i.d.
Bernoulli random variables, independent of everything else, with common law P(ξ = 0) = q = 1 − P(ξ = 1). Let
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Ẑ be a random variable distributed as Z conditioned on {Z > 0}. Since P(Z > 0) = 1 − q , we have that Z
law= ξẐ.

Then we deduce from (3.3) that

Ẑ
law=

ν∑
i=1

AiξiẐi conditioned on

{
ν∑

i=1

ξi > 0

}
,

where (Ẑi , i ≥ 1) are i.i.d. copies of Ẑ, and (ν,Ai,1 ≤ i ≤ ν) and (ξi, i ≥ 1) are three independent families of random
variables. Let {Âi ,1 ≤ i ≤ ν̂} be a family of random variables such that for any non-negative measurable function f ,

E
[
e−∑ν̂

i=1 f (Âi )
] = E

[
e−∑ν

i=1 ξif (Ai)

∣∣∣∣ ν∑
i=1

ξi > 0

]
. (3.4)

In other words,
∑ν̂

i=1 δ{Âi } has the same law as the point process
∑

1≤i≤ν,ξi �=0 δ{Ai } conditioning the latter does not
vanish everywhere. Elementary calculations show that P(

∑ν
i=1 ξi > 0) = 1 −E[qν] = 1 − q and for any non-negative

measurable function f ,

E

[
ν̂∑

i=1

f (Âi)

]
= E

[
ν∑

i=1

ξif (Ai)

∣∣∣∣∣
ν∑

i=1

ξi > 0

]
= 1

1 − q
E

[
ν∑

i=1

ξif (Ai)

]
= E

[
ν∑

i=1

f (Ai)

]
. (3.5)

In particular, E[∑ν̂
i=1 Â

χ
i ] = E[∑ν

i=1 A
χ
i ] ≤ 1 and E[̂ν] = E[ν] ∈ (1,∞]. Moreover, we deduce from (3.4) that ν̂ is

distributed as
∑ν

i=1 ξi conditioned on {∑ν
i=1 ξi > 0}, hence ν̂ ≥ 1 a.s. It is easy (e.g. by using the Laplace transform)

to see that

Ẑ
law=

ν̂∑
i=1

ÂiẐi .

Therefore we can apply the case q = 0 of (3.1) to Ẑ once we have determined the corresponding parameter γ (as in
(1.9)) for Ẑ. To this end, let tξ = inf{1 ≤ i ≤ ν: ξi = 1}. Then Â1 = Atξ if tξ < ∞. We have

E
[
(Â1)

−γ 1(̂ν=1)

] = E

[
A

−γ
tξ

1(
∑ν

i=1 ξi=1)

∣∣∣∣ ν∑
i=1

ξi > 0

]

= 1

1 − q
E

[
1(ν≥1)

ν∑
k=1

A
−γ

k 1(ξk=1,ξi=0,∀i �=k,1≤i≤ν)

]

= E

[
1(ν≥1)q

ν−1
ν∑

k=1

A
−γ

k

]
= E

[
1(ν≥1)q

ν−1
∑
|u|=1

eγV (u)

]
= 1,

by (1.5). Therefore E[e−tẐ] = O(t−γ+ε) as t → ∞. The lemma follows from the fact that P(0 < Z < x) =
(1 − q)P(Ẑ < x) for any x > 0. �

3.1. Proof of Theorem 1.3: The Schröder case

As shown in the proof of Lemma 3.1, we can assume q = 0 (hence we assume (1.9)) in this proof without any loss of
generality. Let Φ(t) := E[e−tZ] for t ≥ 0. We are going to prove that

Φ(t) 
 t−γ , t → ∞. (3.6)
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To this end, we have by (3.3) that

Φ(t) = E

[
ν∏

i=1

Φ(tAi)

]
, t ≥ 0. (3.7)

Note also that the condition (1.9) can be rewritten as E[1(ν=1)A
−γ

1 ] = 1. Define g(t) := tγ Φ(t) for all t ≥ 0. Then for
any t > 0,

g(t) = tγ Φ(t) ≥ tγE
[
1(ν=1)Φ(tA1)

] = E
[
1(ν=1)A

−γ

1 g(tA1)
] = E

[
g(tÃ1)

]
, (3.8)

where Ã1 denotes a (positive) random variable whose law is determined by E[f (Ã1)] := E[1(ν=1)A
−γ

1 f (A1)] for any

measurable bounded function f . In particular, E[log Ã1] = E[1(ν=1)A
−γ

1 logA1].
Define f (t) := E[1(ν=1)

∑
|u|=1 etV (u)] ≡ E[1(ν=1)A

−t
1 ] which is finite for t ∈ [−χ,γ ], in particular f (−χ) < 1

and f (0) < 1 = f (γ ). By the assumption of integrability in Theorem 1.3, E[1(ν=1)A
−γ

1 (− logA1)
+] < ∞ which

implies that f ′(γ−) exists and equals −E[1(ν=1)A
−γ

1 logA1]. By convexity, f ′(γ−) ≥ f (γ )−f (0)
γ

> 0. Hence

E[log Ã1] = −f ′(γ−) < 0. (3.9)

Let (Ãi)i≥2 be a sequence of i.i.d. copies of Ã1 and define Xj := −∑j

i=1 log Ãi for all j ≥ 1. Let r > 1 and put

αr := inf{j ≥ 1: Xj > log r}, (3.10)

which is a.s. finite thanks to (3.9). Going back to (3.8), we get that

g(r) ≥ E
[
g(rÃ1)1(rÃ1<1)

] +E
[
g(rÃ1)1(rÃ1≥1)

]
≥ E

[
g(rÃ1)1(rÃ1<1)

] +E
[
g(rÃ1Ã2)1(rÃ1≥1)

]
,

where to get the last inequality, we have applied (3.8) with t replaced by rÃ1 and Ã1 replaced by Ã2. Then we obtain
that

g(r) ≥ E
[
g(rÃ1)1(rÃ1<1)

] +E
[
g(rÃ1Ã2)1(rÃ1≥1,rÃ1Ã2<1)

] +E
[
g(rÃ1Ã2)1(rÃ1≥1,rÃ1Ã2≥1)

]
= E

[
g

(
r

αr∏
i=1

Ãi

)
1(αr≤2)

]
+E

[
g(rÃ1Ã2)1(αr>2)

]
.

By induction, we get that for any n ≥ 1,

g(r) ≥ E

[
g

(
r

αr∏
i=1

Ãi

)
1(αr≤n)

]
+E

[
g

(
r

n∏
i=1

Ãi

)
1(αr>n)

]
≥ E

[
g

(
r

αr∏
i=1

Ãi

)
1(αr≤n)

]
.

Since αr < ∞ a.s., we let n → ∞ and deduce from the monotone convergence theorem that

g(r) ≥ E

[
g

(
r

αr∏
i=1

Ãi

)]
= E

[
g
(
e−Rr

)]
,

where Rr := Xαr − log r > 0 denotes the overshoot of the random walk (Xj ) at the level log r . Note that for any
0 < t ≤ 1, g(t) = tγ Φ(t) ≥ Φ(1)tγ , hence

g(r) ≥ Φ(1)E
[
e−γRr

]
, ∀r > 1. (3.11)
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By the assumption (1.6), E[((− log Ã1)
+)2] = E[1(ν=1)

∑
|u|=1(V (u)+)2eγV (u)] < ∞, then by Lorden [27], The-

orem 1, supr≥1 E[Rr ] < ∞. Consequently for some positive constant C,

g(r) ≥ Φ(1)e−γE[Rr ] ≥ C > 0, ∀r > 1.

Hence

Φ(r) ≥ Cr−γ , ∀r > 1, (3.12)

which implies the lower bound in (3.6).
To prove the upper bound in (3.6), let a > γ be as in (1.6) such that E[∑ν

i=1 A−a
i ] ≡ E[∑|u|=1 eaV (u)] < ∞.

