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Abstract. Attributing a positive value τx to each x ∈ Z
d , we investigate a nearest-neighbour random walk which is reversible for

the measure with weights (τx), often known as “Bouchaud’s trap model.” We assume that these weights are independent, identically
distributed and non-integrable random variables (with polynomial tail), and that d ≥ 5. We obtain the quenched subdiffusive scaling
limit of the model, the limit being the fractional kinetics process. We begin our proof by expressing the random walk as the
time change of a random walk among random conductances. We then focus on proving that the time change converges, under
the annealed measure, to a stable subordinator. This is achieved using previous results concerning the mixing properties of the
environment viewed by the time-changed random walk.

Résumé. Après avoir attribué une valeur positive τx à chaque x de Z
d , nous nous intéressons à une marche aléatoire au plus proche

voisin et réversible pour la mesure de poids (τx), souvent appelée � modèle de Bouchaud �. Nous supposons que ces poids sont
des variables aléatoires indépendantes, de même loi non-intégrable (à queue polynomiale), et que d ≥ 5. Nous identifions, pour
presque toute réalisation des (τx), la limite sous-diffusive de ce modèle. Nous commençons la preuve en exprimant la marche
aléatoire comme le changement de temps d’une marche aléatoire en conductances aléatoires. Nous nous consacrons ensuite à
montrer que ce changement de temps converge, sous la loi moyennée, vers un subordinateur stable. Nous y parvenons en utilisant
un résultat antérieur concernant les propriétés de mélange de l’environnement vu par la marche changée de temps.
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1. Introduction

In this paper, we consider a trap model, known as Bouchaud’s trap model or also the random walk among random
traps, evolving on the graph Z

d . In this model, every site x ∈ Z
d represents a trap of a certain depth τx > 0, and

the dynamics is chosen in order to make the measure with weights (τx)x∈Zd reversible. More precisely, for a fixed
a ∈ [0,1] and τ = (τx)x∈Zd , we consider the continuous time Markov chain (Xt )t≥0 whose jump rate from a site x to
a neighbour y is

(τy)
a

(τx)1−a
. (1.1)

We write Pτ
x for the law of this process starting from x ∈ Z

d , Eτ
x for its associated expectation. The environment τ

is chosen according to some probability law P (with corresponding expectation E). We focus here on the case when
(τx)x∈Zd are independent and identically distributed, and in the regime where there is some α ∈ (0,1) such that

P[τ0 ≥ y] ∼ 1

yα
(y →+∞). (1.2)
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In particular, the expectation of the depth of a trap is infinite. We also assume that τ0 ≥ 1. For ε > 0, we define the
rescaled process X(ε)(t)=√εXε1/αt , and call J1 topology the usual Skorokhod’s topology ([10], Chapter 3). We will
prove the following result.

Theorem 1.1. If d ≥ 5, then for almost every environment, the law of X(ε) under Pτ
0 converges, for the J1 topology

and as ε tends to 0, to the law of B ◦H−1, where B is a Brownian motion, H is an α-stable subordinator, and (B,H)

are independent.

The limit process B ◦H−1 appearing in Theorem 1.1 is known as the fractional kinetics process [31].
The proof of Theorem 1.1 we present below can easily be adapted to cover also the Metropolis and heat bath

dynamics, where one replaces the jump rates in (1.1) by, respectively,

min

(
1,

τy

τx

)
and

(
1+ τx

τy

)−1

.

In the case when E[τ0] is finite, the random walk (Xt )t≥0 is diffusive under the averaged law, and converges to
Brownian motion after rescaling [16]. Assumption (1.2), with α < 1, brings us in the domain where the invariance
principle breaks down.

The model investigated here has been considered on various graphs by physicists, as a simplified representation of
the dynamics of glassy systems (see [13,28] for reviews). The first occurrences concern the dynamics on the complete
graph, with a = 1 in [15] and with a = 0 in [12]. The general dynamics, with a ∈ [0,1], was considered in [26]. The
case when the underlying graph is Z

d has been studied in the physics literature in [8,23,26,27].
The characteristic property of glassy systems is the phenomenon of aging. It is experimentally observed the fol-

lowing way. The glass is prepared by a fast cooling at time t = 0. After a time tw , some experiment is performed,
and a relaxation time is measured. It turns out that this relaxation time depends on the time tw that separates the
instant of preparation and the experiment, on any accessible time scale. For example, one can observe the magnetic
susceptibility of certain materials in presence of a small oscillating magnetic field of period T . It is observed that this
magnetic susceptibility depends only on the ratio T/tw [21]. Macroscopic properties of the material thus depend on
its “age” tw .

On the mathematical side, the model attracted interest as well (see [5] for a review). In terms of the random walk,
aging can be observed via two-time correlation functions, letting both times diverge to infinity. The limit obtained
should be a non-trivial function of their ratio. One can derive such results from the existence of a scaling limit (see [5],
Theorem 5.1, for a simple example, and also [4,6,17,18]).

In dimension 1 and for a = 0, [17] obtained convergence of the rescaled process to a singular diffusion, on a subd-
iffusive scale. The result was extended to general a ∈ [0,1] in [4]. The multidimensional case was then considered.

A fruitful approach to this problem is to introduce a time-change (X̂t )t≥0 of the initial process, in such a way that
the counting measure becomes reversible for X̂. More precisely, we let X̂ follow the trajectory of X, but the time spent
by X̂ at some site x is the time spent by X divided by τx . For the walk X̂, the jump rate from a site x to a neighbour
y is thus (τxτy)

a , which is symmetric. Letting

A(t)=
∫ t

0
τ
X̂s

ds,

we can rewrite X as

Xt = X̂A−1(t).

We define the rescaled processes X̂(ε)(t)=√εX̂ε−1t and H(ε)(t)= ε1/αA(ε−1t). In order to prove Theorem 1.1, it is
sufficient to prove the following result (see [29], formula (3.3.4), for a definition of the M1 topology).

Theorem 1.2. If d ≥ 5, then for almost every environment, the joint law of (X̂(ε),H (ε)) under Pτ
0 converges, for

the J1 ×M1 topology and as ε tends to 0, to the law of (B,H), where B is a Brownian motion, H is an α-stable
subordinator, and (B,H) are independent.
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Theorem 1.2 was obtained in [6] in the case when a = 0, in any dimension d ≥ 2 (with a different renormalisation
when d = 2). For a = 0, the time-changed random walk X̂ is the simple random walk. The proof is based on a
coarse-graining procedure introduced in [7], and relies on sharp heat kernel estimates for the simple random walk.

Recently, [1] managed to extend the method to cover general a ∈ [0,1], for any d ≥ 3. A preliminary step was to
obtain sharp heat kernel estimates for the time-changed random walk X̂ [2].

Hence, Theorem 1.1 is not new. The interest of the present paper is that we will follow a radically different method
of proof, that we believe to be more natural. The main tool needed here is that the time-changed random walk X̂ is
“transient enough,” in the sense that the environment viewed by X̂ is sufficiently mixing. Moreover, we will see that
we can in fact focus our attention on a priori weaker statements in which one considers the law of the processes under
the annealed measure PPτ

0 (that we will now write P, with corresponding expectation E). Finally, in our method,
intermediate statements do not involve a mesoscopic scale, but directly the limit objects, which are more simple. We
mainly focus on the following statement.

Proposition 1.3. If d ≥ 5, then the law of H(ε) under the measure P converges, for the M1 topology and as ε tends
to 0, to the law of an α-stable subordinator.

We describe briefly how we prove this result. The process H(ε) is an additive functional of the environment viewed
by the particle X̂ (see (2.1) for a definition). Under the annealed measure, this process is known to be stationary,
and when d ≥ 5, mixing properties of this process are provided by [24]. In the limit ε → 0, the increments of H(ε)

thus become independent (and stationary). Moreover, the process H(ε) is a sum of non-integrable random variables
(weighted by the occupation time of the random walk). As is usual in this case, only the few deepest traps, that is the
x’s such that τx � ε−1/α , really contribute to the sum. Because these contributions are asymptotically independent
and identically distributed, in order to understand the scaling limit of H(ε), it should be sufficient to understand the
contribution in H(ε) of the first deep trap encountered by the random walk.

Let us call x(ε) the first site discovered by the random walk such that τx(ε) ≥ ε−1/α . Its contribution in H(ε) is the
product of τx(ε) by the occupation time of X̂ on x(ε). For the first term, it is easy to identify the limit law of ε1/ατx(ε)

as ε tends to 0, and one can also see that the two terms become asymptotically independent. We are thus left with the
problem of estimating the time spent by X̂ on x(ε). The random walk X̂ may perform several visits to x(ε) on a time
scale of order 1, and then leave it for ever. We can thus replace the occupation time by the product of an exponential
variable of parameter 1, that we leave aside here, by the Green function on that site. We choose to write this Green
function as a function G(θx(ε)τ ) of the environment centered at x(ε). The core of the problem is thus to obtain the
asymptotic behaviour of the environment centered at x(ε).

We have already discussed the behaviour of (θx(ε) τ )0 = τx(ε) . What remains to understand is the environment
around the site x(ε), that we may write τ (ε) = (τx(ε)+z)z �=0. We will show the following fact.

Proposition 1.4. Let G((τz)z �=0)= limτ0→+∞G(τ), and cr = E[G−1]. The law of τ (ε) converges to the law given by

1

crG(τ)
dP(τ ).

This result enables us to finish the proof of Proposition 1.3. It also gives us an explicit description of the Laplace
exponent of H , see (8.10) (and one can check that it coincides with the one obtained for a = 0 in [6], provided one
adds the missing Gd(0)−1 in [6], formula (4.15), and propagates changes accordingly).

In what follows, we focus on the case a �= 0, but our proofs can be easily adapted to cover the case a = 0. Our
method is however not the wisest in this case, and one can in fact obtain much better results for general random walks
whose law does not depend on the environment, see [19].

Let us now say a word on the topologies we consider. Results of convergence concerning processes defined on
R+ should be understood as the convergence of the restrictions on [0, t], for any t > 0. In the results mentioned
above, there appears the usual Skorokhod’s J1 topology, and also the weaker M1 topology. In Proposition 1.3 and
Theorem 1.2, it is not possible to replace the M1 topology by the J1 topology (see [6] or the discussion at the beginning
of Section 6). One may also want to replace the J1 topology involved in Theorems 1.1 and 1.2 by the uniform topology,
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but measurability problems preclude this possibility ([10], Section 18). The change of topology can nevertheless be
done if one replaces the discontinuous processes X(ε) and X̂(ε) by continuous approximations of them.

Apart from this introduction, the paper is divided into 10 sections and an Appendix. In Section 2, we recall the
definition of the process of the environment viewed by the particle, and state its main properties: stationarity, ergod-
icity and mixing. In Section 3, we prove the asymptotic independence of the increments of H(ε). We then define an
exploration process in Section 4, and show that the number of sites discovered grows asymptotically linearly with time
in Section 5. Section 6 justifies that one can replace the occupation time of X̂ on deep traps by the Green function. The
main achievement of Section 7 is to prove Proposition 1.4, which enables us to prove Proposition 1.3 in Section 8. The
convergence of the joint process (X̂(ε),H (ε)) under the annealed measure is then derived in Section 9. The passage
from the annealed to the quenched measure leading to Theorem 1.2 is proved in Section 10, and relies on a kind of
concentration argument that is due to [11] (and on the mixing estimates). Finally, we prove that Theorem 1.2 implies
Theorem 1.1 in Section 11. The last section is an Appendix containing some classical results of interest from potential
theory.

2. The environment viewed by the particle

We recall here the definition of the environment viewed by the particle, as well as some of its important properties.
There are translations (θx)x∈Zd acting on the space Ω of environments, such that (θxτ )y = τx+y . The environment
viewed by the particle is the Markov process on Ω defined by

τ̂ (t)= θ
X̂t

τ. (2.1)

We recall the following classical result ([16], Lemma 4.3(iv)).

Proposition 2.1. The measure P is reversible and ergodic for the process (τ̂ (t))t≥0.

Throughout this paper, one central tool is an estimate of the speed of convergence to equilibrium of this pro-
cess ([24], Proposition 7.2), that we now recall. For some s ≥ 0, we say that a function g(X̂, τ ) depends only on the
trajectory up to time s if one can write it as

g
(
(X̂u)u≤s , (τX̂u

)u≤s

)
. (2.2)

We say that such a function is translation invariant if, moreover, for any x ∈ Z
d :

g
(
(x + X̂u)u≤s , (τX̂u

)u≤s

)= g
(
(X̂u)u≤s , (τX̂u

)u≤s

)
.

For a function f :Ω → R, we write Var(f ) for the variance of the function f with respect to the measure P, and
ft = Eτ

0[f (τ̂ (t))]. Proposition 7.2 in [24] states the following.

Theorem 2.2. When d ≥ 5, there exists C > 0 such that, for any bounded function g that depends only on the trajec-
tory up to time s and is translation invariant, if f (τ)= Eτ

0[g], then for any t > 0:

Var(ft )≤ C‖g‖2∞
(s + t)2

td/2
.

