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Band-taut sutured manifolds

SCOTT A TAYLOR

Attaching a 2–handle to a genus two or greater boundary component of a 3–manifold
is a natural generalization of Dehn filling a torus boundary component. We prove
that there is an interesting relationship between an essential surface in a sutured
3–manifold, the number of intersections between the boundary of the surface and
one of the sutures, and the cocore of the 2–handle in the manifold after attaching a
2–handle along the suture. We use this result to show that tunnels for tunnel number
one knots or links in any 3–manifold can be isotoped to lie on a branched surface
corresponding to a certain taut sutured manifold hierarchy of the knot or link exterior.
In a subsequent paper, we use the theorem to prove that band sums satisfy the cabling
conjecture, and to give new proofs that unknotting number one knots are prime and
that genus is superadditive under band sum. To prove the theorem, we introduce
band-taut sutured manifolds and prove the existence of band-taut sutured manifold
hierarchies.

57M50; 57M25

1 Introduction

Gabai’s sutured manifold theory [2; 3; 4] is central to a number of stunning results
concerning Dehn surgery on knots in 3–manifolds. Many of these insights make use
of a famous theorem of Gabai [3, Corollary 2.4]: with certain mild hypotheses, there
is at most one way to fill a torus boundary component of a 3–manifold so that the
Thurston norm decreases. Lackenby [7], building on this work, proved a theorem
relating Dehn surgery properties of a knot to the intersection between the knot and
essential surfaces in the 3–manifold. Lackenby used his results to study the effect
of twisting the unknot along a knot having linking number zero with the unknot, and
to study [6] the uniqueness properties of Dehn surgery on certain knots in certain
3–manifolds. Lackenby [8] and Kalfagianni [5] also used Lackenby’s Theorem to study
the unknotting properties of certain knots.

In this paper, we prove a version of Lackenby’s Theorem for attaching a 2–handle to a
sutured 3–manifold along a suture. Like Lackenby, we use Scharlemann’s combinatorial
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version of sutured manifold theory [9]. Although our method is inspired by the proofs
of Gabai’s and Lackenby’s Theorems, the proof is very different.

For the statement of the main result, let .N; 
 / be a sutured manifold and let F � @N

be a component of genus at least 2. Let b � 
 \F be a component. Let N Œb� be the
3–manifold obtained by attaching a 2–handle to N along b and let ˇ �N Œb� be the
cocore of the 2–handle. For a 3–manifold M with T the union of two torus boundary
components, we say that a nonzero homology class y 2 H2.M; @M / is Seifert-like
for T if the projection of y to the first homology of each component of T is nonzero.
The main result of this paper is the following.

Theorem 10.7 (rephrased) Suppose that .N; 
 / is taut and that the components of
@N �A.
 / adjacent to b are both thrice-punctured spheres or are both once-punctured
tori. Let Q�N be a surface having no component a sphere or disc disjoint from 
 .
Assume that @Q intersects 
 minimally and that j@Q \ bj � 1. Then one of the
following is true:

(1) Q has a compressing or b–boundary compressing disc.

(2) .N Œb�; ˇ/D .M 0
0
; ˇ0

0
/ # .M 0

1
; ˇ0

1
/, where M 0

1
is a lens space and ˇ0

1
is a core of

a genus one Heegaard splitting of M 0
1

.

(3) The sutured manifold .N Œb�; 
�b/ is taut. The arc ˇ can be properly isotoped to
be embedded on a branched surface B.H/ associated to a taut sutured manifold
hierarchy H for N Œb�. There is also a proper isotopy of ˇ in N Œb� to an arc
disjoint from the first decomposing surface in H . If b is adjacent to thrice-
punctured spheres, that first decomposing surface can be taken to represent ˙y

for any given nonzero y 2H2.N Œb�; @N Œb�/. If b is adjacent to once-punctured
tori, the first decomposing surface can be taken to represent any Seifert-like
homology class for the corresponding unpunctured torus components of @N Œb�.

(4) We have
�2�.Q/Cj@Q\ 
 j � 2j@Q\ bj:

A b–boundary compressing disc for a properly embedded surface Q�N transverse
to b is a disc with boundary consisting of an arc on Q and a subarc of b and with
interior disjoint from Q[ @N ; see Figure 1.

In [6], Lackenby shows how to add sutures to the (nonempty) boundary of a compact,
orientable, irreducible and boundary-irreducible manifold (other than a 3–ball) to
create a taut sutured manifold. In his construction all components of R.
 / are thrice-
punctured spheres or tori, so the hypothesis in Theorem 10.7 that b be adjacent to
thrice-punctured sphere components of R.
 / is reasonable.
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F � @N

b

Q
D

Figure 1: D is a b–boundary compressing disc for the surface Q outlined in green.

The fourth conclusion is useful, since the inequality can be rearranged to be

�2�.Q/Cj@Q\ .
 � b/j � j@Q\ bj:

Thus, for example, if @Q happens to be disjoint from 
 � b , then twice the negative
Euler characteristic of the surface is an upper bound for the number of times the
boundary of the surface intersects b .

The third conclusion of the theorem is of particular interest in that it is related to several
well-known and very useful facts:

� If K is an unknotting number one knot in S3 and if ˇ is an arc in the knot
complement defining a crossing change converting K into the unknot then ˇ is
isotopic into a minimal genus Seifert surface for K .

� If K is a tunnel number one knot in S3 and if ˇ is a tunnel then, if the
Scharlemann–Thompson invariant [11] is not 1, ˇ can be isotoped into a minimal
genus Seifert surface for K .

Any minimal genus Seifert surface can be used as the first surface in a taut sutured
manifold hierarchy of the knot exterior, and so any minimal genus Seifert surface
can be thought of as part of a branched surface associated to a taut sutured manifold
hierarchy of the knot exterior. Since these facts have proven to be very useful, the
third conclusion of the main theorem of this paper also has the potential to be useful
and perhaps points to a connection between the various ad hoc methods used to push
certain arcs onto minimal genus Seifert surfaces.

Applications of Theorem 10.7 include a proof that knots that are band sums satisfy the
cabling conjecture (see the author [12, Theorem 8.1]), a partial solution to a conjecture
of Scharlemann and Wu [12, Corollary 5.4], a near complete solution of a conjecture
of Scharlemann [12, Corollary 6.2], and new proofs of three classical facts:
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� Knot genus is superadditive under band connect sum [12, Theorem 7.3].

� Unknotting number one knots are prime [12, Theorem 7.2].

� Tunnel number one knots in S3 have minimal genus Seifert surfaces disjoint
from a given tunnel (Corollary 11.2 below).

These three facts previously all had proofs which use sutured manifold theory, but the
methods were different. The advantage of the new proofs is that they are all nearly
identical. Since some effort is required to rephrase the theorems in a way in which the
main theorem of this paper can be usefully applied, we defer proofs for all but the last
fact to [12]; the new proof of the last fact is given in this paper. Indeed, we prove the
following stronger theorem for tunnel number one knots and 2–component links in
any 3–manifold admitting such a knot or link (see Section 11 for the definitions).

Theorem 11.1 Suppose that Lb is a knot or 2–component link in a closed, orientable
3–manifold M such that Lb has tunnel number one. Let ˇ be a tunnel for Lb .
Assume also that .M �Lb; ˇ/ does not have a (lens space, core) summand. Then there
exist (possibly empty) curves y
 on @.M � V�.Lb// such that .M � V�.Lb/; y
 / is a taut
sutured manifold and the arc ˇ can be properly isotoped to lie on the branched surface
associated to a taut sutured manifold hierarchy of .M � V�.Lb/; y
 /. In particular, if Lb

has a (generalized) Seifert surface, then there exists a minimal genus (generalized)
Seifert surface for Lb that is disjoint from ˇ .

2 Motivation and outline

As motivation for our proof of Theorem 10.7, we briefly review the proofs of Gabai’s and
Lackenby’s Theorems. For reference, here are (simplified and weakened) statements of
Gabai’s and Lackenby’s Theorems. The sutured manifold terminology will be explained
in the next section.

Theorem (Gabai) Let N be an atoroidal Haken 3–manifold whose boundary is the
nonempty union of tori. Let S be a Thurston norm minimizing surface representing an
element of H2.N; @N / and let P be a component of @M such that P \S D¿. Then,
with at most one exception, S remains norm minimizing in each manifold obtained by
Dehn filling N along a slope in P .
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Theorem [7, Theorem 1.4] Suppose that .N; 
 / is a taut atoroidal sutured manifold.
Let P � @N be a torus component disjoint from 
 .

Suppose that b is a slope on P such that Dehn filling N with slope b creates a sutured
manifold .N.b/; 
 / that is not taut. Let Q�N be an essential surface such that @Q
intersects b minimally and j@Q\ bj � 1. Then

�2�.Q/Cj@Q\ 
 j � 2j@Q\ bj:

Gabai’s Theorem is proved by taking a taut sutured manifold hierarchy for N such that
each decomposing surface in the hierarchy is disjoint from P . The first decomposing
surface is the given surface S . The hierarchy ends at a taut sutured manifold .Nn; 
n/

such that H2.Nn; @Nn�P /D 0. Our additional assumption that N is atoroidal implies
that Nn consists of 3–balls and one additional component that is homeomorphic to
P� Œ0; 1�. Dehn filling Nn along a slope b�P creates another sutured manifold which
we call .Nn.b/; 
n/. An examination of the sutures 
n \ @Nn shows that for all but
at most one choice of b , .Nn.b/; 
n/ remains taut. One of the fundamental theorems
of sutured manifold theory [9, Corollary 3.9] (see Theorem 7.2 below) implies that,
except for the exceptional slope, .N.b/; 
 / and S are taut.

Equivalently, we can begin with the Dehn-filled ˇ–taut sutured manifold .N.b/; 
; ˇ/,
where ˇ is the core of the surgery solid torus. The hierarchy for N is then a ˇ–
taut sutured manifold hierarchy for .N.b/; 
; ˇ/, where each decomposing surface is
disjoint from ˇ . We conclude that for all but at most one choice of b , the sutured
manifold .N.b/; 
;¿/ and the surface S are not only ˇ–taut, but also ¿–taut. There
are two advantages to this viewpoint. One is that it is possible to see that if the hierarchy
is taut then ˇ has infinite order in the fundamental group of N.b/ [6, Theorem A.6].
The other advantage is that, if the hierarchy of the filled manifold is taut, it is not
difficult to see that ˇ can be isotoped to lie on the branched surface corresponding to
the hierarchy. The analogous statement in Theorem 10.7 is much harder to prove.

That was a sketch of the proof of Gabai’s Theorem. We now turn to Lackenby’s
Theorem. The surface Q in the statement of Lackenby’s Theorem is an example
of what is called a “parameterizing surface” in .N; 
 /. (Parameterizing surfaces are
defined in Section 5.) Associated to each parameterizing surface is a number called
the index (or “sutured manifold norm;” see Cantwell and Conlon [1]). In the case of
Lackenby’s Theorem, the index of Q is defined to be

I.Q/D j@Q\ 
 j � 2�.Q/:

Suppose now that b �P is the exceptional slope, so that .N.b/; 
 �b/ is not taut. Let
Q�N be a parameterizing surface so that @Q intersects 
 minimally and j@Q\bj>0.
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In the sutured manifold .Nn; 
n/, the surface Q has decomposed into a parameter-
izing surface Qn with I.Q/ � I.Qn/. The component N 0n of Nn containing P is
homeomorphic to P � Œ0; 1�. Some components of Qn lie in N 0n . Since Q is essential,
Qn \N 0n is the union of discs with boundary on @N 0n �P and annuli with at least
one boundary component on @N 0n �P . These boundary components must cross the
sutures on @N 0n � P . Analyzing these intersections gives a lower bound on I.Qn/

which is, therefore, a lower bound on I.Q/. This lower bound implies the inequality in
Lackenby’s Theorem. As in Gabai’s Theorem, Lackenby’s Theorem can be rewritten
as a theorem about a sutured manifold .M; 
; ˇ/ with ˇ a knot in M . (The knot ˇ is
the core of the surgery solid torus with slope b .)

The point of this paper is to develop a theory whereby we can replace the knot ˇ in
the proof of Gabai’s and Lackenby’s Theorems with an arc ˇ . In Theorem 9.5, this arc
is the cocore of a 2–handle added to b � @N .

The proof of Theorem 10.7 is inspired by the proof of Lackenby’s Theorem. For the
time being, let .M; 
 0/ D .N Œb�; 
 � b/ and consider the arc ˇ �M which is the
cocore of the attached 2–handle. If we could construct a useful hierarchy of .M; 
 0; ˇ/

disjoint from ˇ , we could adapt Lackenby’s combinatorics to obtain a result similar
to Theorem 10.7. However, it seems unlikely that such a hierarchy can exist, since
although a sequence

.M; 
 0; ˇ/
S1
�! .M1; 
1; ˇ1/

S2
�! � � �

Sn
�! .Mn; 
n; ˇn/

can be constructed so that each decomposing surface represents a given homology
class, and although it is possible to find such surfaces representing the homology
class that are disjoint from ˇ , it may not be possible to find such surfaces giving a
ˇ–taut decomposition which are (in the terminology of [9]) “conditioned”. Instead we
develop the theory of “band-taut sutured manifolds” to give the necessary control over
intersections between ˇ and the decomposing surfaces. Sections 4 and 7 are almost
entirely devoted to proving that if .M; 
 0; ˇ/ is a band-taut sutured manifold then there
is a so-called “band-taut” sutured manifold hierarchy of M . Section 8 studies the
combinatorics of parameterizing surfaces at the end of a band-taut hierarchy and proves
a version of Theorem 10.7 for band-taut sutured manifolds. Section 6 reviews Gabai’s
construction of the branched surface associated to a sequence of sutured manifold
decompositions and sets up the technology to prove that the arc ˇ can sometimes be
isotoped into the branched surface associated to a taut hierarchy.

In classical combinatorial sutured manifold theory, sutured manifold decompositions
are usually constructed so that they “respect” a given parameterizing surface. The
framework of “band-taut sutured manifolds” requires that we have sutured manifold
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decompositions that respect each of two, not necessarily disjoint, parameterizing
surfaces. Section 5 is devoted to explaining this mild generalization of the classical
theory.

Sections 9 and 10 convert the main theorem for the theory of band-taut sutured mani-
folds into theorems for arc-taut and nil-taut sutured manifolds. Section 11 gives the
application to tunnel number one knots and links.
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none of the present work appears there. I am grateful to Qilong Guo who found a gap
in [13], which led to the development of the concept of “band-taut sutured manifold.”
I am grateful to Marty Scharlemann for his encouragement and helpful comments.
Thanks also to the referees for their careful reading and suggestions.

3 Sutured manifolds

A sutured manifold .M; 
; ˇ/ consists of a compact orientable 3–manifold M , a
collection of annuli A.
 /� @M whose cores are oriented simple closed curves 
 , a
collection of torus components T .
 /� @M , and a 1–complex ˇ properly embedded
in M . Furthermore, the closure of @M � .A.
 /[T .
 // is the disjoint union of two
surfaces R� D R�.
 / and RC D RC.
 /. Each component of A.
 / is adjacent to
both R� and RC . The surfaces R� and RC are oriented so that if A is a component
of A.
 /, then the curves R� \ A, RC \ A and 
 \ A are all nonempty and are
mutually parallel as oriented curves. We denote the union of components of A.
 /� 


adjacent to R˙ by A˙ . We let R.
 /DR�[RC . We use R˙ to denote R� or RC .

The orientation on @RC gives an outward normal orientation to RC and the orientation
on @R� gives an inward normal orientation to R� . We assign each edge of ˇ an
orientation with the stipulation that if an edge has an endpoint in R�[A� then it is
the initial endpoint of the edge and if an edge has an endpoint in RC[AC then it is
the terminal endpoint of the edge. We will only be considering 1–complexes ˇ where
this stipulation on the orientation of edges can be attained. (That is, no edge of ˇ will
have both endpoints in R˙[A˙ .)

If .M; 
; ˇ/ is a sutured manifold and if S �M is a connected surface in general
position with respect to ˇ , the ˇ–norm of S is

xˇ.S/Dmaxf0;��.S/CjS \ˇjg:

If S is a disconnected surface in general position with respect to ˇ , the ˇ–norm is
defined to be the sum of the ˇ–norms of its components. The norm x¿ is called the
Thurston norm.
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The surface S is ˇ–minimizing if, out of all embedded surfaces with the same boundary
as S and representing ŒS; @S � in H2.M; @S/, the surface S has minimal ˇ–norm. S is
ˇ–taut if it is ˇ–incompressible (ie S�ˇ is incompressible in M �ˇ ), ˇ–minimizing,
and any given edge of ˇ always intersects S with the same sign.

A sutured manifold is ˇ–taut if:

(T0) ˇ is disjoint from A.
 /[T .
 /.

(T1) M is ˇ–irreducible.

(T2) R.
 / (equivalently R� and RC ) and T .
 / are ˇ–taut.

If a 3–manifold or surface is ¿–taut, we say it is taut in the Thurston norm or sometimes,
simply, taut.

The sutured manifold terminology up until now has been standard (see [9]). Here is
the central new idea of this paper. We say that a sutured manifold .M; 
; ˇ/ is banded
if the following hold:

(B1) There exists at most one edge cˇ � ˇ , having an endpoint in A.
 /. If cˇ ¤¿,
one endpoint lies in A� and the other lies in AC . The edge cˇ is called the
core.

