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A family of transverse link homologies

Hao WU

We define a homology H  for closed braids by applying Khovanov and Rozansky’s
matrix factorization construction with potential ax™¥*1. Up to a grading shift, £, is
the HOMFLYPT homology defined by Khovanov and Rozansky. We demonstrate
that for N > 1, Hy is a Z, @ Z®3—graded Q[a]-module that is invariant under
transverse Markov moves, but not under negative stabilization/destabilization. Thus,
for N > 1, this homology is an invariant for transverse links in the standard contact
S3, but not for smooth links. We also discuss the decategorification of 7 and the
relation between H  and the sI(V) Khovanov—Rozansky homology.

57TM25, 57R17

1 Introduction

1.1 Transverse links in the standard contact S 3

A contact structure £ on an oriented 3—manifold M is an oriented tangent plane
distribution such that there is a 1-form « on M satisfying & = kera, da|g¢ > 0 and
o Ada > 0. Such a 1-form is called a contact form for £&. The standard contact
structure £; on S3 is given by the contact form oy = dz — ydx + xdy = dz 4+ r2d#.

We say that an oriented smooth link L in S3 is transverse if o |z > 0. Two transverse
links are said to be transverse isotopic if there is an isotopy from one to the other through
transverse links. In [2], Bennequin proved that every transverse link is transverse
isotopic to a counterclockwise transverse closed braid around the z—axis. Clearly, any
smooth counterclockwise closed braid around the z—axis can be smoothly isotoped
into a transverse closed braid around the z—axis without changing the braid word. In
the rest of this paper, all closed braids are counterclockwise and around the z—axis.

Recall that two closed braids represent the same smooth link if and only if one of them
can be changed into the other by a finite sequence of Markov moves, which are:

e Braid group relations generated by
- O'iO'l-_l = O'l-_IO',' =,
- 0;0j =0j0; when [i — j[>1,

= 0i0i410; = 0;4100j41.
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o Conjugations: j <w> 1~ un, where i, n € B,y,.

e Stabilizations and destabilizations:
— Positive: @ (€ By,) <w> oy (€Byv1).
— Negative: i (€ By) <w> 110, (€Bpy1).

In the above, B, is the braid group on m strands.

The following theorem by Orevkov and Shevchishin [15] and Wrinkle [18] describes
when two transverse closed braids are transverse isotopic.

Theorem 1.1 [15; 18] Two transverse closed braids are transverse isotopic it and
only if the braid word of one of them can be changed into that of the other by a
finite sequence of braid group relations, conjugations and positive stabilizations and
destabilizations.

From now on, braid group relations, conjugations and positive stabilizations and
destabilizations will be called transverse Markov moves. Theorem 1.1 tells us that
there is a one-to-one correspondence:

{ Transverse isotopy classes } { Closed braids modulo }
> .

of transverse links transverse Markov moves

Note that &; admits a nowhere-vanishing basis {0x + yd,,dy — xd,}. For each
transverse link L, this basis induces a trivialization of the normal bundle of L in
S3, that is, a framing of L. We call this framing the contact framing of L. With its
contact framing, any transverse link is also a framed link. It is easy to see that if two
transverse links are transverse isotopic, then they are isotopic as framed links. It is
possible for two transverse links to be non-isotopic as transverse links, but still isotopic
as framed links. If a smooth link type contains two transverse links that are isotopic as
framed links but not as transverse links, then we call this smooth link type “transverse
non-simple”. An invariant for transverse links is called classical if it depends only
on the framed link type of the transverse link. Otherwise, it is called non-classical or
effective (in the sense that it is effective in detecting transverse non-simplicity).

See, for example, Birman and Menasco [4], Etnyre [5], Etnyre and Honda [6], and
Ng [14] for more about transverse links and their invariants.

1.2 The Khovanov-Rozansky homology

In [10], Khovanov and Rozansky introduced an approach to construct link homologies
using matrix factorizations, which consists of the following steps:
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(1) Choose a base ring R and a potential polynomial p(x) € R[x].
(2) Define matrix factorizations associated to MOY graphs using this potential p(x).

(3) Define chain complexes of matrix factorizations associated to link diagrams
using the crossing information.

This approach has been carried out for the following potential polynomials:

e xN*1 ¢ Q[x], which gives the sl(N) Khovanov—Rozansky homology; see
Khovanov and Rozansky [10].

e ax € Q[a, x], which gives the HOMFLYPT homology; see Khovanov and
Rozansky [11].

o xNHI 4 Z;\f:l)\lxl € Q[x], giving the deformed s[(N) Khovanov—Rozansky
homology; see Gornik [8] and Wu [20].

o xNHI 4 Z;\;lalxl € Qlay,...,apn, x], which gives the equivariant sl[(N)
Khovanov—Rozansky homology; see Krasner [12].

Among these link homologies, the HOMFLYPT homology appears somewhat different.
All the other homologies are invariant under all Reidemeister moves. Therefore, these
homologies of a given smooth link can be computed from any diagram of this link.
But the HOMFLYPT homology is only invariant under braid-like Reidemeister moves.
So the HOMFLYPT homology of a smooth link can only be computed from its braid
diagrams.

In [11], Khovanov and Rozansky proposed studying the homology defined by the
potential polynomial Z;\Jzﬁl aix! € Qlay,....an.a N+1,X], which generalizes the
HOMFLYPT homology.

1.3 A family of transverse link homologies

By Theorem 1.1, one can construct an invariant for transverse links by constructing an
invariant for closed braids that is invariant under transverse Markov moves. This is
what we will do in the current paper.

More precisely, we will generalize the construction in [11] to a matrix factorization
construction with the potential polynomial p(x) = ax™¥+! € Q[a, x]. We will:

(1) Work with the potential polynomial ax™*! € Q[a, x].

(2) Define matrix factorizations associated to MOY graphs in Definition 3.5 (see
also equations (3-6) and (3-7)).

(3) Define chain complexes of matrix factorizations associated to link diagrams in
Definition 4.2.
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For each N > 0, this construction gives a Z, @ Z®3—graded homology Hx. Of
course, when N = 0, the homology we get is just the HOMFLYPT homology with
a grading shift. It turns out that, when N > 1, A is only invariant under positive
Reidemeister move I and braid-like Reidemeister moves II and III. So it is not a smooth
link invariant. But, when we restrict to closed braids, this homology is invariant under
transverse Markov moves. Thus, by Theorem 1.1, it is a transverse link invariant.

The definition of H  and the proof of its invariance may look very similar to that of the
s[(N') Khovanov-Rozansky homology in [10]. But the graded Q[a]-module structure
of H v displays interesting properties and may contain more topological information
than the sl(N) Khovanov—Rozansky and HOMFLYPT homologies. To control the
length of the paper, we limit the goal of the current paper to defining the homology
‘Hn , proving its invariance and establishing some very basic properties of Hy . We
leave the more detailed study of properties of # to a follow-up paper [19].

The following is the main result of the current paper.

Theorem 1.2 Suppose N > 1. Let B be a closed braid and (Cn(B). d,,r.dy) the
chain complex of matrix factorizations associated to B defined in Definition 4.2.
Then the homotopy type of C(B) does not change under transverse Markov moves.
Moreover, the homotopy equivalences induced by transverse Markov moves preserve
the Z, ® 7.93 —grading of Cy(B), where the Z,—grading is the 7., —grading of the
underlying matrix factorization and the three 7 —gradings are the homological, a—, and
x —gradings of Cn(B).

Consequently, for the homology Hy (B) = H(H(Cn(B), dpy),dy) of Cy(B) defined

in Definition 4.3, every transverse Markov move on B induces an isomorphism of
H N (B) preserving the Z, @ 793 —grading of H  (B) inherited from Cy (B).

Theorem 1.2 follows directly from Propositions 5.5, 6.1 and 7.5. The proofs of the
invariance under braid-like Reidemeister moves II and III in Propositions 6.1 and 7.5
are fairly similar to those in [10; 11]. But the proof of the invariance under positive
Reidemeister move I in Proposition 5.5 is quite different from that in [10; 11]. This
is mainly because we need to handle matrix factorizations that are not homotopically
finite.

Question 1.3 Is H (B) a classical or a non-classical invariant for transverse links?

1.4 Negative stabilization

Next we describe how #H changes under negative stabilizations and demonstrate by a
simple example that H is not invariant under negative stabilizations. Theorem 1.5
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and Corollary 1.6 in this subsection will be proved in Section 5.4. We will use the
following notation in our statements.

Definition 1.4 For a Z, @ Z®3 —graded space H with a Z,—grading, a homological
grading, an a—grading and an x—grading, we denote by H®"/K the subspace of H
of homogeneous elements of Z,—degree ¢, homological degree i, a—degree j and
x—degree k.

Replacing one of these indices by a “x”” means direct summing over all possible values
of this index. For example,

H&‘,i,*,k — @ H&‘,i,j,k and He,i,*,* — @ Hé‘,l',j,k'
JEZ (j,k)ez®2

Moreover, we denote by H{q,r} the Z, & Z®3—graded space obtained from H by
shifting the a—grading by ¢ and the x-grading by r. That is, (H{g, r})s’i’j’k =
H&HI=4K=7 We also use the notation H&"**{q,r}:= (H{q,r})&"**.

To state Theorem 1.5, we need to introduce a homomorphism my. Note that for
any Z, ® Z®?—graded matrix factorization M of 0 over Q[a], M/aM is a Z, &
7.%2 _graded matrix factorization of 0 over Q. Denote by mg : M — M/aM the
standard quotient map, which induces a homomorphism 7wy : H(M) - H(M/aM)
of homology of matrix factorizations. For a chain complex (C,d) of Z, @ Z.9?—
graded matrix factorizations of 0 over Q[«], this further induces a homomorphism
mwo: H(H(C,dyyf).d) — H(H(C/aC,d,y),d). Generally speaking, these induced
homomorphisms are no longer quotient maps. To simplify the notation, we write
Hn(L):= HHCN(L)/aCN (L), dmy). dy)-

The following theorem is proved in Section 5.4.

Theorem 1.5 Let L be a transverse closed braid, and let L_ be a transverse closed
braid obtained from L by a single negative stabilization. Then the chain complex
(H(CN(L-),dy,r), dy) is isomorphic to the total chain complex of

0 — (HCN (L), dpys), dy){=2,0} 7 (H(CN(L)/aCn (L), dpy), dy){=2,0} = 0,

0 1

where the under-braces indicate shifts of the homological grading. This isomorphism
preserves the Z, @ 793 —grading. In particular, there is a long exact sequence
il ielx, i,
e HY T UTT(L){2, 03 B G T (L) (=2, 08 > HyY T (L)
= HY T (L){=2, 00 0 930 (L) (2,04 — -

preserving the a— and x —gradings.
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The following corollary shows that for N > 1, H is not invariant under negative
stabilizations. This corollary is proved in Section 5.4 below.

Corollary 1.6 Let U be the transverse unknot represented by the 1—strand braid, and
U_ the transverse unknot obtained from U by a single negative stabilization. For
N > 1, Hy(U) = Q[a, x]/(ax™), where a is a variable of bidegree (2,0) and x is a
variable of bidegree (0,2). As Z.®? —graded Q[a]-modules,

N-1
( D Q[a]{—l,—N+1+2[})
8,0, %% ~ I=0 00
Hy () = 69( D @[a]/(a){—l,N+1+2m}) ife=1andi =0,
m=0

0 otherwise,
N-1
P Qal{—1,—N +1+2l} ife=1andi =0,
81 *, *(U ) ~ lO:oo
- @D Qlal/(@){-2,2m} ife=0andi =1,
m=0
0 otherwise.

More generally, the Z, @ Z®*—graded Q[a]-modules structures of H for all trans-
verse unknots are computed in [19, Corollary 1.7].

1.5 Decategorification

Definition 1.7 We define the decategorification Py of Hy by

Pn(B)i= Y (~1)t%a/eF dimg H5K(B) € Zle. £l 67 2/ (22 - 1)

(&,i,),k)
EZQGBZ@3

for any closed braid B.!

Next, we describe Py by a skein definition that is very similar to the classical HOM-
FLYPT skein relation.

Theorem 1.8 (1) Py is invariant under transverse Markov moves.

@ o8Py (N ) —atVon (D) = w6 —oew () ()

From the definition of Cjy (B), one can see that its homological grading is bounded and its @— and
x—gradings are bounded below.
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(3) Denote by UY™ the m —strand closed braid with no crossings. Then

Py (U = 1o~ ([N] (Zazi) + Z§N+l+2j)’
i=0 j=0
raf14EN "
Umy __ -1 m 1 (W) -
PN(U )_(Ta [N]) (1—“2 -L—ag_N_l—i-l )

form > 1, where [N]:= (§N —&N) /(g1 —¢) 2

(4) Parts (1)—(3) above uniquely determine the value of Pp on every closed braid.