We point out that this result was initially established for a random walk among random independent conductances.
Although X̂ is a random walk among random conductances, they fail to be independent. Indeed, the conductance of
the edge between two sites x ∼ y is (τxτy)

a , hence conductances of adjacent edges are correlated. One can however
check that, due to the locality of the dependence dealt with here, the results of [24] still apply in our present context.

For convenience, we also recall a useful observation from [24], formula (7.2). For a function g of the form (2.2),
we write g(t) for

g
(
(X̂u)t≤u≤t+s, (τX̂u

)t≤u≤t+s

)
,
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and define f (τ)= Eτ
0[g]. Then one can check that, when g is translation invariant:

ft (τ )= Eτ
0

[
g(t)

]
. (2.3)

3. Asymptotically independent increments

Let δ ≥ 0. We define H
(ε)
δ as

H
(ε)
δ (t)= ε1/α

∫ ε−1t

0
τ
X̂s

1{ε1/ατ
X̂s
≥δ} ds. (3.1)

When δ > 0, the process H
(ε)
δ retains only the contributions of the deepest traps, but should be a good approximation

of H for small δ. In this section, we consider possible limit points for the law of H
(ε)
δ under P, as ε goes to 0. We will

see, using Theorem 2.2, that any such limit point is the law of a subordinator. More precisely, for a sequence (εk)k∈N

converging to 0, let us assume that the law of H
(εk)
δ under P converges, in the sense of finite-dimensional distributions

and as k tends to infinity, to some measure μ◦δ . Possibly enlarging the probability space, we define a random variable
Hδ which has law μ◦δ under P. The purpose of this section is to show the following result.

Proposition 3.1. If d ≥ 5, then the process Hδ is a subordinator under P.

Proof. Under P, the process H
(ε)
δ inherits the stationarity property from that of (τ̂ (t))t≥0. What we need to see is

the independence of the increments in the limit. We will prove, by induction on n, that for any λ1, . . . , λn, and any
s1 < · · ·< s2n:

E

[
exp

(
−

n∑
i=1

λi

(
Hδ(s2i )−Hδ(s2i−1)

))]
=

n∏
i=1

E
[
exp

(
λi

(
Hδ(s2i )−Hδ(s2i−1)

))]
. (3.2)

The property is obvious when n= 1. We assume it to hold up to n, and give ourselves λ1, . . . , λn+1, and s1 < · · ·<
s2n+2. We define

Pk = exp

(
−

n∑
i=1

λi

(
H

(εk)
δ (s2i )−H

(εk)
δ (s2i−1)

))
,

Fk(τ )= Eτ
0

[
exp

(−λn+1
(
H

(εk)
δ (s2n+2 − s2n)−H

(εk)
δ (s2n+1 − s2n)

))]
.

Using the Markov property at time ε−1s2n, we have that

Eτ
0

[
exp

(
−

n+1∑
i=1

λi

(
H

(εk)
δ (s2i )−H

(εk)
δ (s2i−1)

))]
= Eτ

0

[
PkFk

(
τ̂
(
ε−1s2n

))]
,

where we recall that τ̂ (ε−1s2n) is the environment seen by the particle at time ε−1s2n. What we want to show is
precisely that∣∣E[

PkFk

(
τ̂
(
ε−1s2n

))]−E[Pk]E
[
Fk

(
τ̂
(
ε−1s2n

))]∣∣ (3.3)

goes to 0 as k goes to infinity. Indeed, on one hand, the induction hypothesis can be applied on the limit of E[Pk], and
on the other, one has

E
[
Fk

(
τ̂
(
ε−1s2n

))]= E
[
exp

(−λn+1
(
H

(εk)
δ (s2n+2)−H

(εk)
δ (s2n+1)

))]
.
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But, by Cauchy–Schwarz inequality, the square of the term in (3.3) is bounded by the product of the variances of Pk

and Fk(τ̂ (ε−1s2n)). As Pk is bounded, it is enough to show that the variance of Fk(τ̂ (ε−1s2n)) goes to 0 as k tends to
infinity. Due to the stationarity of (τ̂ (t)), the variance of Fk(τ̂ (ε−1s2n)) is the same as the variance of Fk(τ).

Hence, we now proceed to show that Var(Fk) goes to 0 as k tends to infinity. We begin by rewriting Fk , using the
definition of H

(ε)
δ given in (3.1), as:

Fk(τ)= Eτ
0

[
exp

(
−λn+1

∫ ε−1(s2n+2−s2n)

ε−1
k (s2n+1−s2n)

ε
1/α
k τ

X̂s
1{ε1/α

k τ
X̂s
≥δ} ds

)]
.

We define gk as

gk(X̂, τ )= exp

(
−λn+1

∫ ε−1
k (s2n+2−s2n+1)

0
ε

1/α
k τ

X̂s
1{ε1/α

k τ
X̂s
≥δ} ds

)
.

The function gk depends only on the trajectory up to time ε−1
k (s2n+2−s2n+1), and it is translation invariant. Therefore,

letting f (k)(τ )= Eτ
0[gk], and f

(k)
t (τ )= Eτ

0[f (k)(τ̂ (t))], we have (see (2.3)):

Fk(τ)= f
(k)

ε−1
k (s2n+1−s2n)

(τ ),

and Theorem 2.2 implies that, when d ≥ 5,

Var(Fk)≤ Cε
d/2−2
k

(s2n+2 − s2n)
2

(s2n+1 − s2n)d/2
,

which goes indeed to 0 as k tends to infinity. �

The same technique applies as well for L
(ε)
δ defined as

L
(ε)
δ (t)=

∫ ε−1t

0
h
(
τ̂ (s)

)
1{ε1/ατ

X̂s
≥δ} ds. (3.4)

Proposition 3.2. If d ≥ 5, then any limit point (in the sense of the convergence of finite-dimensional distributions) of
the laws of L

(ε)
δ under P is the law of a subordinator.

4. The exploration process

In this section, we define a way to explore the 1-neighbourhood of the trajectory of the walk, and state some of its
properties. Let γ = (γn) be a (finite or infinite) nearest-neighbour path on Z

d . The set of sites we would like to explore
is

D(γ )= {
x ∈ Z

d : ∃n ‖x − γn‖ ≤ 1
}
. (4.1)

Consider the sequence of sites:

S = (γ1 + z)|z|≤1, (γ2 + z)|z|≤1, . . . , (γn + z)|z|≤1, . . . ,

where (x + z)|z|≤1 is enumerated in some predetermined order. It is clear that S spans D(γ ). We can define

S ′ = x1(γ ), . . . , xn(γ ), . . . (4.2)

as the sequence S with repetitions removed. We call (xn(γ )) the exploration process (for the path γ ), and say that a
site is discovered (by the path γ ) if it belongs to D(γ ).
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Let Y be the discrete-time random walk associated with X̂. We will be mainly interested in the exploration process
associated with the random walk, namely (xn(Y ))n∈N. As Y is an irreducible Markov chain on an infinite state space,
it is clear that it visits an infinite number of distinct sites, which implies that xn(Y ) is well defined for all n.

We write μ0 for the law of τ0 under the measure P.

Proposition 4.1. Under P, the random variables (τxn(Y ))n∈N are independent and distributed according to μ0.

Proof. Let γ = (γi)1≤i≤k be a nearest-neighbour path, and γ← = (γi)1≤i≤k−1 be the (possibly empty) path that
follows γ but stops one step earlier. Let En be the set of paths such that γ discovers at least n sites x1(γ ), . . . , xn(γ ),
but γ← does not.

For γ = (γi)1≤i≤k , we write Y = γ when Y and γ coincide up to time k. Observe that the events {Y = γ } form a
partition of the probability space when γ ranges in En (up to a set of null measure). For any real numbers t1, . . . , tn,
we can therefore decompose

P[τx1(Y ) ≤ t1, . . . , τxn(Y ) ≤ tn] (4.3)

along this partition, which leads to:∑
γ∈En

PPτ
0[Y = γ, τx1(γ ) ≤ t1, . . . , τxn(γ ) ≤ tn]

=
∑
γ∈En

E
[
Pτ

0[Y = γ, τx1(γ ) ≤ t1, . . . , τxn−1(γ ) ≤ tn−1] 1{τxn(γ )≤tn}
]
,

as τxn(γ ) is constant under Pτ
0 . The event {Y = γ } depends only on (τx)x∈D(γ←). As γ ∈ En, the shortened path γ←

does not discover xn(γ ). Hence, of the two terms in the E expectation above, the first depends only on (τxk(γ ))k<n,
while the second depends only on τxn(γ ). These two terms are thus independent, and one can rewrite the whole sum
as ∑

γ∈En

PPτ
0[Y = γ, τx1(γ ) ≤ t1, . . . , τxn−1(γ ) ≤ tn−1]P[τxn(γ ) ≤ tn].

Using the translation invariance of P, the probability (4.3) thus equals

P[τx1(Y ) ≤ t1, . . . , τxn−1(Y ) ≤ tn−1] P[τ0 ≤ tn].
The proof of the proposition is then obtained by induction. �

From now on, we will simply write xn for xn(Y ).

5. Asymptotic behaviour of the range

We say that x ∈ Z
d is discovered before time t if x ∈ D((X̂s)s≤t ). Let r(t) be the number of such sites:

r(t)= ∣∣D
(
(X̂s)s≤t

)∣∣. (5.1)

In this section, we will show a law of large numbers for r(t). In order to do so, a convenient tool is the subadditive
ergodic theorem. Its use requires that we ensure first that r(t) is integrable. We will in fact find an upper bound for
E[r(t)2], which will be useful later on in order to show the uniform integrability of (L

(ε)
δ (t))ε>0 (Lemma 7.8).

Proposition 5.1. There exists a constant C > 0 such that, for any t ≥ 0:

E
[
r(t)2]≤ C(t + 1)2.
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Proof. The proof is similar to the one of the second part of [24], Proposition 6.2. Let R(t) be the cardinal of the range
of the random walk at time t (without taking into account sites that are discovered but not visited):

R(t)= ∣∣{X̂s, s ≤ t}∣∣.
It is clear from the definition (4.1) that there are at most (2d + 1) sites discovered associated to each site visited, so
that

r(t)≤ (2d + 1)R(t).

We will therefore focus on R(t). For x ∈ Z
d , let Tx be the hitting time of x:

Tx = inf{s ≥ 0: X̂s = x}. (5.2)

One can rewrite the range as

R(t)=
∑
x∈Zd

1{Tx≤t}, (5.3)

from which we derive an expression for the square of R(t):

R(t)2 = 2
∑

x,y∈Zd

1{Tx≤Ty≤t}. (5.4)

The general term of this sum can be bounded from above, using the Markov property of the random walk at time Tx ,
as follows:

Pτ
0[Tx ≤ Ty ≤ t] ≤ Pτ

0[Tx ≤ t, Tx ≤ Ty ≤ Tx + t]
≤ Pτ

0[Tx ≤ t]Pτ
x[Ty ≤ t].

Hence, using Eqs (5.4) and then (5.3), we obtain that

Eτ
0

[
R(t)2] ≤ 2

∑
x,y∈Zd

Pτ
0[Tx ≤ t]Pτ

x[Ty ≤ t]

≤ 2
∑
x∈Zd

Pτ
0[Tx ≤ t]Eτ

x

[
R(t)

]
. (5.5)

One would like to compare the probability to hit x with the total time spent on this site, which is easier to handle.
However, because there exist sites with arbitrarily large jump rates, there is no clear comparison between these two
quantities. We will therefore create a larger set, written V τ (x), that contains x and so that it does take some time to
exit this set.

Let pτ (x) be the total jump rate of site x:

pτ (x)=
∑
y∼x

(τxτy)
a.

For η > 0, we say that a point x ∈ Z
d is good in the environment τ if pτ (x)≤ η; we say that it is bad otherwise. We

need to fix η large enough, so that

P[0 is bad]< 1

(2d)(2d+1)
. (5.6)

Following [24], formula (6.10), we define V τ (x) by

y ∈ V τ (x) ⇐⇒ ∃γ = (γ1, . . . , γl): γ1 = x, γl = y, γ2, . . . , γl−1 bad points, (5.7)
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where γ is a nearest-neighbour path. One can check that V τ (x) contains the site x, and that any point in the inner
boundary of V τ (x) is a good point. As a consequence, the expected time spent inside this set cannot be too small as
compared to the probability to hit x. More precisely, we have the following result.

Lemma 5.2. For almost every τ , the following holds

Pτ
0[Tx ≤ t] ≤ eη

∫ t+1

0
Pτ

0

[
X̂s ∈ V τ (x)

]
ds.