(B2) If cˇ ¤¿, then there exits a disc Dˇ , which we think of as an octagon, having
its boundary divided into eight arcs, c1; c2; : : : ; c8 (in cyclic order), called
the edges of Dˇ . The arc cˇ is contained in Dˇ and the interior of Dˇ is
otherwise disjoint from ˇ . We require that

� c1 and c5 are properly embedded in R�� @ˇ ,
� c2 and c6 each are properly embedded in A.
 /, intersect 
 exactly once

each, and each contains an endpoint of cˇ ,
� c3 and c7 are properly embedded in RC� @ˇ ,
� c4 and c8 each either traverse an edge of ˇ�cˇ or are properly embedded

in A.
 / and intersect 
 exactly once.

Define eˇ to be the union of edges of ˇ�cˇ that are traversed by @Dˇ\.ˇ�cˇ/.
We have that jeˇj � 2. The disc Dˇ is called the band and the components
of eˇ are called the sides of the band. The sides of a band may lie on zero,
one, or two edges of ˇ . The arc c1[ c2[ c3 is called the top of the band and
the arc c5[ c6[ c7 is called the bottom of the band; see Figure 2.
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Dˇ










c2

c3

cˇ

RC

RC

R�

R�

c7

Figure 2: The red disc is a band with eˇ D ¿ . The green surfaces are
subsurfaces of R.
 / and the blue surfaces are subsurfaces of A.
 / . The
edges of the band are labelled clockwise c1 through c8 with c2 containing
the top endpoint of the red arc cˇ .

A banded sutured manifold .M; 
; ˇ/ is band-taut if .M; 
; ˇ� cˇ/ is .ˇ� cˇ/–taut.

Remark The core of the band cˇ is the arc we try to isotope onto the branched surface
coming from a sutured manifold hierarchy. When building the hierarchy we will attempt
to make each decomposing surface disjoint from cˇ . The disc Dˇ helps to guide the
isotopy of (parts of) cˇ into the branched surface coming from a sutured manifold
hierarchy. That the endpoints of cˇ lie in A.
 / allow us to use the surface R.
 /

to modify decomposing surfaces so as to give them algebraic intersection number
zero with cˇ . Because we want to appeal to as much of the sutured manifold theory
developed by Scharlemann in [9; 10] as possible, we need ways of appealing to results
about taut sutured manifolds. The sides of the band allow us to make use of these
results.

4 Decompositions

In classical combinatorial sutured manifold theory, sutured manifolds are decomposed
using so-called “conditioned” surfaces and a variety of “product surfaces”. We re-
view and expand the classical definitions and then discuss how the surfaces can give
decompositions of band-taut sutured manifolds.
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4.1 Sutured manifold decompositions

4.1.1 Decomposing surfaces If .M; 
; ˇ/ is a sutured manifold, a decomposing
surface (cf [9, Definition 2.3]) is a properly embedded surface S �M transverse to ˇ
such that:

(D1) @S intersects each component of T .
 / in a (possibly empty) collection of
coherently oriented circles.

(D2) @S intersects each component of A.
 / in circles parallel to 
 (and oriented
in the same direction as 
 ), in essential arcs, or not at all.

(D3) Each circle component of @S \A.
 / is disjoint from 
 and no arc component
of @S \A.
 / intersects 
 more than once.

If S is a decomposing surface, there is a standard way of placing a sutured manifold
structure on M 0 D M � V�.S/. The curves 
 0 are the oriented double curve sum
of 
 with @S . Let ˇ0 D ˇ \M 0 . The sutured manifold .M 0; 
 0; ˇ0/ is obtained by
decomposing .M; 
; ˇ/ using S . We write .M; 
; ˇ/ S

�! .M 0; 
 0; ˇ0/. If .M; 
; ˇ/

is ˇ–taut and if .M 0; 
 0; ˇ0/ is ˇ0–taut, then we say the decomposition is ˇ–taut.

If the annuli and tori A.
 / [ T .
 / are not disjoint from ˇ , we need to be more
precise about the formation of the annuli A.
 0/ in .M 0; 
 0; ˇ0/. We form annuli
A.
 0/D �.
 0/ by demanding that .A.
 /[T .
 //\M 0 is a subset of A.
 0/[T .
 0/.
This requirement ensures that any endpoint of ˇ that lies in A.
 /[T .
 / continues to
lie in A.
 0/[T .
 0/; see Figure 3.

4.1.2 Product surfaces If e�ˇ is an edge with both endpoints in R.
 /, a cancelling
disc for e is a disc properly embedded in M� V�.ˇ/ having boundary running once
across e and once across A.
 /; see Figure 4. A product disc in a sutured manifold
.M; 
; ˇ/ is a rectangle P properly embedded in M such that P \ ˇ D ¿ and
@P \A.
 / consists of two opposite edges of the rectangle each intersecting 
 once
transversally. Notice that the frontier of a regular neighborhood of a cancelling disc
is a product disc. A product disc P is allowable if no component of @P \R.
 / is
ˇ–inessential.

An amalgamating disc D in .M; 
; ˇ/ is a rectangle with two opposite edges lying
on components of ˇ that are edges joining R� to RC , one edge in RC and one
edge in R� . If @D traverses a single edge of ˇ twice, it is a self amalgamating disc,
otherwise it is a nonself amalgamating disc. A self amalgamating disc is allowable if
both of the arcs @D\ @M are ˇ–essential in R.
 /.
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@S




@A.
 /

@A.
 /


 0

@A.
 0/

@A.
 0/

@ˇ

@ˇ

Figure 3: Creating sutures in M � V�.S/

e

D

Figure 4: A cancelling disc D for an edge e

If in .M; 
; ˇ/ there is a cancelling disc D for e , we say that the sutured manifold
.M; 
; ˇ�e/ is obtained from .M; 
; ˇ/ by cancelling the arc e . If in .M; 
; ˇ/ there
is a nonself amalgamating disc with boundary on components ˇ1 and ˇ2 of ˇ , we
say that the sutured manifolds .M; 
; ˇ � ˇ1/ and .M; 
; ˇ � ˇ2/ are obtained by
amalgamating the arcs ˇ1 and ˇ2 .

[9, Lemma 4.3] shows if .M; 
; ˇ/ is ˇ–taut, then after cancelling arc e , the sutured
manifold is still .ˇ� e/–taut. The converse is also easily proven. By [9, Lemma 4.2],
if .M; 
; ˇ/ is taut, then so is the sutured manifold obtained by decomposing along a
product disc in .M; 
; ˇ/. By [9, Lemmas 4.3 and 4.4], if .M; 
; ˇ�ˇ1/ is obtained
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by amalgamating arcs ˇ1 and ˇ2 in the ˇ–taut sutured manifold .M; 
; ˇ/, then
.M; 
; ˇ�ˇ1/ is .ˇ�ˇ1/–taut. Later we will review a method for eliminating self
amalgamating discs so that tautness is preserved.

A product annulus P is an annulus properly embedded in M that is disjoint from ˇ and
that has one boundary component in R� and the other in RC ; see [9, Definition 4.1].
A product annulus is allowable if P is not the frontier of a regular neighborhood of
an arc in M (this is the same as being “nontrivial” in the sense of [9, Definition 4.1]).
Notice that attaching the two edges of a self-amalgamating disc lying on ˇ produces a
product annulus.

4.1.3 Conditioned and rinsed surfaces In addition to decomposing sutured mani-
folds along product surfaces, we will also need to decompose along more complicated
surfaces. We require such surfaces to be “conditioned” [9, Definition 2.4]. A conditioned
1–manifold C � @M is an embedded oriented 1–manifold satisfying the following:

(C0) All circle components of C lying in the same component of A.
 /[T .
 / are
oriented in the same direction, and if they lie in A.
 /, they are oriented in the
same direction as the adjacent component of 
 .

(C1) All arcs of C \A.
 / in any annulus component of A.
 / are oriented in the
same direction.

(C2) No collection of simple closed curves of C\R.
/ is trivial in H1.R.
/;@R.
//.

Notice that if z 2H1.@M / is nontrivial, then there is a conditioned 1–manifold in M

representing z . Furthermore, if C is a conditioned 1–manifold then the oriented double
curve sum of C with @R.
 / is also conditioned.

A decomposing surface S �M is conditioned if @S is conditioned and if, additionally:

(C3) Each edge of ˇ intersects S [R.
 / always with the same sign.

A surface S in a banded 3–manifold .M; 
; ˇ/ is rinsed if S is conditioned in
.M; 
; ˇ� cˇ/, if S has zero algebraic intersection with cˇ , and if every separating
closed component of S bounds with a closed component of R.
 / a product region
intersecting ˇ in vertical arcs.

4.2 Band-taut decompositions

An arbitrary decomposition of a banded sutured manifold may not create a banded
sutured manifold. In this section, we show how certain surfaces can be used to usefully
decompose band-taut sutured manifolds.
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The easiest instance of such a decomposition is if .M; 
; ˇ/ is a banded sutured manifold
and if E is a cancelling disc with interior disjoint from Dˇ for a component ˇ1 of eˇ .
Let E0 be the product disc in M that is the frontier of a regular neighborhood of E .
The disc E0 intersects Dˇ in either one or two arcs. Those arcs join the top of Dˇ the
bottom of Dˇ . If there are two arcs (which happens if c4 and c8 run along the same
edge of ˇ ), one arc joins c1 to c7 and the other joins c3 to c5 . If there is a single arc,
it either joins c1 to c7 or joins c3 to c5 . Let .M 0; 
 0; ˇ0/ be the result of decomposing
.M; 
; ˇ/ using E0 . The disc Dˇ is decomposed into 2 or 3 discs, one of which D0

ˇ

contains cˇ D cˇ0 . The disc D0
ˇ

is clearly a band and je0
ˇ
j< jeˇj. In effect, we have

cancelled an edge of eˇ and the new band runs along a suture instead of along the
edge. We call E0 a band-decomposing product disc. Since cancelling an edge and
decomposing along a product disc disjoint from Dˇ preserve tautness, decomposing
a band-taut sutured manifold along either a band-decomposing disc or a product disc
disjoint from Dˇ preserves band-tautness.

We also need ways of decomposing along other product surfaces or conditioned surfaces
in ways that preserve band-tautness. To that end, suppose that a decomposing surface S

in a banded sutured manifold .M; 
; ˇ/ is transverse to Dˇ . We say that S is a
band-decomposing surface if it is either a band-decomposing product disc, a product
disc disjoint from Dˇ or if it satisfies the following:

(BD) Either eˇ D¿ and cˇ is isotopic in Dˇ relative to its endpoints into @M or
all of the following are true:

(1) There exists a properly embedded arc c in Dˇ joining the top of Dˇ to
the bottom of Dˇ that is disjoint from S .

(2) Each point of the intersection between @S and the top of Dˇ has the
same sign as the sign of intersection between 
 and c2 .

(3) Each point of the intersection between @S and the bottom of Dˇ has the
same sign as the sign of intersection between 
 and c6 .

(4) Each point of the intersection between @S and c4 has the same sign.
(5) Each point of the intersection between @S and c8 has the same sign.

Suppose that .M; 
; ˇ/ S
�! .M 0; 
 0; ˇ0/ is a .ˇ� cˇ/–taut sutured manifold decom-

position where .M; 
; ˇ/ is a banded sutured manifold and S is a band-decomposing
surface. We say that the decomposition is band-taut if .M; 
; ˇ/ and .M 0; 
 0; ˇ0/ are
each band-taut and one of the following holds:

(BT1) eˇ D¿, cˇ is isotopic (relative to its endpoints) in Dˇ into @M and Dˇ0 D

cˇ0 D¿.
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(BT2) cˇ0 is a properly embedded arc in Dˇ�S , such that the initial endpoint of cˇ0

lies in A�.

0/\@Dˇ and the terminal endpoint of cˇ0 lies in AC.


0/\@Dˇ

and Dˇ0 is the component of Dˇ \M 0 containing cˇ0 .

Lemma 4.1 Suppose that .M; 
; ˇ/ is band-taut with Dˇ¤¿. If a band-decomposing
surface S satisfying (BD) has been isotoped relative to @S so as to minimize jS \Dˇj

then every component of S \Dˇ is an arc joining either the top or bottom of Dˇ to c4

or c8 .

Proof That no component of S \Dˇ is a circle follows from an innermost disc
argument. By condition (1) of (BD), no arc component joins c4 to c8 . By conditions
(4) and (5) of (BD), no arc component joins c4 to itself or joins c8 to itself. Since
jS \Dˇj is minimized and since S is a decomposing surface, no arc of S \Dˇ has
both endpoints on the same edge of Dˇ . By conditions (2) and (3), no arc joins the
top of Dˇ to itself and no arc joins the bottom of Dˇ to itself. We need only show,
therefore, that each arc joins the top or bottom of Dˇ to c4 or c8 .

Due to the orientations of R� and RC , the orientations of 
 at 
 \ c2 and 
 \ c6

point in the same direction. Suppose that � is an arc of S \Dˇ joining the top of Dˇ

to the bottom of Dˇ . The orientation of S induces a normal orientation of � in Dˇ .
The normal orientation of S induces orientations of the endpoints of � that are normal
to Dˇ and point in opposite directions. This violates either condition (2) or (3) of (BD).
Hence, no arc of S \Dˇ joins the top of Dˇ to the bottom of Dˇ .

Lemma 4.2 Suppose that .M; 
; ˇ/ is a band-taut sutured manifold and that S

is a band decomposing surface satisfying (BD) and defining a taut decomposition
.M; 
; ˇ � cˇ/

S
�! .M 0; 
 0; ˇ0 � cˇ/. Then after an isotopy of S (relative to @S ) to

minimize jS \Dˇj, there are Dˇ0 �Dˇ and cˇ0 �Dˇ0 so that the decomposition is
band-taut. Furthermore, if (BT1) does not hold, each component of .Dˇ \M 0/�Dˇ0

is a product disc or cancelling disc.

Proof If eˇD¿ and if cˇ is isotopic into @M in Dˇ , define Dˇ0D cˇ0D¿. Assume,
therefore, that (BT1) does not hold.

Let dT and dB be the top and bottom of Dˇ respectively. Since all points of intersection
of S with dT have the same sign as the intersection of 
 with c2 , each component of
dT �S contains exactly one point of 
 0\Dˇ . Similarly, each component of dB �S

contains exactly one point of 
 0\Dˇ . By Lemma 4.1, every component of S \Dˇ

joins the top or bottom of Dˇ to c4 or c8 . This implies both that each component
of eˇ �S has an endpoint in both R�.


0/ and RC.

0/ and that there is exactly one
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component Dˇ0 of Dˇ \M 0 containing both a point of dT and a point of dB . It is
not hard to see that Dˇ0 is a band containing an arc c0

ˇ
satisfying the definition of core;

see Figures 5 and 6.

Similarly, each component of Dˇ � S other than Dˇ0 intersects c4 [ c8 in at most
one arc. If such a component does intersect .c4[ c8/ it is a product disc or cancelling
disc (depending on whether or not c4 or c8 lies in eˇ ). If such a component does not
intersect .c4[ c8/ then it is adjacent to exactly two arcs of S \Dˇ and so is a product
disc in M 0 .

Figure 5: The left image shows the core cˇ and the right image shows the
core cˇ0 . The core cˇ can be isotoped to an arc cˇ0 disjoint from S and
with endpoints in A.
 0/ . The sutures 
 0 are marked on @D0

ˇ
in the rightmost

figure. The endpoint of cˇ lying in A˙ is isotoped to an endpoint of cˇ0 lying
in A˙.


0/ . In the rightmost figure, the intersection of the annuli A˙.

0/

with @Dˇ are highlighted in blue.

We note the following.

Lemma 4.3 Suppose that .M; 
; ˇ/ S
�! .M 0; 
 0; ˇ0/ is a band-taut decomposition.

Then there is an isotopy of cˇ relative to its endpoints to an arc c such that the closure
of c \ VM 0 is cˇ0 . Furthermore, cˇ0 joins the components of cˇ \ @Dˇ0 .

Proof By the definition of band-taut decomposition, S is a band-decomposing surface.
If the decomposition satisfies (BT1), then by definition, there is an isotopy of cˇ

into @M and we have our conclusion. Suppose, therefore, that the decomposition
satisfies (BT2).
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Figure 6: The band Dˇ0 is the component of Dˇ \M 0 containing cˇ0 .

If the decomposition is by a band decomposing disc or a product disc disjoint from
the band then no isotopy of cˇ is necessary as cˇ0 D cˇ . If the decomposition is by
a surface satisfying (BD), this follows immediately from the observation that cˇ is
isotopic to cˇ0 by a proper isotopy in Dˇ that does not move the endpoints of cˇ along
edges c4 or c8 of Dˇ ; see Figure 7.

cˇ

cˇ0

Figure 7: The isotopy of cˇ to cˇ0 can be slightly modified to an isotopy
of cˇ relative to its endpoints such that after the isotopy cˇ � cˇ0 lies in
@Dˇ \ @M . The solid arc is the union of two subarcs in @Dˇ and the arc cˇ0 .
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4.3 Cancelling discs, amalgamating discs, product discs and product an-
nuli

The previous section provided some criteria for creating decompositions of banded
sutured manifolds using surfaces that satisfy (BD). Product surfaces, however, may not
satisfy (BD). This section shows how to create a band-taut decomposition if there is
a cancelling disc, amalgamating disc, product disc, or product annulus in a band-taut
sutured manifold.