Theorem 1.8 will be proved in Section 8 below. In a nutshell, parts (1)—(3) of this
theorem follow from the definition of H and Theorems 1.2 and 1.5, while part (4)
follows from the “invariant computation tree” constructed by Franks and Williams
in [7].

Remark 1.9 Unfortunately, Pp turns out to be much less interesting than it appears.
For example, in a forthcoming update of [19], we will include a proof that Py is a
classical invariant of transverse links.

1.6 Relation to the sI(/NV) Khovanov—Rozansky homology

Denote by Hp the s[(N) Khovanov—Rozansky homology defined in [10]. Hy is a
Z» @ 7,92 —graded link homology theory, where the Z,—grading is the Z,—grading
of the underlying matrix factorization and the two Z—gradings are the homological
grading and the x—grading. We denote by H]i;i’k the homogeneous component of Hpy
of Z,—degree e, homological grading i and x—grading k.

The following theorem, which will be proved in Section 9, describes the relation
between Hy and Hy .
Theorem 1.10 Let B be a closed braid, and (¢,i,k) € Z, & Z.®?. Then:

() HE*(B) = H5 ¥ (B)/(a— YHE ¥ (B).
(2) Asa Z—graded Q[a]-module,

ko) = (@ Q) e ( D @[a]/(a’q){rq}),
p=1 q=1

where

2For the structure of Hy (UY™), see [19, Lemma 3.6].
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 {s} means shifting the a—grading by s,
o mgix =dimg HS"¥(B) < o0,
* ng; isafinite non-negative integer determined by B and the triple (&,i, k),

* {S1.....8m,; .} CZ is a sequence determined up to permutation by B and
the triple (e,i,k),
o {(ht)eeoiUngpotngig)y C 7Z.®? is a sequence determined up to permu-

tation by B and the triple (e,i,k).

A more precise description of the Z, @ Z®3 —graded Q[a]-module structure of H
can be found in [19, Theorem 1.4].

1.7 Organization of this paper

We review the definition and basic properties of matrix factorizations in Section 2. Then
we define the matrix factorizations associated to MOY graphs and chain complexes
associated to link diagrams in Sections 3 and 4. The invariance is established in
Sections 5-7. Finally, we discuss the decategorification and the relation to the sI[(N)
Khovanov-Rozansky homology in Sections 8 and 9.

Although this paper is mostly self-contained, some prior experience with the Khovanov—

Rozansky homology would certainly be helpful.

Acknowledgements The author was partially supported by NSF grant DMS-1205879
and a Collaboration Grant for Mathematicians from the Simons Foundation.

2 Matrix factorizations
In this section, we review the definition and some basic properties of matrix factoriza-
tions over the bigraded polynomial ring Q[a, X1, ..., Xz].

We write R = Qla, X1, ..., X] and fix a non-negative integer N throughout this
section.

2.1 Z®2_graded R-modules

Definition 2.1 We define a Z®?—gradingon R=QJ[a, X1,..., X;] by letting dega =
(2,0) and deg X; = (0,2n;) for i =1,...,k, where each n; is a positive integer. We
call the first component of this Z®?—grading the a—grading and denote its degree
function by deg,. We call the second component of this Z®2—grading the x—grading
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and denote its degree function by deg, . An element of R is said to be homogeneous
if it is homogeneous with respect to both the a—grading and the x—grading.

A 7Z%2_graded R-module M is a R—-module M equipped with a Z®2—grading
such that, for any homogeneous element’m of M, deg(am) = degm + (2,0) and
deg(X;m) =degm + (0,2n;) for i =1,..., k. Again, we call the first component of
this Z®2—grading of M the a—grading and denote its degree function by deg,. We
call the second component of this Z®?—grading of M the x—grading and denote its
degree function by deg, .

We say that the Z®2—grading on M is bounded below if both the a—grading and the
x—grading are bounded below.

For a Z®2—graded R-module M , we denote by M {j, k} the Z®?—graded R—module
obtained by shifting the Z®2?—grading of M by (j, k). That is, for any homogeneous
element m of M, we have degyr(; ,ym =degpym+(j,k).

A basis of a Z®2—graded free R-module M is called a homogeneous basis if all the
elements of this basis are homogeneous.

In our construction of Hy, we need to use the fact that if the Z®?—grading of a
7,92 _graded free R—module M is bounded below, then M admits a homogeneous
basis over R. To prove this, we start with the following lemma, which is implicitly
given in [16].

Lemma 2.2 [21, Lemma 4.4] Suppose that M is a Z—graded tree Q[ X1, ..., Xi]-
module whose grading is bounded below. Then M admits a homogeneous basis over

Q[X1,.... X¢].

Proof See [21, Section 4.1]. O
Lemma 2.3 Suppose that M is a Z®? —graded free R—module and its a—grading and
x —grading are both bounded below. Then M admits a homogeneous basis over R.
In particular, if M is a Z®? —graded finitely generated free R—-module, then M admits

a homogeneous basis over R.

Proof Assume that M is a free Z®2—graded R—module and both the a—grading and
the x—grading on M are bounded below. Denote by j, the lowest a—degree for any non-
zero homogeneous element of M . Since a is homogeneous, the R—-module M /aM
inherits the Z®2 —grading of M . Also, note that the multiplication by X; does not affect

3 An element of M is said to be homogeneous if it is homogeneous with respect to both Z—gradings.
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the a—grading. So, as a Z—graded Q[X1,..., Xg]-module, M/aM = @;’ijo M,
where MV is the component of M /aM of element homogeneous with respect to the
a—grading of a—degree j. On each M/, the x—grading is bounded below. So, by
Lemma 2.2, each M7 admits a homogeneous basis {;,p | p € I;} with respect to the
x—grading, where [; is an index set. Thus, {Uj,, | j > jo. p € I;} is a homogeneous
basis for the Z®2—graded Q[X1, ..., X;]-module M/aM .

Denote by mps the standard quotient map wpr: M — M /aM . For each v; p, there
exists a homogeneous element vj , of M such that mpr(vj,p) = Vj p, deg, vj,p =
deg, Vj,p = j and deg, v; , = deg, V;,,. We claim that {v; , | j > jo. p€lj}isa
homogeneous basis for the Z®?—graded R-module M .

First, we prove that {vj , | / > jo, p € Ij} is R-linearly independent. Assume that
ZLI JiipiVjs,p; = 0 for some {vj, p,,..., V., p,t C{Vjp|Jj = jo, p€lj}, where
Jji,p: 1s anon-zero element in R foreach i =1,...,/. After possibly dividing this
sum by a power of a, assume without loss of generality that, for some i, fj, p; isnota
multiple of a. Let 7 be the standard quotient map n: R — R/aR = Q[X1,..., Xi].
Then, in M/aM , wehave ar (Y 0_1 fis piVieopi) = vy (S pi)0ji.ps =0, where
7(fj;,p;) # 0 for some i. This is a contradiction since {V; , | j > jo. p € I;} isa
basis for the Q[X71, ..., Xz]-module M/aM .

Now we prove by an induction on deg, u that any homogeneous element v of M is
in the span of {vj , | j = jo, p € Ij}. Recall that jj is the lowest a—degree for any
non-zero homogeneous element of M . So, if deg, u < jo, then u = 0, which is in
the span of {vj , | j > jo. p € Ij}. Now assume that for some j > jo, u is in the
span of {v;j , | j = jo. p € Ij} whenever deg, u < j. Suppose deg, u = j. Then
mp(u) € M7 and therefore, mpy(u) = > per; €pVj.p» Where ¢p € Q[X1, ..., Xg].
Thus, mar(u — 3 pey; ¢pVj.p) =0 and u— 3 cp cpvj,p € aM . Then, there is an
element v in M such that

e av=u-— Zpelj Cplj,p>

* v is homogeneous with respect to the a—grading and deg, v = j — 2.

Note that each homogeneous part of v is of a—degree j — 2. By the induction
hypothesis, v is in the span of {v; , | j > jo, p € Ij}. Hence, u is also in the span of
{vj,plJ=Jjo. pelj}.

This completes the induction and proves that M admits a homogeneous basis over R
if the a—grading and x-grading on M are both bounded below.

If M is finitely generated, then M is generated by a finite set of homogeneous elements.
Then the lowest a—degree and x—degree of these elements are lower bounds for the
a—grading and the x—grading of M . So the lemma applies to M . a
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2.2 Matrix factorizations and morphisms of matrix factorizations

Definition 2.4 Again, we define a Z®2?—grading on R = Q[a, X;...., X;] by letting
dega = (2,0) and deg X; = (0,2n;) for i = 1,...,k, where each n; is a positive
integer. Let w be a homogeneous element of R = Q[a, X1, ..., Xj] with bidegree
(2,2N +2). A Z, ® Z.®?—graded matrix factorization M of w over R is a collection
of two Zm—graded free R—modules My, M7 and two homogeneous R-module
maps do: Mo — My, di: M; — M of bidegree (1, N + 1), called differential maps,
such that
dIOdOZU)'idMO, d00d1=U)'idM1.

d d
We usually write M as My —> M, — M.

The Z,—grading of M takes value ¢ on M. The a— and x—gradings of M are the
a— and x—gradings of the underlying Z®2?-graded R—module My ® M, .

d d
Following [10], we denote by M (1) the matrix factorization M, AN M, Ny Vs 1 and
write o
J times

M(j)=M(1)---(1).

For any Z, @ Z®2—graded matrix factorization M of w over R and j,k € Z,
M {j, k} is naturally a Z, @ Z®?—graded matrix factorization of w over R. For any
two Z, @ Z®2—graded matrix factorizations M and M’ of w over R, M & M’ is
naturally a Z, @ Z®?—graded matrix factorization of w over R. Let w and w’ be
two homogeneous elements of R with bidegree (2,2N + 2). For Z, & Z%?—graded
matrix factorizations M of w and M’ of w’ over R, the tensor product M Q@ g M’
is the Z, @ 7Z®2—graded matrix factorization of w 4+ w’ over R such that:

e MM )g=(My® My ®(M; M),
(M@M') = (M ®Mj) & (M ® My).

e The differential is given by the signed Leibniz rule. That is, d(m ® m') =
(dm)y®@m’' + (=1)’m ® (dm’) for m € My and m’ € M’.

Definition 2.5 Let w be a homogeneous element of R with bidegree (2,2N + 2),
M, M’ two Z, ® Z®%—graded matrix factorizations of w over R, and das, dps the
differential maps of M and M’.
(1) A morphism of Z, & Z®?—graded matrix factorizations from M to M’ is a
homogeneous R-module homomorphism f: M — M’ preserving the Z, &
7.%2 _grading and satisfying das f = fdas. We denote by Homy,¢(M, M) the
Q-space of all morphisms of Z, @ Z®?—graded matrix factorizations from M
to M.

Algebraic & Geometric Topology, Volume 16 (2016)



52 Hao Wu

(2) Two morphisms f and g of Z, @ Z®?—graded matrix factorizations from M to
M’ are called homotopic if there is an R—module homomorphism 4: M — M’
shifting the Z,—grading by 1 such that f — g = dpph + hdps. In this case,
we write f ~ g. We denote by Hompn¢(M, M) the Q—space of all homotopy
classes of morphisms of Z, @ Z®2?—graded matrix factorizations from M to
M. That is, Homyp,¢(M, M') = Homy,e(M, M)/ ~.

(3) Two morphisms f and g of Z, ® Z®?—graded matrix factorizations from M to
M’ are called projectively homotopic if there is a ¢ € Q \ {0} such that f ~cg.
In this case, we write f ~ g.

Let M and M’ be as in Definition 2.5. Consider the R—-module Homg (M, M") of
R-module homomorphisms from M to M’. It admits a Z,—grading that takes value

e Oon Hom%(M, M') = Homg (Mo, M) @ Homg(M{, M]),
1 on Homy(M, M') = Homg(M;, M{) ® Homg (Mo, M]).

Moreover, Homg (M, M’) admits a differential map d given by d(f) =dpy o0 f —
(=1)® f odp for f € Hom% (M, M'), which makes Homg(M, M') into a chain
complex with a Z,-homological grading.

Lemma 2.6 Let w be a homogeneous element of R with bidegree (2,2N + 2), and
M, M’ any two Z, @ Z®? —graded matrix factorizations of w over R. Then:

(1) A homogeneous R-module homomorphism f: M — M’ preserving the Z, &
7.®? _grading is a morphism of Z, @ Z.9? —graded matrix factorizations if and
only it df =0.

(2) Two morphisms f and g of Z, @ 7.%? —graded matrix factorizations from M
to M’ are homotopic if and only if f — g = dh for some h € Hom}e(M, M.