We refer to [24], Lemma 6.3, for a proof of this lemma. Using this result back into Eq. (5.5), one obtains

Eτ
0

[
R(t)2] ≤ eη

∑
x∈Zd

Eτ
x

[
R(t)

] ∫ t+1

0
Pτ

0

[
X̂s ∈ V τ (x)

]
ds

≤ eη
∑

x,x′∈Zd

Eτ
x

[
R(t)

]
1{x′∈V τ (x)}

∫ t+1

0
Pτ

0

[
X̂s = x′

]
ds. (5.8)

We introduce the following function of the environment

Wt(τ)=
∑
x∈Zd

Eτ
x

[
R(t)

]
10∈{V τ (x)}. (5.9)

It is not hard to check that for any x′ ∈ Z
d , one has

Wt(θx′τ)=
∑
x∈Zd

Eτ
x+x′

[
R(t)

]
1{x′∈V τ (x+x′)} =

∑
x∈Zd

Eτ
x

[
R(t)

]
1{x′∈V τ (x)},

and using this fact together with inequality (5.8), one obtains

E
[
R(t)2] ≤ eη

∫ t+1

0

∑
x′∈Zd

E
[
Wt(θx′τ)1{X̂s=x′}

]
ds

≤ eη

∫ t+1

0
E

[
Wt

(
τ̂ (s)

)]
ds.

The measure P being invariant for the process (τ̂ (s))s≥0, we are led to

E
[
R(t)2]≤ eη(t + 1)E

[
Wt(τ)

]
. (5.10)

Proposition 5.1 will therefore be proved once we have shown the following lemma.

Lemma 5.3. There exists C > 0 such that, for any t ≥ 0, one has

E
[
Wt(τ)

]≤ C(t + 1).

Proof. We will use Lemma 5.2 once more. Indeed, one has

Eτ
x

[
R(t)

] = ∑
y∈Zd

Pτ
x[Ty ≤ t] ≤ eη

∑
y∈Zd

∫ t+1

0
Pτ

x

[
X̂s ∈ V τ (y)

]
ds

≤ eη
∑

y,y′∈Zd

1{y′∈V τ (y)}
∫ t+1

0
Pτ

x

[
X̂s = y′

]
ds. (5.11)
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Let w(τ) be defined by

w(τ)=
∑
y∈Zd

1{0∈V τ (y)}.

Then, inequality (5.11) can be rewritten as

Eτ
x

[
R(t)

]≤ eη

∫ t+1

0
Eτ

x

[
w

(
τ̂ (s)

)]
ds.

It then follows from the definition of Wt in (5.9) that

E
[
Wt(τ)

]≤ eη
∑
x∈Zd

∫ t+1

0
E

[
Eτ

x

[
w

(
τ̂ (s)

)]
1{0∈V τ (x)}

]
ds.

Using Cauchy–Schwarz inequality, we obtain

E
[
Wt(τ)

]≤ eη
∑
x∈Zd

∫ t+1

0
E

[(
Eτ

x

[
w

(
τ̂ (s)

)])2]1/2
P
[
0 ∈ V τ (x)

]1/2 ds.

Moreover, the function

s �→ E
[(

Eτ
x

[
w

(
τ̂ (s)

)])2]
is decreasing, as Eτ

x[w(τ̂ (s))] is the image of w by the semi-group associated to the process (τ̂ (s))s≥0, hence we are
finally led to

E
[
Wt(τ)

]≤ eη(t + 1)E
[
w(τ)2] ∑

x∈Zd

P
[
0 ∈ V τ (x)

]1/2
. (5.12)

What we have to prove is thus that, on one hand, the sum appearing above is finite, and on the other hand, that the
random variable w(τ)2 is integrable.

Due to the symmetry of the definition of V τ (x) in (5.7), it is clear that

0 ∈ V τ (x) ⇐⇒ x ∈ V τ (0),

and as a consequence, w(τ)= |V τ (0)|. Let B(r) be the ball of radius r , with respect to the graph norm. By a perco-
lation argument and using (5.6) (see [24], Lemma 6.4(2), for details), one can see that the probability that V τ (0) is
not contained in B(r) decays exponentially as r goes to infinity. From this fact, one can check that the two conditions
mentioned above hold, which ends the proof of the lemma. �

The result of Lemma 5.3, together with inequality (5.10), implies Proposition 5.1. �

Once the integrability of r(t) is ensured, a law of large numbers follows as a consequence of the subadditive ergodic
theorem.

Proposition 5.4. If d ≥ 3, then there exists a constant cr > 0 such that

r(t)

t

P-a.s.−→
t→+∞ cr .
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Proof. The subadditive ergodic theorem (see [20]), together with Proposition 5.1, ensures that there exists a random
variable cr such that, P-almost surely and in L1(P):

r(t)

t
−→

t→+∞
t∈N

cr . (5.13)

One can in fact omit the restriction t ∈N above. Indeed, if n is an integer and n≤ t < n+1, the subadditivity property
gives

0≤ r(t)− r(n)≤ ∣∣D
(
(X̂s)n≤s<n+1

)∣∣.
Moreover, Birkhoff’s ergodic theorem ensures the almost sure convergence of

1

n

n∑
k=1

∣∣D
(
(X̂s)k≤s<k+1

)∣∣
to some random variable. In particular,

1

n

∣∣D
(
(X̂s)n≤s<n+1

)∣∣
converges to 0 almost surely, which implies that one can take out the restriction t ∈ N in Eq. (5.13). Moreover,
a consequence of the ergodicity given by Proposition 2.1 is that cr is in fact constant. What is left is to check that cr

is strictly positive. For any integer n, we have the following convenient lower bound:

r(n)≥
n∑

k=1

1{X̂k /∈D((X̂s )s≤k−1)}.

Indeed, the condition X̂k /∈ D((X̂s)s≤k−1) implies that the site X̂k has been discovered in the time interval (k − 1, k].
Integrating this inequality, we have

E
[
r(n)

]≥ n∑
k=1

P
[
X̂k /∈ D

(
(X̂s)s≤k−1

)]
. (5.14)

Note that, due to the reversibility of the walk,

Pτ
0

[
X̂k /∈ D

(
(X̂s)s≤k−1

)
, X̂k = x

]= Pτ
x

[
x /∈ D

(
(X̂s)1≤s≤k

)
, X̂k = 0

]
.

Using once again the fact that (X̂t − x) has same law under Pτ
x as (X̂t ) under Pθxτ

0 , the latter equals

Pθxτ
0

[
0 /∈ D

(
(X̂s)1≤s≤k

)
, X̂k =−x

]
.

Using the translation invariance of P, this computation leads us to

P
[
X̂k /∈ D

(
(X̂s)s≤k−1

)] = ∑
x∈Zd

PPθxτ
0

[
0 /∈ D

(
(X̂s)1≤s≤k

)
, X̂k =−x

]

=
∑
x∈Zd

P
[
0 /∈ D

(
(X̂s)1≤s≤k

)
, X̂k =−x

]

= P
[
0 /∈ D

(
(X̂s)1≤s≤k

)]
≥ P

[
0 /∈ D

(
(X̂s)s≥1

)]
.



824 J.-C. Mourrat

In order to show that cr is strictly positive, and considering inequality (5.14), it is enough to show that P[0 /∈
D((X̂s)s≥1)] is strictly positive, which amounts to checking that the random walk is transient. This fact is contained
in Proposition A.2 of the Appendix, where it is shown that the Green function G(τ) is finite. �

6. Unmatched jumps

We begin by introducing some notation. For any δ > 0 and any ε > 0, we define (r
(ε)
δ (n))n∈N as the increasing

sequence that spans the set

R(ε)
δ := {

i ∈N: ε1/ατxi
≥ δ

}
. (6.1)

In other words, the kth site discovered by the random walk is the nth deep trap discovered if and only if k = r
(ε)
δ (n).

Let T
(ε)
δ (n) be the instant when the nth deep trap is discovered:

T
(ε)
δ (n)= inf

{
t : r(t)≥ r

(ε)
δ (n)

}
.

We further define x
(ε)
δ (n) to be the location of the nth deep trap discovered, which is equal to x

r
(ε)
δ (n)

. Note that x
(ε)
δ (n)

and the position of the walk at the instant of discovery X̂
T

(ε)
δ (n)

are neighbours (or possibly equal if at the origin). The

depth of the trap discovered is given by τ
x

(ε)
δ (n)

, and (θ
x

(ε)
δ (n)

τ ) is the environment seen from the trap.

We would like to consider how much time is spent on a deep trap, so we introduce

l
(ε)
δ (n, t)=

∫ ε−1t

0
1{X̂s=x

(ε)
δ (n)} ds and l

(ε)
δ (n)= l

(ε)
δ (n,+∞).

With this notation at hand, the processes H
(ε)
δ and L

(ε)
δ introduced in (3.1) and (3.4) can be conveniently rewritten as

H
(ε)
δ (t)=

+∞∑
n=1

l
(ε)
δ (n, t)ε1/ατ

x
(ε)
δ (n)

, (6.2)

L
(ε)
δ (t)=

+∞∑
n=1

l
(ε)
δ (n, t)h(θ

x
(ε)
δ (n)

τ ). (6.3)

Once the random walk has found a deep trap, it will perform several visits to this site, and then leave it forever.
These visits happen on a time scale that does not depend on ε. Hence, due to the time renormalization, the function
l
(ε)
δ (n, ·) tends to look more and more like a step function as ε goes to 0. However, some caution is necessary when

one wants to give a precise meaning to this closeness. Indeed, the function l
(ε)
δ (n, ·) is continuous, and we recall that

the set of continuous functions is closed for the usual Skorokhod’s J1 topology. In the terminology of [29], the limit
process should have jumps that are unmatched in the converging processes. Following [6], we will use Skorokhod’s
M1 topology, for which jumps can appear in the limit of continuous functions. From the fact that l

(ε)
δ (n, ·) is close to

a step function, we will be able to show that H
(ε)
δ and L

(ε)
δ are well approximated, respectively, by the processes H(ε)

δ

and L(ε)
δ defined by

H(ε)
δ (t)=

+∞∑
n=1

l
(ε)
δ (n)ε1/ατ

x
(ε)
δ (n)

1{t≥εT
(ε)
δ (n)}, (6.4)

L(ε)
δ (t)=

+∞∑
n=1

l
(ε)
δ (n)h(θ

x
(ε)
δ (n)

τ )1{t≥εT
(ε)
δ (n)}. (6.5)



Scaling limit of the random walk among random traps on Z
d 825

This is the content of Proposition 6.3. Before stating it, we need to show that the jump instants (T
(ε)
δ (n))n∈N do

not accumulate in the limit, and that ε1/ατ
x

(ε)
δ (n)

is tight. The next proposition shows in fact that, as ε gets small, the

sequence of jump instants tends to behave like a Poisson process. The knowledge of the intensity of the limit process
will be useful in the sequel.

Proposition 6.1. Under P, the law of (εT
(ε)
δ (n))n∈N converges to that of a Poisson process of intensity cr/δ

α , where
cr is the constant appearing in Proposition 5.4.

Proof. We recall from Proposition 4.1 that (τxi
)i∈N is a family of independent random variables distributed according

to μ0. Hence, (1
i∈R(ε)

δ

)i∈N is a family of independent Bernoulli random variables of parameter

P
[
ε1/ατ0 ≥ δ

]∼ ε

δα
(ε→ 0).

It is thus clear that r
(ε)
δ (1), r

(ε)
δ (2)− r

(ε)
δ (1), . . . are independent and identically distributed, and that for any y ≥ 0:

P
[
r
(ε)
δ (1) > ε−1y

]= (
1− P

[
ε1/ατ0 ≥ δ

])�ε−1y� −→
ε→0

e−y/δα

.

As a consequence, (εr
(ε)
δ (n))n∈N converges in distribution to a Poisson process of intensity δ−α . Moreover, note that

r(t) defined in (5.1) inherits right continuity from the one of X̂. Besides, because the walk cannot discover more than
2d + 1 sites at once, the heights of the jumps of r(t) are bounded by 2d + 1. We obtain the inequalities

r
(ε)
δ (n)≤ r

(
T

(ε)
δ (n)

)≤ r
(ε)
δ (n)+ 2d + 1.

This last inequality implies that (εr(T
(ε)
δ (n)))n∈N also converges in distribution to a Poisson process of intensity

δ−α . Hence, for any n, the random variable T
(ε)
δ (n) goes to infinity in probability, and Proposition 5.4 implies the

announced result. �

One can easily describe the limit distribution of ε1/ατ
x

(ε)
δ (n)

.

Proposition 6.2. For any n ∈N, the law of ε1/ατ
x

(ε)
δ (n)

under P converges to the law whose density is given by

αδα dx

xα+1
1[δ,+∞)(x).

Proof. We recall that, under P, the random variables (τxi
)i∈N are independent and distributed according to μ0. The

family (τ
x

(ε)
δ (n)

)n∈N is the subsequence made of those elements whose value exceeds δε−1/α . Hence, for any n ∈ N,

the law of τ
x

(ε)
δ (n)

is the one of τ0 conditioned on being larger than δε−1/α , and we obtain, for any x ≥ δ:

P
[
ε1/ατ

x
(ε)
δ (n)

≥ x
]= P[ε1/ατ0 ≥ x]

P[ε1/ατ0 ≥ δ] ,

which, according to (1.2), converges to δα/xα as ε goes to 0. �

We write D([0, t],R) for the space of cadlag functions from [0, t] to R. For a definition of the M1 distance on
D([0, t],R), we refer to [29], formula (3.3.4) (or equivalently, [29], formula (12.3.8)). With a slight abuse of notation,
we will not distinguish between a process and its restriction on [0, t].
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Proposition 6.3. (1) For any n ∈ N and any t > 0, the M1 distance on D([0, t],R) between l
(ε)
δ (n, ·) and the step

function

l
(ε)
δ (n)1{·≥εT

(ε)
δ (n)}

converges to 0 in probability under P as ε tends to 0.
(2) For any t > 0, the M1 distance on D([0, t],R) between H

(ε)
δ and H(ε)

δ (resp. between L
(ε)
δ and L(ε)

δ ) converges
to 0 in probability under P as ε tends to 0.