4.3.1 Finding disjoint product surfaces We begin by showing that if there is a
cancelling disc, amalgamating disc, product disc, or product annulus in a band-taut
sutured manifold, then there is one disjoint from the band.

Lemma 4.4 Suppose that .M; 
; ˇ/ is band-taut. If ˇ� cˇ has a

(1) cancelling disc or allowable product disc,

(2) nonself amalgamating disc, or

(3) allowable self amalgamating disc,

then one of the following occurs:

� There is, respectively, a

(1) cancelling disc or allowable product disc,
(2) cancelling disc, allowable product disc, or nonself amalgamating disc, or
(3) cancelling disc, allowable product disc, nonself amalgamating disc, or

allowable self-amalgamating disc,

that is disjoint from Dˇ , or

� eˇ D¿, the boundary of Dˇ is a .ˇ� cˇ/–inessential circle in @M , and cˇ is
isotopic in Dˇ into @M (rel @cˇ ).

Proof The proofs with each of the three hypotheses are nearly identical, so we prove it
only under hypothesis (3). Let E be a cancelling disc, allowable product disc, nonself
amalgamating disc, or allowable self amalgamating disc chosen so that out of all such
discs, Dˇ and E intersect minimally. By an isotopy of E , we can assume that all
intersections between @Dˇ and @E occur in R.
 /. An innermost circle argument
shows that there are no circles of intersection between Dˇ and E . Similarly, we may
assume that if a component of Dˇ \E intersects cˇ then it is an arc in Dˇ joining
distinct edges of Dˇ .
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Claim 1 No component of Dˇ \E joins an edge of Dˇ to itself.

Suppose that there is such a component, and let � be an outermost such arc in Dˇ

with � the disc it cobounds with a subarc of Dˇ \R.
 /. Boundary compress E

using � to obtain two discs E1 and E2 . Since E was a cancelling disc, product
disc, or amalgamating disc, one of E1 or E2 is a cancelling disc, product disc, or
amalgamating disc and the other one is a disc with boundary completely contained
in R.
 /. Suppose that E2 is this latter disc. Since E2 is disjoint from .ˇ� cˇ/ and
since R.
 / is .ˇ� cˇ/–incompressible, the boundary of E2 is ˇ–inessential in R.
 /.
Thus, E can be isotoped in the complement of ˇ to E1 . This isotopy reduces jDˇ\Ej

and so we have contradicted our choice of E .

Claim 2 No arc component of Dˇ\E joins edge c1 to edge c3 or edge c5 to edge c7 .

Suppose that there is such an arc. Without loss of generality, we may assume that
the arc joins side c1 to c3 . Let � be an arc that, out of all such arcs, is closest to c2 .
Let � be the disc in Dˇ that it cobounds with c2 . Boundary-compress E using �
to obtain the union E0 of two discs. In E , the arc � joins @E \R� to @E \RC .
If E is a cancelling disc, one component of E0 is a cancelling disc and the other is a
product disc. If E is a product disc, both components of E0 are product discs. If E is
an amalgamating disc, both components of E0 are cancelling discs. Each component
of E0 intersects Dˇ fewer times than does E , so we need only show that if E is an
allowable product disc, then at least one component of E0 is an allowable product disc.

Assume that E is an allowable product disc. This implies that it is a .ˇ�cˇ/–boundary
compressing disc for M . Since E0 is obtained by boundary compressing E , at least
one component E1 of E0 is a .ˇ�cˇ/–boundary compressing disc for @M . If it were
not allowable, it could be isotoped in the complement of .ˇ�cˇ/ to have boundary lying
entirely in R.
 /, this would contradict the fact that R.
 / is .ˇ� cˇ/–incompressible.
Thus, E1 is an allowable product disc.

Claim 3 No arc component of Dˇ\E joins edge c1 to edge c7 or edge c3 to edge c5 .

Suppose that there is such an arc. Without loss of generality, we may assume that it
joins edges c1 and c7 . Out of all such arcs, choose one � that is as close as possible to
edge c8 . Boundary compress E using the subdisc of Dˇ cobounded by c8 and � to
obtain E0 .

If E is a cancelling disc, let E2 be the component of E0 containing c8 and let E1 be
the other component. If c8 is an edge of ˇ , then E2 is an amalgamating disc and E1

is a cancelling disc. In this case, note that E1 (after a small isotopy to be transverse
to Dˇ ) intersects Dˇ fewer times than does E . This contradicts our choice of E .
If c8 is not an edge of ˇ , then E2 is a cancelling disc and E1 is a product disc. If E1
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is not allowable, it can be isotoped in the complement of .ˇ� cˇ/ to have boundary
contained entirely in R.
 /. Since R.
 / is .ˇ� cˇ/–incompressible, the boundary of
this disc must be .ˇ� cˇ/–inessential in R.
 /. It is then easy to see that there is an
isotopy reducing the number of intersections between E and Dˇ , a contradiction.

If E is an allowable product disc, then each component of E0 is either a cancelling
disc or a product disc. As before, if a component of E0 is a product disc, it must be
allowable.

If E is an amalgamating disc, then each component of E0 is either an amalgamating
disc or a cancelling disc. Let E1 and E2 be the components of E0 . Suppose that each
of E1 or E2 is a self amalgamating disc. We must show that at least one of them
is allowable. Since � runs along c8 , each component of E0 runs along c8 at least
once. Since each component of E0 is a self amalgamating disc, this implies that E is a
self-amalgamating disc for c8 . By hypothesis, E is allowable. Thus, at least one loop
of E0\R� is .ˇ�cˇ/–essential and at least one loop of E0\RC is .ˇ�cˇ/–essential.
If the union of these loops is either @E1\R.
 / or @E2\R.
 /, then either E1 or E2

is allowable. Thus, we may assume that one arc of Ei \R.
 / is .ˇ� cˇ/–essential
and the other one is inessential for both i D 1 and i D 2. Gluing the two arcs of
@Ei\c8 together we obtain a product annulus with one end .ˇ�cˇ/–essential and the
other end .ˇ� cˇ/–essential. Capping the inessential end off, creates a disc disjoint
from .ˇ� cˇ/ with boundary a .ˇ� cˇ/–essential loop in R.
 /. That is, the disc is a
.ˇ� cˇ/ compressing disc for R.
 /, a contradiction. Hence, if both E1 and E2 are
self-amalgamating discs at least one of them is allowable. Since each of E1 and E2

intersects Dˇ fewer times than does E , we have contradicted our choice of E .

Claim 4 No arc component of Dˇ \E joins side c3 to side c7 or side c1 to side c5 .

Suppose that there is such an arc. Without loss of generality, we may assume that
the arc joins side c3 to side c7 . Out of all such arcs choose one � that is outermost
on E . Boundary compress Dˇ using the outermost disc in E bounded by � . This
converts Dˇ into two discs, D4 and D8 containing c4 and c8 respectively. The
disc D4 also contains the edge c6 and the disc D8 also contains the edge c1 . Since
both c2 and c6 are contained in A.
 /, the discs D4 and D8 are either cancelling discs
or product discs. We must show that if they are both product discs, then at least one of
them is allowable.

Assume to the contrary, that both D4 and D8 are product discs that are not allowable.
Since product discs that are not allowable can be isotoped in the complement of .ˇ�cˇ/

to have boundary lying in R.
 /, and since R.
 / is .ˇ�cˇ/–incompressible, both D4

and D8 are discs with .ˇ � cˇ/–inessential boundary in @M . The disc Dˇ can be
reconstructed by banding the discs D4 and D8 together using an arc lying entirely
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in RC . Since M is .ˇ�cˇ/–irreducible and since cˇ lies in Dˇ , the arc cˇ is isotopic
in Dˇ into @M relative to its endpoints.

We now study how cancelling discs, amalgamating discs, product discs, and product
annuli give band-taut sutured manifold decompositions.

4.3.2 Eliminating cancelling discs, product discs and nonself amalgamating discs

Lemma 4.5 Suppose that .M; 
; ˇ/ is a connected band-taut sutured manifold other
than a 3–ball containing a single suture in its boundary and a single arc of ˇ � cˇ .
If M contains a cancelling disc or allowable product disc, then there is a band-taut
decompositions

.M; 
; ˇ/
S
�! .M 0; 
 0; ˇ0/:

The decomposition is a decomposition by a product disc, possibly satisfying (BT1).

Proof If eˇ D¿ and if cˇ is parallel into @M along Dˇ , let Dˇ0 D cˇ0 D¿. The
decomposition by the given cancelling disc or allowable product disc is then band-taut.
Thus, by Lemma 4.4, we may assume that there is a cancelling disc or allowable product
disc P that is disjoint from Dˇ . If P is a cancelling disc, let S be the frontier of a
regular neighborhood of P in M . Notice that S is an allowable product disc since M

is not a 3–ball with a single suture in its boundary and a single arc in ˇ�cˇ . If P was
a cancelling disc for a component of eˇ , then S is a band-decomposing product disc.
If P is an allowable product disc, let S D P . Decomposing a taut sutured manifold
using a product disc is a taut decomposition, so it is evident that the decomposition
.M; 
; ˇ/ S

�! .M 0; 
 0; ˇ0/ is band-taut.

Notice that if .M; 
; ˇ/ has a cancelling disc for an edge e�ˇ , then the decomposition
given by Lemma 4.5 cuts off from M a 3–ball having a single suture in its boundary
and containing the edge e and the cancelling disc. We then cancel the arc e . (The
reason for decomposing along S is that at the end of the hierarchy we will want to
ignore all arc cancellations. Decomposing along the product disc S before cancelling
ensures that the cancellable arc is in its own component of the sutured manifold at the
end of the hierarchy.)

As a final remark in this subsection, we note that if .M; 
; ˇ/ is a band-taut sutured
manifold and if there is a nonself amalgamating disc P disjoint from Dˇ we can
eliminate a component of P \ .ˇ� eˇ/ from ˇ and preserve band-tautness. If P runs
across two components of eˇ , then we view the elimination of one of the components
of eˇ as a melding together of the two sides of Dˇ . That is, the band Dˇ is isotoped
so that both sides run across the same component of eˇ and the other component of eˇ

is eliminated. Thus, amalgamating arcs preserves band-tautness.
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4.3.3 Eliminating allowable self amalgamating discs In the construction of a band-
taut hierarchy, it will be necessary to eliminate allowable self amalgamating discs as
in [10, Lemma 2.4]. We briefly recall the essentials.

We use a trick which allows us to convert between arcs and sutures [10, Definition 2.2].
If e � ˇ is an edge with one endpoint in R� and one in RC , then we convert e to
a suture 
e by letting M 0 D M � V�.e/ and letting 
e � @M

0 be a meridian of e .
[10, Lemma 2.2] shows that .M; 
; ˇ/ is ˇ–taut if and only if .M 0; 
 [ 
e; ˇ� e/ is
.ˇ� e/–taut.

Suppose that P is an allowable self amalgamating disc in .M; 
; ˇ/ disjoint from Dˇ .
Gluing the components of @P \ ˇ together along the edge of ˇ they traverse and
isotoping it off ˇ creates a product annulus PA . Notice that since P was disjoint
from Dˇ , the annulus PA can be created so that it is disjoint from Dˇ . Furthermore,
if a boundary component of PA is inessential in R.
 /, the disc in R.
 / it bounds is
also disjoint from Dˇ .

If both components of @PA are essential in R.
 /, we decompose along PA . The
parallelism of the edge P \ˇ into PA becomes a cancelling disc in the decomposed
manifold and we cancel the arc P \ˇ as in Section 4.3.2.

If a component of @PA is inessential in R.
 /, we choose one such component ı and
let � be the disc in R.
 / that it bounds. Let D be the pushoff of PA[� so that it
is properly embedded. We decompose along D . As described in [10, Lemma 2.4],
after amalgamating arcs and converting an arc to a suture, the decomposed sutured
manifold is equivalent to the sutured manifold obtained by decomposing along PA .
By [9, Lemma 4.2] and [10, Lemmas 2.3 and 2.4], if .M; 
; ˇ/ is band-taut, so is the
decomposed sutured manifold.

4.4 Decomposing by rinsed surfaces

In the previous sections, we have seen how surfaces satisfying (BD) can be used to
construct decompositions of banded sutured manifolds and how the presence of a
product surface can be used to construct a band-taut decomposition of a band-taut
sutured manifold. In this section we show that, in the presence of nontrivial second
homology, we can find a rinsed surface giving a band-taut decomposition of a band-taut
sutured manifold. We begin with some preliminary lemmas that simplify the search for
such a surface.
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Lemma 4.6 Suppose that S is a conditioned or rinsed surface in .M; 
; ˇ/. Then
the surface Sk obtained by double curve summing S with k copies of R.
 / for any
k � 0, is conditioned or rinsed, respectively. Furthermore, if S is rinsed and satisfies
conditions (2) and (3) of (BD) in the definition of band decomposing surface, then Sk

does also.

Proof By induction, it suffices to prove the Lemma when k D 1. We have already
observed that @Sk is conditioned. Since S satisfies (C3), it is obvious that Sk does
also.

If S is rinsed, then the algebraic intersection number of S with cˇ is zero. Since R.
 /

is disjoint from cˇ , the surface Sk also has this property. Suppose that F is a closed
component of Sk (with k D 1). Since S satisfies condition (C2), no component of Sk

is a separating closed surface intersecting S . Any closed component of Sk must,
therefore, be parallel to a component of R.
 / and bounds a region of parallelism
intersecting ˇ only in vertical arcs. Consequently, if S is rinsed, so is Sk . Finally,
if S satisfies conditions (2) and (3) of (BD), it follows immediately from (C0) and
(C1) that Sk also satisfies (2) and (3) of (BD).

Lemma 4.7 Suppose that .M; 
; ˇ/ is band-taut and that S is a rinsed surface satisfy-
ing conditions (2) and (3) of (BD) in the definition of band-decomposing surface. Then
after an isotopy relative to @S to minimize the pair .jS \Dˇj; jS \ cˇj/ with respect
to lexicographic order, the surface S is a band decomposing surface satisfying (BD).

Proof If c4 or c8 lies in A.
 /, since @S is conditioned, condition (4) or (5) of (BD)
is satisfied for that component. If c4 or c8 lies in eˇ , then by condition (C3) in the
definition of rinsed, condition (4) or (5) of (BD) is satisfied for that component. Thus,
we need only show that S satisfies condition (1) of (BD).

Each arc of S \Dˇ intersects cˇ at most once, by our initial isotopy of S . Suppose
that a component � of S \Dˇ joins c4 to c8 . Since S has algebraic intersection
number zero with cˇ , there exists another arc �0 intersecting cˇ but with opposite sign.
By conditions (2) and (3) of (BD), at least one endpoint of �0 must lie on c4 or c8 .
Without loss of generality, assume it to be c4 . Since S always intersects c4 with the
same sign, � and �0 intersect c4 with the same sign. Since the signs of intersection of
each of � and �0 with cˇ are the same or opposite of their intersections with c4 , and
since they intersect c4 with the same sign, � and �0 intersect cˇ with the same sign.
This contradicts the choice of �0 . Hence no arc joins c4 to c8 . Thus, every arc joins
either the top or bottom of Dˇ to either c4 or c8 . A similar argument shows that if �
and �0 are arcs each with an endpoint on c8 (or each with an endpoint on c4 ) and each
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intersecting cˇ then they intersect cˇ with the same sign. It follows that if S \ cˇ is
nonempty, then precisely one of the following happens:

(1) There are equal numbers of arcs joining c5 to c8 as there are arcs joining c1

to c4 and there are no other arcs.

(2) There are equal numbers of arcs joining c3 to c8 as there are arcs joining c7

to c4 and there are no other arcs.

It follows that conclusion (1) of (BD) holds and so S is a band-decomposing surface.

The previous two lemmas produce a rinsed band decomposing surface from a given
rinsed surface. The next lemma produces a rinsed band decomposing surface from a
given homology class.

Lemma 4.8 Suppose .M; 
; ˇ/ is a band-taut sutured manifold and y 2H2.M; @M /

is nonzero. Then there exists a rinsed band-decomposing surface S in M represent-
ing ˙y .

Proof Let C be a conditioned 1–manifold in @M representing @y . Isotope C so
that:

(a) Each circle component of C \A.
 / is contained in a collar of @R.
 / that is
disjoint from @cˇ .

(b) Each arc component of C \A.
 / is disjoint from @Dˇ \A.
 /.

Let † be a surface representing y with @† D C . Discard any separating closed
component of †. The surface † is a decomposing surface. We now proceed to
modify it to obtain the surface we want. We begin by arranging for the surface to have
nonpositive algebraic intersection number with cˇ .

Let i be the algebraic intersection number of † with cˇ . If i > 0, let x† be the result of
reversing the orientation of † and let xC D @x†. Notice that † represents �y and that
the algebraic intersection between x† and cˇ is nonpositive. If xC is not conditioned,
perform cut and paste operations of x† with copies of subsurfaces of R.
 / to produce
a surface †0 having conditioned boundary C 0 and satisfying (a) and (b). Since R.
 /

is disjoint from cˇ , the algebraic (and geometric) intersection number of †0 with cˇ

is the same as the algebraic (and geometric) intersection number of x† with cˇ . This
number is, therefore, negative.
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We may, therefore, assume without loss of generality that we have a surface † such
that C D @† satisfies (a) and (b) and:

(c) † is a conditioned surface representing ˙y .