Choose (and then fix) 0 < ε < 1
2 min(a − γ, γ ) small and b := γ+ε

2 < γ . By Lemma 3.1, Φ(t) ≤ c4t
−b for all t ≥ 1

(with c4 ≥ 1). Since Φ(t) ≤ 1 for all 0 < t < 1, we obtain immediately that

g(t) ≤ c4t
γ−b, ∀t > 0. (3.13)

By (3.7) and using again the notation Ãi , i ≥ 1, we get that for any t > 0,

g(t) ≤ tγE
[
Φ(tA1)1(ν=1)

] + tγE
[
1(ν≥2)Φ(tA1)Φ(tA2)

]
= E

[
g(tÃ1)

] + t−γE
[
1(ν≥2)g(tA1)g(tA2)A

−γ

1 A
−γ

2

]
≤ E

[
g(tÃ1)

] + c2
4t

γ−2bE
[
1(ν≥2)A

−b
1 A−b

2

]
(by (3.13))

=: E[
g(tÃ1)

] + Cεt
−ε, (3.14)

with Cε := c2
4E[1(ν≥2)A

−b
1 A−b

2 ] ≤ c2
4E[∑ν

i=1 A−2b
i ] by Cauchy–Schwarz’ inequality. Then Cε < ∞ by the assump-

tion (1.6) and the choice that b < a/2.
Let r > 1. As before, we shall iterate (3.14) up to the stopping time αr (cf. (3.10)). We have that

g(r) ≤ Cεr
−ε +E

[
g(rÃ1)1(αr=1)

] +E
[
1(αr>1)

(
Cε(rÃ1)

−ε + g(rÃ1Ã2)
)]

= Cεr
−ε + CεE

[
(rÃ1)

−ε1(αr>1)

] +E

[
g

(
r

2∧αr∏
i=1

Ãi

)]
.

By induction, we get that for any n ≥ 2,

g(r) ≤ Cεr
−ε + Cε

n−1∑
k=1

E

[
1(αr>k)

(
r

k∏
i=1

Ãi

)−ε]
+E

[
g

(
r

n∧αr∏
i=1

Ãi

)]

= Cεr
−ε + CεE

[
n∧αr−1∑

k=1

eε(Xk−log r)

]
+E

[
g
(
re−Xn∧αr

)]
, (3.15)

by using the random walk Xj ≡ −∑j

i=1 log Ãi , j ≥ 1. The random walk (Xj ) has positive drift and E[X2
1] =

E[1(ν=1)

∑
|u|=1(V (u))2eγV (u)] < ∞ by the assumption (1.6), then by Lemma 5 in [3],

E

[
αr−1∑
k=1

eε(Xk−log r)

]
≤ C′

ε < ∞,

for some constant C′
ε independent of r . On the other hand, g(re−Xαr ) ≤ 1 (since re−Xαr ≤ 1), then we obtain that for

all r > 1, n ≥ 2,

g(r) ≤ Cε + C′
ε + 1 +E

[
g
(
re−Xn

)
1(n<αr )

] ≤ C′′
ε + c4r

εE
[
e−εXn1(n<αr )

]
, (3.16)
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where in the last inequality we have used the facts that t := re−Xn ≥ 1 on {n < αr} and that g(t) ≤ c4t
ε for any t ≥ 1

by Lemma 3.1.
Remark that E[e−εX1] = E[(Ã1)

ε] = E[1(ν=1)(A1)
−γ+ε] < 1 by convexity. Then E[e−εXn] → 0 as n → ∞, which

in view of (3.16) yield that for any r > 1 (ε being fixed), g(r) ≤ C′′
ε , i.e.

Φ(r) ≤ C′′
ε r−γ , ∀r > 1.

This and (3.12) imply (3.6): Φ(r) 
 r−γ for all r ≥ 1. The small deviation in (1.14) follows from a standard
Tauberian argument (see e.g. [25], Lemma 4.4).

3.2. Proof of Theorem 1.3: The Böttcher case

The proof of (1.15) goes in the same spirit as that of (3.6). Let h(t) := − logE[e−tZ], t ≥ 0. Note that h is an increas-
ing, concave function and vanishing at zero. Using the notations introduced in (3.3), we get that

e−h(t) = E
[
e−∑ν

i=1 h(tAi)
]
, ∀t ≥ 0.

On an enlarged probability space, we may find a random variable ξ such that

P(ξ = i|A) = A
β
i∑ν

j=1 A
β
j

, 1 ≤ i ≤ ν,

where A := σ {Ai,1 ≤ i ≤ ν, ν}. Then
∑ν

i=1 h(tAi) = (
∑ν

i=1 A
β
i )E[h(tAξ )

A
β
ξ

|A], and by Jensen’s inequality, we have

that for any t ≥ 0,

e−∑ν
i=1 h(tAi) ≤ E

[
exp

(
−

(
ν∑

i=1

A
β
i

)
h(tAξ )

A
β
ξ

)∣∣∣A]
.

Write for brevity

B := Aξ , η := 1

A
β
ξ

(
ν∑

i=1

A
β
i

)
> 1, a.s.

[η > 1 because ν ≥ 2 a.s.] Then for any t ≥ 0, we have

e−h(t) ≤ E
[
e−ηh(tB)

]
. (3.17)

We shall iterate the inequality (3.17) up to some random times: Let (ηi,Bi)i≥1 be an i.i.d. copies of (η,B). Let
r > 1 and define

Υr := inf

{
i ≥ 1:

i∏
j=1

Bj ≤ 1

r

}
.

Observe that

E[logB] = E

[∑ν
i=1 A

β
i logAi∑ν

i=1 A
β
i

]
= −E

[∑
|u|=1 e−βV (u)V (u)∑

|u|=1 e−βV (u)

]
= ψ ′(β),

where ψ(x) := E[log
∑

|u|=1 e−xV (u)] for 0 ≤ x ≤ χ . Note that ψ is convex on [0, χ], ψ(χ) <

logE[∑|u|=1 e−χV (u)] ≤ 0, and ψ(β) ≥ 0 since
∑

|u|=1 e−βV (u) ≥ 1 by the definition of β . By convexity, ψ ′(β) ≤



244 Y. Hu

ψ(χ)−ψ(β)
χ−β

< 0. Then E[logB] < 0 which implies that Υr < ∞, a.s. By (3.17), we see that for

e−h(r) ≤ E
[
e−η1h(rB1)1(rB1≤1)

] +E
[
e−η1h(rB1)1(rB1>1)

]
= E

[
e−η1h(rB1)1(Υr=1)

] +E
[
e−η1h(rB1)1(rB1>1)

]
.

Applying (3.17) to t = rB1, we get that

e−η1h(rB1) ≤ (
E

[
e−η2h(rB1B2)

∣∣σ {η1,B1}
])η1 ≤ E

[
e−η1η2h(rB1B2)

∣∣σ {η1,B1}
]
,

by Jensen’s inequality, since η1 > 1. It follows that E[e−η1h(rB1)1(rB1>1)] ≤ E[1(rB1>1)e−η1η2h(rB1B2)], hence

e−h(r) ≤ E
[
e−η1h(rB1)1(Υr=1)

] +E
[
1(rB1>1)e

−η1η2h(rB1B2)
]

= E
[
e−η1h(rB1)1(Υr=1)

] +E
[
e−η1η2h(rB1B2)1(Υr=2)

] +E
[
1(rB1B2>1)e

−η1η2h(rB1B2)
]
.

Again applying (3.17) to t = rB1B2 and using Jensen’s inequality (since η1η2 > 1), we get that E[1(rB1B2>1) ×
e−η1η2h(rB1B2)] ≤ E[1(rB1B2>1)e−η1η2η3h(rB1B2B3)], and so on. We get that for any n ≥ 1,

e−h(r) ≤ E
[
e−(

∏Υr
i=1 ηi)h(r

∏Υr
i=1 Bi)1(Υr≤n)

] +E
[
e−(

∏n
i=1 ηi)h(r

∏n
i=1 Bi)1(Υr>n)

]
=: A(3.18) + C(3.18). (3.18)

By (1.8), B ≥ e−K a.s., then 1
r

≥ ∏Υr

i=1 Bi > 1
r
e−K . Notice that by (1.10) the definition of β ,

∑ν
i=1 A

β
i ≥ 1 a.s.

Then η ≥ B−β and
∏Υr

i=1 ηi ≥ rβ . It follows that for any n,

A(3.18) ≤ e−rβh(e−K).

To deal with C(3.18), we remark that on {Υr > n}, r
∏n

i=1 Bi ≥ 1. It follows that

C(3.18) ≤ E
[
e−h(1)

∏n
i=1 ηi

]
.