Proof. Let η > 0 be some small parameter. We begin by showing that the difference between l
(ε)
δ (n, ·) evaluated at

time εT
(ε)
δ (n)+ η and its limit is small, in the sense that

E
[
l
(ε)
δ (n)− l

(ε)
δ

(
n, εT

(ε)
δ (n)+ η

)]−→
ε→0

0. (6.6)

One can rewrite the left-hand side above as

E

[∫ +∞

T
(ε)
δ (n)+ε−1η

1{X̂s=x
(ε)
δ (n)} ds

]
. (6.7)

Recall that x
(ε)
δ (n) is a site discovered at time T

(ε)
δ (n), hence it is a neighbour of X

T
(ε)
δ (n)

, and we can bound the

integrand above by

1{|X̂s−X̂
T

(ε)
δ

(n)
|≤1}.

Using this together with the Markov property at time T
(ε)
δ (n) leads one to bound the term in (6.7) by

E

[
Eτ

X̂
T

(ε)
δ

(n)

[∫ +∞

ε−1η

1{|X̂s−X̂0|≤1} ds

]]
.

But as we recall in Proposition A.3 of the Appendix, there exists C such that for any s > 0:

sup
x,y

Pτ
x[Xs = y] ≤ C

sd/2
,

from which (6.6) follows. In particular, this implies that the probability of the event

l
(ε)
δ (n)− l

(ε)
δ

(
n, εT

(ε)
δ (n)+ η

)≤ η (6.8)

converges to 1 as ε goes to 0. On this event, the increasing process l
(ε)
δ (n, ·) is constant equal to 0 up to time εT

(ε)
δ (n),

and reaches a value close to its limit by η at time (εT
(ε)
δ (n)+ η). From this observation, it is not hard to construct

parameterizations of the completed graphs (as defined in [29], formula (3.3.3)) of l
(ε)
δ (n, ·) and of the step function

that show the M1 distance on D([0, t],R) to be smaller than 2η, provided εT
(ε)
δ (n) does not lie in [t − η, t]. By

Proposition 6.1, the probability that such an event happens is as close to 0 as desired, thus ending the proof of the first
part of the proposition.

Let us now turn to the second part of the proposition. We recall that H(ε)
δ was defined in (6.4). Using the previous

result, together with the fact that the random variable ε1/ατ
x

(ε)
δ (n)

is tight by Proposition 6.2, we obtain that the M1

distance between

l
(ε)
δ (n, ·)ε1/ατ

x
(ε)
δ (n)
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on one hand, and

l
(ε)
δ (n)ε1/ατ

x
(ε)
δ (n)

1{·≥εT
(ε)
δ (n)}

on the other, goes to 0 in probability as ε tends to 0. Moreover, because of Proposition 6.1, the number of n’s such that
εT

(ε)
δ (n) belongs to [0, t] is bounded in probability. Hence, when considering H

(ε)
δ in (6.2), one can restrict the sum

to a finite number of terms, and then apply the above observation to each of the terms, thus proving the proposition.
The same proof applies as well to L

(ε)
δ and L(ε)

δ , using the representation in (6.3) and the fact that the function h is
bounded. �

7. The environment around a trap

Consider the environment around the nth deep trap, θ
x

(ε)
δ (n)

τ . We have already seen in Proposition 6.2 the convergence

in law, after proper scaling, of (θ
x

(ε)
δ (n)

τ )0 = τ
x

(ε)
δ (n)

. We would like to gain information about the other coordinates of

θ
x

(ε)
δ (n)

τ . For any z �= 0, let τ
(ε)
δ (n, z) be defined by

τ
(ε)
δ (n, z)= (θ

x
(ε)
δ (n)

τ )z = τ
x

(ε)
δ (n)+z

.

For convenience, we write τ
(ε)
δ (n) for the family (τ

(ε)
δ (n, z))z �=0, and may call τ

(ε)
δ (n) the environment around the nth

deep trap. We insist that this environment has not any value assigned at the origin.
We will show that τ

(ε)
δ (n) converges in law (for the product topology) as ε goes to 0. The next proposition is a first

step in this direction.

Proposition 7.1. For any integer n, the family of random variables (τ
(ε)
δ (n))ε>0 is tight under P.

Proof. Let z ∈ Z
d \ {0}. It suffices to show that, for any η > 0, there exists M > 0 such that, for ε small enough,

P[τ
x

(ε)
δ (n)+z

≥M] ≤ η. (7.1)

We say that x ∈ Z
d is atypical if it is a deep trap and the depth of the site (x + z) exceeds M :

ε1/ατx ≥ δ and τx+z ≥M.

The event appearing in the left-hand side of (7.1) can be rephrased as saying that x
(ε)
δ (n) is an atypical trap. We say

that x ∈ Z
d is uncommon if it is atypical, or if (x − z) is atypical. Finally, for a subset � ⊆ Z

d , we say that x is
uncommon regardless of � if one can infer that x is uncommon without considering sites inside �, i.e. if one of the
two following conditions occur:

x is atypical and {x, x + z} ∩ � =∅ or (x − z) is atypical and {x − z, x} ∩ � =∅.

Let us assume momentarily the validity of the following lemma, and see how it enables us to show the proposition.

Lemma 7.2. If x
(ε)
δ (n) is atypical, then there exists k ≤ r

(ε)
δ (n) such that xk is uncommon regardless of {x1, . . . , xk−1}.

We saw in the proof of Proposition 6.1 that the random variables εr
(ε)
δ (n) converge in law as ε tends to 0. Therefore,

one can find a constant Cr such that the probability of the event

εr
(ε)
δ (n)≤ Cr (7.2)
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is as close to 1 as desired when ε is small. On this event, using the result of the lemma, the fact that x
(ε)
δ (n) is atypical

implies that there exists k ≤ ε−1Cr such that xk is uncommon regardless of {x1, . . . , xk−1}. The probability of this
event is bounded by

ε−1Cr∑
k=1

P
[
xk is uncommon regardless of {x1, . . . , xk−1}

]
. (7.3)

We now proceed to evaluate the generic term of this sum. We will condition on the trajectories up to the discovery of
the kth site. We refer to the proof of Proposition 4.1 for the definitions of γ← (where γ is a path), the set of paths Ek

and the meaning of the event that we write “Y = γ ,”

P
[
xk uncommon regardless of {x1, . . . , xk−1}

]
=

∑
γ∈Ek

P
[
Y = γ, xk(γ ) uncommon regardless of

{
x1(γ ), . . . , xk−1(γ )

}]

=
∑
γ∈Ek

E
[
Pτ

0[Y = γ ], xk(γ ) uncommon regardless of
{
x1(γ ), . . . , xk−1(γ )

}]
.

Moreover, the probability Pτ
0[Y = γ ] depends only on D(γ←), while the event

xk(γ ) is uncommon regardless of
{
x1(γ ), . . . , xk−1(γ )

}
has been constructed in order to depend only on sites outside D(γ←). Due to the fact that P is a product measure, it
comes that

P
[
xk is uncommon regardless of {x1, . . . , xk−1}

]
=

∑
γ∈Ek

P[Y = γ ]P[
xk(γ ) is uncommon regardless of

{
x1(γ ), . . . , xk−1(γ )

}]

≤
∑
γ∈Ek

P[Y = γ ]P[
xk(γ ) is uncommon

]
.

Translation invariance of the measure P implies that in fact,

P[x is uncommon]

does not depend on x. We have thus shown that the sum in (7.3) is bounded by

ε−1CrP[0 is uncommon] ≤ 2ε−1CrP[0 is atypical], (7.4)

a term which should be uniformly small as ε goes to 0, when M is chosen large enough. It is easily seen to be so
noting that

P[0 is atypical] = P
[
ε1/ατ0 ≥ δ

]
P[τz ≥M],

and that ε−1
P[ε1/ατ0 ≥ δ] is bounded as ε goes to 0, while P[τz ≥M] can be made arbitrarily small by choosing M

large enough. �

Proof of Lemma 7.2. Let k0 be defined by

k0 =min{k: xk is uncommon}.
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If x
(ε)
δ (n) is atypical, then in particular it is uncommon, hence on this event, k0 is finite and smaller than r

(ε)
δ (n). Two

situations may occur. If xk0 is atypical, then xk0 + z is uncommon, hence does not belong to {x1, . . . , xk0−1}, so that

{xk0, xk0 + z} ∩ {x1, . . . , xk0−1} =∅.

In this case, xk0 is indeed uncommon regardless of {x1, . . . , xk0−1}. On the other hand, if it is xk0 − z that is atypical,
then in particular it is uncommon, hence it does not belong to {x1, . . . , xk0−1}, and the intersection

{xk0 − z, xk0} ∩ {x1, . . . , xk0−1}
is empty, a fact from which the conclusion follows as well. �

We will show in the next proposition that the asymptotic behaviour of l
(ε)
δ (n) can be inferred from the one of

τ
(ε)
δ (n). Let G(τ) be the Green function at the origin

G(τ)= Eτ
0

[∫ +∞

0
1{X̂s=0} ds

]
.

Let e
(ε)
δ (n) be such that

l
(ε)
δ (n)= e

(ε)
δ (n)G(θ

x
(ε)
δ (n)

τ ). (7.5)

From the fact that, with high probability, the site x
(ε)
δ (n) is visited by the random walk, one can easily derive that

e
(ε)
δ (n) converges in law to an exponential random variable of parameter one.

We recall from (5.2) that we write Tx for the hitting time of x.

Proposition 7.3. (1) The probability that the site x
(ε)
δ (n) is visited by the random walk goes to 1 as ε goes to 0:

P[T
x

(ε)
δ (n)

<∞]−→
ε→0

1.

(2) For any u≥ 0 and any x ∈ Z
d , one has

Pτ
0

[
e
(ε)
δ (n)≥ u,x

(ε)
δ (n)= x, T

x
(ε)
δ (n)

<∞]
(7.6)

= e−uPτ
0

[
x

(ε)
δ (n)= x, T

x
(ε)
δ (n)

<∞]
.

(3) As ε goes to 0, the random variable e
(ε)
δ (n) converges in law under P to an exponential random variable of

parameter 1.

Before turning to the proof, we introduce some notation. Let qτ (x, y) be the probability for the walk starting from
x to make its first jump on the site y. When x, y ∈ Z

d are neighbours, we write

σ τ (x, y)=
∑
z∼x

z �=y

(τz)
a. (7.7)

Moreover, for any x, y ∈ Z
d we write x ≈ y if x is a neighbour or a second neighbour of y.

Proof of Proposition 7.3. From Proposition 7.1, we know that the probability of the event

∀y ≈ x
(ε)
δ (n) τy ≤M (7.8)
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can be made as close to 1 as desired, by choosing M large enough. Let us assume that the position of the walk at the
time of discovery of x

(ε)
δ (n) is x. In particular, x is a neighbour of x

(ε)
δ (n), and the probability (for a fixed environment)

that from x, the walk jumps to x
(ε)
δ (n) is given by

qτ
(
x, x

(ε)
δ (n)

)= (τ
x

(ε)
δ (n)

)a∑
z∼x(τz)a

=
(

1+ στ (x, x
(ε)
δ (n))

(τ
x

(ε)
δ (n)

)a

)−1

. (7.9)

On the event (7.8), the random variable στ (x, x
(ε)
δ (n)) is bounded (uniformly over x), while τ

x
(ε)
δ (n)

is larger than

ε−1/αδ. Hence, the quantity in (7.9) goes to 1 in probability, which proves the first part of the proposition.
Let us now consider the second part. We have

Pτ
0

[
e
(ε)
δ (n)≥ u,x

(ε)
δ (n)= x, T

x
(ε)
δ (n)

<∞]
= Pτ

0

[∫ ∞

Tx

1{X̂s=x} ds ≥ uG(θxτ), x
(ε)
δ (n)= x, Tx <∞

]
.

The Markov property at time Tx enables us to rewrite it as

Pτ
x

[∫ ∞

0
1{X̂s=x} ds ≥ uG(θxτ)

]
Pτ

0

[
x

(ε)
δ (n)= x, Tx <∞]

. (7.10)

Starting from x, the total time spent on site x is an exponential random variable of parameter G(θxτ). Hence, the first
term in (7.10) is equal to e−u, and we obtain the announced claim.