(d) The algebraic intersection number i of † with cˇ is nonpositive.

By Lemma 4.6 and the fact that R.
 / is disjoint from cˇ , replacing † with the double
curve sum †k of † with k copies of R.
 / does not change (a), (b), (c) or (d).

We now explain why we may also assume that † satisfies conditions (2) and (3) of (BD).
Suppose that @† intersects the top of Dˇ in points of opposite intersection number. At
least one of those points must lie in c1 or c3 . After possibly increasing k and isotoping
a circle component of †\A.
 / into R.
 / (not allowing it to pass through cˇ ) we
may band together points of @†\ c1 or @†\ c3 having opposite intersection number
to guarantee that all points of †\ .c1[ c2[ c3/ have the same intersection number as

 \ c2 . Perform any additional necessary cut and paste operations with subsurfaces
of R.
 / to ensure that † is conditioned. Since R.
 / is disjoint from cˇ , this does not
change i . Since each intersection point of @R.
 / with the top of Dˇ has the same sign
as 
\c2 , we still have the property that @† intersects the top of Dˇ with the same sign
as 
 \c2 . Similarly, we can guarantee that @† also always intersects the bottom of Dˇ

with the same sign as 
 \ c6 . This implies that we may assume that † and †k (for
k � 1) satisfies conditions (2) and (3) of (BD) in the definition of band-decomposing
surface. By tubing together points of opposite intersection number, we may also assume
that the geometric intersection number of † and †k with each edge of ˇ is equal to
the algebraic intersection number. From † discard every closed separating component
that does not bound a product region with R.
 / intersecting ˇ in vertical arcs. Thus,
by Lemma 4.7, we may assume that † and †k (for k � 0), in addition to satisfying
(a)–(d), satisfy every requirement for being a rinsed band decomposing surface except
that the algebraic intersection number of † and †k with cˇ may possibly be negative.
We now show how to trade (a) for the property that † has algebraic intersection
number 0 with cˇ . We will then have proved our lemma.

Let �˙ be the surface R˙ [ .A˙ � V�.
 //. Let S be the surface obtained by taking
the double curve sum of †k with i copies of �� . Since A� has intersection with cˇ

consisting of a single point with sign C1, S has zero algebraic intersection number
with cˇ . Tube together points with opposite intersection number in the intersection
of S with each component of ˇ � cˇ . Discard any closed separating component.
Isotope S slightly so that all circle components of S \A.
 / are disjoint from 
 .
After discarding any closed separating components of S , we have constructed a rinsed
band-decomposing surface representing ˙y .
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Our next two results, which are based on [9, Theorems 2.5 and 2.6], are the key to
constructing band-taut decompositions. As usual, we let Sk denote the oriented double
curve sum of S with k copies of R.
 /. Recall that S and Sk (for any k�0) represent
the same class in H2.M; @M /. For reference, we begin by stating [9, Theorem 2.5].
(As this is an important theorem for us, we note that the surface R in Scharlemann’s
Theorem need not be R.
 /. Indeed, the statement of the theorem does not mention
sutured manifolds.)

Theorem [9, Theorem 2.5] Given

(1) a ˇ–taut surface .R; @R/ in a ˇ–irreducible 3–manifold .M; @M /,

(2) a properly embedded family C of oriented arcs and circles in @M ��.@R/ which
is in the kernel of the map

H1.@M; �.@R// �!H1.M; �.@R//

induced by inclusion,

(3) y in H2.M; @M / such that @y D ŒC �,

then there is a surface .S; @S/ in .M; @M / such that

(i) @S � �.@R/D C ,

(ii) for some integer m, ŒS; @S �D yCmŒR; @R� in H2.M; @M /,

(iii) for any collection R0 of parallel copies of components of R (similarly oriented),
the double curve sum of S with R0 is ˇ–taut,

(iv) any edge of ˇ which intersects both R and S intersects them with the same sign.

Notice that conclusion (iv) actually follows immediately from conclusion (iii).

Theorem 4.9 Suppose .M; 
; ˇ/ is a band-taut sutured manifold and y2H2.M; @M /

is nonzero. Then there exists a rinsed band-decomposing surface .S; @S/� .M; @M /

satisfying (BD) such that

(i) S represents ˙y in H2.M; @M /,

(ii) ŒS; @S �D˙yC kŒR.
 /; @R.
 /� for some k � 0,

(iii) for any collection R0 of parallel copies of components of R.
 /, the double curve
sum of S with R0 is .ˇ� cˇ/–taut.
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Proof Let † be the rinsed band-decomposing surface obtained from Lemma 4.8.
Let S be the surface given by [9, Theorem 2.5]. (To apply it we let ˇ � cˇ be the
1–complex in the hypothesis of that theorem and RDR.
 / and C D @†� V�.@R/.)

Discard any closed separating component of S and isotope S relative to its boundary
to minimize jS \Dˇj. Our conclusions (i)–(iii) coincide with conclusions (i)–(iii) of
Scharlemann’s Theorem. Since † and S are homologous in H2.M; @†[�.@R.
 //, S

has algebraic intersection number 0 with cˇ . The criteria for S to be a rinsed, band
decomposing surface follow easily from the construction, Lemma 4.7, and that @SD@†
outside a small neighborhood of @R.
 / and inside @S is oriented the same direction
as @R.
 /.

Corollary 4.10 Suppose we have that .M; 
; ˇ/ is a band-taut sutured manifold with
y 2H2.M; @M / nonzero. Then there exists a rinsed band-decomposing surface S�M

representing ˙y such that for all nonnegative k 2 Z, the surface Sk gives a band-taut
decomposition .M; 
; ˇ/

Sk
�! .M 0; 
 0; ˇ0/. Furthermore, if (BT1) does not hold, then

each component of .Dˇ \M 0/�Dˇ0 is a product disc or cancelling disc.

Proof Let S be the surface provided by Theorem 4.9. Let .M 0; 
 0; ˇ0/ be the result
of decomposing .M; 
; ˇ/ using Sk . By Lemmas 4.6 and 4.7, Sk is a rinsed band-
decomposing surface satisfying (BD).

Since the double curve sum of S with .k C 1/ copies of R.
 / is ˇ–taut, R.
 0/ is
.ˇ0� cˇ/–taut, the decomposition

.M; 
; ˇ/
Sk
�! .M 0; 
 0; ˇ0/

is .ˇ� cˇ/–taut. By Lemma 4.2, the decomposition is band-taut and if (BT1) does not
hold then each component of .Dˇ \M 0/�Dˇ0 is a product disc or cancelling disc.

5 Parameterizing surfaces

Let .M; 
; ˇ/ be a sutured manifold with ˇ having endpoints disjoint from A.
 /[T .
 /.
(That is, .M; 
; ˇ/ satisfies (T0).) A parameterizing surface is an orientable surface Q

properly embedded in M � V�.ˇ/ satisfying:

(P1) @Q\A.
 / consists of spanning arcs each intersecting 
 once.

(P2) No component of Q is a sphere or disc disjoint from ˇ[ 
 .
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For a parameterizing surface Q, let �.Q/ denote the number of times that @Q traverses
an edge of ˇ . Define the index of Q to be

I.Q/D �.Q/Cj@Q\ 
 j � 2�.Q/:

Remark In the definition of index given in [9, Definition 7.4], there is also a term
denoted K that is the sum of values of a function defined on the interior vertices
of ˇ . As Scharlemann remarks, that the function can be chosen arbitrarily, and in
this paper we will always choose it to be identically zero. Also, Scharlemann allows
parameterizing surfaces to contain spherical components. No harm is done to [9]
by forbidding them and some simplicity is gained since spherical components have
negative index. Lackenby in [7] has a similar convention.

We define a parameterizing surface in a banded sutured manifold .M; 
; ˇ/ to be a
parameterizing surface Q in .M; 
; ˇ� cˇ/.

If Q is a parameterizing surface and if S �M is a decomposing surface, we say that S

and Q are normalized if they have been isotoped in a neighborhood of A.
 /[T .
 / to
intersect minimally and if no component of S\Q is an inessential circle on Q. It is clear
that if S is ˇ–taut then S and Q can be normalized without increasing the index of Q.
Furthermore, it is not difficult to see that if Q1; : : : ;Qn are parameterizing surfaces,
not necessarily disjoint, then a ˇ–taut decomposing surface S and Q1; : : : ;Qn can
be simultaneously normalized by an isotopy of S and each Qi .

Suppose that .M; 
; ˇ/ S
�!.M 0; 
 0; ˇ0/ is a ˇ–taut decomposition and that Q�M is

a parameterizing surface. If S is a conditioned surface normalized with respect to Q,
we say that the decomposition respects Q if Q\M 0 is a parameterizing surface.

The next lemma is a simple extension of [9, Section 7]. Recall that Sk denotes the
oriented double curve sum of S with k copies of R.
 /.

Lemma 5.1 Suppose that .M; 
; ˇ/
Sk
�!.M 0; 
 0; ˇ0/ is ˇ–taut decomposition with S

a conditioned surface and that Q1; : : : ;Qn are parameterizing surfaces in .M; 
; ˇ/

such that Sk and each Qi are normalized. Then for k large enough, the decomposition
of .M; 
; ˇ/ using Sk respects each Qi and the index of each Qi does not increase
under the decomposition.

Proof Scharlemann [9, Lemma 7.5] shows that for each i , there exists mi 2N such
that if ki �mi , and if Ski

is normalized with respect to a parameterizing surface Qi ,
then Qi \M 0 is a parameterizing surface with index no larger than Qi . Since for
each k , Sk can be normalized simultaneously with Q1; : : : ;Qn , we simply need to
choose k �max.m1; : : : ;mn/.
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Suppose that S is a product disc, product annulus, or disc with boundary in R.
 /.
We say that a parameterizing surface Qc �M is obtained by modifying Q relative
to S if Qc is obtained by completely boundary compressing Q using outermost discs
of S �Q bounded by outermost arcs having both endpoints in R˙ , normalizing Q

and S , and then removing all disc components with boundary completely contained
in R.
 /. Scharlemann proves [9, Lemma 7.6] that modifying a parameterizing surface
does not increase index. Lackenby [7] points out that if Qc is compressible so is Q.

Lemma 5.2 Suppose that .M; 
; ˇ/ S
�! .M 0; 
 0; ˇ0/ is a ˇ–taut decomposition

with S a product disc, product annulus, or disc with boundary in R.
 /. Let Q1; : : : ;Qn

be parameterizing surfaces. Then after replacing each Qi with Qc
i , each of the surfaces

Qc
i \M 0 is a parameterizing surface in M 0 with index no larger than the index of Qi .

Proof This is nearly identical to the proof of Lemma 5.1, but uses [9, Lemma 7.6].

We say that the decomposition described in Lemma 5.2 respects Q.

We now assemble some of the facts we have collected.

Theorem 5.3 Suppose .M; 
; ˇ/ is a band-taut sutured manifold and y2H2.M; @M /

is nonzero. Suppose that Q1; : : : ;Qn are parameterizing surfaces in M . Then there
exists a band-taut decomposition

.M; 
; ˇ/
S
�! .M 0; 
 0; ˇ0/

respecting each Qi with S a rinsed band-decomposing surface representing ˙y .

Proof By Corollary 4.10, there exists a band-taut decomposition

.M; 
; ˇ/
S
�! .M 0; 
 0; ˇ0/

with S a rinsed band-decomposing surface representing ˙y . By Lemma 5.1, if we
replace S with Sk for large enough k , we may assume that the decomposition respects
each Qi .

Similarly we have the following.

Theorem 5.4 Suppose that .M; 
; ˇ/ is a band-taut sutured manifold and that there
exists an allowable product disc or allowable product annulus in M 0 . Let Q1; : : : ;Qn

be parameterizing surfaces in M . Then there exists an allowable product disc or
allowable product annulus P , such that, after modifying each Qi , the decomposition
given by P is band-taut and respects each Qi .

Proof This follows immediately from Lemmas 4.5 and 5.2.
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6 Sutured manifold decompositions and branched surfaces

In [4, Construction 4.16], Gabai explains how to build a branched surface B.H/ from
a sequence of sutured manifold decompositions

HW .M; 
; ˇ/
S1
�! .M1; 
1; ˇ1/

S2
�! � � �

Sn
�! .Mn; 
n; ˇn/:

Essentially, the branched surface is the union
Sn

iD1 Si with the intersections smoothed.
We will call B.H/ the branched surface associated to the sequence H .

Lemma 6.1 If H is a sequence of band-taut sutured manifold decompositions, there
is an isotopy of cˇ (relative to @cˇ ) to an arc a such that the closure of a\ VMn is cˇn

and so that a� cˇn
is embedded in @M [B.H/. Furthermore, there is a proper isotopy

of cˇ in M to .a\B.H//[ cˇn
.

Proof By the definition of “band-taut” decomposition, the decomposition

.Mi ; 
i ; ˇi/
SiC1

���! .MiC1; 
iC1; ˇiC1/

defines an isotopy �i in Dˇi
of cˇi

(relative to its endpoints) to an arc ai such that the
intersection of ai with the interior of MiC1 is the core cˇiC1

. If the decomposition is
of the form (BT1), then the isotopy moves cˇi

into @M [B.H/. By Lemma 4.3, the
intersection of ai with @Dˇi

consists of arcs, each joining an endpoint of cˇi
to an

endpoint of cˇiC1
. Each of these arcs, if not a single point, intersects DˇiC1

in an arc
with one endpoint on @cˇiC1

and the other on a point of @SiC1\ @Dˇi
.

Each �i is also a homotopy of cˇ . Their concatenation is a homotopy � of cˇ . We
desire to show � can be homotoped to provide an isotopy �0 in Dˇ of the arc cˇ

(relative to @cˇ ) to an arc a so that a intersects the interior of Mn in cˇn
and a� cˇn

is embedded in B.H/.

To that end, suppose that i is the smallest index such that the isotopy of cˇi
to cˇiC1

makes cˇ nonembedded. This implies that ai intersects ai�1 . The arc ai�1 lies
in @Dˇi�1

and the arc ai lies in @Dˇi
. The boundary of Dˇi

is the union of portions
of @Dˇi�1

with components of Si \Dˇi�1
. The arcs ai�1 and ai , therefore, intersect

in closed intervals lying in @Dˇi�1
\ @Dˇi

. There are at most two intervals of overlap
and each interval of overlap has one endpoint lying on @Si . These intervals of overlap
can each be homotoped to be a point of @Si \ @Dˇ . This homotopy deforms the
concatenation of the isotopy from cˇi�1

to cˇi
with the isotopy from cˇi

to cˇiC1
to

be an isotopy of cˇ such that cˇ intersects the interior of MiC1 in cˇiC1
and, after the

isotopy, cˇ � cˇiC1
is embedded in B.H/. By induction on i , we create the desired

isotopy of cˇ to a.
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The intersection a\ @M consists of at most two arcs, each with an endpoint at @cˇ

and with the other endpoint at @cˇ1
. There is, therefore, also a proper isotopy of cˇ to

.a\B.H//[ cˇn
.

7 Band-taut hierarchies

Let .M; 
; ˇ/ be a ˇ–taut sutured manifold and suppose that U � T .
 /. A ˇ–taut
sutured manifold hierarchy (cf [10, Definition 2.1]) relative to U is a finite sequence

HW .M; 
 /
S1
�! .M1; 
1/

S2
�! � � �

Sn
�! .Mn; 
n/

of ˇ–taut decompositions for which

(i) each Si is either a conditioned surface, a product disc, a product annulus whose
ends are essential in R.
i�1/, or a disc whose boundary is ˇ–essential in
R.
i�1/ and each Si is disjoint from U ,

(ii) H2.Mn; @Mn�U /D 0.

If U D¿, then we simply call it a ˇ–taut sutured manifold hierarchy.

We say that the hierarchy respects a parameterizing surface Q�M if each decompo-
sition in H respects Q. (Implicitly, we assume that Q may be modified by isotopies
and @–compressions during the decompositions as in Section 5.)

Suppose that .M; 
; ˇ/ is a band-taut sutured manifold. A band-taut hierarchy for M

is a .ˇ� cˇ/–taut sutured manifold hierarchy H for .M; 
; ˇ� cˇ/ with each decom-
position .Mi�1; 
i�1; ˇi�1/

Si
�! .Mi ; 
i ; ˇi/ a band-taut decomposition.

Theorem 7.1 Suppose .M; 
; ˇ/ is a band-taut sutured manifold and Q1; : : : ;Qn are
parameterizing surfaces in M . Then the following are all true.

(1) There exists a band-taut sutured manifold hierarchy

HW .M; 
 /
S1
�! .M1; 
1/

S2
�! � � �

Sn
�! .Mn; 
n/

for M respecting each Qi .

(2) Each surface Si is a band-decomposing surface and if Si is conditioned then it
is also rinsed.

(3) If y 2H2.M; @M / is nonzero, S1 may be taken to represent ˙y .

(4) There is a proper isotopy of cˇ in M to an arc disjoint from S1 .
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(5) Let B.H/ be the branched surface associated to H . There is an isotopy of cˇ in
Dˇ relative to @cˇ to an arc a such that the closure of the arc a\ VMn is cˇn

, the
arc a� cˇn

is embedded in @M [B.H/. Furthermore, there is a proper isotopy
of cˇ in Dˇ to an embedded arc in B.H/.

Proof Let S1 be the surface provided by Theorem 5.3 representing ˙y and giving a
band-taut sutured manifold decomposition .M; 
; ˇ/

S1
�! .M1; 
1; ˇ1/ respecting Q.