Since ηi > 1 a.s.,
∏n

i=1 ηi ↑ ∞ as n → ∞, then by the monotone convergence theorem lim supn→∞ C(3.18) = 0.
Letting n → ∞ in (3.18), we obtain that

E
[
e−rZ

] ≡ e−h(r) ≤ e−h(e−K)rβ

, ∀r > 1, (3.19)

which is stronger than the upper bound in (1.15).
To prove the lower bound, recalling that ess inf

∑ν
i=1 A

β
i = 1 and Ai ≥ e−K , we deduce that for any small ε > 0,

there are some integer 2 ≤ k ≤ ess supν, and some real numbers a1, . . . , ak ∈ (0,1) such that
∑k

i=1 a
β
i ≥ 1 and∑k

i=1 a
β+ε
i < 1 and p := P(Ai ≤ ai,∀1 ≤ i ≤ k, ν = k) > 0. Therefore

e−h(t) = E
[
e−∑ν

i=1 h(tAi)
] ≥ pe−∑k

i=1 h(tai ), t ≥ 0.

Let b := log(1/p) > 0 and define a random variable Y ∈ {a1, . . . , ak} such that for any measurable and non-negative
function f , E[f (Y )] = 1

k

∑k
i=1 f (ai). Therefore,

h(t) ≤ b + kE
[
h(tY )

]
, ∀t ≥ 0. (3.20)

As in the proof of the upper bound, we shall iterate the above inequality up to some random times: Let (Yj )j≥1 be
an i.i.d. copies of Y . For r > 1, we define

θ := θr := inf

{
j ≥ 1:

j∏
i=1

Yi ≤ 1

r

}
.
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Since Y ≤ max1≤i≤k ai < 1, θ is a bounded random variable. Going back to (3.20), we get that

h(r) ≤ b + kE
[
h(rY1)1(rY1≤1)

] + kE
[
h(rY1)1(rY1>1)

]
≤ b + kE

[
h(rY1)1(θ=1)

] + kE
[
1(rY1>1)

(
b + kh(rY1Y2)

)]
= b + kE

[
h(rY1)1(θ=1)

] + bkP(θ > 1) + k2E
[
1(rY1>1)h(rY1Y2)

]
.

By induction, we get that for any n ≥ 1,

h(r) ≤ b

n∑
j=0

kjP(θ > j) +E

[
kθ∧nh

(
r

θ∧n∏
i=1

Yi

)]
=: A(3.21) + C(3.21). (3.21)

Elementary computations yield that

A(3.21) = b

k − 1
E

[
kθ∧(n+1) − 1

] ≤ b

k − 1
E

[
kθ

]
.

Recalling θ is bounded hence E[kθ ] < ∞. For C(3.21), we use the fact that Yi ≤ max1≤j≤k aj =: a < 1. Remark that
r
∏n

i=1 Yi ≤ 1. Then

C(3.21) := E

[
kθh

(
r

θ∏
i=1

Yi

)
1(θ≤n)

]
+E

[
knh

(
r

n∏
i=1

Yi

)
1(θ>n)

]

≤ h(1)E
[
kθ

] + h
(
ran

)
E

[
kn1(θ>n)

]
≤ h(1)E

[
kθ

] + h
(
ran

)
E

[
kθ

]
.

Since ran → 0 as n → ∞, we get that [recalling that θ depends on r]

h(r) ≤
(

h(1) + b

k − 1

)
E

[
kθ

]
, ∀r > 1. (3.22)

To estimate E[kθ ], let us find λ > 0 such that E[Yλ] = 1
k

. By the law of Y , this is equivalent to
∑k

i=1 aλ
i = 1.

By the choice of (ai), we have β ≤ λ < β + ε. Then the process n → kn
∏n

i=1 Yλ
i is a martingale (moreover

uniformly integrable on [0, θ ]). Hence the optional stopping theorem implies that

1 = E

[
kθ

θ∏
i=1

Yλ
i

]
≥ E

[
kθ

]
r−λ min

1≤i≤k
aλ
i ,

since
∏θ

i=1 Yi ≥ 1
r

min1≤i≤k ai . This and (3.22) give that

h(r) ≤
(

h(1) + b

k − 1

)
max

1≤i≤k
a−λ
i rλ, ∀r > 1,

yielding the lower bound in (1.15) since λ < β +ε. This completes the proof of (1.15). Finally, by using the elementary
inequalities: for any ε, t > 0, e−εtP(Z < ε) ≤ E[e−tZ] ≤ P(Z < ε) + e−εt , we immediately deduce from (1.15) that
P(Z < ε) = e−ε−β/(1−β)+o(1)

as ε → 0.

4. Proof of Theorem 1.1

Let us give some preliminary estimates on the branching random walk:
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Lemma 4.1. Assume (1.1) and (1.2). There exists some constants c5, c6 > 0 such that for n ≥ 1,

P

(
min|u|=n

V (u) < c5n
1/3

)
≤ c6e−c5n

1/3
, (4.1)

where we recall that for any |u| = n, V (u) := max1≤i≤n V (ui). Consequently, for any 0 < λ ≤ c5n
1/3, we have

P

(
max
u∈£λ

|u| > n
)

≤ c6e−c5n
1/3

. (4.2)

We mention that under an extra integrability condition, i.e. ∃δ > 0 such that E[ν1+δ] < ∞, n−1/3 min|u|=n V (u) →
( 3π2σ 2

2 )1/3, P∗-a.s. (see [13] and [12]) and the probability term in (4.1) is equal to e(c5−(3π2σ 2/2)1/3+o(1))n1/3
for any

0 < c5 < ( 3π2σ 2

2 )1/3 (see [13], Proposition 2.3). Here, we only assume (1.1) and (1.2), and we do not seek the precise
upper bound in (4.1).

Proof of Lemma 4.1. We shall use the following fact (see Shi [31]):

P

(
inf
u∈TV (u) < −λ

)
≤ e−λ, ∀λ ≥ 0. (4.3)

Consider 0 < c < (π2σ 2

8 )1/3. Then

P

(
min|u|=n

V (u) < cn1/3, inf
u∈TV (u) ≥ −cn1/3

)
≤ E

[ ∑
|u|=n

1(max1≤i≤n |V (ui )|≤cn1/3)

]
= E

[
eSn1(max1≤i≤n |Si |≤cn1/3)

]
(by (2.7))

≤ ecn1/3
P

(
max

1≤i≤n
|Si | ≤ cn1/3

)
= ecn1/3

e−(π2σ 2/(8c2)+o(1))n1/3
,

where the last equality follows from Mogulskii [29]. This and (4.3) easily yield the lemma by choosing a sufficiently
small constant c. �

Recall (1.19). Define for a ∈ (0,∞] and λ > 0,

£(a)
λ := {

u ∈ £λ: V (u) ≤ λ + a
}
. (4.4)

In particular, £(∞)
λ = £λ. Recall (1.20). Since the function x → xe−x is decreasing for x ≥ 1, then for any λ > 1,

D£λ ≤ λe−λ#£λ, which implies that

lim inf
λ→∞ λe−λ#£λ ≥ D∞ > 0 a.s. on S . (4.5)

If ν = ∞ [which is allowed under (1.1) and (1.2)], then #£λ = ∞ hence (4.5) cannot be strengthened into a true
limit. We present a similar result for £(a)

λ :

Lemma 4.2. Assume (1.1), (1.2) and that E[∑|u|=1(V (u)+)3e−V (u)] < ∞. There exists some a0 > 0 such that for all
large a ≥ a0, almost surely on the set of non-extinction S ,

0 < lim inf
λ→∞ λe−λ#£(a)

λ ≤ lim sup
λ→∞

λe−λ#£(a)
λ < ∞.
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Proof. We only deal with the case when the distribution of Θ is non-lattice, in this case, the limit exists. The lattice
case can be treated in a similar way, by applying Gatzouras ([17], Theorem 5.2), a lattice version of Nerman’s [30]
result, but the cyclic phenomenon could prevent from the existence of limit. In the non-lattice case, we are going to
prove that for any a > 0, almost surely on the set of non-extinction S ,

lim
λ→∞λe−λ#£(a)

λ = c7(a)D∞, (4.6)

where c7(a) := 1
E[Sτ0 ]E[emin(a,Sτ0 ) −1], and S· and τ0 are defined by (2.7) and (2.8) respectively. Obviously, c7(a) > 0

for all large a.
To get (4.6), we consider a new point process Θ̂ := ∑

u∈£0
δ{V (u)} on (0,∞). Generate a branching random

walk (V̂ (u), u ∈ T̂) from the point process Θ̂ , in the same way as (V (u),u ∈ T) do from Θ . Remark that
S = {supu∈T V (u) = ∞} = {T̂ is infinite}, and

#£(a)
λ =

∑
u∈T̂

φu

(
λ − V̂ (u)

)
,

∑
u∈£λ

e−V (u)+λ =
∑
u∈T̂

ψu

(
λ − V̂ (u)

)
,

where

φu(y) := 1(y≥0)

∑
v:←v =u

1(y<V̂ (v)−V̂ (u)≤y+a), ψu(y) := 1(y≥0)

∑
v:←v =u

ey−(V̂ (v)−V̂ (u))1(V̂ (v)−V̂ (u)>y).