The third part of the proposition is a direct consequence of the first two. Indeed, summing over all x ∈ Z
d and

integrating over the environment in Eq. (7.6), one obtains that, conditionally on T
x

(ε)
δ (n)

< ∞, the random variable

e
(ε)
δ (n) is distributed under P as an exponential random variable of parameter 1. The result is then obtained using the

fact that the probability of the event T
x

(ε)
δ (n)

<∞ goes to 1 as ε goes to 0. �

In Proposition A.2 of the Appendix, we show that the limit

G
(
(τz)z �=0

)= lim
τ0→+∞G(τ) (7.11)

exists. The next proposition claims that G(θ
x

(ε)
δ (n)

τ ) is well approximated by G(τ
(ε)
δ (n)).

Proposition 7.4. The difference

∣∣G(θ
x

(ε)
δ (n)

τ )−G
(
τ

(ε)
δ (n)

)∣∣
converges to 0 in P-probability as ε tends to 0.

Proof. We recall that we denote by qτ (x, y) the probability for the walk starting from x to jump to the site y.
Proposition A.2 of the Appendix states that, for any environment τ :

0≤G(τ)−G(τ)≤G(τ)
(

1−min
y∼0

qτ (y,0)2
)
,

and, moreover, that G(τ) is uniformly bounded. Hence, in order to prove the claim, it suffices to show that

min
y∼x

(ε)
δ (n)

qτ
(
y, x

(ε)
δ (n)

)2
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converges to 1 in P-probability as ε tends to 0. This fact has in fact already been shown to hold during the proof of
Proposition 7.3. �

We now precise the particular form of the limits of L
(ε)
δ and H

(ε)
δ . From Propositions 6.1, 6.2, 7.1 and 7.3, we know

that the joint distribution of

(
T

(ε)
δ (n), ε1/ατ

x
(ε)
δ (n)

, τ
(ε)
δ (n), e

(ε)
δ (n)

)
n∈N

(7.12)

is tight under P. Let (εk)k∈N be a sequence on which the joint law of (7.12) converges. Possibly enlarging the prob-
ability space, we assume that there exist random variables which are distributed according to this limit law under P,
and which we denote by(

Tδ(n), τ ◦δ (n), τδ(n), eδ(n)
)
n∈N

. (7.13)

Hence, we assume that the following convergence holds

(
T

(εk)
δ (n), ε

1/α
k τ

x
(εk)

δ (n)
, τ

(εk)
δ (n), e

(εk)
δ (n)

)
n∈N

law−−−→
k→+∞

(
Tδ(n), τ ◦δ (n), τδ(n), eδ(n)

)
n∈N

. (7.14)

Proposition 7.5. Let (εk) be a sequence such that (7.14) holds. The laws of the processes H
(εk)
δ and L

(εk)
δ converge,

respectively, to the ones of Hδ and Lδ , defined by

Hδ(·)=
+∞∑
n=1

eδ(n)G
(
τδ(n)

)
τ ◦δ (n)1{·≥Tδ(n)}, (7.15)

Lδ(·)=
+∞∑
n=1

eδ(n)(Gh)
(
τδ(n)

)
1{·≥Tδ(n)}, (7.16)

this convergence holding both for the M1 topology and in the sense of finite-dimensional distributions.

Remark. One can check by a careful reading of the proof below that the convergence of the joint law of (H
(εk)
δ ,L

(εk)
δ )

holds. Yet, as we are not interested in this stronger fact, Proposition 7.5 should be understood in the sense of separate
convergence of the laws of H

(εk)
δ and L

(εk)
δ .

Proof of Proposition 7.5. We begin by showing that, if convergence holds for the M1 topology, then it also holds in
the sense of finite-dimensional distributions. For t > 0, let t1, . . . , tn ∈ [0, t], and consider the projection

π :

{
D

([0, t],R
)→ R

n,

Z �→ (Zt1 , . . . ,Ztn).

Proposition 6.1 ensures that almost surely, the sequence of jumps (Tδ(n))n∈N does not intersect the set {t1, . . . , tn}.
The limit processes Hδ and Lδ (restricted to [0, t]) are therefore almost surely inside the set of continuity points of π ,
and the claim follows using the continuous mapping theorem ([10], Theorem 2.7).

For t > 0, let us prove the convergence of H
(εk)
δ to Hδ for the M1 topology on D([0, t],R). We recall from (6.4)

and (7.5) that

H(εk)
δ (·)=

+∞∑
n=1

e
(εk)
δ (n)G(θ

x
(εk)

δ (n)
τ )ε

1/α
k τ

x
(εk)

δ (n)
1{·≥εkT

(εk)

δ (n)}. (7.17)
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By Proposition 6.3, it is enough to show that H(εk)
δ converges in distribution to Hδ . Moreover, by Proposition 7.4, we

may as well replace H(εk)
δ by the process

+∞∑
n=1

e
(εk)
δ (n)G

(
τ

(εk)
δ (n)

)
ε

1/α
k τ

x
(εk)

δ (n)
1{·≥εkT

(εk)

δ (n)}. (7.18)

By Skorokhod’s representation theorem ([10], Theorem 6.7), there exist random variables

(
T̃

(εk)
δ (n), ε

1/α
k τ̃

x
(εk )

δ (n)
, τ̃

(εk)
δ (n), ẽ

(εk)
δ (n)

)
n∈N

that, for fixed k ∈N, have the same joint law as

(
T

(εk)
δ (n), ε

1/α
k τ

x
(εk)

δ (n)
, τ

(εk)
δ (n), e

(εk)
δ (n)

)
n∈N

,

and converge almost surely, as k goes to infinity, to other random variables that we write(
T̃δ(n), τ̃ ◦δ (n), τ̃δ(n), ẽδ(n)

)
n∈N

. (7.19)

Naturally, the random variables in (7.19) have the same joint law as the ones in (7.13). Let H̃(εk)
δ be the process defined

by

H̃(εk)
δ (s)=

+∞∑
n=1

ẽ
(εk)
δ (n)G

(
τ̃

(εk)
δ (n)

)
ε

1/α
k τ̃

x
(εk)

δ (n)
1{s≥εkT̃

(εk )

δ (n)}.

The process H̃(εk)
δ has the same law as the one defined in (7.18). We will show that it converges almost surely (for

Skorokhod’s M1 topology) to the process H̃δ defined by

H̃δ(s)=
+∞∑
n=1

ẽδ(n)G
(
τ̃δ(n)

)
τ̃ ◦δ (n)1{s≥T̃δ(n)}.

This result would prove the proposition, as it is clear that H̃δ and Hδ have the same distribution.
Because of Proposition 6.1, we know that jump instants are almost surely distinct in the limit, hence for any s that

does not belong to {T̃δ(n), n ∈N}, one has

H̃(εk)
δ (s)−−−→

k→+∞ H̃δ(s). (7.20)

We can then apply the criterion for M1 convergence given in [29], Theorem 12.5.2(iii), noting that the oscillation
function appearing in this criterion is zero for increasing functions.

The same proof applies as well for L
(εk)
δ . Indeed, Proposition 6.3 ensures that one can approximate the process by

L(εk)
δ in (6.5), which, thanks to Proposition 7.4, is in turn well approximated by

+∞∑
n=1

e
(εk)
δ (n)G

(
τ

(εk)
δ (n)

)
h(θ

x
(εk)

δ (n)
τ )1{·≥εkT

(εk)

δ (n)}.

As the function h is such that h(τ) does not depend on τ0, one has

h(θ
x

(εk)

δ (n)
τ )= h

(
τ

(εk)
δ (n)

)
,

and the rest of the proof follows. �
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Before being able to show that the environment around a trap has a unique possible limit law, and to describe it
explicitly, we need to show independence between eδ(n) and τδ(n). Having in mind that we will need to study the
jumps of H

(ε)
δ as well, we will show the following stronger result.

Proposition 7.6. Let (εk) be a sequence such that (7.14) holds. The random variables τ ◦δ (n), τδ(n) and eδ(n) are
independent.

Proof. Let f1, f2 : R→R and f3 : RZ
d\{0} →R be three bounded continuous functions. We are interested in

E
[
f1

(
eδ(n)

)
f2

(
τ ◦δ (n)

)
f3

(
τδ(n)

)]
.

Because of part 1 of Proposition 7.3, this expectation can be obtained as the limit as k tends to infinity of

E
[
f1

(
e
(εk)
δ (n)

)
f2

(
ε

1/α
k τ

x
(εk)

δ (n)

)
f3

(
τ

(εk)
δ (n)

)
1{T

x
(εk)

δ
(n)

<∞}
]
.

Observe that, in a fixed environment, f2(ε
1/α
k τ

x
(εk)

δ (n)
)f3(τ

(εk)
δ (n)) is a function of x

(εk)
δ (n) only. Using the second part

of Proposition 7.3, we obtain

Eτ
0

[
f1

(
e
(εk)
δ (n)

)
f2

(
ε

1/α
k τ

x
(εk)

δ (n)

)
f3

(
τ

(εk)
δ (n)

)
1{T

x
(εk)

δ
(n)

<∞}
]

=
∫

f1(x)e−x dx Eτ
0

[
f2

(
ε

1/α
k τ

x
(εk)

δ (n)

)
f3

(
τ

(εk)
δ (n)

)
1{T

x
(εk)

δ
(n)

<∞}
]
.

We are thus left with the study of

E
[
f2

(
ε

1/α
k τ

x
(εk)

δ (n)

)
f3

(
τ

(εk)
δ (n)

)]
. (7.21)

We partition according to the events {x(εk)
δ (n)= x}, for x ∈ Z

d :

∑
x∈Zd

E
[
f2

(
ε

1/α
k τx

)
f3(θxτ )1{x(εk)

δ (n)=x}
]
.

We recall that we say that a site x is deep if ε1/ατx ≥ δ. Noting that on the event x
(εk)
δ (n)= x, the site x is deep, one

can rewrite the generic term of the sum above as

E
[
f2

(
ε

1/α
k τx

)
f3(θxτ )1{x(εk)

δ (n)=x}|x deep
]
P[x deep]

= E
[
f2

(
ε

1/α
k τx

)
f3(θxτ ) Pτ

0

[
x

(εk)
δ (n)= x

]|x deep
]
P[x deep]. (7.22)

Let us write A for the event “there are exactly n− 1 deep traps discovered before the walk discovers site x.” Condi-
tionally on the fact that the site x is deep, we have

Pτ
0

[
x

(εk)
δ (n)= x

]= Pτ
0[A]. (7.23)

As the law of the trajectory up to the instant of discovery of site x does not depend on τx , the probability Pτ
0[A] does

not depend on τx . Moreover, by the definition of f3, the quantity f3(θxτ ) does not depend on τx either. Using the
fact that the measure P conditioned on the event that x is a deep trap is a product measure, we obtain that the first
expectation appearing in (7.22) is equal to

E
[
f2

(
ε

1/α
k τx

)|x deep
]
E

[
f3(θxτ )Pτ

0[A]|x deep
]
.
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Using (7.23) once more, we observe that

E
[
f3(θxτ )Pτ

0[A]|x deep
] = E

[
f3(θxτ )Pτ

0

[
x

(εk)
δ (n)= x

]|x deep
]

= E
[
f3(θxτ )1{x(εk)

δ (n)=x}|x deep
]
.

As a consequence, the product in (7.22) is equal to

E
[
f2

(
ε

1/α
k τx

)|x deep
]
E

[
f3(θxτ )1{x(εk)

δ (n)=x} |x deep
]
P[x deep].

The first expectation does not depend on x. The two last terms can be merged together to make the conditioning
disappear. Summing over all x ∈ Z

d , we recover the expectation in (7.21), which is therefore equal to

E
[
f2

(
ε

1/α
k τ0

)|0 deep
]
E

[
f3

(
τ

(εk)
δ (n)

)]
.

This proves the independence of the random variables we were interested in, taking the limit k→+∞. �

We are now able to show that the environment around the first deep trap converges in distribution. We have already
seen in Proposition 7.1 that τ

(ε)
δ (1) is tight. Hence, what we need to see is that there is only one possible limit law.

Proposition 7.7. Let (εk) be a sequence such that (7.14) holds. The law of τδ(1) is characterized by the fact that, for
any test function h:

crE
[
(Gh)

(
τδ(1)

)]= E[h(τ)], (7.24)

where cr is the constant appearing in Proposition 5.4. In particular, the law of τδ(1) does not depend on the sequence
(εk), nor on δ.

Proof. The proof uses the fact that the expectation of L
(ε)
δ (t) is easy to compute. Hence, we need to change the

convergence in distribution in Proposition 7.5 into convergence in the mean. This is done by the following lemma,
which we momentarily admit.

Lemma 7.8. For any t ≥ 0, the family of random variables (L
(ε)
δ (t))ε>0 is uniformly integrable.

From the definition of L
(ε)
δ in (3.4), and using the stationarity of the environment viewed by the particle, we have

E
[
L

(ε)
δ (t)

]= ε−1tE
[
h(τ)1ε1/ατ0≥δ

]
.

Because h(τ) does not depend on τ0, the expectation above is equal to

E
[
h(τ)

]
P
[
ε1/ατ0 ≥ δ

]
.