Let Q1 be the parameterizing surface in .M1; 
1; ˇ1/ resulting from Q.

If H2.M1; @M1 � U / D 0, we are done. Otherwise, define S2 according to the
instructions below. In the description below, it should always be assumed that if S is
chosen at step (i ), then step (k ) for all k > i will not be applied.

(1) If eˇ1
D ¿ and if Dˇ1

is a boundary parallel disc in M � .ˇ � cˇ/, then let
S2 D cˇ2

DDˇ2
D¿. The decomposition by S2 is of the form (BT1).

(2) If .M1; 
1; ˇ1 � cˇ1
/ contains a cancelling disc or product disc, it contains

one disjoint from Dˇ1
(Lemma 4.4). Let S2 be either a product disc disjoint

from Dˇ1
or the frontier of a regular neighborhood of a cancelling disc disjoint

from Dˇ1
. If S2 is the frontier of a cancelling disc, after decomposing along S2 ,

cancel the edge of ˇ1 adjacent to the cancelling disc.

(3) If .M1; 
1; ˇ1� cˇ1
/ contains a nonself amalgamating disc, amalgamate an arc

component of ˇ1 and let S2D¿. This does not affect the fact that .M1; 
1; ˇ1/

is a band-taut sutured manifold by [9, Lemmas 4.3 and 4.4].

(4) If .M1; 
1; ˇ1� cˇ1
/ contains an allowable product disc choose one S2 that is

disjoint from Dˇ1
(Lemma 4.4). Modify Q1 so that S2 respects Q1 . Decom-

posing along S2 gives a band-taut decomposition by Theorem 5.4.

(5) If .M1; 
1; ˇ1� cˇ1
/ has an allowable self amalgamating disc, choose one that

is disjoint from Dˇ1
. This is possible by Lemma 4.4. If the associated product

annulus has both ends essential in R.
 /, let S2 be that annulus. Otherwise,
let S2 be the disc obtained by isotoping the disc obtained by capping off the
annulus with a disc in R.
 / so that it is properly embedded in M . Modify Q1

so that S2 respects Q1 .

(6) If .M1; 
1; ˇ1�cˇ1
/ has no product discs, cancelling discs, or allowable nonself

amalgamating discs, let S2 be the surface obtained by applying Theorem 5.3 to
an nontrivial element of H2.M2; @M2�U /.

Decompose .M1; 
1; ˇ1/ using S2 to obtain .M 0; 
 0
2
; ˇ0

2
/. If S2 was a disc with

boundary in R.
1/, amalgamate arcs and convert an arc to a suture as in Section 4.3.3.
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By the results of that section, this elimination of nonself amalgamating discs preserves
the fact that the resulting sutured manifold .M2; 
2; ˇ2/ is band-taut. Let Q2 be the
resulting parameterizing surface in M2 .

If H2.M2; @M2�U /D0 we are done. Otherwise, a sutured manifold .M3; 
3; ˇ3/ can
be obtained from .M2; 
2; ˇ2/ by a method analogous to how we obtained .M2; 
2; ˇ2/

from .M1; 
1; ˇ1/. Repeating this process creates a sequence of band-taut sutured
manifold decompositions

HW .M; 
; ˇ/
S1
�! .M1; 
1; ˇ1/

S2
�! .M2; 
2; ˇ2/

S3
�! � � �

respecting Q.

By the proofs of [9, Theorem 4.19] and [10, Theorem 2.5], the sequence

.M1; 
1; ˇ1� cˇ1
/

S2
�! .M2; 
2; ˇ2� cˇ2

/
S3
�! � � �

must terminate in .Mn; 
n; ˇn� cˇn
/ with H2.Mn; @Mn�U /D 0. Consequently, H

is finite. This sequence with all arc cancellations and amalgamations ignored is the
desired hierarchy. If cˇi

¤ ¿ but cˇiC1
D ¿ then, by the definition of band-taut

decomposition, cˇi
can be isotoped in Dˇi

(rel @cˇi
) in @Mi . Conclusions (3) and (4)

follow from Lemma 6.1.

Many arguments in sutured manifold theory require showing that a hierarchy remains
taut after removing some components of ˇ . We will need the following theorem, which
is a slight generalization of what is stated in [10] (and is implicit in that paper and
in [9]).

Theorem 7.2 [10, Lemma 2.6] Suppose that

.M; 
; ˇ/D .M0; 
0; ˇ0/
S1
�! .M1; 
1; ˇ1/

S2
�! � � �

Sn
�! .Mn; 
n; ˇn/

is a sequence of ˇ–taut sutured manifold decompositions in which:

(1) No component of M is a solid torus disjoint from 
 [ˇ .

(2) Each Si is either a conditioned surface, a product disc, a product annulus with
each boundary component essential in R.
i�1/, or a disc D such that

(a) @D �R.
i�1/,
(b) if @D is ˇ–inessential in R.
i�1/ then D is disjoint from ˇ .

(3) If a closed component of Si separates, then it bounds a product region with a
closed component of R.
 / intersecting ˇ in vertical arcs.

Then if .Mn; 
n; ˇn/ is ˇn –taut so is every decomposition in the sequence.
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Proof The only difference between this and what is found in [10] is that we allow
closed components of Si to be parallel to closed components of R.
 /. Decomposing
along such a component creates a sutured manifold equivalent to the original and so
if the sutured manifold after the decomposition is .ˇiC1/–taut, the original must be
.ˇi/–taut.

Remark The reason for stating this generalization of [10, Lemma 2.6] is that in
creating a sutured manifold hierarchy that respects a parameterizing surface we may
need to decompose along the double curve sum Sk of a conditioned surface S with
some number of copies of R.
 /. If S is disjoint from a closed component of R.
 /

then some components of Sk will be closed and separating.

The next corollary is immediate.

Corollary 7.3 Suppose that .M; 
; ˇ/ is a band-taut sutured manifold such that no
component of M is solid torus disjoint from .ˇ� cˇ/[ 
 and that

HW .M; 
 /
S1
�! .M1; 
1/

S2
�! � � �

Sn
�! .Mn; 
n/

is the band-taut sutured manifold hierarchy given by Theorem 7.1. If .Mn; 
n/ is
.ˇn� .eˇn

[ cˇn
//–taut, then .M; 
 / is ˇ� .eˇ [ cˇ/–taut.

Before analyzing the parameterizing surface at the end of the hierarchy, we present
one final lemma in this section. Recall that if b � @M is a simple closed curve and
if Q �M is a surface, then a b–boundary compressing disc for Q is a disc whose
boundary consists of an arc on Q and a subarc of b . Suppose that ˇ �M is an edge
with both endpoints on @M and that b is a meridian of ˇ in the boundary of M � V�.ˇ/.
If Q is a surface in M � V�.ˇ/, we define a ˇ–boundary compressing disc for Q in M

to be a b–boundary compressing disc for Q in M � V�.ˇ/.

The next lemma gives a criterion for determining when a compressing disc or ˇ–
boundary compressing disc for a parameterizing surface at the end of a hierarchy can be
pulled back to such a disc for a parameterizing surface in the initial sutured manifold.

Lemma 7.4 Suppose that

.M; 
; ˇ/
S
�! .M 0; 
 0; ˇ0/

is sutured manifold decomposition respecting a parameterizing surface Q with ˇ a
single arc. Assume that �.Q/ � 1. Let Q0 be the resulting parameterizing surface
in M 0 . Let ˇ0

0
be a component of ˇ0 . Then if the surface Q0 has a compressing disc

or ˇ0
0

–boundary compressing disc with interior disjoint from ˇ0 then the surface Q

has a compressing disc or ˇ–boundary compressing disc.
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Proof Let D be a compressing or ˇ0
0

–boundary compressing disc for Q0 . Either
Q0 D Q � V�.S/ or Q0 D Qc � V�.S/ is obtained by first modifying Q to Qc . If
Q0DQ� V�.S/, then Q0�Q and D is also a compressing or ˇ–boundary compressing
disc for Q. We may, therefore, assume that if Q0 D Qc � V�.S/, then Qc has a
compressing or ˇ–boundary compressing disc E . By a small isotopy we may assume
that E \ @M D¿.

By the construction of Qc , Q can be obtained from Qc by tubing Qc to itself and to
discs with boundary in R.
 / using tubes that are the frontiers of regular neighborhoods
of arcs in R.
 /. The disc E is easily made disjoint from those tubes by a small isotopy,
and so E remains a compressing or ˇ–boundary compressing disc for Q.

8 Combinatorics

We begin this section with a sequence of lemmas concerning sutured manifolds that are
at the end of a band-taut hierarchy. We consider only the situation in which eˇDˇ�cˇ .
Recall from the definition of banded sutured manifold that jeˇj � 2.

Lemma 8.1 Suppose that .M; 
; ˇ/ is a connected band-taut sutured manifold with
H2.M; @M / D 0 and ˇ � cˇ D eˇ . Assume that @M ¤ ¿. Then @M is the union
of one or two spheres, each component of @M contains exactly one disc component
of R� and exactly one disc component of RC , and one of the following holds:

(1) eˇ D¿, j
 j D 1, and M is a 3–ball.

(2) jeˇj D 1, @M is a single sphere, and eˇ has endpoints in the disc components
of R.
 /.

(3) jeˇj D 2, @M is a single sphere, one edge e of eˇ has endpoints in the disc
components of R.
 / and the other edge of eˇ has endpoints either in the same
disc components, in which case j
 j D 1, or in the adjacent annulus components
of R.
 /.

(4) jeˇj D 2, M D S2 � Œ0; 1�, the edges of eˇ are fibers in the product structure
of M ; each component of @M contains a single suture.

Proof Since H2.M; @M / D 0, by the “half lives, half dies” theorem of algebraic
topology, the boundary of M must be the union of spheres. Since M is eˇ –irreducible,
if there is a component of @M that is disjoint from eˇ , then @M must be that sphere and
jeˇj D 0. Since .M; 
; eˇ/ is eˇ –taut, this implies conclusion (1). Assume, therefore,
that jeˇj 2 f1; 2g and that each component of @M is adjacent to a component of eˇ .
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If M contains a sphere which intersects eˇ exactly once, then since R.
 / is eˇ –
incompressible, @M must be the union of two spheres, jeˇj D 1 and j
 j D 0. This
contradicts the definition of banded sutured manifold. Thus, each component of @M
contains at least two endpoints of eˇ . Furthermore, each disc component of R.
 / must
contain an endpoint of eˇ since R.
 / is eˇ –incompressible. We conclude that @M
has no more than two components.

If @M has two components, then each of them must contain two endpoints of eˇ and
so jeˇj D 2. In each component of @M the endpoints of eˇ are contained in disc
components of R.
 /. Each component of Dˇ\@M crosses 
 exactly once and so each
component of @M contains exactly one suture. The frontier of a regular neighborhood
of Dˇ [ @M is a sphere in M � eˇ which must bound a 3–ball in M � eˇ . Thus,
M D S2 � Œ0; 1� and the components of eˇ are fibers. This is conclusion (4).

We may assume, therefore, that @M is a single sphere. Suppose that R� (say) has two
disc components R1 and R2 . The discs R1 and R2 must each contain an endpoint v1

and v2 , respectively, of eˇ . Since .M; 
 / is eˇ –taut, each component of eˇ has one
endpoint in R� and one in RC . Thus, v1 and v2 belong to different components
of eˇ . (Consequently, jeˇj D 2.) Let w1 and w2 be the other endpoints of eˇ (lying
in RC ) so that vi and wi are endpoints of the same edge of eˇ .

If RC has a disc component, then one of w1 or w2 must lie in it. Without loss of
generality, suppose it is w1 . A component of @Dˇ\@M joins w1 to v2 and crosses 

once. The union of the disc component of RC containing w1 with R2 is a sphere
and so @M contains more than one component, a contradiction. This implies that
if R˙ contains two discs, then R� cannot contain any. Since @M is a sphere, R.
 /

contains exactly two discs. Hence, all other components of R.
 / are annuli. We see,
therefore, that if j
 j is even then R˙ contains two discs and all other components
of R.
 / are annuli and if j
 j is odd then each of R� and RC contains a disc and all
other components of R.
 / are annuli.

If jeˇj D 1, then since one endpoint of eˇ is in R� and the other is in RC and since
each disc component of R.
 / contains an endpoint, conclusion (2) holds. Assume,
therefore, that jeˇj D 2. Suppose, for the moment, that some disc component D

of R.
 / contains two endpoints of eˇ . These endpoints must belong to different
components of eˇ . Each component of @Dˇ\@M joins endpoints of eˇ and crosses 

once. Thus, the other endpoints of eˇ are in the component of R.
 / adjacent to D .
This component must, therefore be a disc and so (3) holds. We may assume, therefore,
that each disc component of R.
 / contains exactly one endpoint of eˇ .

Suppose that j
 j is odd. Let D˙ be the disc component of R˙ . Each contains an
endpoint v˙ of eˇ . If v� and vC do not belong to the same arc of eˇ , then the other
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endpoint of the arc containing vC lies in the component of R.
 / adjacent to D� , since
each component of Dˇ \M intersects 
 exactly once. But this component must lie
in RC and so a component of eˇ has both endpoints in RC , a contradiction. Thus, v�
and vC are endpoints of the same component of eˇ , and the fact that each component
of Dˇ \ @M intersects 
 exactly once immediately implies conclusion (3).

Suppose that j
 j is even. Then both disc components of R.
 / lie, without loss of
generality, in R� . Each contains exactly one endpoint of eˇ . All other components
of R� are annuli disjoint from ˇ . Thus, xeˇ

.R�/ D 0. The surface RC is the
union of annuli, one or two of which contain the two endpoints of eˇ \RC . Thus,
xeˇ

.RC/D 2. The union R� [A.
 / is a surface with boundary equal to @RC and
homologous to RC in H2.M; @RC/. Consequently, RC is not xeˇ

–minimizing, and,
therefore, not eˇ –taut. This contradicts our hypotheses. Hence, j
 j cannot be even
and so each of R˙ contains a single disc.

Lemma 8.2 Suppose that .M; 
; ˇ/ is a connected band-taut manifold such that
H2.M; @M /D 0, @M is connected and nonempty, and ˇ� cˇ D eˇ . Then the number
of sutures j
 j is odd and there is an edge component e of eˇ such that .M; 
; e/ is
e–taut. Furthermore, if .M; 
 / is not ¿–taut, then either j
 j � 3 or M is a nontrivial
rational homology ball.

Proof Lemma 8.1 implies that either .M; 
 / is a 3–ball with a single suture in its
boundary or one of the following occurs:

� jeˇj D 1, and R� and RC each contain a single disc. The intersection of these
discs with eˇ is the endpoints of an edge e of eˇ .

� jeˇj D 2, R� and RC each contain a single disc. Unless j
 j D 1, there is a
component e of eˇ such that the intersection of the disc components of R.
 /

with eˇ is the endpoints of e . If j
 j D 1, then that intersection contains all the
endpoints of eˇ .

Let e be an edge of eˇ having endpoints in the disc components of R.
 /. Since e

does not have both endpoints in R˙ , and since R.
 / contains exactly two disc
components, 
 consists of an odd number of parallel sutures on the sphere @M .

We claim that .M; 
; e/ is e–taut. Since R.
 / has two disc components and j
 j is
odd, R� and RC are each e–minimizing. Suppose, first, that S is an e–reducing
sphere. Choose S to minimize jS \Dˇj. An innermost circle argument shows that
S \Dˇ is empty, and so S is disjoint from eˇ . Since M is eˇ –taut, S bounds a ball
disjoint from e , a contradiction. Suppose, therefore, that S is a compressing disc for
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R.
 /� e that is disjoint from e . Since @M is a 2–sphere, there is a 2–sphere in M

intersecting e a single time. Hence, M contains a nonseparating S2 , contradicting
the assumption that H2.M; @M /D 0. Thus, .M; 
; e/ is e–taut.

If M is a 3–ball with a single suture in its boundary, then .M; 
 / is ¿–taut. Thus,
either j
 j � 3 or M is not a 3–ball. The relative long exact sequence for H2.M; @M /

shows that H2.M / D 0 and that H1.M / is isomorphic to H1.M; @M /. Duality
for manifolds with boundary shows that H 1.M / D 0 since H2.M; @M / D 0. The
universal coefficient theorem shows that H 1.M / is isomorphic to the direct sum of
the free part of H1.M / and the torsion part of H0.M /. Thus, H1.M / is finite. This
implies that if M ¤ B3 , then M is a nontrivial rational homology ball, as desired.

The presence of a parameterizing surface can give us more information.

Lemma 8.3 Suppose that .M; 
; e/ is a connected e–taut sutured manifold with e an
edge. Assume that H2.M; @M /D 0. Suppose that Q�M is a parameterizing surface
having no compressing or e–boundary compressing disc. If �.Q/� 1, then one of the
following holds:

(1) M is a 3–ball, j
 j D 1 and e is boundary parallel by a component of Q.

(2) M is a punctured lens space and e is a core of M .

(3) I.Q/� 2�.Q/.