Applying Theorem 6.3 in Nerman [30] (with α = 1 there) gives that almost surely on S ,∑
u∈T̂ φu(λ − V̂ (u))∑
u∈T̂ ψu(λ − V̂ (u))

→ E[∑|u|=1,u∈T̂(e−(V̂ (u)−a)+ − e−V̂ (u))]
E[∑|u|=1,u∈T̂ V̂ (u)e−V̂ (u)] .

Remark that E[∑|u|=1,u∈T̂(e−(V̂ (u)−a)+ − e−V̂ (u))] = E[∑u∈£0
(e−(V (u)−a)+ − e−V (u))] = E[emin(a,Sτ0 ) − 1] and

E[∑|u|=1,u∈T̂ V̂ (u)e−V̂ (u)] = E[∑u∈£0
V (u)e−V (u)] = E[Sτ0]. Hence on S , a.s.,

#£(a)
λ∑

u∈£λ
e−V (u)+λ

→ c7(a). (4.7)

On the other hand, almost surely,

D£λ = λe−λ

(∑
u∈£λ

e−V (u)+λ + 1

λ
ηλ

)
→ D∞, λ → ∞, (4.8)

where ηλ := ∑
u∈£λ

(V (u) − λ)e−V (u)+λ. By the many-to-one formula and the assumption, E[(S+
1 )3] =

E[∑|u|=1(V (u)+)3e−V (u)] < ∞. Then by Doney [11], E[S2
τ0

] < ∞.

Note that ηλ = ∑
u∈T̂ ψ̃u(λ − V̂ (u)) with ψ̃u(y) := 1(y≥0)

∑
v:←v =u

ey−(V̂ (v)−V̂ (u))(V̂ (v) − V̂ (u) − y) ×
1(V̂ (v)−V̂ (u)>y). In the same manner we get that almost surely on S ,

lim
λ→∞

ηλ∑
u∈£λ

e−V (u)+λ
= c8, (4.9)

with c8 := 1
2

E[S2
τ0

]
E[Sτ0 ] > 0. It follows that a.s. on S ,

∑
u∈£λ

e−V (u)+λ ∼ 1
λ

eλD£λ ∼ 1
λ

eλD∞ as λ → ∞. This combined

with (4.7) and (4.8) yield (4.6), as desired. �

Remark 4.3. The condition E[∑|u|=1(V (u)+)3e−V (u)] < ∞ was used in the above proof of Lemma 4.2 only to obtain
(4.9) which controls the contribution of ηλ in D£λ . We do not know how to relax this condition.
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We consider now some deviations on the minimum Mn. If the distribution of Θ is non-lattice, Aïdékon (Proposi-
tion 4.1, [2]) proved that for any A > 0 and for all large n,λ such that A ≤ λ ≤ 3

2 logn − A,

P

(
Mn <

3

2
logn − λ

)
= (

c9 + oA(1)
)
λe−λ,

with c9 some positive constant and oA(1) → 0 as A → ∞ uniformly on n,λ. We shall need in the proof of Theorem 1.1
an estimate which holds uniformly on λ.

Lemma 4.4. Assume (1.1) and (1.2). There is some constant c10 > 0 such that

P

(
Mn <

3

2
logn − λ

)
≤ c10(1 + λ)e−λ, ∀n ≥ 1, λ ≥ 0.

Proof. We are going to prove that there exists some constant C > 0 such that for any n ≥ 1, λ ≥ 0, α > 0,

P

(
Mn ≤ 3

2
logn − λ, min|u|≤n

V (u) ≥ −α

)
≤ C(1 + α)e−λ

(
1 + (1 + (α + (3/2) logn − λ)+)5

n1/2

)
. (4.10)

Then by taking α = λ in (4.10) and (4.3), we get the Lemma.
To prove (4.10), we write for brevity b := 3

2 logn − λ − 1. Note that we can assume b + 1 > −α. otherwise
there is nothing to prove in (4.10). For those |u| = n such that V (u) < b + 1, either minn/2≤j≤n V (uj ) > b, or
minn/2≤j≤n V (uj ) ≤ b; for the latter case, we shall consider the first j ≥ n

2 such that V (uj ) ≤ b. Then

P

(
Mn ≤ 3

2
logn − λ, min|u|≤n

V (u) ≥ −α

)
≤ P(E(4.11)) + P(F(4.11)), (4.11)

with

E(4.11) :=
{
∃|u| = n: V (u) ≤ b + 1,V (u) ≥ −α, min

n/2≤j≤n
V (uj ) > b

}
,

F(4.11) :=
⋃

n/2≤j≤n

{
∃|u| = n: V (u) ≤ b + 1, min

n/2≤i<j
V (ui) > b,V (uj ) ≤ b,V (u) ≥ −α

}
,

where as before, V (u) := min1≤i≤n V (ui) for any |u| = n. We estimate P(E(4.11)) as follows:

P(E(4.11)) ≤ E

[ ∑
|u|=n

1(V (u)≤b+1,V (u)≥−α,minn/2≤j≤n V (uj )>b)

]
= E

[
eSn1(Sn≤b+1,Sn≥−α,minn/2≤j≤n Sj >b)

]
(by (2.7))

≤ ebc3(1 + α)n−3/2 (by (2.4))

≤ c3(1 + α)e−λ.

To deal with P(F(4.11)), we consider v = uj and use the notation |u|v = n − j and Vv(u) := V (u) − V (v) for
|u| = n and v < u. Then

P(F(4.11))

≤
∑

n/2≤j≤n

E

[ ∑
|v|=j

1(V (v)≥−α,minn/2≤i<j V (vi )>b,V (v)≤b)

∑
|u|v=n−j

1(Vv(u)≤b+1−V (v),minj≤i≤n Vv(ui )≥−α−V (v))

]

=
∑

n/2≤j≤n

E

[ ∑
|v|=j

1(V (v)≥−α,minn/2≤i<j V (vi )>b,V (v)≤b)φ
(
V (v),n − j

)]
(4.12)

=: A(4.13) + B(4.13), (4.13)
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where A(4.13) denotes the sum
∑

n/2≤j≤3n/4 and B(4.13) the sum
∑

3n/4<j≤n in (4.12), and

φ(x,n − j) := E

[ ∑
|u|v=n−j

1(Vv(u)≤b+1−V (v),minj≤i≤n Vv(ui )≥−α−V (v))

∣∣∣V (v) = x

]
= E

[
eSn−j 1(Sn−j ≤b+1−x,Sn−j ≥−α−x)

]
.

Obviously, φ(x,n − j) ≤ eb+1−x . It also follows from (2.3) that

φ(x,n − j) ≤ c2(1 + α + x)(1 + α + b)2(n − j + 1)−3/2eb−x. (4.14)

By the estimate that φ(x,n − j) ≤ eb+1−x , we get that

B(4.13) ≤
∑

3n/4≤j≤n

E

[ ∑
|v|=j

1(V (v)≥−α,minn/2≤i<j V (vi )>b,V (v)≤b)e
b+1−V (v)

]

= eb+1
∑

3n/4≤j≤n

P

(
Sj ≥ −α, min

n/2≤i<j
Si > b,Sj ≤ b

)
≤ c3eb(1 + α)n−3/2 (by (2.5))

≤ c3(1 + α)e−λ,

since b = 3
2 logn − λ − 1. By using (4.14) and the many-to-one formula (2.7), we obtain that

A(4.13) ≤ C′ ∑
n/2≤j≤3n/4

(1 + b + α)2n−3/2ebE
[
(1 + α + Sj )1(Sj ≥−α,minn/2≤i<j Si>b,Sj ≤b)

]
≤ C′(1 + b + α)3e−λ

∑
n/2≤j≤3n/4

P(Sj ≥ −α,Sj ≤ b)

≤ C′′(1 + α)(1 + b + α)5e−λ
∑

n/2≤j≤3n/4

j−3/2 (by (2.3))

≤ C(1 + α)
(1 + α + (3/2) logn − λ)5

n1/2
e−λ,

yielding (4.10) and completing the proof of the lemma. �

The tightness of (Mn − 3
2 logn)n≥1 under (1.1) and (1.2) was implicitly contained in Aïdékon ([2]) (see also [8],

and see [1] for exponential decay under some additional assumptions): Assume (1.1) and (1.2). We have2

lim sup
λ→∞

lim sup
n→∞

P∗
(
Mn − 3

2
logn ≥ λ

)
= 0, (4.15)

where as before, P∗(·) := P(·|S). We need some tightness uniformly on n:

Lemma 4.5. Assume (1.1) and (1.2). For any fixed a > 1, we have

lim sup
n→∞

P∗
(

max
n≤k≤an

Mk ≥ 3

2
logn + x

)
→ 0, as x → ∞.