(3) If M is finitely generated over R, then Hompg (M, M) is naturally Z, & 7.9? -
graded, and:
o Homp(M, M') = (kerd)®%°, where (kerd)®/>* is the Q—subspace of
kerd of homogeneous elements of Z, @ 7Z.9% —degree (¢, j, k).
o Hompyme(M, M') = H*O%(Hompg (M, M’), d), where we use the notation
H&J*(Hompg(M, M'),d) for the Q —subspace of H(Homg(M, M), d)
of homogeneous elements of Z, ® Z.92 —degree (¢, j, k).

Proof The first two parts of the lemma are simple reformulations of definitions. For
Part (3), note that, when M is finitely generated, the Z, @ Z®?—gradings of M and
M’ induce a Z, ® Z®2—grading on Homg (M, M"). Since d is homogeneous under
this grading, both kerd and H(Hompg(M, M'),d) inherit this Z, & Z®2—grading.
The rest follows easily. a
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Definition 2.7 Let w be a homogeneous element of R with bidegree (2,2N + 2),
and M, M’ any two Z, @ Z®?—graded matrix factorizations of w over R. Then:

(1) An isomorphism of Z, & Z®2—graded matrix factorizations from M to M’ isa
morphism of Z, @7 ®? —graded matrix factorizations that is also an isomorphism
of the underlying R—modules. We say that M and M’ are isomorphic, or
M = M, if there is an isomorphism from M to M’.

(2) M and M’ are called homotopic, or M ~ M, if there are morphisms f: M —
M’ and g: M" — M such that go f ~idys and f og ~idyy . The morphisms
/f and g are called homotopy equivalences between M and M’.

2.3 Koszul matrix factorizations

In the definition of H -, we will use matrix factorizations of a special form, called
Koszul matrix factorizations. We now review the definition and basic properties of
Koszul matrix factorizations.

Definition 2.8 If ag,a; € R are homogeneous elements with degag + dega; =
(2,2N +2), then denote by (ag,a;) g the Z, ® Z®?—graded matrix factorization

R R{1—deg,ag, N +1—deg, ap} *> R

of apa; over R. More generally, if ay9.ay,1,...,a;,0,a;,1 € R are homogeneous
with degaj o +dega; 1 = (2,2N + 2), then denote by

ayo, di,1
az.o, dz1

a10, 411/ g

the tensor product (a1,0,a1,1)R ®R (@2,0.a2,1)R ®R -+ ®R (a7,0.a7,1)r- Thisis a
Zy @Z®2—graded matrix factorization of ) j=14j,0aj,1 over R, and is call the Koszul
matrix factorization associated to the above matrix. We drop “R” from the notation
when it is clear from the context.

Note that the above Koszul matrix factorization is finitely generated over R.
Lemma 2.9 [10; 11] Letag, ay and ay,ay,1.-...4a,0.a;,; be as in Definition 2.8.

Then
(ay,a0)r = (ap,ar)r(1){1 —deg,ay, N +1—deg, a},
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and
ai,1, 41,0 aio, di,i1 ; ;
az,1, 42,0 az,o, 42,1
: : = : : (I){Z(l—degaaj,l),Z(N—I—l—degxaj,l)}.
: : : : iz iz
a1, djo R ajo, 4 R
Lemma 2.10 [10; 11] Letay,,a1,1....,a;,0,a;,1 be as in Definition 2.8. Then for

any 7., @ 7.9% —graded matrix factorization M of Z§=1 ajoaj,1 over R,

aio, dai,1 —dai,1, 41,0
az.o, dz,1 —dz 1, d2,0
Hompg ) ) M| =M Qg ; )
a1,0, 41,1/ p —ap1, 4o/ g
aio, —adi,n ; ;
az o, —dz1
~M®r| | . <1>{Z(1—degaaj,1>,Z<N+1—degxa,~,1)}
: : j=1 j=1

ajo, —41 R

as Z, @ 7.9% —graded chain complexes.

Lemma 2.11 [10, Proposition 2] Letayg.a1,1,....a1,0.a;,1 be as in Definition 2.8
and
aio, 41,1
az.o, 42,1
M=\ .

aro0, 4,1/ g

If r is an element of the ideal (a1,0,a1,1,....a1,0.a;,1) of R, then the multiplication
by r, as an endomorphism of M , is homotopic to 0.

Lemma 2.12 [17] Suppose that a; ,a;,1,a2,0,d2.1,k are homogeneous elements
of R satisfying dega; o +degaj 1 = (2,2N +2) and degk = dega; o +degas o —

(2,2N +2). Then
(611,0 a1,1) - (a1,0 +kas, 01,1)
dz0 d2,1)p  \d20—kaiy az21/p
Lemma 2.13 [10; 17] Suppose aj,9,a1,1,a2,0,a2,1,¢ are homogeneous elements
of R satisfying degaj o+ degaj; = (2,2N + 2) and degc = dega; o —degas .
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Then
(01,0 al,l) ~ (a1,o+ca2,o aip )
azo d21)p asz,o az—cai)g

Definition 2.14 Let aq,...,a; be elements of R. The sequence {ay,...,a;} is
called R-regular if a; # 0 and a; is not a zero divisor in R/(ay,...,a;_;) for
j=2,... k.

Lemma 2.15 [9; 17] Suppose that {ay,...,ay} is an R-regular sequence of ho-
mogeneous elements of R. Assume that fi,..., fr,&1,...,&, are homogeneous

elements of R such that deg f; =degg; = (2,2N +2) —dega; and Zj;l Jiaj =
k
> j=18&j4aj- Then
J1, a1 g1, a1
Se» ak) p ks ar) 5
The proofs of the above lemmas are omitted here since they are relatively easy and can

be found, for example, in [10; 11; 9; 17; 20]. The following are two versions of [10,
Proposition 9], which are very useful in computations.

Proposition 2.16 (Strong version) Let X be a homogeneous indeterminate such that
deg X = (0,2n) and n < N + 1. Denote by P: R[X] — R the evaluation map at
X =0. Thatis, P(f(X)) = f(0) forall f(X)e R[X].
Suppose that ay,...,aj,by,...,b; are homogeneous elements of R[X] such that

e degaj+degh;j =(2,2N+2),Vj=1,...,1,

l
© Yj=14jbj € R,
e Jie{l,...,I} suchthatb; = X .

Then
P(ay)  P(by)
P(ay)  P(b2)
aq b] . .
a, b2 . .
M=]_ . and  M'=| P(aj—1) P(bi-1)
: P(ajy1) P(bit1)
i Dic) prx) : :
Plax) Px) /g

are homotopic as 7., ® 7Z.9? —graded matrix factorizations over R.

Proof See [21, Proposition 3.19]. m|
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Proposition 2.17 (Weak version) Let I be an ideal of R generated by homogeneous
elements. Assume w, ay and a are homogeneous elements of R such that degw =
degag+dega; =(2,2N +2) and w+aga, €I. Then w € I 4+ (ap) and w € I +(ay).

Let M be a Z, & Z$2—graded matrix factorization of w over R, and M=Mge R
(ag.ay)g. Then M /IM , M/(I + (ao))M and M/(I + (a;))M are all Z, ®Z®? -
graded chain complexes of R—modules such that:

(1) If ag is not a zero-divisor in R/ I, then there is an R-linear quasi-isomorphism
fiM/IM — (M/(I+ (ap))M)(1){1 —deg, ap, N +1—deg, ao} that pre-
serves the Z, @ 7Z.9? —grading.

(2) Ifa; isnota zero-divisor in R/I, then there is an R-linear quasi-isomorphism
g M/IM — M/(I + (a1))M that preserves the Z, ® Z.%? —grading.

Proof This proposition is [10, Proposition 9]. Since the quasi-isomorphism g in (2)
will be used in the proof of Theorem 1.5, we sketch a proof for (2) here.

Write M = Mo Ml —>M0, sq =1—deg, ag. and sy = N +1—deg, ag. Recall
that (ag,a1)gr = R2% R{sa, sx} 2> R. Then M=MQg (ag,aq) g is the matrix
factorization
M() ("1'0 Ml 071 M()
2] — b — @ ,
Mi{sq, 5x} Mo{sa, sx} Mi{sa, sx}

~  (do —a; ~ (di a

do_(ao d, ) dl_(—ao do)’
For ¢ € Z5, denote by Pg: Mg/ IM; — M¢/(I 4+ (ay)) M, the standard quotient map.
We define g: M/IM — (M/(I + (a1)) M) by the mappings

where

My/IM, (Po.0)
® — My/(I + (a1)) My,
(MI/IMI){Sa,Sx}

® —_— M]/(I+(al))M1
(Mo/IMo){sa,sx}

It is straightforward to check that

e g isasurjective R—-linear chain map that preserves the Z, @ Z®?—grading,

e Kker g is a homotopically trivial subcomplex of M /1 M.
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So the short exact sequence
0 kerg s M/IM % (M/(I + (a))M) -0

induces an exact triangle

H(M /13 —— H(M/(I + (a1)) M),

which implies that g is a quasi-isomorphism. |

2.4 Categories of matrix factorizations

Definition 2.18 Let w be a homogeneous element of R with bidegree (2,2N + 2).

Suppose M is a Z, @ Z®?—graded matrix factorization of w over R. We say that M
is homotopically finite if there exists a finitely generated graded matrix factorization
M over R with potential w such that M ~ M.

We define categories mf j‘e“w, mfg ), hmf ?e“w and hmfg ,, by the following table:

Category Objects Morphisms
mf}‘ell w all Z, @Zez—graded matrix factorizations of w over Homy,¢
R with the Z®2—grading bounded below
mfg all homotopically finite Z, @ Z®?—graded matrix Homy,¢

factorizations of w over R with the Z®2—grading
bounded below

hmfj‘enw all Z, @Z®2—graded matrix factorizations of w over Homypm¢
R with the Z®2—grading bounded below

hmfpg ,, all homotopically finite Z, & Z@z—graded matrix Homp ¢
factorizations of w over R with the Z®?—grading
bounded below

Definition 2.19 Let w be a homogeneous element of R with bidegree (2,2N + 2).
Denote by J the maximal homogeneous ideal (a, X7,..., X;) of R. Note that w € J
and, for a Z, & Z@z—graded matrix factorization M of w over R, M/JM is a
chain complex of Z®?—graded Q-spaces with a Z,-homological grading. We define
Hg(M) to be the Z, @ Z%®?—graded homology of M/IM .

Denote by H;’j ok (M) the subspace of Hr(M') of homogeneous elements of Z,—
degree & and Z®?—degree (j, k). If the Z®?—grading of M is bounded below and
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dim H;e’j ok (M) < oo forall ¢, j, k, then we define the graded dimension of M over
R to be

edimg(M) = Y t°al ek dimg Hy (M) € Ze.&lle™" 67" 71/ (22 ~ D).
&,k

Lemma 2.20 Let M be a Z®?—graded free R-module whose 7Z®2—grading is
bounded below. Define V = M /JIM . Then there is a homogeneous R-module isomor-
phism F: V ®g R — M preserving the Z®?* —grading. In particular, if {v g|Be€B}is
a homogeneous Q —basis for V, then { F(vg ® 1) | B € B} is a homogeneous R—basis
for M.

Proof By Lemma 2.3, M has a homogeneous basis {ey | @ € A}. Then, as Z®2—
graded vector spaces, V = @P,c 4 Q-eq. So M =P, 4 R-eq =V ®q R as graded
R-modules. This proves the existence of F. The rest of the lemma follows easily. O

Proposition 2.21 [10, Proposition 7] Let w be a homogeneous element of R with
bidegree (2,2N +2), and M a 7., ® 7Z.9? —graded matrix factorization of w over R.
Assume the Z.®? —grading of M is bounded below. Then there exist Z, ® Z.9% —graded
matrix factorizations M, and M,y of w over R such that
i) M=M.® Mes,
(i1) M. ~ 0 and, therefore, M ~ M,g,
(iii) Mes = HR(M) ®g R as Z, & 792 _graded R-modules, and Hg(M) =
Mes/I M, as 7., ® 7.9? —graded Q —spaces.

d d
Proof (Following [10].) Write M as M, M 1 AN My . Then the chain complex
V= M/JIM is given by

where Vo = M,/IM, for ¢ = 0,1. By Lemma 2.3, M, has a homogeneous R-
basis {es | 0 € S¢}, which induces a homogeneous Q-basis {¢, | 0 € S} for V.
Under the homogeneous basis {e, | 0 € S¢}, the entries of matrices of dy and d; are
homogeneous elements of R. And the matrices of dy and d; are obtained by letting
a= X1 =---= X, =0 in the matrices of dy and d;, which preserves scalar entries
and kills entries with positive degrees.
We call {(i1p, Vp) | p € P} a “good” set if

e {ii, | p € P} is aset of linearly independent homogeneous elements in Vj,

e {U, | p e P} isaset of linearly independent homogeneous elements in V7,

o do(i1,) =1, and dy(3,) =0.
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Using Zorn’s lemma, we find a maximal “good” set G = {(ii, Vy) | @ € A}. Using
Zorn’s lemma again, we extend {ii | @ € A} into a homogeneous basis {iiy | € AUBy}
for Vg, and {v, | @ € A} into a homogeneous basis {0y | @ € AUB;} for V;. For each
B € By, we can write cioﬁ‘g =D weAus, Cap * Vo, Where cug € Q, and the right-hand
side is a finite sum.