Proof Since Q is a parameterizing surface, no component has negative index. Re-
moving all components of Q that are disjoint from e does not increase index. Since Q

is incompressible, no component of @Q is an inessential circle in @M � e . Since @M
is the union of 2–spheres and since Q has no e–boundary compressing disc, each
arc component of @Q\ @M joins distinct endpoints of e . Since �.Q/ � 1, there is
at least one such arc component. Thus, no component of @Q is an essential circle in
@M � e . Therefore, each component of @Q\ @M is an arc joining the endpoints of e .
Isotope Q so as to minimize @Q\
 . This does not increase I.Q/. Since e is an edge
and .M; 
; e/ is e–taut, j
 j must be odd.

Case 1 j
 j D 1

If some component Q0 of Q is a disc intersecting 
 once, then it is a cancelling disc
for e . This implies that .M; 
 / is ¿–taut. M is, therefore, a 3–ball and e is boundary
parallel by a component of Q.

Suppose, therefore, that some component of Q is a disc intersecting 
 more than
once (and, therefore, running along e more than once). Compressing the frontier of
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�.@M [e/ using that disc produces a 2–sphere which must bound a 3–ball. Hence, M

is a punctured lens space with core e .

If no component of Q is a disc, then no component of Q has positive Euler character-
istic, and so I.Q/� �.Q/Cj@Q\ 
 j D 2�.Q/.

Case 2 j
 j � 3

There are at most �.Q/ components of Q and so �2�.Q/ � �2�.Q/. We have,
therefore, I.Q/� �.Q/Cj@Q\ 
 j � 2�.Q/. Since j
 j � 3 and since all sutures are
parallel, each arc of @Q\ @M intersects 
 at least 3 times. Thus,

I.Q/� �.Q/C 3�.Q/� 2�.Q/D 2�.Q/;

as desired.

The next theorem is the key result of the paper. It applies the combinatorics of the
previous lemmas to the last term of a band-taut hierarchy.

Theorem 8.4 Suppose that .M; 
; ˇ/ is a band-taut sutured manifold with eˇDˇ�cˇ .
Assume that eˇ has components e1 and e2 . Let Q1 and Q2 be parameterizing surfaces
in .M; 
; eˇ/ with Q1\e2DQ2\e1D¿. We allow the possibility that ei DQi D¿
for i 2 f1; 2g.

Then one of the following occurs:

(1) Some Qi has a compressing or ei –boundary compressing disc in .M; 
; ei/.

(2) jeˇj D 2 and M contains an S2 intersecting each edge of eˇ exactly once.

(3) For some i , .M; ei/D .M
0
0
; ˇ0

0
/ # .M 0

1
; ˇ0

1
/, where M 0

1
is a lens space and ˇ0

1

is a core of M 0
1

.

(4) .M; 
 / is ¿–taut. The arc cˇ can be properly isotoped onto a branched surface
B.H/ associated to a taut sutured manifold hierarchy H for M . Also, a proper
isotopy of cˇ in M takes cˇ to an arc disjoint from the first decomposing surface
of H . That first decomposing surface can be taken to represent ˙y for any given
nonzero y 2H2.M; @M /.

(5) Either
I.Q1/� 2�.Q1/ or I.Q2/� 2�.Q2/:

Proof By Theorem 7.1, there exists a band-taut hierarchy

HW .M; 
; ˇ/
S1
�! � � �

Sn
�! .Mn; 
n; ˇn/
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respecting Q1 and Q2 with S1 representing ˙y . By that theorem, there is a proper
isotopy of cˇ in M to an arc disjoint from S1 . Let cˇn

be the core of the band
in Mn . By Theorem 7.1, there is an isotopy of cˇ so that cˇ � cˇn

is embedded in
the union of @M with the branched surface B.H/. At each stage of the hierarchy,
each component of Dˇi

�Si not containing cˇiC1
is a cancelling disc, product disc,

or amalgamating disc (Lemma 4.2), and the hierarchy is constructed so as to eliminate
all such discs. Thus, we may assume that each component of ˇn� .eˇn

[ cˇn
/ is an

arc in a 3–ball component of Mn having a single suture in its boundary; that 3–ball is
disjoint from all other components of ˇn . Deleting such arc components preserves the
.ˇn� cˇn

/–tautness of .Mn; 
n/. Henceforth, we ignore such components.

Either conclusion (1) of our theorem occurs, or by Lemma 7.4, Qi does not have
a compressing or ei –boundary compressing disc in .Mn; 
n; ˇn � .cˇn

[ ej // (with
j ¤ i ). We assume that Qi does not have such a disc.

The manifold Mn has H2.Mn; @Mn/ D 0. Let M 0 denote the component of Mn

containing cˇn
. Let 
 0 D 
 \M 0 . We have H2.M

0; @M 0/D 0. By Lemma 8.1, @Mn

is the union of one or two spheres and one of the following holds:

(a) eˇn
D¿, j
 0j D 1, and M 0 is a 3–ball.

(b) jeˇn
j D 1, @M 0 is a single sphere, each of R� and RC contains a single disc,

and eˇn
has endpoints in the disc components of R.
 /.

(c) jeˇn
j D 2, @M 0 is a single sphere, one edge e of eˇn

has endpoints in the disc
components of R.
 0/ and the other edge of eˇn

has endpoints either in the same
disc components, in which case j
 j D 1 or in the adjacent annulus components
of R.
 0/.

(d) jeˇn
j D 2, M 0 D S2 � Œ0; 1�, the edges of eˇn

are fibers in a product structure
of M 0 . Each component of @M 0 contains a single suture.

If (d) occurs then we have conclusion (2) of our theorem. Assume, therefore, that
neither (1) nor (2) of our theorem occur.

If (a) occurs, then .Mn; 
n/ is ¿–taut and by Corollary 7.3, the sequence H is ¿–
taut. The disc Dˇn

is isotopic into @M 0 and so the hierarchy H can be extended
by a decomposition satisfying (BT1) with empty decomposing surface. This gives
conclusion (4).

Assume, therefore, that jeˇn
j � 1. By Lemma 8.2, j
 0j is odd and there exists an edge e

of eˇn
such that e has both endpoints in disc components of R.
 0/ and .M 0; 
 0; e/

is e–taut. If M 0 is a 3–ball and if e is boundary parallel then, once again, we have
conclusion (4). Assume, therefore, that conclusion (4) does not occur.
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The edge e is a subarc of ei for some i 2 f1; 2g. Let Q0i be the parameterizing surface
in M 0 resulting from Qi . By hypothesis, �.Q0i/ � 1 and Q0i does not have any
compressing or ei –boundary compressing discs. By Lemma 8.3, one of the following
occurs:

(i) M 0 is a punctured lens space and e is a core of M 0 .

(ii) I.Q0i/� 2�.Q0i/.

If (i) happens then we have conclusion (3) of our theorem. If (ii) happens, then using
the facts that I.Qi/� I.Q0i/ and �.Qi/D �.Q

0
i/ we have I.Qi/� 2�.Qi/. This is

conclusion (5) of our theorem.

9 From arc-taut to band-taut

We begin this section by constructing a band-taut sutured manifold from an arc-taut
sutured manifold (that is, a ˇ–taut sutured manifold where ˇ is an arc).

Let .M; 
; ˇ1/ be a ˇ1 –taut sutured manifold with ˇ1 an edge having endpoints in
components of R.
 / with boundary. Let cˇ be obtained by isotoping the endpoints
of ˇ1 into components of A� and AC adjacent to the components of R.
 / containing
the endpoints of ˇ1 . Let ˇ2 be the arc obtained by continuing to isotope cˇ so that
its endpoints are moved across 
 and into R.
 /. Let Dˇ be the disc of parallelism
between ˇ1 and ˇ2 that contains cˇ . Let ˇ D ˇ1 [ cˇ [ˇ2 . We call .M; 
; ˇ/ the
associated banded sutured manifold.

Lemma 9.1 If .M; 
; ˇ1/ is a ˇ1 –taut sutured manifold with ˇ1 an edge, then
.M; 
; ˇ/ is a band-taut sutured manifold.

Proof Without loss of generality, we may assume that M is connected. Recall that
eˇ D ˇ1[ˇ2 . We desire to show that .M; 
; eˇ/ is eˇ –taut. Clearly, since M �ˇ1 is
irreducible, M � eˇ is irreducible. Since eˇ is disjoint from T .
 /, T .
 / is taut. It
remains to show that R˙ is eˇ –taut.

Let S be a eˇ –taut surface with @SD@R˙ and ŒS; @S �D ŒR˙; @R˙� in H2.M; @R˙/.
Out of all such surfaces, choose S to intersect Dˇ minimally.

Since S is eˇ –taut and since Dˇ is a disc, no component of S \Dˇ is a circle or
an arc with both endpoints on the same component of eˇ . Since @S D @R˙ , the
intersection S \Dˇ contains exactly two arcs having an endpoint on @M . Since S

and R˙ are homologous, the algebraic intersection number of each surface with each
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component of eˇ is the same. Since S is eˇ –taut, the geometric intersection number
of S with each component of eˇ equals the absolute value of the algebraic intersection
number. Consequently, S intersects each component of eˇ exactly once. This implies
that S \Dˇ consists exactly of two arcs each joining @M to eˇ and S intersects both
components of eˇ .

Suppose, for a moment, that some disc component R1 of R˙ is disjoint from ˇ1

but not from eˇ . Let R2 be the component of R� adjacent to R1 . Since R1 is
adjacent to ˇ2 , R2 must be adjacent to ˇ1 . Consequently, R1 is a ˇ1 –compressing
disc for R2 . This contradicts the fact that R2 is ˇ1 –incompressible. We conclude that
no component of R˙ is a disc disjoint from ˇ1 but not from ˇ2 . Consequently,

xeˇ
.R˙/D xˇ1

.R˙/C 1:

Without loss of generality, we may assume that S contains no sphere component disjoint
from eˇ . Thus, if S0 is a component of S , then either xeˇ

.S0/D��.S0/CjS0\eˇj

or S0 is a disc disjoint from eˇ . Suppose that S0 is a disc disjoint from eˇ and let R

be the component of R˙ with @S � @R. Since R is ˇ1 –incompressible, R must be a
disc disjoint from ˇ1 . By the previous paragraph, R is also disjoint from ˇ2 . This
implies that the component of @M containing R is a 2–sphere disjoint from eˇ and
containing a single suture. Since M is ˇ1 irreducible, this implies that M is a 3–ball
disjoint from ˇ1 and having a single suture in its boundary, a contradiction. Thus, no
component of S is a disc disjoint from eˇ and xeˇ

.S/D��.S/CjS \ eˇj.

Similarly, if S0 is a component of S then either xˇ1
.S0/D��.S0/CjS0\ˇ1j or S0

is a disc disjoint from ˇ1 . The component of R˙ containing @S0 is ˇ1 –incompressible
and so must be a disc disjoint from ˇ1 . As before, this implies that M is a 3–ball
disjoint from ˇ1 with a single suture in its boundary. This contradicts our hypotheses
and so xˇ1

.S/D��.S/CjS \ˇ1j. Consequently,

xeˇ
.S/D xˇ1

.S/C 1:

Since R˙ is ˇ1 –minimizing, we have

xˇ1
.R˙/� xˇ1

.S/:

Hence,
xeˇ

.R˙/� 1� xeˇ
.S/� 1;

and so
xeˇ

.R˙/� xeˇ
.S/:

Since S is eˇ –minimizing, R˙ must be as well.
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If R˙ were eˇ –compressible by a compressing disc D , the boundary of D would have
to be ˇ1 –inessential in R˙ . Since ˇ2 has only one endpoint in R˙ , the union of D

with a disc contained in R˙ produces a sphere intersecting ˇ2 exactly once. Since ˇ1

and ˇ2 are parallel, there is a sphere intersecting ˇ1 exactly once transversally. The
components of R.
 / containing the endpoints of ˇ1 are, therefore, ˇ1 –compressible,
a contradiction. Thus R˙ is eˇ –incompressible and so .M; 
; ˇ/ is band-taut.

If .M; 
; ˇ1/ has a parameterizing surface Q1 , the isotopy of ˇ1 to ˇ2 gives an
isotopy of Q1 to a parameterizing surface Q2 for .M; 
; ˇ2/. The next two results
give conditions guaranteeing the existence of such an isotopy that does not increase the
index of the parameterizing surface. First, we define some notation for the statement
of the lemmas.

Let v˙ be the endpoints of ˇ1 . Let ˛˙ be the path from v˙ to the endpoints of ˇ2

defined by the isotopy of ˇ1 to ˇ2 . Let 
˙ be the components of 
 intersecting ˛˙ .
Let n˙ be the number of arc components of @Q1 in a neighborhood of v˙ . Some
arc components may belong to edges of @Q1\R.
 / parallel to ˛˙ . Let m˙ be the
number of those arcs plus the number of circle components of @Q\ 
 parallel to 
˙ .

Lemma 9.2 Assume that any component of @Q1\R.
 / intersecting ˛˙ is a circle
parallel to 
˙ . Then there is an isotopy of Q1 to a parameterizing surface Q2 for
.M; 
; ˇ2/ so that

I.Q2/D I.Q1/C .n�C nC/� 2.m�CmC/:

Proof Each arc component of @Q1\R˙ contributing to m˙ can be isotoped to lie
entirely in R� . Each other arc component of @Q1\R˙ after the isotopy of Q1 to Q2

crosses 
 an additional time. Any component of @Q\R.
 / intersecting ˛˙ can be
isotoped across A.
 / without changing the index of Q, since such a component is
hypothesized to be parallel to 
˙ .

Figure 8 shows an example of an isotopy which decreases index by 1.

Corollary 9.3 Suppose that .M; 
; ˇ1/ is a ˇ1 –taut sutured manifold with ˇ1 an
arc having endpoints on annular components of R.
 /. Suppose also that Q1 is a
parameterizing surface with �.Q1/ � 1 and that those annular components do not
contain any inessential arc or circle of @Q1 \R.
 /. Let .M; 
; ˇ/ be an associated
banded sutured manifold and let Q2 be a parameterizing surface in .M; 
; ˇ2/ isotopic
to Q1 . Then ˇ2 and Q2 can be chosen so that I.Q1/ � I.Q2/ and Q1 \ ˇ2 D

Q2\ˇ1 D¿.
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Figure 8: An example with n˙D 5 and m˙D 3 . The isotopy of the endpoint
v˙ across 
 reduces the index of the parameterizing surface by 1.

Proof Let �˙ be the components of R˙ containing the endpoints of ˇ1 . The surfaces
�˙� @ˇ1 are thrice-punctured spheres. Let RD �˙� @ˇ1 . By hypothesis, each arc
of @Q1 \ R is an essential arc. In particular, @Q1 \ R has at most one isotopy
class of arcs with both endpoints on a single component of @R.
 /. Choose paths ˛˙
from @ˇ1 to A˙ disjoint from any arcs with both endpoints on a single component
of @R.
 /. If there are no arcs with both endpoints on a single component of @R.
 /,
then choose ˛˙ to join @ˇ1 to the component of @�˙ containing the greatest number
of endpoints of @Q1\ �˙ . Any arc of @Q1\R having both endpoints at @ˇ1 forms
a loop parallel to both components of @�˙ \ @R.
 /. Hence, we have satisfied the
hypotheses of Lemma 9.2. In the notation of that Lemma, we have 2m˙ � n˙ .
Thus, I.Q1/� I.Q2/. A small isotopy makes Q1 disjoint from ˇ2 and Q2 disjoint
from ˇ1 .

We can now use Theorem 8.4 to obtain a theorem for arc-taut sutured manifolds where
the arc has endpoints in annulus components of R.
 /.

Theorem 9.4 Suppose that .M; 
; ˇ/ is a ˇ–taut sutured manifold with ˇ a single
edge. Let Q be a parameterizing surface in M with �.Q/ � 1. Assume that the
endpoints of ˇ lie in annulus components �˙ of R˙ and that no arc or circle of
@Q\ �˙ is inessential. Then one of the following is true:

(1) Q has a compressing or ˇ–boundary compressing disc.

(2) .M; ˇ/ D .M 0
0
; ˇ0

0
/ # .M 0

1
; ˇ0

1
/, where M 0

1
is a lens space and ˇ0

1
is a core

of M 0
1

.
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(3) .M; 
 / is ¿–taut. The arc ˇ can be isotoped relative to its endpoints to be
embedded on the union of @M with a branched surface B.H/ associated to a
taut sutured manifold hierarchy H for M . Furthermore, there is a proper isotopy
of ˇ in M to an arc disjoint from the first decomposing surface of H . That
first decomposing surface can be taken to represent ˙y for any given nonzero
y 2H2.M; @M /.

(4) We have
I.Q/� 2�.Q/:

Proof Let e1Dˇ . By Corollary 9.3, the endpoints of ˇ1 can be isotoped across A.
 /

to create an arc e2 and an associated banded sutured manifold .M; 
; y̌/. By Lemma 9.1,
this sutured manifold is band-taut. By Corollary 9.3, the isotopy can be chosen so that
QDQ1 is isotoped to a surface Q2 disjoint from e1 such that I.Q2/� I.Q1/. By a
small isotopy, we can make Q1\ e2 DQ2\ e1 D¿. (The surfaces Q1 and Q2 may
intersect.) By Theorem 8.4, one of the following happens:

(a) Some Qi has a compressing or ei –boundary compressing disc in .M; 
; ei/.

(b) M contains an S2 intersecting each of e1 and e2 exactly once.

(c) For some i , .M; ei/D .M
0
0
; ˇ0

0
/ # .M 0

1
; ˇ0

1
/, where M 0

1
is a lens space and ˇ0

1

is a core of a genus one Heegaard splitting of M 0
1

.