2In fact, by Lemma 3.6 in [2] and using the fact that Mn is stochastically smaller than Mkill
n , we obtain that supn≥3 P(Mn ≥ 3

2 logn) ≤ e−C for
some (small) constant C > 0. For any k ≥ 1, denote by Zk := ∑

|u|=k 1 the number of individuals at generation k. By the triangular inequality and

the branching property at k, we get that for any n ≥ k + 3, P(Mn ≥ 3
2 logn+λ,S) ≤ P(∃|u| = k: V (u) > λ)+E[1(Zk>0)e

−CZk ]. Letting λ → ∞
and then k → ∞, we get (4.15). The left tail lim supn→∞ P(Mn − 3

2 logn < −λ), as λ → ∞, follows from [2], see also Lemma 4.4.
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Proof. Obviously, it is enough to prove the Lemma for a = 2. By Lemma 4.4, there exists some λ0 > 0 such that for
all λ ≥ λ0 and for all n ≤ k ≤ 3n,

P

(
M4n−k ≥ 3

2
logn − λ

)
≥ exp

(−2c10λe−λ
)
. (4.16)

Let x ≥ 2λ0 and n � x. Define

κx ≡ κx(n) := inf

{
k ≥ n: Mk ≥ 3

2
logn + x

}
(inf∅ = ∞).

Let n ≤ k ≤ 3n. Denote by Sk the event that the Galton–Watson tree T survives up to the generation k. Then Sk

is non-increasing on k. On the set {κx = k} ∩ Sk , V (u) > 3
2 logn + x for any |u| = k. Let 0 < y < x − λ0. It follows

from the branching property that on {κx = k} ∩ Sk ,

P

(
M4n >

3

2
logn + y

∣∣∣Fk

)
=

∏
|u|=k

P

(
M4n−k ≥ 3

2
logn − λ

)∣∣∣∣
λ=V (u)−y

≥ exp

(
−2c10

∑
|u|=k

(
V (u) − y

)
e−(V (u)−y)

)
≥ exp

(−2c10eyDk

)
,

where we have used (4.16) to get the above first inequality.
Therefore for any ε > 0 and n ≤ k ≤ 3n,

P

(
M4n >

3

2
logn + y,Sk, κx = k

)
≥ E

[
e−2c10eyDk 1(Sk∩{κx=k})

]
≥ e−εP

(
A(4.18) ∩ {κx = k}), (4.17)

where

A(4.18) := S ∩
{

sup
j≥0

Dj ≤ ε

2c10
e−y

}
. (4.18)

Since Sk ⊂ Sn for k ≥ n, (4.17) still holds if we replace Sk by Sn in the LHS. Taking the sum over n ≤ k ≤ 3n for
(4.17) (with Sk replaced by Sn), we get that for any ε > 0, 0 < y < x − λ0 and all n ≥ n0,

P

(
A(4.18) ∩

{
max

n≤k≤3n
Mk ≥ 3

2
logn + x

})
≤ eεP

(
M4n >

3

2
logn + y,Sn

)
≤ eεP

(
M4n >

3

2
logn + y,S

)
+ eεP

(
Sc ∩ Sn

)
≤ ε + eεP

(
Sc ∩ Sn

)
, (4.19)

by using (4.15) if we choose a sufficiently large constant y = y(ε) only depending on ε. Since limn→∞ P(Sc ∩Sn) = 0,
then for x > y(ε) + λ0 and all large n ≥ n1(ε),

P

(
A(4.18) ∩

{
max

n≤k≤3n
Mk ≥ 3

2
logn + x

})
≤ 2ε. (4.20)

Note the factor 3n in the above estimate and we fix our choice of y ≡ y(ε) in A(4.18).
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Now, we shall get rid of the term A(4.18) in (4.20). Let z ∈ (y, x − λ0). Recalling the definition of £z in (1.19).
Define

A(4.21) :=
{
∃u ∈ £z: |u| ≤ x,V (u) ≤ x, sup

j≥0
D

(u)
j ≤ ε

2c10
e−y,S(u)

}
, (4.21)

where (D
(u)
j , j ≥ 0),M

(u)· ,S(u) are defined from the subtree Tu in the same way as (Dj , j ≥ 0),M·,S do from T.

Let n > 2x. The event {maxn≤k≤2n Mk ≥ 3
2 logn + 2x,S} implies that for some n ≤ k ≤ 2n, for any |v| = k, V (v) ≥

3
2 logn + 2x. If A(4.21) �= ∅, then we take an arbitrary u ∈ A(4.21) and get that M(u)

k−|u| ≥ 3
2 logn + 2x − V (u) ≥

3
2 logn + x. It follows that for z ∈ (y, x − λ0) and for all large n ≥ n2(x, ε),

P

(
max

n≤k≤2n
Mk ≥ 3

2
logn + 2x,S,A(4.21) �= ∅

)
≤ max

1≤j≤x
P

(
A(4.18) ∩

{
max

n−j≤k≤2n−j
Mk ≥ 3

2
logn + x

})
≤ 2ε, (4.22)

by applying (4.20) to n − j . On the other hand,

P(A(4.21) = ∅,S)

≤ P

(
∀u ∈ £z, sup

j≥0
D

(u)
j ≥ ε

2c10
e−y or

(
S(u)

)c
,£z �= ∅

)
+ P

(
max
u∈£z

max
(
V (u), |u|) ≥ x

)
= E

[
e−p(ε,y)#£z1(#£z>0)

] + P

(
max
u∈£z

max
(
V (u), |u|) ≥ x

)
, (4.23)

where the last equality is due to the branching property at £z, and p(ε, y) > 0 is defined by e−p(ε,y) := P(supj≥0 Dj ≥
ε

2c10
e−y or Sc).

Assembling (4.22) and (4.23) give that for any z > y,

C(4.24) := lim sup
x→∞

lim sup
n→∞

P

(
max

n≤k≤2n
Mk ≥ 3

2
logn + 2x,S

)
≤ E

[
e−p(ε,y)#£z1(#£z>0)

] + 2ε. (4.24)

Notice that {#£z > 0} is non-increasing on z and its limit as z → ∞ equals S . Then P({#£z > 0} ∩ Sc) → 0
as z → ∞. On S , we have from (4.5) that £z → ∞ as z → ∞ almost surely, hence E[e−p(ε,y)#£z1(#£z>0)] ≤
E[e−p(ε,y)#£z1S ] + P({#£z > 0} ∩ Sc) → 0 as z → ∞. Then letting z → ∞, we see that C(4.24) ≤ 2ε. This proves
the Lemma since ε can be arbitrarily small. �

We are now ready to give the proof of Theorem 1.1.

Proof of Theorem 1.1. Proof of the lower bound in Theorem 1.1. Consider large integer j . Let nj := 2j and λj :=
a log log lognj with some constant 0 < a < 1. Fix α > 0 and put

Aj :=
{
Mnj

>
3

2
lognj + λj

}
.