By Lemma 2.20, there is a homogeneous isomorphism Fg: Ve ®¢g R =M, ¢ preserving
the Z®2—grading. Let uy = Fy(ilq ®1) and vy = F1 (Ve ®1). Then {uy | € AUBy}
and {vy | @ € AU By} are homogeneous R-bases for My and M;. Recall that
go(ﬁa) = vy for @ € A. So we have that, for any « € A,

dug = vy + Z SBaVB

BeAUB,
BFa

where fg, € J and the sum on the right-hand side is a finite sum. That is, for each o,
2-1) Jpa =0 for all but finitely many S.
For two pairs of integers (i, j), (k,/) we say that
e (i,j)=(k,Difi<kandj=<I,
o (i,)) =<k )if (i, j) 2 (k1) and (i, j) # (k,1).
For each pair of (o, 8) with « € A, B € AUB; and « # B, the requirement that
JBa € J implies
(2-2) JSBa 0 onlyif degvg < deguy.
For o € A and k > 0, let
Coo={10.- -, Y1) e A |y =a, deg Vyy <---<degvy, . fyom - Syi_ive 70}

By Equation (2-1), Cffa is a finite set. For each «, Cffa = ¢ for large k since the
7.%2 _grading of M is bounded below. For a, 8 € A and k > 0, let

Cga ={(y0’---,]/k) eCfa | )/0 =/3}‘

Then UﬂeA Cg = C . So each Cg is finite. And, for each k, Cg # & for only
finitely many . Also, by definition, it is easy to see that C é‘ # @ only if degvg <

deg vy . Moreover, for each «, there is a k¢ > 0 such that C /I; = @ for any  whenever
k > k()
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Now, for o, B € A, define 78, € R by

1 if B=a,

1Ba = 2 (=¥ 2 Jrovi = Jyime i degug < degug,
k>1 (yo,...,yk)nga
0 otherwise.

From the above discussion, we know that the sum on the right-hand side is always
a finite sum. So #g, is well defined. Furthermore, given an o € A, g, = 0 for
all but finitely many . So, for a € A, u, := ZﬂeA tggup is well-defined. It is
straightforward to check that

o {uy|aeAU{ug|p € By} is also a homogeneous R—basis for Mj;

o forae A, dul,=vy+Y, Bes, f;éa vg, where the right-hand side is a finite sum,
and jéa €.

Now let

o

Va+ Y. féavﬁ ifa e A,
v, = BeBy
Vo if o € B;.

Then {v], | @ € AUB;} is a homogeneous R-basis for M. We have

dul, = v), ifaeA,
dug =) gapVy+ D &ypv), if B € By,
a€A yEB]

where the sums on the right-hand side are finite sums. For 8 € By, we let ujg =

UB— D wea 8apUy- Then {uy |a € AUBy} is again a homogeneous R-basis for My,

and , . )
{dua = v, ifa €A,

du’ﬂ= ZB gypv, if B € Bo,
vEb)

where the sum on the right-hand side is a finite sum. Using that ddy = w -idpy, and
dod; = w-idpy, , one can check that

dvl, = w-v), ifaeA,
dvg= 3 hygu), ifBebB,
Y€Bo

where the sum on the right-hand side is a finite sum.

Define M(j ) to be the submodule of M spanned by {u,, | @ € A} U{v,, |« € A},
and M’ the submodule of M spanned by {u;g | B € By} U {v% | B € B1}. Then
M ) and M’ are both Z, @ 7.%2 _graded matrix factorizations of w over R and
M = M ) ® M'. Note that
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(@) M ) is a direct sum of components of the form (1, w)g{j,k};

(b) under the standard projection M — M/JIM , we have, for « € A, ul, > g
and v}, > Uy .

In particular, (b) above means that M’ does not have direct sum components of the form
(1,w)r{J, k}. Otherwise, we can enlarge the “good” set G, which contradicts the fact
that G is maximal. We then apply a similar argument to M’ and find a decomposition
M= My 1)® Mes of Zr, & 7,92 _graded matrix factorizations such that

*  My,1) is a direct sum of components of the form (w, 1)g{j.k};
e M, has no direct sum component of the forms (1, w)g{j,k} or (w, 1) g{j,k}.

Let Mo = M(1,4) ® M,1). Then M = M. @ M,s. We have M, >~ 0 since
(1,w)gr{j,k} and (w, 1)g{j, k} are both homotopic to 0. So M >~ M. It is clear
that under any homogeneous basis for M.y, all entries of the matrices representing
the differential map of M,g; must be in J. Otherwise, a simple change of basis
would show that M,y has a direct sum component of the form (1, w)g{j,k} or
(w, )r{j,k}. Therefore, HR(M) = HRr(Mps) == Mes/ITM,s. So, by Lemma 2.20,
Mes = HR(M) ®qg R as graded modules. a

Corollary 2.22 [10, Corollary 4] Let w be a homogeneous element of R with
bidegree (2,2N +2), and M a Z, ® Z®? —graded matrix factorization of w over R
whose Z.®? —grading is bounded below. We have:

(1) M ~0 ifand only if HR(M) = 0 or, equivalently, gdimp(M) = 0.

(2) M is homotopically finite if and only if dimg Hg (M) is finite.

Proof (Following [10]) For (1), note that, by Proposition 2.21, M ~ 0 if and only
if Mg ~ 0 if and only if Hgr(M) =0.

Now consider (2). If M is homotopically finite, then there is a finitely generated
7, @ 7.9% —graded matrix factorization M of w over R such that M ~ M. Note
that M /JM is finite-dimensional over Q. Thus, Hr(M) =~ Hg(M) is finite-
dimensional over Q. On the other hand, if Hgr(M) is finite-dimensional over Q,
then by Proposition 2.21, M,y = Hr(M) ®q R is finitely generated over R. But
M ~ M,s. So M is homotopically finite. a

Definition 2.23 An additive category € is said to be fully additive if every idempotent

endomorphism in 6 splits. That is, for every object C of ‘6 and every endomorphism

f of C satisfying fo f = f, there exist objects Cy and C; of € and an isomorphism
Co (g7
@ ( 0> 1)
G

C
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such that foJy=0and foJ; = Jj.

Lemma 2.24 Let € be a fully additive category. Assume that

e A and C are objects of €,

e A-LsC and C 45 A are morphisms of € such that go f =idy.

Then there exists an object Cy of € such that C = A & C.

Proof Consider the morphism C —f°¢ , C'. We have (fog)o(fog)= foidgjog =
fog. Since € is fully additive, there exist objects Cy and C; of € and an isomorphism

CO (J(), Jl)
e —C

Gy
such that fogoJy=0and fogoJ; =J;. Denote by

(=)
P) Co

C——

Ci

the inverse of (Jo, J1). Note that Py o fogoJ; = PyoJ; =idc,. Moreover,
idgy=go f=goidcof=go(JgoPy+JioPy)o f.So
idg =idqoidgy =go fogo(Jgo Py+ JioPy)o f
=go(fogoJooPy+ fogoJjoPy)of=goJjoPiof.
Thus, the morphisms A Loty o 1 and C4 &1, 4 are isomorphisms. This shows that

A = C; and, therefore, C @ Cy b C1 = A (Cy. |

Proposition 2.25 [10, Proposition 24] Let w be a homogeneous element of R with
bidegree (2,2N + 2). Then mf}‘e"w, mfg  and hmfpg , are all fully additive.

Proof (Following [10].) The category of Z®2?—graded R—modules is of course fully
additive. By the Quillen—Suslin theorem, we know that any projective R—module is
a free R—module. Thus, the category of Z®2—graded free R—modules is also fully
additive. From this it is easy to deduce that mf ?elfw and mfg ,, are both fully additive.

Next, we prove that hmfg ,, is fully additive.

Let M be an object of hmfg ,, and f: M — M a morphism of Z, & 792 _graded
matrix factorization such that fo f ~ f. Denote by P: M — Mg and J: Mes — M
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the homotopy equivalences from Part (ii) of Proposition 2.21. Then f induces a
morphism fes = Po foJ: Mes — M,s, which satisfies fo50 fos >~ fes.

Let o: Homp(Mes, Mes) — Hompme(Mes, M) be the natural projection taking each
morphism to its homotopy class, and

B: Homy(Mes, Mes) — Homg (Hg(M), Hr(M))

the map taking each morphism to the induced map on the homology. Then ker o and
ker 8 are ideals of the ring Homys(Mes, Meg), and kero C ker .

Note that M is homotopically finite. So, by Proposition 2.21 and Corollary 2.22, Mg is
finitely generated. Let {eq, ..., e,} be ahomogeneous basis for M. Forany /& €ker §,
denote by H its matrix under this basis. By Proposition 2.21, Hr(M) = Mes/IT M.
Since (/) =0, we know that all entries of H are elements of J. Thus, if / € (ker B)!,
then all entries of H are elements of J'. Recall that deg,a =2, deg, X; > 2 and
J=(a, X1,..., X;). A simple degree count shows that the matrix of a homogeneous
endomorphism of M, preserving the Z®2—grading cannot contain non-zero entries
from JK , Where

K := max{max{deg, ¢;,—deg, ¢; | 1 <i, j <n}, max{deg, e;—deg, ;|1 =i, j <n}}.

Thus, (ker 8)X = 0 and, therefore, (ker o)X = 0. This shows that ker « is a nilpotent
ideal of Hompy(Mes, Mes). By [3, Theorem 1.7.3], nilpotent ideals have the lifting
idempotents property. Thus, there is an endomorphism g.s € Homys(Mes, Mes)

satisfying ges > fes and ges © gos = Zes-

But mfg 4, is fully additive. So ges splits M, into a direct sum of two finitely
generated Z, @ Z®%—graded matrix factorizations. This direct sum is a splitting of M
by f in the category hmfpg ,,. a

3 Matrix factorizations associated to MOY graphs

In this section, we define matrix factorizations associated to MOY graphs, which
are the building blocks of the chain complex Cp used to define the homology #H .
Throughout this section, we fix a non-negative integer N and let a be a homogeneous
indeterminate of bidegree dega = (2,0).

3.1 Symmetric polynomials

In this subsection, we recall some facts about symmetric polynomials, which will be
used in our definition of H .
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Definition 3.1 A finite collection of homogeneous indeterminates of bidegree (0, 2)
is called an alphabet. We denote by Sym(X) the ring of symmetric polynomials over
Q in the alphabet X = {x1,..., X, }. More generally, given a collection {X1,...,X;}
of pairwise disjoint alphabets, we denote by Sym(Xj|---|X;) the ring of polynomials
in X; U---UX; over Q that are symmetric in each X;.* That is, Sym(X;|---|X;) =
Sym(X1) ®q -+ ®q Sym(X;).

For an alphabet X = {x,...,x;}, we denote by X, /1;(X) and pg(X) the elemen-
tary, complete and power sum symmetric polynomials in X. That is,

> Xiy Xiy o xp,  if 1 <k <m,
1<i;<-<ix<m
G- Xe=11 if k =0,
0 ifk<Oork >m,

> XiyXip oo xi, fk>1,
1<i1<=<i),<m

(3-2) hie(X) =11 ifk=0,
0 ifk <0,
'X": k
x% ifk >0,
(3-3) peX)=1=1"
0 if k <O.

Recall that Sym(X) = Q[X; ..., Xin]. So there are unique m—variable polynomials
hmk and p,, ; such that

(3'4) hk(X) :hm,k(Xl”Xm),
(3-5) Pk(X) = pm (X1, ..o, Xm).

Lemma 3.2 [21, Lemma 5.1]
d

s Pk X1 Xm) = (1) e e (X Xom).
J

3.2 Matrix factorizations associated to MOY graphs

We now recall the definition of MOY graphs and define Z, @ Z®2—graded matrix
factorizations associated to MOY graphs. Although the definitions in this subsection
are for general MOY graphs, we will only need 1,2, 3—colored MOY graphs in our
construction of H .

4Sym(X|---[X;) is bigger than Sym(X; U---UX;). In fact, Sym(X|--- |X;) is a finitely generated
free Sym(X{ U---UX;)-module.
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Definition 3.3 An abstract MOY graph is an oriented graph with every edge colored
by a non-negative integer such that, for every vertex v with valence at least 2, the sum
of the colors of the edges entering v is equal to the sum of the colors of the edges
leaving v.

A vertex of valence 1 in an abstract MOY graph is called an end point. A vertex of
valence greater than 1 is called an internal vertex. An abstract MOY graph I' is said
to be closed if it has no end points. We say that an abstract MOY graph is trivalent if
all of its internal vertices have valence 3.