Using the tail behaviour of τ0 given in (1.2), we finally obtain that

E
[
L

(ε)
δ (t)

] →
ε→0

t

δα
E

[
h(τ)

]
. (7.25)

We now compute the expectation of the limit Lδ(t) (see (7.16)). Note first that the quantity

E

[+∞∑
n=2

1{t≥Tδ(n)}

]
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is the expected number of points from (Tδ(n))n∈N\{1} that fall within [0, t]. Because of Proposition 6.1, it is O(t2)

when t goes to 0. Moreover, as given by Proposition 3.2, the process Lδ is a subordinator. In particular, the jump
instants are independent from the heights of the jumps, so that we have

E
[
Lδ(t)

]= E
[
eδ(1)(Gh)

(
τδ(1)

)]
P
[
t ≥ Tδ(1)

]+O
(
t2) (t → 0).

Here, we used the fact that, as the function h takes values in (0,+∞), the quantity eδ(1)(Gh)(τδ(1)) is non-zero, and
there is indeed a jump at Tδ(1).

We saw in Proposition 7.3 that eδ(1) is an exponential random variable of parameter 1, and in Proposition 7.6 that
it is independent from τδ(1), hence

E
[
eδ(1)(Gh)

(
τδ(1)

)]= E
[
(Gh)

(
τδ(1)

)]
.

From Proposition 6.1, we know that

P
[
t ≥ Tδ(1)

]= cr t

δα
+O

(
t2),

so we obtain

E
[
Lδ(t)

]= cr t

δα
E

[
(Gh)

(
τδ(1)

)]+O
(
t2).

Comparing this with (7.25) leads to (7.24). Let us see that this relation characterizes the law of τδ(1). First, one can
check that the relation (7.24) still holds without the restriction that the function h should have values only in (0,+∞).
Let f be a positive bounded continuous function, such that f (τ) does not depend on τ0. For η > 0, we define h as

h(τ)=
{

G(τ)−1f (τ) if G(τ)≥ η,
0 otherwise.

Then, from (7.24), one has

crE
[
f

(
τδ(1)

)
1{G(τδ(1))≥η}

]= E
[
G(τ)−1f (τ)1{G(τ)≥η}

]
.

Taking the limit as η tends to 0, and using monotone convergence theorem, we obtain

crE
[
f

(
τδ(1)

)]= E
[
G(τ)−1f (τ)

]
. (7.26)

Being valid for any positive bounded continuous function, Eq. (7.26) determines the law of τδ(1). �

Proof of Lemma 7.8. We will use the following upper bound on L
(ε)
δ (t) (see (6.3)):

L
(ε)
δ (t)≤ ‖h‖∞

+∞∑
n=1

l
(ε)
δ (n)1{t≥T

(ε)
δ (n)}. (7.27)

Let N
(ε)
δ (t) be the number of n’s such that T

(ε)
δ (n) falls inside [0, t]:

N
(ε)
δ (t)=

+∞∑
n=1

1{t≥T
(ε)
δ (n)}.

Let N be a positive integer, and u a positive real number. From (7.27), we have the following upper bound on the tail
distribution of L

(ε)
δ (t):

P
[
L

(ε)
δ (t)≥ ‖h‖∞Nu

]≤ P
[∃n≤N : l

(ε)
δ (n)≥ u

]+ P
[
N

(ε)
δ (t) > N

]
. (7.28)
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The first term of the sum is bounded by

N∑
n=1

P
[
l
(ε)
δ (n)≥ u

]
. (7.29)

Moreover, the random variable l
(ε)
δ (n) either is equal to 0 if the trap x

(ε)
δ (n) is not actually visited, or is an exponential

random variable which parameter is the inverse of the Green function at x
(ε)
δ (n). We know from Proposition A.2 of the

Appendix that the Green function is uniformly bounded by a constant, say C, hence l
(ε)
δ (n) is stochastically dominated

by an exponential random variable of parameter C−1 (uniformly in n and in ε). As a consequence, the sum in (7.29)
is bounded by

Ne−u/C.

Let us know examine the rightmost term in (7.28). We recall that the sequence of sites discovered by the random walk
up to time ε−1t is (xi)i≤r(ε−1t). Let B

(ε)
δ (i) be the indicator of the event that the site xi is a deep trap:

B
(ε)
δ (i)= 1{ε1/ατxi

≥δ}.

Then one can rewrite N
(ε)
δ (t) as

N
(ε)
δ (t)=

r(ε−1t)∑
i=1

B
(ε)
δ (i),

which enables us to decompose the rightmost term in (7.28) as

P

[
r(ε−1t)∑

i=1

B
(ε)
δ (i) > N

]
≤ P

[
ε−1I∑
i=1

B
(ε)
δ (i) > N

]
+ P

[
εr

(
ε−1t

)
> I

]
, (7.30)

where I is any positive integer. We begin by bounding the first term of this sum. From Proposition 4.1, we know that
(B

(ε)
δ (i))i∈N forms a family of independent Bernoulli random variables of parameter

P
[
ε1/ατ0 ≥ δ

]
.

According to (1.2), this quantity is equivalent to εδ−α as ε tends to 0. It is therefore smaller than c0ε for some large
enough c0, uniformly over ε. We obtain, using Chebychev inequality

P

[
ε−1I∑
i=1

B
(ε)
δ (i)≥N

]
≤ e−N

E
[
exp

(
B

(ε)
δ (1)

)]ε−1I
.

Using the fact that E[exp(B
(ε)
δ (1))] ≤ 1+ c0ε(e− 1), we can bound the former by

exp
(−N + ε−1I ln

(
1+ εc0(e− 1)

))≤ exp
(−N + Ic0(e− 1)

)
.

Choosing I = c1N with c1 > 0 small enough, this quantity decays exponentially fast as N goes to infinity. We now
turn to the second term on the right-hand side of (7.30), keeping I = c1N .

P
[
εr

(
ε−1t

)
> c1N

]≤ E[(εr(ε−1t))2]
(c1N)2

,

and Proposition 5.1 ensures that the numerator is uniformly bounded as ε varies.
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We have thus shown that there exists C > 0 such that, for any ε > 0, one has

P
[
L

(ε)
δ (t)≥Nu

]≤Ne−u/C + e−N/C + C

N2
. (7.31)

From this control of the tail of L
(ε)
δ (t), one can check that

sup
ε>0

E
[(

L
(ε)
δ (t)

)3/2]

is finite (choosing for instance u=N1/5 in (7.31)), and this is a sufficient condition to ensure uniform integrability. �

Remark. From the relations (7.24) and (7.26), one obtains, in coherence with Proposition 1.4, that

cr = E
[
G(τ)−1]= (

E
[
G

(
τδ(1)

)])−1
.

8. Identification of the limit

In this section, we begin by proving that H
(ε)
δ converges in distribution as ε tends to 0, and describe the limit subor-

dinator in terms of its Laplace transform. Then, by an interversion of limits, we obtain the convergence of the law of
H(ε) as ε tends to 0. We start with a summary of previous results.

Proposition 8.1. Let (εk) be a sequence such that (7.14) holds. The joint distribution of (τ ◦δ (1), eδ(1), τδ(1)) does not
depend on the sequence (εk), and is described as follows: the three components are independent, and their respective
distributions are given by Propositions 6.2, 7.3 and 7.7.

Proof. It is a consequence of the above mentioned propositions, together with Proposition 7.6. �

Remark. From this result, one could show that the random variables(
ε1/ατ

x
(ε)
δ (1)

, e
(ε)
δ (1), τ

(ε)
δ (1)

)
jointly converge in law as ε goes to 0.

We insist that, from now on, the law of (τ ◦δ (1), eδ(1), τδ(1)) may be considered without any mention of a particular
sequence (εk).

Proposition 8.2. For any δ > 0, the law of H
(ε)
δ under P converges, for the M1 topology and as ε tends to 0, to the

law of a subordinator with Laplace exponent

ψδ(λ)= crδ
−α

E
[
1− e−λeδ(1)G(τδ(1))τ ◦δ (1)

]
. (8.1)

Proof. It is sufficient to show that, for any given sequence that converges to 0, one can extract a further subsequence
(εk)k∈N along which the law of H

(ε)
δ converges to the law of a subordinator, whose Laplace exponent ψδ satisfies (8.1).

Let us give ourselves a sequence that converges to 0. Because the random variables in (7.12) are tight, one can
extract a further subsequence (εk)k∈N for which (7.14) holds.

Proposition 7.5 states that, as k goes to infinity, the law of the process H
(εk)
δ converges to the law of the process

Hδ defined in (7.15). Moreover, we know from Proposition 3.1 that Hδ is a subordinator. We can therefore define its
Laplace exponent, say ψδ , which satisfies, for any λ, t ≥ 0:

E
[
e−λHδ(t)

]= e−tψδ(λ). (8.2)
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We recall that, because Hδ is a subordinator, the height and the instant of occurrence of the first jump are indepen-
dent random variables. Decomposing according to whether a first jump occurs or not (and using Proposition 6.1), one
can see that

E
[
e−λHδ(t)

]= 1− cr t

δα
+ cr t

δα
E

[
exp

(−λeδ(1)G
(
τδ(1)

)
τ ◦δ (1)

)]+O
(
t2). (8.3)

According to (8.2), it is also equal to

e−tψδ(λ) = 1− tψδ(λ)+O
(
t2),

which, when compared with (8.3), proves the announced result. �

Remark. Similarly, one obtains that the law of L
(ε)
δ under P converges, as ε tends to 0, to a subordinator with Laplace

exponent

crδ
−α

E
[
1− e−λeδ(1)(Gh)(τδ(1))

]
.

From now on, the law of the process Hδ is well defined, independently of any particular sequence (εk): it is the law
of a subordinator whose Laplace exponent is ψδ .

Proposition 8.3. Possibly enlarging the probability space, there exists a process H such that the following diagram
holds

H
(ε)
δ −→

ε→0
Hδ

↓ ↓ (δ→ 0)

H (ε) −→
ε→0

H,

where arrows represent convergence in distribution under P for the M1 topology.

Before proving the proposition, let us define the space D↑([0, t],R) of cadlag increasing processes from [0, t]
to R and with value 0 at 0. We recall a characterization of tightness of probability measures on D↑([0, t],R) ([29],
Theorem 12.12.3).

Lemma 8.4. Let (hn)n∈N be random (with respect to the measure P) elements of D↑([0, t],R). The family of distri-
butions of hn is tight for the M1 topology if and only if the following three properties hold

∀η > 0 ∃C > 0 ∀n: P
[
hn(t)≥ C

]≤ η, (8.4)

∀η,η′ > 0 ∃ι > 0 ∀n: P
[
hn(ι)≥ η′

]≤ η, (8.5)

∀η,η′ > 0 ∃ι > 0 ∀n: P
[
hn(t)− hn(t − ι)≥ η′

]≤ η. (8.6)

Proof. It is a simple rewriting of [29], Theorem 12.12.3, using the fact that we restrict here our attention to increasing
processes with value 0 at 0. �

Proof of Proposition 8.3. We begin by showing that there exists c > 0 such that, for any ε, δ > 0:

E

[
sup
[0,t]

∣∣H(ε)
δ −H(ε)

∣∣]≤ ctδ1−α. (8.7)

Observe that

E

[
sup
[0,t]

∣∣H(ε) −H
(ε)
δ

∣∣]= ε1/α

∫ ε−1t

0
E[τ

X̂s
1{ε1/ατ

X̂s
<δ}]ds. (8.8)
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The expectation in the integral is in fact independent of s, due to the stationarity of the environment viewed by the
particle under E. Using Fubini’s theorem, we can bound it the following way:

E[τ01{ε1/ατ0<δ}] =
∫ ε−1/αδ

x=0

∫ x

y=0
dy dμ0(x)≤

∫ ε−1/αδ

y=0
μ0

([y,+∞)
)

dy.

Using our hypothesis (1.2) concerning the tail behaviour of μ0, there exists C > 0 such that for any x > 0, one has

μ0
([x,+∞)

)≤ C

xα
.

Integrating this estimate, and then coming back to (8.8), we obtain inequality (8.7).
We can now show that the family of distributions of H(ε) is tight for the M1 topology, using Lemma 8.4. Let us

begin by checking condition (8.4). We fix some δ > 0, and observe that, for any C > 0:

P
[
H(ε)(t)≥ 2C

]≤ P
[
H

(ε)
δ (t)≥ C

]+ P
[
H(ε)(t)−H

(ε)
δ (t)≥C

]
. (8.9)

Let us now give ourselves η > 0. As the law of H
(ε)
δ converges as ε tends to 0, Lemma 8.4 ensures that, for a large

enough C, one has, for any ε > 0:

P
[
H

(ε)
δ (t)≥ C

]≤ η.

The second term of the sum in (8.9) is bounded by ctδ1−α/C. Possibly enlarging C, this term can be made smaller
than η as well, and condition (8.4) is thus proved. Conditions (8.5) and (8.6) are obtained the same way.