Recall that if the system dies out at generation nj , then by definition Mnj
= ∞. Define M

(u)· from the subtree Tu

in the same way as M· does from T. Then Aj = {∀|u| = nj−1, M(u)
nj −nj−1

≥ 3
2 lognj + λj − V (u)}, which by the

branching property at nj−1 implies that

P(Aj |Fnj−1) =
∏

|u|=nj−1

P

(
Mnj −nj−1 ≥ 3

2
lognj + λj − x

)∣∣∣∣
x=V (u)

,
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with the usual convention:
∏

∅ := 1. By the lower limits of Mnj−1 (cf. (1.3)), a.s. for all large j , Mnj−1 ≥ 1
3 lognj−1 ∼

log 2
3 j , hence x ≡ V (u) � λj since λj ∼ a log log j . Applying Lemma 4.4 gives that on {Mnj−1 ≥ 1

3 lognj−1}, for
some constant C > 0, for all |u| = nj−1,

P

(
Mnj −nj−1 <

3

2
lognj + λj − x

)∣∣∣∣
x=V (u)

≤ CV (u)e−(V (u)−λj ).

It follows that

P(Aj |Fnj−1) ≥ 1(Mnj−1≥(1/3) lognj−1)

∏
|u|=nj−1

(
1 − CV (u)e−(V (u)−λj )

)
≥ 1(Mnj−1≥(1/3) lognj−1) exp

(
−2C

∑
|u|=nj−1

V (u)e−(V (u)−λj )

)
= 1(Mnj−1≥(1/3) lognj−1) exp

(−2Ceλj Dnj−1

)
.

Since Dnj−1 → D∞, a.s., and eλj ∼ (log j)a with a < 1, we get that almost surely,∑
j

P(Aj |Fnj−1) = ∞,

which according to Lévy’s conditional form of Borel–Cantelli’s lemma ([24], Corollary 68), implies that
P(Ai, i.o.) = 1. Then

lim sup
n→∞

1

log log logn

(
Mn − 3

2
logn

)
≥ a, a.s.

The lower bound follows by letting a → 1.
Proof of the upper bound in Theorem 1.1. Let δ > 0 be small. Recall (4.4). Let a ≥ a0 be as in Lemma 4.2 such

that a.s. on S , #£(a)
λ ≥ e(1−δ)λ for all large λ. Let b > 0 such that e−b > q ≡ P(Sc). By Lemma 4.5, there exists some

constant x0 > 0 such that

P

(
max

n≤k≤4n
Mk >

3

2
logn + x0

)
≤ e−b, ∀n ≥ n0.

Let x1 := x0 + a. Consider large integer j and define nj := 2j , λj := (1 + 2δ) log log lognj . Define

Bj :=
{

max
nj <k≤nj+1

Mk >
3

2
lognj + λj + x1

}
∩ S.

Then,

P

(
Bj ,#£(a)

λj
≥ e(1−δ)λj , max

u∈£(a)
λj

|u| ≤ nj−1

)

≤ P

(
∀u ∈ £(a)

λj
: max

nj−1≤k≤nj+1
M

(u)
k >

3

2
lognj + x0,#£(a)

λj
≥ e(1−δ)λj

)
≤ exp

(−be(1−δ)λj
)
,

whose sum on j converges [δ being small]. On the other hand, by (4.2), P(max
u∈£(a)

λj

|u| > nj−1) ≤ c6e−c5n
1/3
j−1 whose

sum again converges. Therefore,
∑

j P(Bj ,#£(a)
λj

≥ e(1−δ)λj ) < ∞. By Borel–Cantelli’s lemma, almost surely, for all

large j , the event {Bj ,#£(a)
λj

≥ e(1−δ)λj } does not hold; but we have chosen a such that on S , #£(a)
λj

≥ e(1−δ)λj for
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all large j . Hence a.s. on S , for all large j , maxnj <k≤nj+1 Mk ≤ 3
2 lognj + λj + x1, from which we get that a.s.

on S ,

lim sup
n→∞

1

log log logn

(
Mn − 3

2
logn

)
≤ 1 + 2δ,

yielding the upper bound as δ > 0 can be arbitrarily small. �

5. Proof of Theorem 1.4

5.1. The Böttcher case: Proof of (1.17)

Recall (1.19) for the stopping line £λ.

Lemma 5.1 (The Böttcher case). Under the same assumptions as in Theorem 1.4, for any constant a > 0, we have

E
[
e−a#£λ

] = e−e(β+o(1))λ

, λ → ∞. (5.1)

Proof. Let us check at first the lower bound in (5.1). Observe that P-almost surely,

D∞ =
∑
u∈£λ

e−V (u)D∞(u), (5.2)

where conditioned on {V (u),u ∈ £λ}, D∞(u) are independent copies of D∞. Take K0 large enough such that
E[e−K0D∞] ≤ e−a , that is possible because D∞ > 0, P-a.s. Let x = K0eλ+K , where K = ess sup max|u|=1 V (u) < ∞
is as in (1.8). Therefore

E
[
e−xD∞] = E

[ ∏
u∈£λ

E
[
e−xe−yD∞]∣∣∣∣

y=V (u)≤λ+K

]
≤ E

[ ∏
u∈£λ

e−a

]
= E

[
e−a#£λ

]
.

Hence E[e−a#£λ ] ≥ E[e−xD∞] = e−xβ+o(1) = e−e(β+o(1))λ
gives the lower bound of (5.1).

For the upper bound of (5.1), we use again (5.2) to see that D∞ ≤ e−λ
∑

u∈£λ
D∞(u). Take a constant b > 0 such

that E[e−bD∞] ≥ e−a . It follows that

E
[
e−beλD∞] ≥ E

[
e−b

∑
u∈£λ

D∞(u)] ≥ E
[
e−a#£λ

]
,

since conditioned on £λ, (D∞(u))u∈£λ are i.i.d. copies of D∞. Then (1.15) implies the upper bound of (5.1). �

Proof of (1.17). By Lemmas 4.4 and 4.5, we can choose two positive constants c11 and c12 such that for any n ≥ 1,

min
n/2≤j≤n

P

(
Mj ≥ 3

2
logn − c11

)
≥ e−c12, (5.3)

P

(
max

n/2≤j≤3n
Mj ≥ 3

2
logn + c11

)
≤ e−c12 . (5.4)

For any u ∈ T, define as before M
(u)
j := minv∈Tu,|v|=|u|+j (V (v) − V (u)) for any j ≥ 0. It follows that

P

(
Mn >

3

2
logn + λ − c11

)
≥ P

(
∀u ∈ £λ, |u| ≤ n

2
,M

(u)
n−|u| ≥

3

2
logn − c11

)
≥ E

[
e−c12#£λ1(maxu∈£λ

|u|≤n/2)

]
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≥ E
[
e−c12#£λ

] − P

(
max
u∈£λ

|u| > n

2

)
≥ e−e(β+o(1))λ − c6e−c5n

1/3
,

by Lemma 5.1 and (4.2). The lower bound in (1.17) follows from the assumption that λ = o(logn).
To get the upper bound in (1.17), we use the hypothesis (1.8) and obtain that

P

(
max

n≤k≤2n
Mk >

3

2
logn + λ + c11 + K

)
≤ P

(
∀u ∈ £λ,max

u∈£λ

|u| ≤ n

2
, max
n≤k≤2n

M
(u)
k−|u| ≥

3

2
logn + c11

)
+ P

(
max
u∈£λ

|u| > n

2

)
≤ E

[
e−c12#£λ

] + c6e−c5n
1/3

,

by (5.4) and (4.2). The upper bound follows from Lemma 5.1. �

5.2. The Schröder case: Proof of (1.16)

In the case q := P(Sc) > 0, we need to estimate the probability that the extinction happens after £λ:

Lemma 5.2. Assume (1.1), (1.2) and (1.5). Then for any λ > 0,

P
({£λ �= ∅} ∩ Sc

) = E
[
q#£λ1(#£λ>0)

] ≤ qe−γ λ.

Proof. The above equality is an immediate consequence of the branching property at the optional line £λ (cf. [7]).
To show the above inequality, we recall that ν(u), for any u ∈ T, denotes the number of children of u. Write u < £λ

if there exists some particle v ∈ £λ such that u < v [i.e. u is an ancestor of v]. Then for the tree up to £λ, the following
equality holds: almost surely,

#£λ = 1 +
∑

∅≤u<£λ

(
ν(u) − 1

)
. (5.5)

Recall (1.5). Define a process

Xn :=
∑
|u|=n

n−1∏
i=0

(
qν(ui)−11(ν(ui )≥1)

)
eγV (u), n ≥ 1,

where as before, ui denotes the ancestor of u at ith generation. It is straightforward to check, by using the branching
property, that (Xn)n≥1 is a (non-negative) martingale with mean 1. Define

X£λ :=
∑
u∈£λ

|u|−1∏
i=0

(
qν(ui)−11(ν(ui )≥1)

)
eγV (u), λ > 0.