A MOY graph is an embedding of an abstract MOY graph into R? such that, through
each internal vertex v, there is a straight line L, so that all the edges entering v enter
through one side of L, and all edges leaving v leave through the other side of L, .

A marking of a MOY graph I' consists of the following:

(1) A finite collection of marked points on I' such that
e every edge of I' has at least one marked point;
e all the end points (vertices of valence 1) are marked;
¢ none of the internal vertices (vertices of valence at least 2) are marked.

(2) An assignment of pairwise disjoint alphabets to the marked points such that the
alphabet assigned to a marked point on an edge of color m has m independent
indeterminates.

izt dik=j1+ 24+

Figure 1

For an MOY graph I' with a marking, cut it at its marked points. This gives a collection
of marked MOY graphs, each of which is a star-shaped neighborhood of a vertex in T’
and is marked only at its endpoints. (If an edge of I" has two or more marked points,
then some of these pieces may be oriented arcs from one marked point to another.
In this case, we consider such an arc as a neighborhood of an additional vertex of
valence 2 in the middle of that arc.)
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Let v be a vertex of I with coloring and marking around it given as in Figure 1. Set
m=iy+iy+---+ix=ji1+ j2+---+ ji. Define

R = Qla]®q Sym(Xy|--- [Xg[Yy]--- [Y)).

Note that R is the Z®?—graded polynomial ring generated by a and the elementary
symmetric polynomials of X1, ..., Xz, Yy,..., Y;, with bigrading given by dega =
(2,0) and degx = (0,2) forall x e X; U---UX, UY; U---UY;.

Write X =X, U:--UX; and Y =Y; U---UYj, each of which is an alphabet of m
indeterminates. Denote by X; and Y; the j th elementary symmetric polynomials in
Xand Y. For j =1,...,m, define

pm,N—i—l(Yla-~~an—1’Xj7--me)
_pm,N—H(Yl,---,Yj»)(j—‘rl,---,Xm)

Xj =¥

(B-6) U;=

We associate to the vertex v the Z, @ Z®?—graded matrix factorization

ClUl XI_YI
3-7) O G {0,— 3 isit},
WUn Xm—Ym), ==

of Z;'n=1(Xj —Yj)Uj = apn+1(X) —apy+1(Y) over R, where pn41(X) and
pN+1(Y) are the (N + 1) power sum symmetric polynomials in X and Y.

Remark 3.4 Since
Sym(X|Y) =Q[X1,.... Xm,. Y1,.... Y] =Q[X1—Y1,.. .. Xou = Y. Y1...., Yl

it is clear that {X; — Yy, ..., Xin — Y} is Sym(X]|Y)-regular. (See Definition 2.14.)
But R is a free Sym(X|Y)-module. (See for example [13].) So {X; —Y1,..., Xm —
Y} is also R-regular. Thus, by Lemma 2.15, the isomorphism type of C(v) does
not depend on the particular choice of Uy,..., Uy, as long as they are homogeneous
with the right degrees and the potential of C(v) remains Z;"zl a(X; = Y)U; =
apn+1(X)—apn1(Y). From now on, we will only specify our choice for Uy, ..., Uy,
when it is actually used in the computation. Otherwise, we will simply denote the
entries in the left column of Cp (v) by x*s.

Definition 3.5 We define
Cn (D) := Q) Cn (v),
v
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where v runs through all the interior vertices of I" (including those additional 2—
valent vertices.) Here, the tensor product is done over the common end points. More
precisely, for two sub-MOY graphs I'y and ', of I' intersecting only at (some of)
their end points, let Wy, ..., W, be the alphabets associated to these common end
points. Then, in the above tensor product, Cx(I'1) ® Cn(I';) is the tensor product

CN(T'1) ®Qlal® o Sym(W; |--|W,) CN (I'2).
Note that Cn (") is a Z, @ Z®? —graded matrix factorization. We denote by Cf\’,j ok ()

the homogeneous component of Cn (I") of Z,—degree ¢, a—degree j and x—degree k.

If T is closed, that is, has no end points, then Cpr(T") is considered a Z, @ Z®2 —graded
matrix factorization of 0 over Q[q].

Assume I has end points. Let Eq,...,E, be the alphabets assigned to all end points
of I', among which E;, ... ,Ej are assigned to exits and Eg 41, ...,E, are assigned
to entrances. Define the boundary ring of I" to be Ry = Q[a] ®q Sym(E;|---|E,).
Then Cx (") is viewed as a Z, @ Z®?—graded matrix factorization over Ry of w =

k
Yic1 apN+1(Ed) =Y g1 apN+1(Ej).
We allow the MOY graph to be empty. In this case, we define

Cn(2) = Qla] = 0 — Q[a].

Lemma 3.6 If I" is a MOY graph, then the homotopy type of C(I") does not depend
on the choice of the marking.

Proof We only need to show that adding or removing an extra marked point corre-
sponds to a homotopy equivalence of Z, @ Z%®?—graded matrix factorizations. This
follows easily from Proposition 2.16. O

Definition 3.7 Let I' be a closed MOY graph with a marking. Then Cx(T") is a
7, ® 7.9%—graded chain complex of free Q[a]-modules. Define H(I") to be the
homology of Cn(I").

Note that Hy (T') is a Z, @ Z®?—graded Q[a]-module. Denote by H?{,j’k (I') the
homogeneous component of H (I") of Z,—degree ¢, a—degree j and x—degree k.
Define the Z, @ Z®? —graded dimension of I" to be

edim I = Y t%a/£F dimg #3/ (1) € Z[e. elle™" 67" 21/ (22— 1).
&,j,k

Remark 3.8 In the language of Definition 2.19,

adim T' = gdimg (C (T)) # edimgyg) €y (1),
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Here, gdim T is well-defined because C (T") is a finitely generated Z, @ Z®2 —graded
matrix factorization over a polynomial ring with finitely many indeterminates, which
implies that

(1) dimg Hf\’,j’k(I‘) <oo forall g, j,k,
(2) the Z®2_grading of Hx(I") is bounded below.

3.3 Edge sliding

Consider the MOY graphs in Figure 2. We call the local changes I'y = T'{ and
I', = T}, edge slidings. In this subsection, we demonstrate that an edge sliding induces,
up to homotopy and scaling, a unique homotopy equivalence.

A%

3 3
1 1 1 1 1 1
3 3
Figure 2

Lemma 3.9 Suppose that 'y, I'{, I'; and I}, are the MOY graphs shown in Figure 2.
Mark corresponding end points of I'; and T'} with the same alphabet and denote by
Rj the common boundary ring. Then Cy (') ~ Cn(T'}) and Cn(T'y) ~ Cn(T) as
Z» @ Z.9? —graded matrix factorizations over Rj.

Proof Let I' be the MOY graph in Figure 3. We mark I" and Iy as in Figure 3, where
X; = {X],Xz,X3} and X, = {X4,X5}. Write Ry = Q[a,x6,X7,x8] P¥e) Sym(Xl)
and R = Qla, x¢, x7, xg] ®@ Sym(X;|X3). From Proposition 2.16, we know that, as
Z» @ 7.9% —graded matrix factorizations over Rj,

* X7+ Xg—X4— X5 \
* X7Xg8 —X3X5
CN(F1)= * X4+ X5+X6— X1 —X2—X3 {O,—3}

* X4X5+ X5X6 + XgXq4 — X1 X2 —X2X3 — X3X1

\* X4X5X6 — X1X2X3 )R

/* X7+Xg+Xg— X1 —X2—X3

>~ | * X7xXg + XgXg + XgX7 —X1X3 —X2X3 — X3X] {0, =3} =Cn ().

k X7X8Xg —X1X2X3 )RB
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Similarly, Cy (")) ~ Cy(T'). So Cy(Ty) ~ Cy (), and Cy(Ty) ~ Cy(T). O
X6 X7 X8 X6 X7 X8
1 1 1
I 1 171 T 2 -
3 3
Xl X1
Figure 3

Lemma 3.10 Suppose that T'y, T}, T', and '} are the MOY graphs shown in Figure 2.
Then the homotopy equivalences

Cn(T1) = Cn(T)),  Cn(T)) =>Cn (),
Cn(T2) =>Cn (), CN(T3)—=>Cn(T2)
of 7., ® 7.%? —graded matrix factorizations from Lemma 3.9 are unique up to homotopy
and scaling by non-zero scalars.
Proof We only prove the uniqueness of
Cn(T1) —=>Cn ()

here. The proofs of uniqueness of the other homotopy equivalences are similar and left

to the reader. Let Ry be as in the proof of Lemma 3.9. To prove the uniqueness of

Cn(Ty) =>Cn (T'}). we only need to prove that in the category
hmfRa,a(xéVH+x$’+1+xév+l—va+l—x§]+l—xév+l)’

we have Hompm(C (1), Cy (') = Q. Since Cn(T'y) >~ Cn (")) ~ Cn ('), we just

need to check that Hompme(Cy ('), Cy (1)) = Q.

First, itis easy to see that Ciy (I') is finitely generated over Ry and gdimg, (Cn (")) # 0.
By Corollary 2.22, this means that C (I") is not homotopic to 0. Thus, the identity map
of Cx(I") is not homotopic to 0. This implies that dimg Hompme(Cx (I'),Cx(I7)) > 1.

On the other hand, by Lemma 2.10,

Hompg, (Cn ("), Cn(I))

al, X7+ Xg+X6—X1 —X2—X3
aU; X7Xg+ XgXg+ X6X7 —X1X3 —X2X3 — X3X]
~ CIU3 X7X8Xg —X1X2X3 <3>{3 3N—9}
- aU1 —(X7+X8 +x6—x1—x2—x3) ’ ’
Cle —(X7X8 + XgX¢ +X6X7—X1X2—X2X3—X3X1)
aUs —(x7x8x6 — X1X2X3) Ry
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where Uy, U, and Uj are given by Equation (3-6). Let R’ = QJa, x¢, X7, xg]. By
Proposition 2.16 and Lemma 3.2, we have that, as Z, @ Z®2—graded matrix factoriza-
tions of 0 over R/,

alU, X7+ Xg+ Xg— X1 — X3 — X3
aU;  X7Xxg+ XgXg+ XgX7 —X1X3 —X3X3 — X3X1
aU3 X7X8Xe —X1X2X3
al, —(x74+Xxg+x6— X1 — X2 —X3)
alUy —(x7xg + XgXe + X6X7 — X1X2 — X2 X3 — X3X1)
aUs; —(x7x8X6 — X1X2X3) )Ra
ahy ({x¢,x7,x8}) 0
~ | ahn—1({x6,x7.x5}) O

\ahn_2({xs.x7.x8}) 0/,
Thus, as Z, & Z®2—graded matrix factorizations of 0 over R’,

ahy({x¢,x7,x8}) 0
Hompg, (CN(T),CN(T)) =~ M := | ahn—1({x6.Xx7.x38}) 0| (3){3,3N —9}.

ahn—2({x6,x7,x5}) 0/ p,
As a Z, ® Z®%—graded R'-module,
M=(ReR (1) {1, N-1)Qp (R®&R (1) {1, N-3})@r (R'®R' (1) {1, N-5}).

From this, it is easy to see that the homogeneous component of M of Z, ®Z®?—degree
(0,0,0) is 1-dimensional over Q. This implies that

dimg H%*°(Homg,(Cx(T),Cn(T))) < 1.
But, by Lemma 2.6,
Homym(Cy (1), Cyv () 2 H*™* (Homg, (Cy (I). Cy (I))).
Therefore, dimg Hompm(Cy ('), Cy(I")) < 1.

Putting the above together, we get Hompn(Cx ('), Cy (7)) = Q. a

3.4 Edge splitting and merging

Let I and I'; be the MOY graphs in Figure 4. We call the change 'y — I' an edge
splitting and the change I' — I'y an edge merging. In this subsection, we define the
morphisms induced by edge splitting and merging.
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24{x1,x2} {x1,x2}
1 1 2
X5 X6
21{x3, x4} {x3, x4}
I I
Figure 4

Lemma 3.11 [10, Proposition 30] Let Ry = Q[a]®q Sym({x1, x2}|{x3,x4}). Then

Cn(T) = Cn(T)H0, =1} @ Cn (T'1){0, 1}

as Z, ® 7.9% —graded matrix factorizations of a(va+1 + xéV'H — xéV'H — xiv"'l)

over Rj.
Proof (Following [10]) Set
R = Qla] ®q Sym({x1, x2}[{x3, x4}[{x5, x6}),
R = Qla] ®q Sym({x1, x2}[{x3, x4}) ®q Q[xs, x¢].

Then R is a subring of R and, as Z®2—graded R-modules, R = R-1® R- x5 =
R R{0,2}.