(d) .M; 
 / is ¿–taut. The arc c y̌ can be isotoped relative to its endpoints to be
embedded on the branched surface associated to a taut sutured manifold hierarchy
for M . Furthermore, there is a proper isotopy of c y̌ in M to an arc disjoint
from the first decomposing surface of the hierarchy. That first decomposing
surface can be taken to represent ˙y for any given nonzero y 2H2.M; @M /.

(e) Either
I.Q1/� 2�.Q1/ or I.Q2/� 2�.Q2/:

Since each .ei ;Qi/ is isotopic to .ˇ;Q/, possibility (a) implies conclusion (1) of
our theorem. Possibility (b) cannot occur since that would imply that there was a ˇ–
compressing disc for R.
 /. Possibility (c) implies conclusion (2), since ei is isotopic
to ˇ . Possibility (d) implies conclusion (3). Possibility (e) implies conclusion (4) since
I.Q/D I.Q1/� I.Q2/ and �.Q/D �.Q2/D �.Q1/.

We can now prove Theorem 10.7 for the case when the components of R.
 / adjacent
to b are thrice-punctured spheres. It is really only a slight rephrasing of Theorem 9.4.
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Theorem 9.5 Suppose that .N; 
 / is a taut sutured manifold and that b� 
 is a curve
adjacent to thrice-punctured sphere components of R.
 /. Let Q be a parameterizing
surface in N with jQ\ bj � 1 and with the property that the intersection of Q with
the components of R.
 / adjacent to b contains no inessential arcs or circles. Let ˇ be
the cocore in N Œb� of a 2–handle attached along b . Then one of the following is true:

(1) Q has a compressing or b–boundary compressing disc.

(2) .N Œb�; ˇ/D .M 0
0
; ˇ0

0
/ # .M 0

1
; ˇ0

1
/, where M 0

1
is a lens space and ˇ0

1
is a core of

a genus one Heegaard splitting of M 0
1

.

(3) .N Œb�; 
 � b/ is ¿–taut. The arc ˇ can be properly isotoped to be embedded
on a branched surface B.H/ associated to a taut sutured manifold hierarchy H
for N Œb�. There is also a proper isotopy of ˇ in N Œb� to an arc disjoint from the
first decomposing surface of H . That first decomposing surface can be taken to
represent ˙y for any given nonzero y 2H2.N Œb�; @N Œb�/.

(4) We have
�2�.Q/CjQ\ 
 j � 2jQ\ bj:

Proof Let M D N Œb�. Convert the suture b to an arc ˇ . Since .N; 
 / is ¿–taut,
.M; 
 � b; ˇ/ is ˇ–taut. The theorem then follows immediately from Theorem 9.4.

10 Separating sutures on genus two surfaces

In this section, we prove Theorem 10.7 for the case when b is adjacent to once-
punctured tori. The key idea is to create a band-taut sutured manifold by viewing a
certain decomposition of the original sutured manifold in three different ways.

We say that a sutured manifold .M; 
; ˇ/ is almost taut if it satisfies (T1), (T2) from
Section 3 and also:

(AT) ˇ is a single edge and either has both endpoints in distinct components of
T .
 / or has both endpoints in distinct components of A.
 /.

The strategy is to begin with an arc-taut sutured manifold MCD .M; 
; ˇC/ where ˇC
is an arc having endpoints in distinct torus components of R.
 /. Convert it to an
almost taut sutured manifold M0D .M; 
; cˇ/ where cˇ has endpoints in distinct torus
components of T .
 /, produce a so-called “almost taut decomposition” of M0 resulting
in an almost taut sutured manifold M 0

0
D .M 0; 
 0; c0

ˇ
/, convert M 0

0
to a band-taut

sutured manifold .M 0; 
 0; ˇ0/ and then appeal to Theorem 8.4. Along the way we will
also have to analyze the behaviour of parameterizing surfaces.
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We establish the following notation.

Let MCD .M; 
; ˇC/ be a sutured manifold, with ˇC an arc having endpoints in torus
components T� � R�.
 / and TC � RC.
 /. Let M� D .M; 
; ˇ�/ be the sutured
manifold resulting from moving T� into RC , moving TC into R� and performing
a small isotopy of ˇC to an arc ˇ� disjoint from ˇC . Let M0 D .M; 
; cˇ/ be the
sutured manifold resulting from moving T D T�[TC into T .
 / and performing a
small isotopy of ˇC to an arc cˇ that is disjoint from ˇC[ˇ� .

10.1 Preliminary tautness results

The next lemma is straightforward to prove, and so we omit the proof.

Lemma 10.1 If MC is ˇC–taut, then M0 is almost taut.

Now suppose that we are given an almost taut sutured manifold M 0
0
D .M 0; 
 0; cˇ0/

with the endpoints of cˇ0 in A.
 /. We create a banded sutured manifold .M 0; 
 0; ˇ0/ as
follows. Isotope the endpoints of cˇ0 out of A.
 0/ and into R.
 0/ so that one endpoint
lies in R� and the other in RC . (We require that once the endpoints leave A.
 0/

they do not reenter it during the isotopy.) Since the endpoints of cˇ0 lie in distinct
components of A.
 0/, up to ambient isotopy of M 0 (relative to A.
 0/) there are two
ways of isotoping cˇ0 so that the endpoints lie in R.
 0/. Let M 0

� D .M
0; 
 0; ˇ0�/ and

M 0
C D .M

0; 
 0; ˇ0C/ denote the two ways of doing this. Perform the isotopies so that
cˇ0 , ˇ0C , and ˇ0� are pairwise disjoint. Let ˇ0 denote their union, and let Dˇ0 be an
(embedded) disc of parallelism between ˇ0� and ˇ0C that contains cˇ0 in its interior.
Then .M 0; 
 0; ˇ0/ is a banded sutured manifold. We say that it is a banded sutured
manifold derived from M 0

0
. The next lemma gives criteria guaranteeing that the derived

sutured manifold is band-taut.

Lemma 10.2 Suppose that .M 0; 
 0; cˇ0/ is a cˇ0 –almost taut connected sutured mani-
fold and that .M 0; 
 0; ˇ0/ is a derived banded sutured manifold. Suppose that no sphere
in M 0 intersects cˇ0 exactly once transversally. If no component of R.
 0/ containing
an endpoint of eˇ0 D ˇ

0
�[ˇ

0
C is a disc and if �.R�/D �.RC/, then .M 0; 
 0; ˇ0/ is

band-taut.

Proof Since each component of eˇ0 is isotopic to cˇ0 and since no sphere separates
the components of eˇ0 , .M 0; 
 0; eˇ0/ is eˇ0 –irreducible.

Suppose that R˙ is eˇ0 –compressible by a disc D . Since R˙ is cˇ0 –incompressible,
the boundary of D bounds a disc D0 �R˙ containing one or two endpoints of eˇ0 .
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If it contains two endpoints, they must be endpoints of different components of eˇ0 .
Then D [D0 is a sphere in M 0 intersecting an edge of eˇ0 in a single point. Since
each edge of eˇ0 is isotopic to cˇ0 , there is a sphere in M 0 intersecting cˇ0 in a single
point, contrary to hypothesis.

Let S be a surface representing ŒR˙; @R˙� in H2.M
0; @R˙/ such that:

� S is eˇ0 –incompressible.

� S intersects each edge of eˇ0 always with the same sign.

We wish to show that xeˇ0
.R˙/� xeˇ0

.S/.

Isotope S , relative to @S , to minimize the pair .jDˇ0\S j; jcˇ0\S j/ lexicographically.
An innermost disc argument shows that S intersects Dˇ0 in arcs only. An outermost
arc argument shows that each of these arcs has an endpoint on @M or joins ˇ0� to ˇ0C .
Since S represents ŒR˙; @R˙�, the algebraic intersection of S with each component
of eˇ0 is ˙1 and the algebraic intersection of S with cˇ0 is zero. The absolute value
of the algebraic intersection of S with each edge of eˇ0 is equal to the geometric
intersection number. Since j@S \Dˇ0 j D 2, there are two arcs in S \Dˇ0 . Since the
algebraic intersection number of S with each component of eˇ0 is ˙1, each of ˇ0�
to ˇ0C is incident to exactly one arc of S \Dˇ0 . If an arc of S \Dˇ0 joins ˇ0� to ˇ0C ,
then S would have algebraic intersection number ˙1 with cˇ0 . This contradicts the
fact that .S; @S/ is homologous to .R˙; @R˙/. Thus, neither arc joins ˇ0� to ˇ0C .
Similarly, since S \Dˇ0 contains two arcs and since each of ˇ0� and ˇ0C intersects an
arc and since they don’t intersect the same arc, each arc of S \Dˇ0 joins @M 0 to eˇ0 .
Since S has zero algebraic intersection with cˇ0 , as in Figure 9, either these arcs are
both disjoint from cˇ0 or they each intersect cˇ0 exactly once.

Case 1 The arcs S \Dˇ0 are disjoint from cˇ0 .

By the eˇ0 –irreducibility of M and our hypotheses, we may assume that no component
of S is a sphere intersecting eˇ0 one or fewer times. Let nS be the number of
components of S that are discs intersecting eˇ0 exactly once. Similarly, we may
assume that no component of R.
 0/ is a sphere intersecting eˇ0 one or fewer times.
Recall that no component of R.
 0/ containing an endpoint of eˇ0 is a disc. We have

xeˇ0
.R˙/D xcˇ0

.R˙/C 2;

xeˇ0
.S/D xcˇ0

.R˙/C 2� nS :

If a component of S is a disc intersecting eˇ0 once, then either it is a cˇ0 –compressing
disc for the component of R˙ sharing its boundary, or that component is a disc.
Since R˙ is cˇ0 –taut and since no sphere intersects an edge of eˇ0 once, that component
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cˇ0

cˇ0

S

S

S

S

Figure 9: The two possible kinds of intersection between S and Dˇ0 (for the
case when S is homologous to RC )

of R˙ must be a disc intersecting eˇ0 once, contradicting our hypotheses. Thus, nSD0.
It then follows that since R˙ is xcˇ0

–minimizing, xeˇ0
.R˙/� xeˇ0

.S/. Hence, R˙
is eˇ0 –taut.

Case 2 The arcs S \Dˇ0 are not disjoint from cˇ0 .

Since the endpoints of cˇ0 are in different components of A.
 0/, we can isotope S

so that @S moves across A.
 0/ and so that S is made disjoint from cˇ0 . Call the
resulting surface S 0 . We have @S 0 D @R� . The intersection between S 0 and Dˇ0 is
as in Figure 10. An isotopy of S 0 relative to @S 0 makes S 0 disjoint from cˇ0 .

cˇ0S 0
S 0

Figure 10: The intersection between S 0 and Dˇ0 (for the case when S is
homologous to RC )

Let S 00 D S 0[T .
 0/. Since ŒS; @S �D ŒR˙; @R˙�, we have ŒS 00; @S 00�D ŒR�; @R��.
We note that S 00 is eˇ0 –incompressible and that it always intersects each edge of eˇ0

with the same sign. Consequently, by Case 1 and the fact that R� and RC have the
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same Euler characteristic,

xeˇ0
.R˙/D xeˇ0

.R�/� xeˇ0
.S 00/D xeˇ0

.S/:

Hence, R˙ is xeˇ0
–minimizing and is, therefore, eˇ0 –taut.

We have proved that, in either case, R˙ is eˇ0 –taut. It is easy to show that T .
 0/ is
eˇ0 –taut and, therefore, that .M; 
; eˇ0/ is eˇ0 –taut. Consequently, .M 0; 
 0; eˇ0 [ cˇ0/

is band-taut.

We say that a sutured manifold decomposition

.M; 
; cˇ/
S
�! .M 0; 
 0; cˇ0/

is almost taut if S is disjoint from cˇ (and so cˇ D cˇ0/ and both .M; 
; cˇ/ and
.M 0; 
 0; cˇ0/ are almost taut.

10.2 Almost taut decompositions

To create almost taut decompositions, we recall the definition of “Seifert-like” homology
class from the introduction: a class y 2H2.M; @M / is Seifert-like for the union T

of two torus components of @M , if the projection of y to the first homology of each
component is nonzero. By the “half lives, half dies” theorem from algebraic topology,
there are nonzero classes in the first homology of each component of T that are the
projections of the boundary of classes y1;y2 2H2.M; @M /. If neither y1 nor y2 is
Seifert-like for T , then summing them produces a Seifert-like homology class. Thus,
if @M has two torus components, there is a class in H2.M; @M / that is Seifert-like for
their union. The next two lemmas show how to construct an almost taut decomposition,
given a Seifert-like homology class.

Lemma 10.3 Suppose that .M; 
; cˇ/ is a cˇ –almost taut sutured manifold, with cˇ

an arc having both endpoints on torus components T of T .
 /. Let y be a Seifert-like
homology class for T . Then there exists a conditioned surface S representing y and
disjoint from cˇ , such that the double curve sum Sk of S with k copies of R.
 / is
cˇ –taut for any k � 0. Hence, the decomposition

.M; 
; cˇ/
Sk
�! .M 0; 
 0; cˇ/

is cˇ –almost taut for any k � 0.

Proof Claim 1 There exists a conditioned surface † representing y disjoint from cˇ .
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Standard arguments show that there exists a conditioned surface representing y . Out
of all such surfaces, choose one † that minimizes j†\ cˇj. By tubing together points
of opposite intersection, we may assume that the geometric intersection number of †
with cˇ equals the absolute value of the algebraic intersection number. If this number
is nonzero, we may isotope the boundary components of † around a simple closed
curve on one component of T so as to introduce enough intersections of † with cˇ

of the correct sign so that † and cˇ have algebraic intersection number zero. This
does not change the fact that † is conditioned. By tubing together points of opposite
intersection, we obtain a surface contradicting our original choice of †.

Claim 2 There exists a conditioned surface S representing y that is disjoint from cˇ

and which has the property that the double curve sum Sk of S with k � 0 copies
of R.
 / creates a cˇ –taut surface disjoint from cˇ .

We apply [9, Theorem 2.5]. We apply the theorem with R D R.
 /, C D @†, and
y D Œ†�. As noted earlier, Scharlemann’s Theorem applies even in the absence of a
sutured manifold structure, and so there is no problem with applying it in our situation.
Since R.
 / is disjoint from cˇ , each of the surfaces Sk is disjoint from cˇ .

Claim 3 The manifold .M 0; 
 0; cˇ0/ obtained by decomposing .M; 
; ˇ/, using Sk

from Claim 2, is cˇ0 –almost taut.

Since Sk is disjoint from cˇ , we have cˇ0 D cˇ . The endpoints of cˇ lay in distinct
components of T .
 /, so the endpoints of cˇ0 lie in distinct components of A.
 0/. The
surface R.
 0/ is the double curve sum of Sk with R.
 /, ie SkC1 . Thus, R.
 0/ is
cˇ0 –taut. It follows easily that .M 0; 
 0; cˇ0/ is cˇ0 –almost taut.

We now show that starting with an arc-taut sutured manifold, converting it to an almost
taut sutured manifold, applying an almost taut decomposition, and then creating a
banded sutured manifold can result in a band-taut sutured manifold.

Lemma 10.4 Suppose that MC is ˇC–taut and that y 2H2.M; @M / is Seifert-like
for T . Let S be a conditioned surface that represents y and that gives an almost taut
decomposition,

M0
S
�! .M 0; 
 0; cˇ0/:

Then the banded sutured manifold .M 0; 
 0; ˇ0/ derived from .M 0; 
 0; cˇ0/ is band-taut.

Proof Since MC is ˇC–taut and since T has one component in R�.
 / and one in
RC.
 /, �.R�.
 /�T /D�.RC.
 /�T /. Also, since T �MC is ˇC–incompressible,
no sphere in M intersects cˇ0 exactly once transversally. In M 0 , the components of
R.
 0/ adjacent to T \M 0 each contain a copy of a component of S , since S had
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boundary on both components of T . If one of the components of R.
 0/ containing an
endpoint of eˇ0 is a disc, then some component of S with boundary on T must be a
disk. Since S is conditioned and disjoint from cˇ , this implies that a component of T

is compressible in M � cˇ and thus in M �ˇC . This contradicts the fact that MC is
ˇC–taut. Therefore, no component of R.
 0/ containing an endpoint of eˇ0 is a disc.
Thus, by Lemma 10.2, .M 0; 
 0; ˇ0/ is band-taut.

10.3 Parameterizing surfaces

Suppose that MC is ˇC–taut and that y 2H2.M; @M / is Seifert-like for T . Let S

be a conditioned surface representing y and giving an almost taut decomposition,

M0
S
�! .M 0; 
 0; cˇ/:

Let Q�MC be a parameterizing surface.

Lemma 10.5 Assume that no component of @Q\ .T � V�.cˇ// is an inessential arc
or inessential circle in T � cˇ . Let T 0 be a component of T \M 0 . The following are
true:

� @Q\T 0 consists of either essential loops in T 0 or edges joining the components
of @T 0 and edges joining an endpoint of cˇ to a component of @T 0 .

� There are equal numbers of edges joining the endpoint of cˇ to the two compo-
nents of @T 0 .

Proof The lemma follows immediately from the observation that on a component T˙
of T , each arc of @Q\ .T˙ � V�.cˇ// is an essential loop. Such a loop � is either
disjoint from @S or always intersects each component of @S with the same sign of
intersection.