According to Biggins and Kyprianou ([7], Lemma 14.1), E[X£λ ] equals E[X1] times some probability term, hence
E[X£λ ] ≤ E[X1] = 1.

Notice that for any u ∈ £λ, ν(ui) ≥ 1 for all i < |u| and
∏|u|−1

i=0 (qν(ui)−11(ν(ui )≥1)) = q
∑

0≤i<|u|(ν(ui )−1) ≥ q#£λ−1

by (5.5) [recalling q < 1]. Then X£λ ≥ q#£λ−1eγ λ on {#£λ > 0}. The Lemma follows from E[X£λ ] ≤ 1. �

Lemma 5.3. Assume (1.1), (1.2), (1.5) and (1.6). For any δ > 0, there exist an integer mδ ≥ 1 and a constant λ0(δ) > 0
such that for all λ ≥ λ0(δ),

P(0 < #£λ ≤ mδ) ≥ e−(γ+δ)λ.
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Proof. We discuss the case q = 0 and the case q > 0 separately.
(i) First case: q = 0. We shall prove that

P(#£λ = 1) ≥ e−(γ+o(1))λ, (5.6)

where as usual o(1) denotes a quantity which goes to 0 as λ → ∞. To this end, we have by the change of measure
(see Section 2.2 and (2.9)) that

P(#£λ = 1) =Q

[
1

W£λ

1(#£λ=1)

]
=Q

[
eV (wτλ(w))1(#£λ=1)

] ≥ eλQ(#£λ = 1). (5.7)

Notice that under Q, {#£λ = 1} means that £λ = {wτλ(w)}. Recall that ν(u) denotes the number of children of u ∈ T.
Then Q(#£λ = 1|G∞) = 1(0≤k<τλ(w),ν(wk)=1) and thus

P(#£λ = 1) ≥ eλQ
(
0 ≤ k < τλ(w), ν(wk) = 1

)
. (5.8)

Recall (1.9) for γ . We claim that

Q
(
0 ≤ k < τλ(w), ν(wk) = 1

) = e−(1+γ+o(1))λ. (5.9)

To get (5.9), we use the fact (cf. Section 2.2) that (
∑

u∈�(wk)
δ{
V (u)},
V (wk))k≥1 are i.i.d. under Q, where 
V (u) :=

V (u) − V (
←
u ) for any u �= ∅ ≡ w0. Notice that ν(wk−1) = 1 + #�(wk).

Let us check that the process

Un := e(1+γ )V (wn)1(∀1≤k≤n,ν(wk−1)=1), n ≥ 1,

is a Q-martingale of mean 1. In fact, Un is a product of n i.i.d. variables, then it is enough to check that Q[U1] = 1.
But Q[U1] = Q[e(1+γ )V (w1)1(ν(w0)=1)] = E[∑|u|=1 eγV (u)1(ν=1)] = 1, as claimed. By the optional stopping theorem
and the Fatou lemma, we get that Q[Uτλ(w)] ≤ 1, which implies the upper bound in (5.9) since V (τλ(w)) > λ [under
Q, τλ(w) is a.s. finite].

To get the lower bound in (5.9), let ε > 0 be small. Fix some large constant C whose value will be determined later.
Let us find some γC such that the process

U(C)
n := e(1+γC)V (wn)1(∀1≤k≤n,ν(wk−1)=1,
V (wk)≤C), n ≥ 1,

is a Q-martingale with mean 1. As for Un, the constant γC
3 is determined by

1 = E

[ ∑
|u|=1

eγCV (u)1(ν=1,V (u)≤C)

]
,

where for |u| = 1, 
V (u) = V (u). Plainly γC → γ as C → ∞. Choose C sufficiently large such that γC ≤ γ + ε.
Since (U

(K)
k , k ≤ τλ(w)) is uniformly bounded by e(1+γC)(λ+C). By the optional stopping theorem, we obtain that

1 =Q
[
U

(C)
τλ(w)

] ≤ e(1+γC)(λ+C)Q
(∀1 ≤ k ≤ n, ν(wk−1) = 1

)
,

finishing the proof of (5.9) as ε can be arbitrarily small. The lemma (in the case q = 0) follows from (5.9) and (5.8).

3For the existence of such constant, we used the integrability assumption (1.6): the convex function f : b → E[∑|u|=1 ebV (u)1(ν=1)]
has a derivative f ′(γ ) ≥ f (γ )−f (0)

γ > 0 hence f is increasing at γ . Then f (a) > f (γ ) = 1. Take C0 large enough such that

E[∑|u|=1 eaV (u)1(ν=1,V (u)≤C0)] > 1, then such γC exists for all C ≥ C0. We shall use the existences of similar constants later without fur-
ther explanations.
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(ii) Second (and last) case: q > 0. We can not repeat the same proof as before, for instance p1 ≡ P(ν = 1) may
vanish.

Again by the change of measure we have that for any integer m ≥ 1,

P(0 < #£λ ≤ m) =Q

[
1

W£λ

1(#£λ≤m)

]
≥ 1

m
eλQ(#£λ ≤ m), (5.10)

where we used the facts that W£λ = ∑
u∈£λ

e−V (u) ≤ me−λ on {#£λ ≤ m} and under Q, £λ contains at least the
singleton {wτλ(w)}. Define for any x > 0,

q(x) := P

(
sup
v∈T

V (v) ≤ x
)

= P(£x = ∅),

with the usual convention that sup∅ = 0. Plainly, limx→∞ q(x) = P(supv∈T V (v) < ∞) = P(Sc) = q . For any small
ε > 0, there exists some x0 = x0(ε) > 0 such that q(x) ≥ q − ε for all x ≥ x0.

Let δ > 0 be small. Before bounding below Q(#£λ ≤ m) with some m = mδ , we first choose some constants. Let
α be large and ε be small whose values will be determined later. Recall that �(wk) denotes the set of brothers of wk .
Let us choose a constant γα,ε such that

U(α,ε)
n := e(1+γα,ε)V (wn)(q − ε)

∑
0≤k<n(ν(wk)−1)1(∀k<n,∀u∈�(wk),
V (u)≤α), n ≥ 1, (5.11)

is a Q-martingale with mean 1. As before, such γα,ε is determined by the following equalities

1 =Q
[
e(1+γα,ε)V (w1)(q − ε)ν(w0)−11(max|u|=1,u �=w1 V (u)≤α)

] = E

[ ∑
|u|=1

eγα,εV (u)(q − ε)ν−11(max|v|=1,v �=u V (v)≤α)

]
.

The existence of γa,ε follows from (1.5) and (1.6). Clearly γα,ε → γ as α → ∞ and ε → 0. Fix now α ≡ α(δ) > 0
(large enough) and ε ≡ ε(δ) > 0 (small enough) such that γα,ε < γ + δ. Choose a constant x0 ≡ x0(δ) > 0 such that
q(x) ≥ q − ε for all x ≥ x0.

On the other hand, we remark that (1.1) and (1.5) imply that

P

(
1 ≤ ν < ∞, max

|u|=1
V (u) > 0

)
> 0. (5.12)

In fact,

E

[
1(1≤ν<∞)q

ν−1
∑
|u|=1

eγV (u)1(V (u)>0)

]
= 1 −E

[
1(1≤ν<∞)q

ν−1
∑
|u|=1

eγV (u)1(V (u)≤0)

]
> 1 −E

[
1(1≤ν<∞)q

ν−1ν
]
> 0,

hence (5.12) holds. It follows that there are some integer n∗ ≥ 1 and some positive constants c∗ and b∗ such that

b∗ ≤ E

[
1(ν≤n∗)

∑
|u|=1

e−V (u)1(V (u)≥c∗)

]
=Q

(
ν(w0) ≤ n∗,V (w1) ≥ c∗

)
, (5.13)

where the last equality follows from the change of measure formula (Section 2.2 (i), w0 = ∅).
Choose (and fix) a constant L ≥ α + x0 such that L

c∗ is an integer. Define mδ := (n∗)L/c∗ . Recall (1.18) for the
definition of τλ(u). For any λ > 2L, we consider the following events