By definition,

* X1+ Xy —X5—Xg
* X1X2 —X5X¢
3-8 I') = 0, —1}.
(3-8) CN() ¥ X5+ Xg—X3— X4 {? }
* X5Xg — X3X4 R

We add an extra marked point to I'; as in Figure 5. Then, by Lemma 3.6, we have

* X1+ X3 —X5—Xg
% X1X2 —X5X¢
(3-9) Cn(Ty) ~

* X5+ Xg—X3—X4

* X5Xg — X3X4 R

Combining the above, we get that Cny(I') ~ Cn(I'1){0,—1} & Cn(T"1){0, 1} as Z, &
7.®2 _graded matrix factorizations of a(x{v+1 + xéw'l — xéV‘H — xiv“) over R.
Since Ry is a subring of R, this proves the lemma. a

Lemma 3.12 Let I', I'; and Ry be as in Lemma 3.11. Then, in the category
hmfRa,a(x{V“+x§’+1—x§V+l—x£’+l)’ we have that, for k > 1,

Hormye(Cy (1), Cv (T'1){0, k1) 2 Hompg (Cy (T'y), Cx (D)0, k}) == {Q o,

0 ifk>1.
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{Xl,xz}

{xs5, X6}

{x3, x4}
Iy

Figure 5

Proof By Lemma 3.11, we have Cx(I") ~ Cn(I'1){0,—1} & Cn(['1){0, 1}. So
(3-10) Hompm¢(Cn ('), Cn (I'1){0, k)
= Hompmi(Cn (['1), Cn ()10, k})
=~ Hompme(Cn (I'1), Cn (T'1){0.k — 1})
@Hompm(Cy (I'1), Cn (110, k + 1})
= HO%!7F(Hompg, (Cn (T'1).Cn(T'1))
®H*" ™'~ (Homg, (Cn (T1), Cy (1))
By Lemma 2.10, we have that
aUy x1+Xp—X3— X4
U, X1Xp —X3X4

aU1 X3+ X4—X1— X2
aU2 X3Xgq4 —X1X2

N

Homg, (Cx(T'1).Cy (') = (2.2N -4},

Ry
where U; and U, are given by Equation (3-6). By Proposition 2.16 and Lemma 3.2,
as Z, ® Z®? —graded matrix factorizations over R := Q[a] ®¢g Sym({xy, x2}),

aU1 X1 +X2—X3—X4

alUy  X1X2—X3X4 [ ahn(x1.x2) O
aUp x3+xg—x1—x2| — \ahy—1(x1,x2) 0)5°
aU2 X3X4 —X1X2 R,
So, as Z, @ Z®?—graded chain complexes over R,

ahy(x1,x2) 0

Hompg, (Cn(T'1).Cn(Th)) = (ahN_l(Jq x2) 0

)A{2,2N—4}.
R

But, as a Z, & Z®2—graded R—-module,
( ahpy(xy,x2) O)

a0 22N = (R{1,N —1}®R(1))® 3 (R{1, N =3} & R(1)).

R

Algebraic & Geometric Topology, Volume 16 (2016)



A family of transverse link homologies 73

This implies that
<1 if/ =0,
=0 if/<0.

It is easy to check that Hg,(Cn(I'1)) 22 0. This means that Cx(I'1) is not homotopic
to 0 and, therefore, id¢, (r,) is not homotopic to 0. Thus,

(3-11) dimg H** ! (Homg, (Cx (T'1),Cx (1)) {

(3-12) dimg H%*°(Homg,(Cn(T}),Cn(T}))) = 1.

Now the lemma follows from equations (3-10), (3-11) and (3-12). a

Lemma 3.13 Let I', I'; and Ry be as in Lemma 3.11. Then, up to homotopy
and scaling, there exist unique homotopically non-trivial Ry-linear homogeneous
morphisms of matrix factorizations

Cn(T) &> Cn(@) and Cy(T) 25 Cy(Iy)
of 7, ® 7,92 —degree (0,0, —1). For these two morphisms, we have

po¢ =0,
¢ om(xs)od =—pom(xe) o ~idey ()
where m(xs) is the endomorphism of Cp (I") given by the multiplication by x5 .

Proof The existence and uniqueness of ¢ and 5 follow from Lemma 3.12. It remains
to show that ¢ and ¢ satisfy the equations in the lemma.

Denote by Sym(xs, x¢) - Q[xs, x¢] the standard inclusion that maps every element
of Sym(xs, x¢) to itself in Q[xs, x¢]. Set R = Ry ®g Sym(xs, x¢) as in the proof
of Lemma 3.11. Using expressions (3-8) and (3-9) for Cx(I") and Cnx(I"1), one
can see that ;j induces an R-linear homogeneous morphism of matrix factoriza-
tions Cn (') -5 Cn(T) of Z, @ Z®2—degree (0,0, —1). Denote by Q[xs, x¢] =
Sym(xs, x¢) the divided difference

S (xs5,x6) — /(x6,X5)

w(f(xs5,x6)) = S € Sym(xs, x¢).

Note that 7 is Sym(xs, xg)-linear. Using expressions (3-8) and (3-9) again, one
can see that 7 induces an R-linear homogeneous morphism of matrix factorizations
Cn(T) - Cn (1) of Zo @ Z9%—degree (0,0, —1). Itis easy to check that 70 7 =0
and T om(xs)o j = —mw om(Xg) © J = idgym(xs,xs)- It follows that ¢ o ¢ ~ 0 and
@om(xs)op =—@om(xg)og ~ide,(r,)- In particular, the last equation implies
that ¢ and ¢ are homotopically non-trivial. Thus, by the uniqueness of ¢ and 5 , We
have ¢ ~ ¢ and q_S ~ @. This completes the proof. a
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3.5 x-morphisms

In this subsection, we construct two pairs of y—morphisms induced by the changes in
Figures 6 and 7. The morphisms x° and x' are direct generalizations of those defined
in [10; 11] and will be used in the definition of the chain complexes associated to
closed braids. The morphisms ¥° and ¥' will be used in the proof of the invariance of
‘H under Reidemeister move III. The constructions of these morphisms are given in
more general settings in [21, Section 8].

As in [11], our construction of the y—morphisms are based on the following simple

observation.

Lemma 3.14 [11] Let r,s,t be homogeneous elements of R = Q[a, X1, ..., Xi]
with degr + degs +degt = (2,2N + 2). Then there exist homogeneous morphisms
of matrix factorizations

fi(@r,st)g—> (rs,t)g, g: (rs,t)g — (r,5t)R,
such that
(1) f and g preserve the Z.,—grading,
(i) deg f = (0,0) and deg g = degs,
(iii) go f =s-id( ), and fog =15 idgg ) p-

X1 V1 X0
1 1 —
(_
1
Y2 X2 X
Lo
Figure 6

Lemma 3.15 [10; 11] Let 'y and 'y be the MOY graphs in Figure 6. Then there
exist homogeneous morphisms of matrix factorizations

0 1
Cn(To) X>Cn(T1) and Cn(Ty) %> Cy(T)
such that

(1) x° and x' are homotopically non-trivial,
(2) the Z, ® 292 —degrees of x° and x! are both (0,0, 1),

() x'ox® > (x2—x1)ideyry) and x°o x! ~ (x2 —x1)idey (1)) -
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Moreover, up to homotopy and scaling,

o x° is the unique homotopically non-trivial homogeneous morphisms from

Cn(To) to Cn(Ty) of Zy @ 792 —degree (0,0, 1),

o x! is the unique homotopically non-trivial homogeneous morphisms from

Cn(T) to Cn(To) of Zy @ 792 —degree (0,0, 1).
Proof (Following [11].) We prove the existence of x° and x' first. Let Ry =
Qla, x1, x2, y1, y2]. By Proposition 2.16,

al, x1+y1—x2—y2) {0.—1}
alUy  xiy1=x2y2 Jp= 7

where U; and U, are given by Equation (3-6). By Lemma 2.13,

(ClUl X1+y1—x2—J/2) ~ (a(U1+x1U2) x1+y1—xz—y2)
Ry Ry

Cn(I'y) ~ (

aly  x1y1—x2)2 al, (r2 = x1)(x1 = »2)
Thus, we have a pair of homotopy equivalences

P a(Uy + x1Uy) x1+y1—x2—y2)
Cn(T)—=M = 0,—1
~(T) F ( als (x2 =x1)(x1—y2) Ra{ }

that are homotopy inverses of each other. On the other hand, by Lemmas 2.13 and 2.15,
we know that

a(Uy +x1U3) » —Xz) - (Cl(Ul +x1U3) x1+ 1 —Xz—yz)
Ry Ry

Cny(To) =
N (To) (a(U1+sz2) X1 —y2 a(x; —x1)Us X1 — )2

This gives a pair of isomorphisms

i a(Uy+x1Uz) x1+y1—x2—1
Iy) — M= .
CnTo) - (a(xz—xl)Uz X1— )2 R

f
By Lemma 3.14, there are homogeneous morphisms M 7—— M’ such that
g

o the Z, ® Z®?—degrees of f and g are both (0,0, 1),

o fog~(xy—x1)idpy and go f >~ (xp —x1)idps.
Moreover, it is straightforward to check that Hg, (M )LH R,(M') and Hg,(M')-£>
Hpg,(M) are both non-zero. So f and g are homotopically non-trivial. Define

x®=pogonand x° =n"lo fop. Itis easy to verify that these homogeneous
morphisms satisfy conditions (1)—(3) in the lemma.
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It remains to prove the uniqueness of x° and x!. This comes down to showing that in

the category hmfRa,a(x{V“+y{V+1—x§’+1—y§V+‘) we have

Homype(Cy (I'0). C (I'1){0, —1}) = Hompue(Ca (I'1), Cn ()0, —1}) = Q.

Next, we prove that Hompni(Ca (o), Ca(I'1){0, —1}) = Q. We leave the similar
proof that Hompmi(Ca(T'1), Ca(T'9){0, —1}) = Q to the reader.

Since x° is not homotopic to 0, we have that dimg HO’O’l(HomRa (M, M)) > 1.
Note that by Lemma 2.6,

Hompmt(Cn (To), Cv (I'1){0, —1}) = Hompme(M ', M {0, —1})
~ %% (Homg,(M', M)).

By Lemma 2.10 and Proposition 2.16, we have that, as Z, @ Z®2—graded matrix
factorizations over R = Qla, x1, y1],

aUy+x1Uy)  x1+y1—xX2— 1

U (x2 =x)(x1 = y2)
Hompg, (M', M) = a%2 2,2N =3
B ) a(Uy +x1Uy) —(x1 +y1—x2—2) ¢ ;
a(xy —x1)U, —(x1—2) R,

~ (aVi+x1V2) 0 (2.2N -3
o aV, 0 R, ’ ’

where V; = Uj|y,=x,, xa=y, € R. But, as a Z, ® Z®?—graded R-module,
(“(VIJVXIVZ) 8) 2,2N =3} =~ (R{1,N — 1} ® R(1))

2 Ry ®g (R{1, N =3} & R(1)){0, 1}.
This implies that dimg H%%!(Homg,(M’, M)) < 1. Thus,

Hompm(Cy (T'), Cy ()10, —1}) = Q. a

Lemma 3.16 Let f‘o and T | be the MOY graphs in Figure 7. Then there exist
homogeneous morphisms of matrix factorizations

~ ~0 ~ ~ ~1 ~
Cn(To) 2> Cn(Ty) and Cn(I'y) %> Cn (o)
such that
(1) ¥° and ¥' are homotopically non-trivial,
(2) the Z, @ Z.9% —degrees of ¥° and %! are both (0,0, 1),

3) X' oX° = (xa—x1)id, () and ¥° o X' = (x2 —x1)id, (-
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Moreover, up to homotopy and scaling,

o x° is the unique homotopically non-trivial homogeneous morphisms from

Cn(To) to Cn(Ty) of Zp & 792 —degree (0,0, 1),

o %! is the unique homotopically non-trivial homogeneous morphisms from

CN(fl) to CN(f‘o) of Z, ® Z.9?% —degree (0,0, 1).