We now show that there is in fact a unique possible limit law for H(ε). Let (εk)k∈N be a sequence decreasing
to 0 and such that the law of H(εk) converges to the law of some process H . First, one can easily check that the
M1 distance ([29], formula (3.3.4)) is dominated by the supremum distance. Inequality (8.7) thus guarantees that the
convergence of H

(εk)
δ towards H(εk) is uniform in k, and one can intervert limits ([10], Theorem 4.2): the law of H is

also the limit of the law of Hδ as δ tends to 0. In particular, the law of H does not depend on the sequence (εk).
As we verified that H(ε) is tight and has a unique possible limit law, and also that the diagram (8.4) holds, the

proposition is proved. �

Proposition 8.5. The law of H is that of an α-stable subordinator, whose Laplace exponent is given by

ψ(λ)= �(α + 1)E
[
G(τ)α−1]∫ +∞

0

(
1− e−λu

) α

uα+1
du, (8.10)

where � is Euler’s Gamma function.

Proof. We begin by showing that the Laplace exponent ψδ(λ) of Hδ converges, for any λ ≥ 0, to ψ(λ) defined
in (8.10). Let ν be the law of eδ(1)G(τδ(1)). We recall from Proposition 8.1 that the joint law of (τ ◦δ (1), eδ(1), τδ(1))

is known. As a consequence, one can check that the measure ν does not depend on δ. From Proposition 8.2, we obtain
that

ψδ(λ)= crδ
−α

∫
x≥δ

(
1− e−λxv

)
δα α

xα+1
dx dν(v).

The terms δα cancel out, and the change of variables u= xv leads to

ψδ(λ)= cr

∫ +∞

u=0

(
1− e−λu

) α

uα+1

∫ u/δ

v=0
vα dν(v)du. (8.11)

Moreover, one has that∫ u/δ

0
vα dν(v)−→

δ→0

∫ +∞

0
vα dν(v),
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and, using the description of ν provided by Proposition 8.1:∫ +∞

0
vα dν(v)= c−1

r E
[
G(τ)α−1] ∫ +∞

0
xαe−x dx,

the last integral being equal to �(α + 1). From Eq. (8.11) and using monotone convergence theorem, we obtain that
ψδ(λ) converges to ψ(λ) as δ tends to 0.

It remains to check that H is a subordinator, and that ψ is its Laplace exponent. Some caution is necessary due to the
fact that convergence for Skorokhod’s M1 topology does not imply convergence of all finite-dimensional distributions
in general. However, it is clear from the argument at the beginning of the proof of Proposition 7.5 that convergence of
finite-dimensional distributions holds whenever the times considered do not belong to the set

T ◦ = {
t ∈R+: P

[
H(t) �=H

(
t−

)]
> 0

}
.

This set is countable, as [10], Section 15, shows. Hence, for any λ1, . . . , λn ≥ 0, and any t1 ≤ · · · ≤ tn outside T ◦, one
has

E
[
e−λ1H(t1)−λ2(H(t2)−H(t1))−···−λn(H(tn)−H(tn−1))

]
= lim

δ→0
E

[
e−λ1Hδ(t1)−λ2(Hδ(t2)−Hδ(t1))−···−λn(Hδ(tn)−Hδ(tn−1))

]
= e−t1ψ(λ1)−(t2−t1)ψ(λ2)−···−(tn−tn−1)ψ(λn).

Finally, right continuity of the process H ensures that the above equality holds in fact for every t1, . . . , tn, thus finishing
the proof. �

9. Joint convergence

In this section we will identify the limit of the joint distribution of (X̂(ε),H (ε)) under the annealed measure P.
The first step is to describe the limit law of X̂(ε). We state it directly in its quenched form, although in this section,

the annealed version would be sufficient.

Proposition 9.1. For almost every τ , the law of X̂(ε) under Pτ
0 converges, for the J1 topology and as ε tends to 0, to

the law of a non-degenerate Brownian motion B .

Proof. We refer to [2], Theorem 1.1, for a proof of this fact. �

Proposition 9.2. The law of (X̂(ε),H (ε)) under P converges, for the J1 ×M1 topology and as ε tends to 0, to the law
of two independent processes (B,H), where B and H are the processes appearing respectively in Propositions 9.1
and 8.5.

Proof. We write Z(ε) for (X̂(ε),H (ε)). Propositions 9.1 and 8.5 ensure the convergence in distribution of the two
marginals of Z(ε). In particular, the law of Z(ε) is tight. Let (εk) be a sequence such that the law of Z(εk) under P

converges, and let us write Z = (B,H) for the limit. The distributions of B and of H are known, and what we need
to show is that these random variables are independent.

First, it is clear that from the convergence in the product J1 ×M1 topology, one can deduce the convergence of the
finite-dimensional distributions of Z(ε), following the argument given at the beginning of the proof of Proposition 7.5.
Then, one can follow the proof of Proposition 3.1, replacing Laplace transform by Fourier transform for definiteness,
and obtain that the limit Z is a Lévy process.

It follows from the Lévy–Khintchine decomposition that the Lévy process Z can be decomposed into Z(1) +Z(2),
where Z(1) is a continuous process, Z(2) is pure jump, and Z(1),Z(2) are independent ([9], Section I.1). The decom-
position into the sum of a continuous process and a pure jump one being unique, it follows that Z(1) = (B,0) and
Z(2) = (0,H), which proves the proposition. �
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10. From annealed to quenched

From the knowledge of the convergence of Z(ε) = (X̂(ε),H (ε)) towards Z = (B,H) under the annealed law PPτ
0 ,

we would like to obtain convergence under Pτ
0 for almost every τ . This can be obtained by a kind of concentration

argument that is due to [11], and consists in checking that the variance of certain functionals of Z(ε) decays sufficiently
fast when ε tends to 0 (a polynomial decay being sufficient).

As a first step, we consider the joint law of increments of Z on intervals that do not contain 0. In other words, for
some 0 < t0 ≤ · · · ≤ tn, we consider the law of(

Z(ε)(t1)−Z(ε)(t0), . . . ,Z
(ε)(tn)−Z(ε)(tn−1)

)
. (10.1)

Using [11], Lemma 4.1, together with Theorem 2.2, we will see that, for almost every environment, the law of incre-
ments of the form (10.1) under Pτ

0 converges to the law of the increments of Z.
This statement concerning the law of increments of the form (10.1) is weaker than the convergence of all finite-

dimensional distributions, but is still sufficient if one can prove the tightness of Z(ε). We can borrow the tightness
of X̂(ε) from Proposition 9.1. In order to prove the tightness of H(ε), we will in fact prove the convergence of its
finite-dimensional distributions (which is a sufficient condition, see Lemma 8.4). As we pointed out, it is not enough
for this purpose to control the distributions of increments of H(ε) on intervals that do not contain 0, so we will need
additional information concerning the behaviour of H(ε) for small times.

We start by giving this necessary control of H(ε) for small times.

Proposition 10.1. For any ν > 0 and any γ < ν/α, the probability

P
[
H(ε)

(
εν

)
> εγ

]
decays polynomially fast to 0 as ε tends to 0.

Proof. It is in fact sufficient to show that, for any β > 0, the probability

P
[
H(ε)(1) > ε−β

]
(10.2)

decays polynomially fast to 0 as ε tends to 0, as one can check using the fact that H(ε)(εν)= εν/αH(εν)(1).
Up to time ε−1, the random walk X̂ discovers r(ε−1) sites. Writing li for the total time spent by the random walk

on the ith discovered site

li =
∫ +∞

0
1{X̂s=xi } ds,

we can bound H(ε)(1) by

ε1/α

r(ε−1)∑
i=1

liτxi
,

where (xi) is the exploration process defined in (4.2). For any N , we thus have

P
[
H(ε)(1) > ε−β

]≤ P

[
ε1/α

ε−1N∑
i=1

liτxi
> ε−β

]
+ P

[
r
(
ε−1) > ε−1N

]
.

Because of Proposition 5.1, the second term is bounded by CN−2, uniformly over ε. In order to ensure polynomial
decay, we choose N as a small negative power of ε, say ε−γ for some γ > 0 to be fixed. With this choice of N , the first
term becomes

P

[
ε1/α

ε−1−γ∑
i=1

liτxi
> ε−β

]
.
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We choose another small parameter γ ′, and decompose the above probability as

P
[∃i ≤ ε−1−γ : li > ε−γ ′]+ P

[
ε1/α−γ ′

ε−1−γ∑
i=1

τxi
> ε−β

]
.

The random variable li is an exponential random variable, and, moreover, its mean value, which is the Green function
at xi , is bounded by some constant as one can see from Proposition A.2. Hence, the first term of the sum above is
bounded by

ε−1−γ∑
i=1

P
[
li > ε−γ ′]≤ ε−1−γ e−ε−γ ′/C,

which converges to 0 faster than any polynomial. There remains to check that

P

[
ε1/α−γ ′

ε−1−γ∑
i=1

τxi
> ε−β

]

converges polynomially fast to 0. We know from Proposition 4.1 that under P, the random variables (τxi
) are indepen-

dent and identically distributed according to μ0. Hence, because of the tail behaviour (1.2), the sum of τxi
appearing

above is of order ε−(1+γ )/α , and a natural condition for this polynomial decay to hold seems to be that γ ′ + γ /α < β .
This condition is shown to be sufficient in [3], Theorem 3 (note that there is a misprint in condition (d) of this theorem,
where the sign Σ should be replaced by the sign E). �

We will now proceed to prove that, for almost every τ , the law of H(ε) converges under Pτ
0 , although our only true

concern for now is that of tightness.
As we said before, the argument of [11], Lemma 4.1, requires the decay of the variance of certain functionals of

H(ε). Let λ1, . . . , λn ≥ 0, and 0 < t1 < · · ·< tn. For any increasing process h, we define F(h) as

F(h)= exp
(−λ1h(t1)− λ2

(
h(t2)− h(t1)

)− · · · − λn

(
h(tn)− h(tn−1)

))
. (10.3)

Proposition 10.2. For F defined by (10.3) and d ≥ 5, the variance of Eτ
0[F(H(ε))] converges to 0 polynomially fast

as ε tends to 0.

Proof. Let ν ∈ (0,1). We define

P (ε) = exp
(−λ1

(
H(ε)(t1)−H(ε)

(
εν

))− · · · − λn

(
H(ε)(tn)−H(ε)(tn−1)

))
,

which enables us to decompose F(H(ε)) as

F
(
H(ε)

)= e−λ1H
(ε)(εν)P (ε). (10.4)

We momentarily admit the following lemma.

Lemma 10.3. If d ≥ 5 and ν < 1/5, then the variance of Eτ
0[P (ε)] converges to 0 polynomially fast as ε tends to 0.

Let us see how to finish the proof of Proposition 10.2, choosing some ν < 1/5 (and d ≥ 5). We will show that the
variances of Eτ

0[P (ε)] and Eτ
0[F(H(ε))] are close enough to conclude. Note that, from the decomposition (10.4), one

has

0≤ P (ε) − F
(
H(ε)

)≤ 1− e−λ1H
(ε)(εν).
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It readily follows that

0≤ E
[
Eτ

0

[
P (ε)

]]−E
[
Eτ

0

[
F

(
H(ε)

)]]≤ 1−E
[
e−λ1H

(ε)(εν)
]
. (10.5)

It follows from Proposition 10.1 that the term on the right-hand side converges to 0 polynomially fast, as ε tends to 0.
Similarly, we have

0≤ Eτ
0

[
P (ε)

]2 −Eτ
0

[
F

(
H(ε)

)]2 ≤ 2
(
Eτ

0

[
P (ε)

]−Eτ
0

[
F

(
H(ε)

)])
.

Integrating this inequality, and using the upper bound from (10.5), we obtain that the difference

E
[
Eτ

0

[
P (ε)

]2]−E
[
Eτ

0

[
F

(
H(ε)

)]2]
also converges polynomially fast to 0, as ε tends to 0. As a consequence, the difference between the variances of
Eτ

0[P (ε)] and Eτ
0[F(H(ε))] converges to 0 polynomially fast, and Proposition 10.2 is obtained using Lemma 10.3. �

Proof of Lemma 10.3. We define the function g(ε)(h) as

g(ε)(h)= exp
(−λ1

(
h
(
t1 − εν

)− h(0)
)− · · · − λn

(
h
(
tn − εν

)− h
(
tn−1 − εν

)))
,

and we let f (τ)= Eτ
0[g(ε)(H (ε))]. Then g(ε)(H (ε)) depends only on the trajectory up to time ε−1(tn − εν)≤ ε−1tn,

and is translation invariant. As given by (2.3), one can rewrite P (ε) as

P (ε) = Eτ
0

[
f

(
τ̂
(
ε−1εν

))]= fεν−1(τ ).

As we assume that d ≥ 5, Theorem 2.2 shows that Var(P (ε))=Var(fεν−1) is bounded by a constant times ε(1−ν)d/2−2,
so it is enough to chose ν < 1/5 to guarantee a polynomial decay of the variance. �

We can now derive, following the method of proof of [11], Lemma 4.1, the convergence of the law of H(ε) in
the quenched sense.

Proposition 10.4. For almost every τ , the law of H(ε) under Pτ
0 converges, for the M1 topology and as ε tends to 0,

to the law of H .