A1 := {∀k < τλ−L(w),∀u ∈ �(wk),
V (u) ≤ α,£(u)
λ = ∅}

,

A2 :=
{
∀τλ−L(w) ≤ k < τλ−L(w) + L

c∗
,∀u ∈ �(wk), ν(u) = 0, ν(wk−1) ≤ n∗,
V (wk) ≥ c∗

}
,

where £(u)
λ := Tu ∩ £λ and ν(u) denotes the number of children of u.
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Observe that on A1 ∩ A2, τλ(w) ≤ τλ−L(w) + L
c∗ , and #£λ ≤ (n∗)L/c∗ ≡ mδ . Since q > 0, p0 ≡ P(ν = 0) > 0, it

follows from the spinal decomposition (Section 2.2 (iii)) that

Q(#£λ ≤ mδ) ≥ Q(A1 ∩ A2)

= Q

[
B1

τλ−L(w)+L/c∗−1∏
k=τλ−L(w)

∏
u∈�(wk)

p0 × 1(ν(wk−1)≤n∗,
V (wk)≥c∗)

]

≥ p
mδ

0 Q

[
B1

τλ−L(w)+L/c∗−1∏
k=τλ−L(w)

1(ν(wk−1)≤n∗,
V (wk)≥c∗)

]
, (5.14)

where

B1 :=
∏

k<τλ−L(w)

∏
u∈�(wk)

q
(
λ − V (u)

)
1(
V (u)≤α) ≥

∏
k<τλ−L(w)

(q − ε)ν(wk−1)−11(maxu∈�(wk) 
V (u)≤α) =: B2,

by using the fact that for any u ∈ �(wk) with k < τλ−L(w), V (u) ≤ λ − L + α ≤ λ − x0, and q(λ − V (u)) ≥ q(x0) ≥
q − ε.

Recall that under Q, (
∑

u∈�(wk)
δ{
V (u)},
V (wk))k≥1 are i.i.d.; then the strong Markov property implies that

under Q and conditioned on Gτλ−L(w), (ν(wk−1),
V (wk))k≥τλ−L(w) are i.i.d., of common law that of (ν(w0),V (w1)).
Therefore,

Q(#£λ ≤ mδ) ≥ p
mδ

0 Q[B2]Q
(
ν(w0) ≤ n∗,V (w1) ≥ c∗

)L/c∗ ≥ p
mδ

0 b
L/c∗∗ Q[B2]. (5.15)

It remains to estimate Q[B2]. Going back to (5.11) and applying the optional stopping theorem at τλ−L for U(α,ε)

(which remains bounded up to τλ−L), we get that

Q[B2] =Q
[
(q − ε)

∑
0≤k<τλ−L(w)(ν(wk)−1)

1(∀k<n,∀u∈�(wk),
V (u)≤α)

] ≥ e−(1+γα,ε)(λ−L+α).

In view of (5.10) and (5.15), this implies that

P(0 < #£λ ≤ mδ) ≥ 1

mδ

p
mδ

0 b
L/c∗∗ eL−αe−γα,ε(λ−L+α).

Then we have proved the Lemma in the case q > 0 [by choosing a sufficiently large λ0(δ)]. �

Lemma 5.4 (The Schröder case). Under the same assumptions as in Theorem 1.4, for any constant a > 0, we have

E
[
e−a#£λ1(#£λ>0)

] = e−(γ+o(1))λ, λ → ∞. (5.16)

Proof. From Lemma 5.3, the lower bound of (5.16) follows immediately. We also mention that in the cases when
q = 0 or q > 0 but 0 < a < log(1/q), we can give a proof of the lower bound of (5.16) in the same way as that
of (5.1).

For the upper bound, we proceed in the same way as in the proof of Lemma 5.1, but by paying attention to the
possibility of extinction of the system. Take b > 0 such that E[e−bD∞] ≥ e−a . By (5.2), eλD∞ ≤ ∑

u∈£λ
D∞(u), then

E
[
e−beλD∞1(D∞>0)

] ≥ E
[
e−b

∑
u∈£λ

D∞(u)1(D∞>0)

]
≥ E

[
e−b

∑
u∈£λ

D∞(u)1(#£λ>0)

] − P
({#£λ > 0} ∩ Sc

)
≥ E

[
e−a#£λ1(#£λ>0)

] − P
({#£λ > 0} ∩ Sc

)
.

By (1.14), E[e−beλD∞1(D∞>0)] ≤ Ce−γ λ, which together with Lemma 5.2 yield the upper bound in (5.16). �
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We now are ready to give the proof of (1.16):

Proof of (1.16). Let us prove at first the lower bound in (1.16). By Lemma 4.4, there are c13 > 0 (large enough) and
c14 > 0 (small enough) such that minn/2≤k≤n P(Mk ≥ 3

2 logn − c13,S) ≥ c14 for all n ≥ 1.
Let δ > 0 be small and let mδ ≥ 1 and λ0(δ) > 0 be as in Lemma 5.3. Let λ ≥ λ0(δ). Remark that

P

(
Mn >

3

2
logn + λ − c13,S

)
≥ P

(
0 < #£λ ≤ mδ,∀u ∈ £λ,M

(u)
n−|u| >

3

2
logn − c13, |u| ≤ n

2
,S(u)

)
,

where as before, S(u) = {Tu survives} and M
(u)
j := minv∈Tu,|v|=|u|+j (V (v) − V (u)) for any j ≥ 0. It follows that

P

(
Mn >

3

2
logn + λ − c13,S

)
≥ (c14)

mδP

(
0 < #£λ ≤ mδ,max

u∈£λ

|u| ≤ n

2

)
≥ (c14)

mδ

(
P(0 < #£λ ≤ mδ) − P

(
max
u∈£λ

|u| > n

2

))
≥ (c14)

mδ
(
e−(γ+δ)λ − c6e−c5n

1/3)
,

by Lemma 5.3 and (4.2). The lower bound of (1.16) follows.
We prove now the upper bound in (1.16). By assumption (1.6) holds for any a > 0, hence S1 has all exponential

moments. It follows from (2.6) that for any a > 0, there exists some Ca > 0 such that

P(Sτλ − λ ≥ x) ≤ Cae−ax, ∀x ≥ 0. (5.17)

Let δ > 0 be small and a > (1 + γ )/δ + 1. Then

P

(
max
u∈£λ

V (u) > (1 + δ)λ
)

≤ E

[∑
u∈£λ

1(V (u)>(1+δ)λ)

]
= E

[
eSτλ 1(Sτλ≥(1+δ)λ)

] = o
(
e−γ λ

)
, (5.18)

where the last equality follows easily from (5.17). Define

A(5.19) :=
{

max
u∈£λ

V (u) ≤ (1 + δ)λ,max
u∈£λ

|u| ≤ n

2

}
. (5.19)

Then by (4.2), for all large n ≥ n0 and 0 < λ = o(logn),

P
(
Ac

(5.19)

) ≤ P

(
max
u∈£λ

V (u) > (1 + δ)λ
)

+ P

(
max
u∈£λ

|u| > n

2

)
≤ o

(
e−γ λ

) + c6e−c5n
1/3 = o

(
e−γ λ

)
.

On S ∩ {Mn > 3
2 logn + (1 + 2δ)λ}, £λ �= ∅. Consider λ such that δλ < logn. Therefore,

P

(
max

n≤k≤2n
Mk >

3

2
logn + (1 + 2δ)λ,S

)
≤ P

(
max

n≤k≤2n
Mk >

3

2
logn + (1 + 2δ)λ,A(5.19),£λ �= ∅

)
+ o

(
e−γ λ

)
≤ P

(
∀u ∈ £λ, max

n/2≤j≤2n
M

(u)
j >

3

2
logn + δλ,£λ �= ∅

)
+ o

(
e−γ λ

)
=: B(5.20) + o

(
e−γ λ

)
, (5.20)
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where M
(u)
k := maxv∈Tu,|v|=|u|+k(V (v) − V (u)). Conditioning on F£λ , M(u)· are i.i.d. copies of M·. By Lemma 4.5

(with a = 4), there exist some c15 > 0 and λ0 such that (δ being fixed) for all large n ≥ n0(λ0),

P

(
max

n/2≤k≤2n
Mk ≥ 3

2
logn + δλ0

)
≤ P

(
Sc

) + P∗
(

max
n/2≤k≤2n

Mk ≥ 3

2
logn + δλ0

)
≤ e−c15 .

Then by conditioning on F£λ , we get that

B(5.20) ≤ E
[
e−c15#£λ1(£λ �=∅)

] = e−(γ+o(1))λ,

by Lemma 5.4. This and (5.20) prove the upper bound in (1.16) since δ can be arbitrarily small. �
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