1 2
x141 20{y1, y2} 70 X1 {y1, y2}
1 —
z — 3
=1 2 1
{3, yatl2 1lx; X 13, ya} X2
Lo I'y
Figure 7

Proof We follow the approach used in the proof of Lemma 3.15. The only difference
is that the computations are now more complex. To simplify the exposition, we
introduce the notation *; ; to mean a homogeneous element of 792 _degree (j, k).
From Lemma 2.15, we know that the isomorphism types of all the Koszul matrix
factorizations appearing in this proof are independent of the choice of *; ; as long as
these matrix factorizations remain Z, @ 7Z®?—graded matrix factorizations of

N+1

N+1 N+1 N+1 N+1 N+1
a(x; + +, —X, -3 — Yy )

Let Ry = Q[a, x1, x2] ®q Sym({y1, y2}|{»3, ya}). By Proposition 2.16, we have

B *2,2N X1t+ty1+y2—X2—y3— )4
Cn(T1) = | x228v—2 X1y1+X1y2+y1y2a—Xay3—Xaya—y3ya | {0,-2}.
*2,2N—4 X1Y1V2 —X2)3)4 Ry

Note that

(X1Y1Yy2 = X2Y3¥a) —X1(X1y1 + X1 V2 + V1V2 —X2¥3 — X2 V4 — V3 V4)
+ X7 (X1 + 1+ 2 — X2 —y3— Ya)
= —(x2—x)(x] —x1 (3 + ya) + 3)4)

and

(X1y1+ X122+ y1y2—X2y3 —Xoya—y3ya) —X1(X1 + Y1 + Y2 — X2 — y3— y4)
=y1y2+ (X2 —x1)(X1 — Y3 —ya) — V3)s.
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So, by Lemma 2.12,

*¥2 0N X1+Y1+y2—X2—Y3— )4
¥20N—2 X1Y1+X1V2+V1V2—X2Y3 —X2Y4— V3)4
*2,2N—4 X1V1V2 —X2)3)4 R,
*2 0N Xi+V1i+Y2—X2—y3—)a

= | *%228—2 ViY2+ (X2 —=X1)(X1 — Y3 —y4) — V3)a
$2,0N—4 —(x2 =X (X7 —Xx1(y3 4 y4) + ¥374) Ro

Thus, we have a pair of homotopy equivalences

5 o *2,2N Xttyity2—X2—V3— )4
CN(T1) m——= M = | x22N-2 V1y2+ (X2 —=x1)(x1 —y3—ya) — y3ya | {0, -2}
P #20N—4 —(v2 =x)(F =x1(V3 +ya) +394) /g,

that are homotopy inverses of each other. By definition,

¥220N X1 +Z—)Y3— )4
=~ *2,2N-2 X1Z—Y3)4
Cn([To) = ’ 0,—1}.
~(To) ¥20N Y1+ )V2—X2—zZ ¢ j
*2,2N—2  V1V2—X2Z R;[2]

We remove the indeterminate z by applying Proposition 2.16 to the first row of this
Koszul matrix factorization. This gives

B *22N—2  X1(V3+ya—X1)—V3)a
CNTo) = | *x2o8 yit+y2—x2—(3+ya—x1) | {0,-1}
*20N-2  V1y2—=X2(3tya—x1) /g
k20N Y1+ Yya—x2—(V3+ya—x1)

*¥220N—2  V1Y2 —X2(y3+ ya—x1) {0, -1}
*20N-2  X1(3+Ya—x1)=y3ya )

lle

*¥2 0N X1+Y1+y2—X2—y3— )4
= | %2282 Viy2a+ (2 —x1)(X1 —y3—ya)—y3ya | 10.—1},
*2,2N—2 —(xF = x1(y3 4+ y4) + y34) R,

where, in the last step, we applied Lemma 2.12 to the second and third rows. Thus, we
have a pair of homotopy equivalences

5 n *2,0N X1+Y1+y2—X2—=Y3—J4
CN(To) m= M'":= | %2082 y1y2+(x2—x1)(X1—=y3—Y4)—Y3Vas | {0, =1}
" *2,2N—2 —(xF—=x1(y3+ya)+¥3¥4) Ry
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that are homotopy inverses of each other.
By Lemma 3.14, there are homogeneous morphisms
f
M—M
g

such that

o the Z, ® Z®?—degrees of f and g are both (0,0, 1),

e fog~(xy;—x1)idpy and go f >~ (x; —x1)idpy.

Moreover, it is straightforward to check that
Hg,(M)-L> Hp,(M") and Hg,(M')-~E> Hg, (M)

are both non-zero. So f and g are homotopically non-trivial. Define ¥ = pogon
and ¥° = 7o f op. Itis easy to see that these are homogeneous morphisms satisfying
conditions (1)—(3) in the lemma.

This proves the existence of ¥° and ¥!. The uniqueness of ¥° and %! follows from
the fact that in the category

hmf N+1, N+1, N+1__N+1__N+1__N+1y,
Ra,a(x1++y1++y2+—xz+ +_y4+)

-3

we have

Homume(Cx (To), Ca (T1){0, —1}) = Hompme(Cx (T'y), Cn (Fo){0, —1}) == Q.

The computations of these Homp,r spaces are very similar to the corresponding com-
putation in the proof of Lemma 3.15. We leave details to the reader. |

4 Definition of H

We define in this section a chain complex Cy (B) of matrix factorizations for every
closed braid B. Then #H  (B) is defined to be the homology of Cx(B). Up to a grading
shift, Co(B) is the chain complex defined in [11] and Hy(B) is the HOMFLYPT
homology. We will prove in Sections 5-7 that for N > 1, H is an invariant for
transverse links but not for smooth links.

In this section, we again fix a non-negative integer N and let @ be a homogeneous
indeterminate of bidegree dega = (2, 0).
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4.1 The chain complex associated to a marked tangle diagram

In this subsection, we define the chain complex associated to a marked oriented tangle.
Although this chain complex can be defined for any oriented tangle, we can only
establish its homotopy invariance under transverse Markov moves. So, in the end, this
definition will only be applied to closed braids to define a transverse link invariant via
transverse braids.

Definition 4.1 Let 7 be an oriented tangle diagram. We call a segment of 7" between
two adjacent crossings/end points an arc. We color all arcs of 7" with 1. A marking
of T consists of:

(1) A collection of marked points on 7" such that
e none of the crossings of 7' are marked,
e all end points are marked,
e every arc of T' contains at least one marked point.

(2) An assignment of pairwise distinct homogeneous indeterminates of bidegree
(0, 2) to the marked points such that every marked point is assigned a unique
indeterminate.

Let 7" be an oriented tangle with a marking. Cut 7" at all of its marked points. This

cuts T into a collection {77, ..., T;} of simple tangles, each of which is of one of the
three types in Figure 8 and is marked only at its end points.

X2

Figure 8

Note that A is itself a MOY graph. We define the chain complex associated to A4 to be

4-1) Cn(4) =0—Cn(4) — 0,
N——
0

where the Cpn(A4) on the right-hand side is the matrix factorization associated to the
MOY graph A, and the under-brace indicates the homological grading. In other words,
the chain complex Cp(A) is given by a single copy of the matrix factorization Cp(A4)
at homological degree 0, and zero at all other homological degrees.
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0
X1 Y1
1 1
)2 X2
Iy

Figure 9

To define the chain complexes Cx (C+), consider the resolutions of C4 in Figure 9.
We call the resolution C+ ~» I'y a O-resolution and the resolution CL ~» I'; a
+1-resolution. We define

(42) O (C) =0 Cy () (1) {1 N} X5 oy (To) (1) {1 N — 1} 0,

—1 0

(43) Cn(Co) = 0= Cr(To) (1) {=1, =N + 1} X5 Cy (Ty) (1) =1, =N} — 0,

0 1

where the morphisms x° and ! are defined in Lemma 3.15 and, again, the under-braces
indicate the homological gradings.

Note that the differential maps of Cn(4), Cxy(C4) and Cpn(C-) are homogeneous
morphisms of matrix factorizations that preserve the Z, @ Z®2—grading. Of course,
these differential maps raise the homological grading by 1.

Definition 4.2 We define the chain complex Cn(7") associated to 7" to be Cy(T) :=
®f=1 Cn (T;), where the tensor product is over the common end points. That is, if
X1, ..., Xm are the indeterminates assigned to the common end points of 7; and 77,
then 7; ® TJ =T QQ[a,x1 s Xm] TJ :

Suppose that

e the indeterminates assigned to end points of T" are y1,..., Vo,

Algebraic & Geometric Topology, Volume 16 (2016)



82 Hao Wu

e T points outward at end points assigned with yq,..., yy,
e T points inward at end points assigned with y,41,..., Vap.
Define Ry = Q[a, y1, ..., yan]. We view Cn(T') as a chain complex over the category
hmf?! :
Ra,a(2?=1 yiN+l_ij'in+1 J’JN+1)

In particular, for a link diagram L, we view Cnx(L) as a chain complex over the
category hmfgqg)0-

We denote by d, the differential map of Cn (L) induced by the differential maps of
the chain complexes (4-1), (4-2) and (4-3) via the tensor product. d, is a homogeneous
morphism of matrix factorizations preserving the Z,—, a— and x—gradings, and raising
the homological grading by 1.

The underlying matrix factorization of C(7") endows it with a homogeneous differen-
tial d,, s, which preserves homological grading and shifts the Zj;—grading by 1, the
a—grading by 1 and the x—grading by N + 1.

The differential dy commutes with the differential d,, s since, at each homological
grading, d, is a morphism of matrix factorizations.

Definition 4.3 Suppose that B is a closed braid with a marking. Then Cx(B) is a
chain complex over the category hmfal[a]’o. Set Hy(B) := H(H(CN(B)., dyr), dy).
Note that both dy and d,, s are homogeneous homomorphisms of Z, & 793 _graded
Qla]-modules. So H (B) inherits the Z, @ Z®3 —graded Q[a]-module structure of
Cn(B), where the Z,—grading is the Z,—grading of matrix factorizations and the three

Z—gradings are the homological, the a— and the x—gradings.

Remark 4.4 Comparing Definitions 4.2 and 4.3 to the corresponding definitions
in [11], it is easy to see that up to a grading shift, Hy is the HOMFLYPT homology
defined in [11], which is a smooth link invariant. In the current paper, we focus on the
case N > 1 and show that, if N > 1, then #, is an invariant for transverse links but
not for smooth links.

4.2 Markings do not matter

Lemma 4.5 Suppose that T is an oriented tangle diagram with a marking and T’ is
the same oriented tangle diagram with a different marking. Assume that

e each pair of corresponding end points of T and T’ are marked by the same
indeterminate,
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e the indeterminates assigned to end points of T are y1,..., Van,
e T points outward at end points assigned with yq, ..., y,
e T points inward at end points assigned with y,41,..., Van.

Then Cn(T) = Cn(T’) as chain complexes over the category

N+1 2 N+1Y)°
Rya(Xf—y yNH-x2n, 0y N

where Ry = Qla, y1, ..., Vanl-

Proof To prove this lemma, we only need to show that adding and removing an
extra marked point near a crossing does not change the isomorphism type of the chain
complex associated to that crossing. There are four arcs near a crossing. So, in principle,
one needs to discuss where the extra marked point is added/removed. Here we prove
only that Cx(C+) = Cn(C.) as chain complexes over the category

hmf N+1, N+1__N+1__N+1
Raey Py VTl Ny Vil

where C, and C/, are depicted in Figure 10, and R = Qla, X1, X2, y1, y2]. The proofs
for the other cases are very similar and left to the reader.

Figure 10

Consider the marked MOY graphs in Figure 11. Cutting T at the pointed marked
by y3, we get two marked MOY graphs, T'j and A, where A4 is the arc from y;
to y1, and '] is the remainder of I'j. Then Cn(T})) = Cn(I')) ®Q[a,y5] CN(4).
Similarly, cutting ' at the pointed marked by y3, we get I'| ="'/ U4 and Cy (T}) =
Cn(T) ®Qa,y;1CN (A).

By Proposition 2.16 we know:
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e there are a pair of homotopy equivalences

f
CN(T'G) ®Qa,y;] Cn (4) <—_f> Cn(To)

of Z, @ 7Z®?—graded matrix factorizations that are homotopy inverses of each
other,

e there are a pair of homotopy equivalences

g
CN(T')) ®Qla,y31 Cn (4) = Cn(T)

of Z» @ 7Z®?—graded matrix factorizations that are homotopy inverses of each

other.
X1 J1
1 1
Y2 X2
Iy
1 1
X1 J1 X1 V1
1 1 y3 2 y3
1 1
»2 X2 2 X2
J A Fi
Figure 11
Let (XO)//
Cn(TY) == Cn(TY)
(Xl)//

be the y-morphisms associated to I'j and I'{" defined in Lemma 3.15. Using the
definitions of (x°)”, (x!)” and Proposition 2.17, one can check that

0 ”®id
HR(CN(TY) ®Qla,y31CN (A))( T’ HR(CN(T']) ®Qla,y31CN (A))
Y ®id

are non-zero homomorphisms. Thus, (¥°)” ® id and (x')” ® id are homotopically
non-trivial. This implies that morphisms
go((x")"®id)o f
Cn(To) ————— Cn (M)
fo((x")'®id)og
are homotopically non-trivial. Note that these are homogeneous morphisms of Z, &
Z®2—degree (0,0,1). Let
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Cn(To) == CnT)
x!
be the y—morphisms associated to I'g and I'; defined in Lemma 3.15. By Lemma 3.15,
we know that up to homotopy and scaling, x° and x! are the unique homotopically non-
trivial homogeneous morphisms between C (Ig) and Cx (T'y) with Z, & Z®? —degree
(0,0, 1). Thus, there exist non-zero scalars cg, c; € Q such that go ((x°)” ®id)o f ~

cox® and fo((x")" ®id)og~cix'.
The above shows that over the category hmf

N+1L N+1_ N+1_ N+1y We have
. . Raa(e Ty oyl
commutative diagrams

Cn(TY) o)sid Cn(Tg)
0— ®Qla,y;] — ®Qla, 3] —0
Cn (AL, N} Cn(A)(I{L, N -1}

o

0 —— Cn(T)(1){I, N} —X>CN(F0)(1){1,N— 1} —0

and
124 124
CN(F()) (x%)” ®id CN(FI)
0—— ®Qla, 3] —_— ®Qla, 3] —0
Cn(A)(I){—=1,—-N + 1} CN(A))(){—1,-N}
lmf lg
0

0 —— Cn(To) (1) {=1,—N + 1} — s e (M) =1, =N} —— 0.