Proof. We know from Proposition 8.3 that H(ε) converges to H under the measure P for the M1 topology. As we saw
before, this convergence, together with the knowledge that the limit described in Proposition 8.5 has no deterministic
times with positive probability of jump, implies convergence of finite-dimensional distributions under the annealed
measure. For F defined by (10.3), we thus have

EEτ
0

[
F

(
H(ε)

)]−→
ε→0

E
[
F(H)

]= exp
(−t1ψ(λ1)− · · · − (tn − tn−1)ψ(λn)

)
, (10.6)

where ψ is the Laplace exponent of H defined in (8.10).
Moreover, we have seen in Proposition 10.2 that Var(Eτ

0[F(H(ε))]) decays to 0 polynomially fast. Let μ ∈ (0,1).
We thus have that

+∞∑
n=1

Var
(
Eτ

0

[
F

(
H(μn)

)])
<+∞.

As a consequence, the convergence of

Eτ
0

[
F

(
H(μn)

)]
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towards E[F(H)] holds almost surely. In fact, with probability one, this convergence holds jointly for any function F

of the form (10.3) with λ1, . . . , λn, t1, . . . , tn and μ rationals. Using the monotonicity of H(ε) and the continuity of
the limit (see (10.6)), the convergence can be extended to any λ1, . . . , λn, t1, . . . , tn simultaneously.

On the set of full measure where this joint convergence holds, we will show that for any F of the form (10.3), one
has

Eτ
0

[
F

(
H(ε)

)]−→
ε→0

E
[
F(H)

]
. (10.7)

In other words, we will show that for any τ belonging to this set of full measure, the finite-dimensional distributions
of H(ε) converge to those of H . In order to do so, we approximate H(ε) by some H(μn), for a well chosen n. Let nε be
the smallest integer satisfying μnε < ε. The function F defined in (10.3) is such that, for any two increasing processes
h and h′ starting from 0:∣∣F(h)− F

(
h′

)∣∣≤ C max
1≤i≤n

∣∣h(ti)− h′(ti)
∣∣∧ 1.

Observe that

H(ε)(ti)=
(

ε

μnε

)1/α

H(μnε )

(
μnε

ε
ti

)
,

and, moreover, because of the definition of nε (and the monotonicity of H(μnε )), the latter is greater than H(μnε )(μti),
and as a consequence,

0≤H(μnε )(ti)−H(ε)(ti)≤H(μnε )(ti)−H(μnε )(μti). (10.8)

The quantity

lim sup
ε→0

∣∣Eτ
0

[
F

(
H(ε)

)]−Eτ
0

[
F

(
H(μnε )

)]∣∣
is thus, up to a constant, bounded by

lim sup
ε→0

Eτ
0

[
max

1≤i≤n

∣∣H(ε)(ti)−H(μnε )(ti)
∣∣∧ 1

]
,

which, as we obtain from the inequalities (10.8), is bounded by

lim sup
ε→0

Eτ
0

[
max

1≤i≤n

(
H(μnε )(ti)−H(μnε )(μti)

)∧ 1
]

= E

[
max

1≤i≤n

(
H(ti)−H(μti)

)∧ 1
]
.

The process H being almost surely continuous at deterministic times, this last quantity tends to 0 as μ converges to 1.
We thus obtain the claim (10.7), letting μ tend to 1 along rationals.

What is left to do is to check the tightness of the process in the sense of the M1 topology. Lemma 8.4 shows that,
as far as increasing processes are concerned, convergence of the finite-dimensional distributions is sufficient. �

We can now prove our main result, namely the almost sure convergence of the joint process (X̂(ε),H (ε)). We recall
from Proposition 9.2 that the process (B,H) is such that B is the Brownian motion appearing in Proposition 9.1, H is
the subordinator whose Laplace exponent is given in Proposition 8.5, and the random variables B , H are independent.

Proposition 10.5. For almost every τ , the law of (X̂(ε),H (ε)) under Pτ
0 converges, for the J1 ×M1 topology and as

ε tends to 0, to the law of (B,H).
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Proof. We recall that we write Z(ε) for the process (X̂(ε),H (ε)), and Z for the process (B,H). As a first step,
Propositions 9.1 and 10.4 ensure that, for τ in a set of full measure Ω1, the laws of Z(ε) under Pτ

0 are tight.
We now show that the laws of the increments of Z(ε), on intervals that do not contain 0, converges almost surely

to those of Z. Let λ1, . . . , λn ∈R
d+1, and 0 < t0 < · · ·< tn. For a process z with values in R

d+1, we define G(z) as

G(z)= exp
(
iλ1 ·

(
z(t1)− z(t0)

)+ · · · + iλn ·
(
z(tn)− z(tn−1)

))
. (10.9)

From Proposition 9.2, we know that

E
[
G

(
Z(ε)

)]−→
ε→0

E
[
G(Z)

]
.

Moreover, one can adapt the proof of Lemma 10.3 to show that the variance of Eτ
0[G(Z(ε))] converges to 0 polyno-

mially fast as ε tends to 0. Indeed, the main difference between P (ε) and G(Z(ε)) is that εν should be replaced by
t0 > 0. For any μ ∈ (0,1), the sum

+∞∑
n=1

Var
(
Eτ

0

[
G

(
Z(μn)

)])

is thus finite, and as a consequence, the convergence

Eτ
0

[
G

(
Z(μn)

)] −→
n→+∞E

[
G(Z)

]
holds almost surely. In fact, for τ in a set of full measure, say Ω2, this convergence holds for any function G of the
form (10.9) with λ1, . . . , λn, t0, . . . , tn,μ rationals. We can then proceed as in the proof of Proposition 10.4 to show
that, for any such G and for any τ ∈Ω2, one has

Eτ
0

[
G

(
Z(ε)

)]−→
ε→0

E
[
G(Z)

]
.

Let τ be an element of Ω1 ∩Ω2, and let εk be a sequence such that the law of Z(εk) under Pτ
0 converges to the law

of some Z̃ (for convenience, we assume that it is defined on the same probability space equipped with the measure P).
As τ belongs to Ω2, we know that for any function G of the form (10.9) with λ1, . . . , λn, t0, . . . , tn rationals, one has

E
[
G(Z)

]= E
[
G(Z̃)

]
.

Using right continuity of the processes, the equality extends to any G with 0 ≤ t0 ≤ · · · ≤ tn. The Fourier transform
being continuous, it holds as well for any λ1, . . . , λn ∈R

d+1, and thus Z and Z̃ have the same law.
To summarize, we have shown that, for τ ∈Ω1 ∩Ω2, the laws of Z(ε) are tight and have a unique possible limit

point, namely Z. This proves the proposition, as the set Ω1 ∩Ω2 is of full measure. �

Remark. What we really used from Proposition 9.1 is the annealed invariance principle, and the tightness of X̂(ε)

under the quenched measure. One can also prove tightness directly, in a way similar to what we did here for the
tightness of H(ε). However, one then needs some equivalent of Proposition 10.1 for X̂. Precisely, one needs to show
that, for any β > 1/2, the probability

P

[
sup
s≤t

|X̂s | ≥ tβ
]

decays polynomially fast as t tends to infinity.

11. Conclusion

Proposition 11.1. For almost every τ , the law of X(ε) under Pτ
0 converges, for the J1 topology and as ε tends to 0, to

the law of B ◦H−1.
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Proof. Following the notation in [29], let us write D↑ (resp. Du,↑↑) for the subset of D([0,+∞),R) made of in-
creasing (resp. unbounded and strictly increasing) functions, with value 0 at 0. We also let C be the set of continuous
functions from [0,+∞) to R, equipped with the uniform topology, that we will write U . According to [29], Corol-
lary 13.6.4, the inverse map{

Du,↑↑,M1 → C,U,

x �→ x−1

is continuous. As a consequence, (H (ε))−1 converges in distribution to H−1 for the uniform topology, and a fortiori
for the J1 topology. Moreover, as we learn from [29], Theorem 13.2.1, the composition map{

D
([0,+∞),R

d
)×D↑, J1 × J1 →D

([0,+∞),R
d
)
, J1,

(x, y) �→ x ◦ y

is measurable, and continuous on pairs of continuous functions. Hence, X(ε) = X̂(ε) ◦ (H (ε))−1 converges in distribu-
tion to B ◦H−1, and the proposition is proved. �

Appendix

Let L be the generator of the random walk X̂, defined by

Lf (x)=
∑
y∼x

(τxτy)
a
(
f (y)− f (x)

)
.

We write (·, ·) for the scalar product with respect to the counting measure. We define the Dirichlet form associated to
L, as

E(f,f )= (−Lf,f )= 1

2

∑
x,y∈Zd

(τxτy)
a
(
f (y)− f (x)

)2
,

together with the Dirichlet form E◦ associated with the simple random walk, obtained by taking a = 0 in the expression
above. Note that from the definition, as a consequence of our hypothesis that conductances are uniformly bounded
from below by 1, one Dirichlet form dominates the other:

E◦(f,f )≤ E(f,f ). (A.1)

Let Bn = {−n, . . . , n}d be the box of size n, and B ′
n be its complement in Z

d . We introduce the effective conductance
Cn between the origin and B ′

n, which is given by the following variational formula

Cn(τ)= inf
{
E(f,f )|f (0)= 1, f|B ′

n
= 0

}
, (A.2)

and we let C◦
n be defined the same way, with E replaced by E◦. Furthermore, we define Cn(τ) as

Cn(τ)= inf
{
E(f,f )|fD(0) = 1, f|B ′

n
= 0

}
, (A.3)

where we recall that D(0) is the set formed by the origin and its neighbours. It is intuitively clear that Cn(τ) does not
depend on τ0, and that Cn(τ) is the limit as τ0 goes to infinity of Cn(τ). The next proposition provides a quantitative
estimate on this convergence. We write qτ (x, y) for the probability for the walk starting from x to jump to the site y.

Proposition A.1. For any environment τ , and any integer n, the following comparisons hold

C◦
n ≤ Cn(τ)≤Cn(τ),

Cn(τ )≤
(

min
y∼0

qτ (y,0)
)−2

Cn(τ).
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Proof. The first two inequalities are obvious, using (A.1). Recall that we write T0 for the hitting time of 0. Let TB ′
n

be the hitting time of B ′
n. There exists a unique function f that minimizes (A.2), which is given by

f (x)= Pτ
x[T0 < TB ′

n
]. (A.4)

Let us write m for miny∼0 f (y), and consider the function

g(x)=min
(
m−1f (x),1

)
.

Then g is constant equal to 1 on D(0), and is 0 outside Bn. It is thus clear that

Cn(τ)≤ E(g, g).

On the other hand, one has

E(g, g)≤m−2E(f,f )=m−2Cn(τ).

The last claim of the proposition follows from the observation that, for any y neighbour of the origin,

f (y)= Pτ
y[T0 < TB ′

n
] ≥ qτ (y,0). �

Recall the definition of σ τ (x, y) from (7.7). If y is a neighbour of 0, one has

qτ (y,0)= (τ0)
a∑

z∼y(τz)a
=

(
1+ σ τ (y,0)

(τ0)a

)−1

,

from which it follows that Cn(τ) is indeed the limit of Cn(τ) as τ0 tends to infinity.
For n ∈N∪ {∞}, let Gτ

n (·, ·) (resp. G◦
n(·, ·)) be the Green function of the walk X̂ (resp. of the simple random walk)

killed when exiting Bn, or without killing if n=∞. The function f in (A.4) that minimizes (A.2) can be rewritten as

f = Gτ
n (·,0)

Gτ
n (0,0)

,

and, as −LGτ
n (·,0)= 10 on Bn, we obtain

Cn(τ)= E(f,f )= (−Lf,f )= Gτ
n (0,0)

−1
. (A.5)

We define C◦∞, C∞(τ ) and C∞(τ ) as the limits of, respectively, C◦
n , Cn(τ) and Cn(τ). Monotonicity ensures that

these limits are well defined. Because of the transience of the simple random walk in dimension three and higher, we
also know that C◦∞ is strictly positive ([22], Theorem 2.3), and thus C∞(τ ) and C∞(τ ) as well.

We recall that we write G(τ) for Gτ∞(0,0), which is also C∞(τ )−1. We let G(τ) be the inverse of C∞(τ ). In the
next proposition, we will see that this definition coincides with the one given in (7.11).

Proposition A.2. For any environment τ , the following inequalities hold

G(τ)≤ (
C◦∞

)−1
,

G(τ)≤G(τ)≤
(

min
y∼0

qτ (y,0)
)−2

G(τ).

In particular, G(τ) satisfies (7.11).

Proof. These are direct consequences of Proposition A.1, together with the identity (A.5). �

Finally, we recall here a classical result concerning the decay of the transition probability of the random walk.
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Proposition A.3. There exists C > 0 such that, for any x, y ∈ Z
d and any t ≥ 0, one has

Pτ
x[X̂t = y] ≤ C

td/2
.

Proof. Using [30], Proposition 14.1, together with [30], Corollary 4.12, one knows that a Nash inequality holds for
the simple random walk on Z

d , in the sense that there exists C > 0 such that for any function f ,

‖f ‖2+4/d

2 ≤C1E
◦(f,f )‖f ‖4/d

1 .

By (A.1), the inequality is preserved if one changes E◦ by E. From the Nash inequality, one deduces the announced
claim, following the argument of [25], or equivalently [14], Theorem 2.1. �
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