We observe that by Lemma 10.1, M0 is cˇ –almost taut. We do not know that M� is ˇ�–
taut. Let S be a conditioned decomposing surface giving an almost taut decomposition
M0

S
�! .M 0; 
 0; cˇ/. Let .M 0; 
 0; ˇ0/ be the banded sutured manifold derived from

M 0
0
D .M 0; 
 0; cˇ/. By Lemma 10.4, .M 0; 
 0; ˇ0/ is band-taut. The surface S also

gives sutured manifold decompositions of MC and M� , with S disjoint from ˇC
and ˇ� respectively. The resulting sutured manifolds M 0

� and M 0
C can also be obtained

by isotoping the endpoints of c0
ˇ

out of A.
 0/�M 0 and into R.
 /�M 0 . This gives
us the decompositions

MC
S
�! .M 0; 
 0; ˇ0C/DM 0

C;

M�
S
�! .M 0; 
 0; ˇ0�/DM 0

�:
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�1 �2
�3

 1  2  3

�

Figure 11: This is a schematic depiction of the creation of M 0
0

, M 0
C , M 0

� ,
and the banded sutured manifold .M 0; 
 0; ˇ0/ . The arrows �1 , �2 , and
�3 show the decompositions MC ! M 0

C , M0 ! M 0
0

and M� ! M 0
�

respectively. The arrows  1 and  3 , show how M 0
C and M 0

� can be obtained
from M 0

0 by an isotopy of the sutured manifold structure. The arrow � shows
how the banded sutured manifold .M 0; 
 0; ˇ0/ is derived from M 0

0
and is

the result of superimposing the sutured manifolds M 0
C , M 0

0 , and M 0
� . In

all diagrams, the green lines represent the decomposing surface, blue curves
represent annuli A.
 / , and the circle represents a component of T .
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The arcs ˇ0C and ˇ0� are obtained by isotoping the arc cˇ �M 0 so that its endpoints
move out of A.
 /. That is, ˇ0C[ˇ

0
� D eˇ0 . See Figure 11 for a schematic depiction

of the relationship between M 0
� , M 0

C , and M 0
0

.

If Q˙ is a parameterizing surface in M˙ , then we have the decomposed surfaces
Q0
˙
� M 0

˙
. We assume that the ambient isotopy of ˇC to ˇ� takes QC to Q�

and that ˇ� \QC D ˇC \Q� D ¿. We say that the decomposition M˙
S
�!M 0

˙

respects Q˙ if Q0� and Q0C are parameterizing surfaces.

Lemma 10.6 Suppose that M0 , M˙ , S , and Q˙ are as above and that no component
of @Q\ .T � V�.cˇ// is an inessential arc or inessential circle in T �cˇ . Then, for large
enough k , the decompositions

M�
Sk
�!M 0

�; MC
Sk
�!M 0

C;

respect Q, where Sk is the surface obtained by double-curve summing S with k

copies of R.
 /�M0 . If Q0
˙
�M 0

˙
are the resulting parameterizing surfaces, then

I.Q0
˙
/D I.Q/.

Proof Fix k�0 and let M 0
˙
D .M 0; 
 0

˙
; ˇ0
˙
/ be the result of decomposing M˙ by Sk .

Recall that Sk is disjoint from cˇ . Since ˇ� , ˇC , and cˇ are related by isotopies we
may assume that Sk is also disjoint from ˇ�[ˇC . Let M 0

0
D .M 0

0
; 
 0

0
; c0

ˇ
/ be the result

of decomposing M0 by Sk . By Lemma 10.5, no component of @Q0
˙
\ .T \M 0/ is

an inessential loop or arc, and no component has both endpoints on the same boundary
component of T \M 0 . Thus, if q is a disc component of Q0

˙
having boundary

in R.
 0
˙
/, then either @q is disjoint from T \M 0 , or q is a ˇ0

˙
compressing disk for

T \M 0 . If the latter happens, then @q � @Q. This would imply that q was actually
a component of Q that was a ˇC–compressing disk for T . This contradicts the fact
that MC is ˇC–taut. Thus, @q is disjoint from T \M 0 . This implies that @q�R.
 0

0
/.

The proof of Claim 1 of [9, Lemma 7.5] shows that for large enough k , no component
of Q0

˙
is a disc with boundary in R.
 0

0
/. Hence, Q0

˙
is a parameterizing surface

in M 0
˙

. Claim 2 of [9, Lemma 7.5] shows that I.Q0/D I.Q/.

We can now prove the main result of this paper.

Theorem 10.7 Suppose that .N; 
 / is a taut sutured manifold and that F � @N is a
component of genus at least 2. Let b � 
 \F be a simple closed curve such that either
each component of R.
 / adjacent to b is a thrice-punctured sphere or each component
of R.
 / adjacent to b is a once-punctured torus. Let M D N Œb� and let ˇ be the
cocore of the 2–handle attached to b . Let Q�N be a parameterizing surface. Assume
that jQ\ bj � 1 and that the intersection of Q with the components of R.
 / adjacent
to b contains no inessential arcs or circles. Then one of the following is true:
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(1) Q has a compressing or b–boundary compressing disc.

(2) .N Œb�; ˇ/D .M 0
0
; ˇ0

0
/ # .M 0

1
; ˇ0

1
/, where M 0

1
is a lens space and ˇ0

1
is a core of

a genus one Heegaard splitting of M 0
1

.

(3) The sutured manifold .N Œb�; 
 � b/ is ¿–taut. The arc ˇ can be properly
isotoped to be embedded on a branched surface B.H/ associated to a taut sutured
manifold hierarchy H for N Œb�. There is also a proper isotopy of ˇ in N Œb�

to an arc disjoint from the first decomposing surface of H . If b is adjacent to
thrice-punctured sphere components of R.
 /, that first decomposing surface can
be taken to represent ˙y for any given nonzero y 2H2.N Œb�; @N Œb�/. If b is
adjacent to once-punctured tori, the first decomposing surface can be taken to
represent y for any given homology class in H2.N Œb�; @N Œb�/ that is Seifert-like
for the corresponding unpunctured torus components of @N Œb�.

(4) We have
�2�.Q/CjQ\ 
 j � 2jQ\ bj:

Proof By Theorem 9.5, it suffices to prove the statement for the case when b is a
separating suture on a genus two surface. Convert b to an arc ˇC (see Section 4.3.3)
so that we have the ˇC–taut sutured manifold MC D .M; 
 � b; ˇC/. Let T be
the components of R.
 � b/ containing the endpoints of ˇC . Let y 2H2.M; @M /

be Seifert-like for T . By the remarks preceding Lemma 10.3, such a y exists. Let
QC DQ.

Isotope ˇC off itself slightly in two directions to obtain disjoint arcs ˇ� and cˇ . Let
M0 D .M0; 
; cˇ/ be the sutured manifold obtained by moving T into T .
 � b/

and ignoring ˇC[ˇ� . Let M� D .M�; 
; ˇ�/ be the sutured manifold obtained by
swapping the locations of the components of T in R.
 � b/ and ignoring ˇC [ cˇ .
Let Q� be the parameterizing surface in M� obtained by isotoping QC using the
isotopy taking ˇC to ˇ� . By a small adjustment of the isotopy, we may assume that
ˇC\Q� D ˇ�\QCD¿.

Let S be the surface provided by Lemma 10.3, so that the decomposition M0
Sk
�!M 0

0
is

cˇ –almost taut for any given k � 0. Choose k large enough so that the decompositions
M�

Sk
�!M 0

� and MC
Sk
�!M 0

C respect Q. This is possible by Lemma 10.6. Recall
that these decompositions are disjoint from cˇ [ ˇ� [ ˇC , since Sk is obtained by
summing S with copies of R.
 /�M0 (and not R.
 /�M˙ ). Let Q1 DQ0C and
Q2 DQ0� be the resulting parameterizing surfaces in M 0

C and M 0
� respectively. Note

that they are isotopic to each other. By Lemma 10.6, we have I.Q/D I.Q0�/D I.Q0C/.

Recall from Lemma 10.4 that the banded sutured manifold .M 0; 
 0; ˇ0/ derived from
.M 0; 
 0; c0

ˇ
/ is band-taut and that the components ˇ0� and ˇ0C of eˇ are obtained
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by isotopies of c0
ˇ

in M 0
0

. Let e1 D ˇ
0
C and e2 D ˇ

0
C . By Theorem 8.4 one of the

following occurs:

(1) Some Qi has a compressing or ei –boundary compressing disc in .M 0; 
 0; ei/.

(2) M 0 contains an S2 intersecting each of e1 and e2 exactly once.

(3) For some i , .M 0; ei/ has a connect summand that is a lens space and a core.

(4) .M 0; 
 0/ is ¿–taut. The arc cˇ can be properly isotoped onto a branched
surface B.H0/ associated to a taut sutured manifold hierarchy for M 0 .

(5) Either I.Q0
1
/� 2�.Q0

1
/ or I.Q0

2
/� 2�.Q0

2
/.

If (1) holds, then by Lemma 7.4, Q would have a compressing or b–boundary com-
pressing disc in .M; 
 /.

If (2) holds, then there is an S2 in M intersecting ˇC exactly once, contradicting the
fact that MC is ˇC–taut with the endpoints of ˇC in torus components of R.
 /�MC .

If (3) holds, then since ˇC is isotopic to cˇ , there is a (lens space, core) summand
of .M; ˇC/.

If (4) holds, then by Theorem 7.2, since Sk is conditioned .M; 
 / is ¿–taut. By
construction the first decomposing surface is disjoint from the arc. Lemma 6.1 shows,
in fact, that there is an isotopy of cˇ (rel endpoints) to lie on @M 0 [B.H0/. There
is a proper isotopy of cˇ in M to lie on Sk [ B.H0/. Thus, there is a branched
surface B.H/ associated to a taut sutured manifold hierarchy H for .M; 
 / such that
there is a proper isotopy of cˇ into B.H/.

If (5) holds, then since I.Q/D I.Q0
1
/D I.Q0

2
/ and since �.Q1/D �.Q2/D �.Q/,

we have �2�.Q/Cj@Q\ 
 j � 2j@Q\ bj.

11 Tunnel number one knots

In this section we apply Theorem 10.7 to the study of tunnel number one knots and
links. Scharlemann and Thompson [11, Proposition 4.2], proved that given a tunnel
for a tunnel number one knot in S3 , the tunnel can be slid and isotoped to be disjoint
from some minimal genus Seifert surface for the knot.1 We generalize and extend this
result in several ways.

1It is perhaps worth remarking that [11, Proposition 4.2] depends on [11, Lemma 4.1] whose proof
relies on sutured manifold theory. Also, we should note, that Scharlemann and Thompson prove, in fact,
that in many cases the tunnel can be isotoped onto a minimal genus Seifert surface. We will not address
that aspect of their work.
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� Scharlemann and Thompson’s result holds for 2–component tunnel number one
links in S3 .

� A similar theorem applies to all tunnel number one knots and 2–component
links in any closed, orientable 3–manifold. (Of course, if a 3–manifold contains
a tunnel number one knot or link, the 3–manifold has Heegaard genus less than
or equal to two.)

� A given tunnel for a tunnel number one knot or link can be properly isotoped to
lie on a branched surface arising from a certain taut sutured manifold hierarchy
of the knot or link exterior.

We begin with some terminology.

A link C in a closed 3–manifold M is a generalized unlink if each component
of @.M � V�.C // is compressible in the exterior of C . Suppose that Lb �M is a knot
or two-component link and that ˇ is an arc properly embedded in the complement
of Lb . The arc ˇ is a tunnel for Lb if the exterior of Lb[ˇ is a handlebody. If Lb is
a two-component link this implies that ˇ joins the components of Lb . Lb has tunnel
number one if it has a tunnel and is not a generalized unlink.

A generalized Seifert surface S for a knot or link Lb in a closed manifold M is a
compact oriented surface properly embedded in M � V�.Lb/ such that @S consists
of parallel (as oriented curves) longitudes on each component of @.M � V�.Lb//. In
particular, @S has components on each component of @.M � V�.Lb//. If @S has a
single component on each component of @.M � V�.Lb// then S is a Seifert surface
for Lb . A generalized Seifert surface is minimal genus if it has minimal genus among
all generalized Seifert surfaces in the same homology class.

Theorem 11.1 Suppose that Lb �M has tunnel number one and that ˇ is a tunnel
for Lb . Assume also that .M �Lb; ˇ/ does not have a (lens space, core) summand.
Then there exist (possibly empty) curves y
 on @.M� V�.Lb// such that .M� V�.Lb/; y
 /

is a taut sutured manifold and the tunnel ˇ can be properly isotoped to lie on the
branched surface associated to a taut sutured manifold hierarchy of .M � V�.Lb/; y
 /. In
particular, if Lb has a (generalized) Seifert surface, then there exists a minimal genus
(generalized) Seifert surface for Lb that is disjoint from ˇ .

Proof Let W D �.Lb [ˇ/ and let N DM � VW be the complementary handlebody.
Let H D @W . Let b �H be a simple closed curve that is a meridian of ˇ , so that
the exterior N Œb� of Lb can be obtained by attaching a 2–handle to @N along b . The
tunnel ˇ is a cocore of that 2–handle.

Claim H � b is incompressible in N .
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Proof of claim If b is compressible in N , then .W;N / is a reducible Heegaard
splitting for M . Since boundary reducing a handlebody creates a handlebody, Lb

must be a generalized unlink. Suppose that D is a compressing disc for H � b .
If b is separating, then @D must be an essential curve in one of the punctured torus
components of H � b . Compressing that component using D creates a compressing
disc for b in N . Thus, b cannot be separating. If b is nonseparating then either Lb

is a generalized unlink or @D is an inessential curve in @N Œb�. In the latter case, @D
bounds an essential disc in W (obtained by banding together two copies of the disc
in W bounded by b ), so once again .W;N / is a reducible Heegaard splitting for M

and C must be a generalized unlink. Thus, H � b is incompressible in N .

Let Q�N be a pair of properly embedded nonparallel nonseparating essential discs,
chosen so as to intersect b minimally. As a consequence of the claim, no component
of Q is disjoint from b . By the minimality of j@Q\bj, each component of Q\.H�b/

is an essential arc.

If there were a b–boundary compressing disc D for a component Q0 of Q, then
boundary compressing Q0 using D results in two discs, each intersecting b fewer times
than does Q with at least one of them a compressing disc for H in N . Thus, by the
minimality of the intersection between @Q and b , Q has no b–boundary compressing
disc.

If b is separating, choose y
 D¿. If b is nonseparating, we want to choose essential
curves y
 �H � V�.b/ with the following properties:

(1) y
 consists of two essential simple closed curves that are parallel in @N Œb� and
which separate the components of @�.b/.

(2) Each arc component of Q\.H� V�.b// is an arc intersecting y
 zero or one times.

To see that this can be done, recall that the surface H 0DH � V�.b/ is a twice-punctured
torus and that Q\H 0 is a collection of essential arcs. We describe how to find y
 if
each component of Q\H 0 joins the components of @�.b/. We leave the other case
as an exercise. There are at most four disjoint nonparallel essential isotopy classes
c1; : : : ; c4 of arcs in @Q\H 0 . An essential simple closed curve 
1 can be chosen that
is disjoint from representatives of two of the arcs (say c1 and c2 ) and that intersects
representatives of the other two classes in a single point each. Let 
2 be a second
copy of 
1 , isotoped to be disjoint from 
1 . In @N Œb�, push a subarc of 
2 along arcs
of Q� 
1 until it crosses an endpoint of ˇ . Then 
2 intersects c3 and c4 exactly
once and is disjoint from c1 and c2 . By isotoping y
 D 
1[ 
2 in H 0 to intersect @Q
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1


2

H � b

c1
c2

c3 c4

Figure 12: The possible isotopy classes of arcs of @Q \ .H � b/ (up to
homeomorphism of H � b ) and the sutures 
1 and 
2 chosen to intersect
those isotopy classes nicely

minimally we obtain the desired curves. See Figure 12 for a schematic depiction of the
four isotopy classes of arcs and the sutures 
1 and 
2 .

It is now easy to verify .N; y
 [b/ is a taut sutured manifold and j@Q\ y
 j � j@Q\bj.
Since �2�.Q/D�4, it is impossible that

�2�.Q/CjQ\ .y
 [ b/j � 2jQ\ bj:

Consequently, by Theorem 10.7, ˇ can be isotoped to lie on a branched surface
associated to a taut sutured manifold hierarchy of .N Œb�; y
 /.

If Lb has a (generalized) Seifert surface, choose y 2H2.N Œb�; @N Œb�/ to be a class
represented by (generalized) Seifert surfaces for Lb . The first surface S in the sutured
manifold hierarchy constructed in the proof of Theorem 10.7 is a conditioned surface
representing ˙y that is taut in the Thurston norm of N Œb� and is disjoint from ˇ . If †
is a minimal genus (generalized) Seifert surface for Lb representing ˙y , then † can
be isotoped to have the same boundary as S and (possibly after spinning around @N Œb�

and changing orientation) is homologous to S in H2.N Œb�; @S/. Since S has minimal
Thurston norm among all such surfaces, it is a minimal genus (generalized) Seifert
surface for Lb disjoint from ˇ .

Scharlemann and Thompson’s result follows immediately.

Corollary 11.2 (Scharlemann–Thompson) Suppose that K is a tunnel number one
knot or link in S3 with tunnel ˇ then ˇ can be isotoped to be disjoint from a minimal
genus Seifert surface for K .
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