Since f and g are homotopy equivalences of Z, @ Z®? —graded matrix factorizations,
the above diagrams give isomorphisms Cn (C+) = Cy(C,) for chain complexes over

the category hmfR’a(xi\/-i—l_i_yi\/—i-l N4 Ny |

)2
5 Reidemeister move I

In this section, we prove the invariance of H  under positive stabilizations and destabil-
izations and establish the long exact sequence induced by a negative stabilization.

5.1 Algebraic lemmas

First, we recall the Gaussian elimination lemma of [1], which will be used frequently
in the proof of the invariance of H .
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Lemma 5.1 [1, Lemma 4.2] Let € be an additive category, and

(3) 4 02 5 ()

I=.---—C ) (<3} F—-...
D E

a chain complex over €. Assume that A %, Bisan isomorphism in ‘€ with inverse
¢~!. Then I is homotopic to

—vo— 18
II:---—)CiDLElF—)---.

We call —y¢~'8 the correction term in the differential. If § or y is 0, then the
correction term is 0 and I is homotopic to

= sChDSESF ...

Next, we give a lemma about commutativity of certain morphisms between Koszul
matrix factorizations that will allow us to simplify morphisms x° and x' and prove
the invariance of 4 under positive stabilization.

Lemma 5.2 Let R = Q[a, X,,..., Xy] be a Z®?—graded polynomial ring with
dega = (2,0) and deg X; = (0,2n;), where n; is a positive integer. Suppose that
u,v,Xx,y,z, p are homogeneous elements of R such that

e degu-+degv=(2,2N +2),
e degx+degy+degz=(2,2N +2),
e degp=degx—degv=degu—degy—degz.

Consider the 7., ® 7.%9% —graded matrix factorizations

M_(u v) M,_(u—l—pyz v)
0 Xy z)p’ 0 xXy—ypv z)5’

M. — u v M = u—+pyz v
1_xyZR’ L7\ x—pv yi)p

Denote by
g g’
Myz=——M, and Mj;—— M|
f S

the morphisms obtained by applying Lemma 3.14 to the second rows of these Koszul
matrix factorizations. Let

Moo M} and My ¥ M|
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be the isomorphisms from Lemma 2.12. Then the following diagrams commute:

Mo 22 M M 2
gl lg’ fl lf’
M, M! My 22 M|

Proof This lemma becomes fairly obvious once we explicitly write down these matrix
factorizations and morphisms. For simplicity, we omit the grading shifts in this proof.

Note that
U —z vz
Roo \xy v Rio \—xy u] Roo
My= & ® ® ,
Ry Ro1 Ry
u —yz v oyz
Roo \x v Rio \—x u Roo
M= & ) @D ,
Ry Ro1 Ry
u+pyz —:z v z
) Roo \xy—ypv v Rig \—=xy+ypv u+ pyz] Roo
M,= & ) ® ,
Ry Ro1 Ry
u—+ pyz —yz v yz
) Roo \ x—pv v Rio \=x+ pv u+ pyz) Roo
M= & ) @D ,
Ry Ro1 Ry

where each R.g is a copy of R and the lower indices are just for keeping track of the
position of each component. Using these explicit matrix factorizations, we have the
following:

_&
e The morphisms My —— M, are given by
f

Roo Go Roo Ry Gy Ry
b —— & and & —— &,
Ry Fo Ry Ro1 Fy Roq

where, as matrices over R,

0 10
a3 nen(y)
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g/
* The morphisms Mj—— M| are given by

f
Roo G, Roo Ry G| Ry
o) <:> &) and b ——— P,

Rego Yoo Rego and RG;O Yoy RG;O
Ry Ry Ry Roq

where, as matrices over R,

1 0 10
q’oo—(py 1), Yo = (0 1)-

e The isomorphism M 1£>M | is given by

Roo W Roo R0 v, R0
® ———— @ and & ——— P,
Ry Ry Roq Roq

where, as matrices over R,

10 10
‘P10=(p 1), Wiy :(0 1).

It is easy to verify that ¥1,G, = G, Wy, and Vo, F, = F,W;, for ¢ =0, 1. This proves
the lemma. a

5.2 A closer look at the y—morphisms

Let us recall the definitions of x° and x!. From the proof of Lemma 3.15, we know
that, for the MOY graphs I'g and I'y in Figure 6,

a(Uy +x1U3) x1+ 1 —Xz—yz)
a(xz —x1)U, X1 = )2 Ry

Cn(To) = (

a(Uy +x1Uz) x1+y1—x2—)2
T 1} ~
Cn ()10, 1} ( als, (2 =x1)(x1=32) ) .’
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where Ry = Qla, x1, x2, ¥1, 2], and

P2, N+1(X1 + 1, X1Y1) — P2, N+1(X2 + Y2, X1)1)

X1+y1—x2—)2 ’
_ P2 N+1(x2+ 12, x101) — pa N+1(X2 + 2, X2)2)
B X1Y1 —X2)2 ’

U, =

U,

with the polynomial p; x4 given by Equation (3-5). Under the above homotopy
equivalences, the morphisms x° and x! are defined by applying Lemma 3.14 to the
second rows in the Koszul matrix factorizations on the right-hand side:

1 x° 1Y1
X2 Xl 1X2
Iy

A~

Iy
Figure 12

Now consider the MOY graphs f‘o and f‘l in Figure 12. From the above discussion,
we get the following lemma.

Lemma 5.3 We have
~ a(Vi +x1V2) » —Xz)
Cny(To) = )
~(To) (a(xz—xl)Vz 0 Jg

a Cl(Vl + X1 Vz) M —x2)
Cny(T1){0,1} ~ )
N (0.1} ( o 0 ).

where R = Q[a, x1,x2,y1] and Vi = Uj|y,=x,, V2 = Uzly,=x,. Moreover, the

morphisms o

. X .
Cn(To) <—15 Cn(Iy)
X

are obtained by applying Lemma 3.14 to the second rows in the Koszul matrix factor-
izations on the right-hand side.

Note that CN(f’O) and CN(f'l) are matrix factorizations of a(yfVJrl — xé\”rl). So

N+1 —xé\’“

Vi+x1Va=hyn(i,x) =
Y1—X2

Also,
Vo = U2|y2=x1 = U2|y2=x1,y1=xz + (1 —x2)p
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for some homogeneous element p of R of bidegree (0,2N —4). By Lemma 3.2, we

have that N
Uslyr=x1,p1=xs = hn—1(x1,x2) 1= -1 2
2 1,1 2 x1 — xz
Thus, we get the following lemma.
Lemma 5.4 We have
I ahy(y1,x2) »1i —xz)
C F ~ M = ’
Vo) ° (a(XZ_xl)hN—l(xlsxz) 0 Jr

T ah , X —X
= (S ),
— R R

where R = Qla, x1, X2, ¥1]. Denote by
g
My — M,

the morphisms obtained by applying Lemma 3.14 to the second rows of these matrix
factorizations. Then there are commutative diagrams:

Cn(To)yo ——— My ey (TD{0. 1}, —— M,
| & | |7
ey (TD{0. 1} —— M, Cn (o) ——— My
Proof This lemma follows from Lemmas 5.2 and 5.3. O

5.3 Positive stabilization

We prove in this subsection the invariance of H under positive stabilizations/de-
stabilizations. The main result of this subsection is Proposition 5.5.

yi 1 Ley
1 X1
AN

X2 X2
T Ty

Figure 13

Proposition 5.5 Let T and Ty be the tangles in Figure 13. Then, for N > 1,

Cn(T) ~Cn(T4+) as chain complexes over the category hmfgl[a’y1 ol NIy
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Proof Let [y and T'; be the MOY graphs in Figure 12. Set R = Q[a, x1, X3, y1] and
Ry = Qla, x3, y1]. From Lemma 5.4, we know that

(5-1) Cn(T4) = 0 — Cy (D)L N} 2 en (Do) (1){1, N — 1} — 0

—1 0
~0— My (I){1,N =1} L5 Mo (1){1, N =1} = 0,

—1 0

where
ahn(y1,x2) Vi —xz)

5.2 Mo =

-2 0 (a(xz_xl)hN—l(xl»XZ) 0 Jg

ahn(y1,x2) yl—xz)
- M:
©-3) : (ahN—l(xlvx2) 0 R

and f is the morphism obtained by applying Lemma 3.14 to the second rows of M|
and M;.

We prove the proposition by simplifying the chain complex

0> M, -5 M, >0
N—— N——

-1 0
Note that
Roo o Rip{—1,1-N} D Roo
54 M,= ® — 5 —L &) ,
Ryy{=2,2—2N} Roii—1,1— N} Ryy{—2,2—2N}
where
Dy = ( ahn(y1,x2) 0 )
a(x; —x1)hn—1(x1,x2) y1—x2)°
Dy = ( y1—x2 0 )
—a(xy —x1)hn—1(x1,x2) ahn(y1.x2))’
and
Roo A Rip{—1,1-N} A Roo
(5-5 M, = ® S @ 2L ® ,
Ri1{—-2,4—-2N} Ro1{—1,3—N} Ri1{—2,4-2N}
where

Ay = ( ahy(y1.x2) 0 ) A= ( y1—Xx2 0 )
ahy—1(x1,x2) y1—x2)’ —ahn—1(x1,x2) ahn(y1.x2))
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Moreover, the morphism f: My — M, is given by

1 0
Roo 0 x2—Xxq Roo
@ —% @ b
Ry1{-2,4-2N} Ry1{-2,2-2N}
1 0
Rio{—1,1=N} \0 x, —x;) Ryo{—1,1-N}
(&) _— @b .
Ro1{—1,3—N} Roi1{—1,1-N}

In the above explicit forms, each R.g is a copy of R. The lower indices are just for
keeping track of the position of each component.

Next, we decompose the matrix factorizations My and M; over Ry. First, for My,

[k ]

denote by u 4 the homogeneous element (x, —xl) in R.s and denote by v[lg] the

homogeneous element (x3 — x1)%hn_1(x1,x,) in R,g. Let
k
Boo = {ugy | k = 0},
BIO = {u[lli)] | k > 0},
Bor =l o<k <N-13u ™ k>0,
By =M jo<k<N-nupt k>0

It is easy to check that B.s is a homogeneous Rj-basis for R.5. So
(5-6) B = B()()UBI()UB()IUB“

is a homogeneous Ry-basis for M. Define

(5-7) O = spang, {uE)IB], u[lli)], v([)kl+l], Eklﬂ]} for k > 0,
(5-8) Q) = spang, {uE)kl], [k]} for0<k <N -—1.

It is straightforward to check that the differential map of M preserves ®; and Q.
So O and Q are Z, @ Z®? —graded matrix factorizations of a(yN +1 xév 1y over
Rj. Since B is a homogeneous Rj-basis for My, we have that, as Z, @ Z%®? —graded
matrix factorizations of a( yN +1 xév 1 over Ry,

N—-1 o]
(5-9) My = (@Qk)@(@ok).
k=0 k=0
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[ ]

Similarly, for My, denote by 4" the homogeneous element (x; — xl)k in Rg5 and

by 514

the homogeneous element (2 —x1)%hn_1(x1,x,) in R,g. Let
Boo = {u[k] | k= 0},
Bio = @f | k = 0},
By :{u01]|0<k<N 2 UEk K >0y,
By =@M o<k<nN-23uEH k> 0)
It is easy to see that Eag is a homogeneous Ry-basis for R.5. So

(5-10) E§= EO()UEI()UEQIUEH

is a homogeneous Ry-basis for M. Define

~ k k] ~[k] ~[k
(5-11) O = spanRa{u(go], ”1[0]’ él], 1[1]} for k > 0,
(5-12) Qk—spanRa{ug;],u“]} for0<k <N -2.

It is straightforward to check that the differential map of M, preserves ék and Q k-
So ®k and Qk are Z, @ 7Z®? —graded matrix factorizations of a(yN +tl_ Jrl) over
Rjy. Since Bisa homogeneous Rjy-basis for My, we have that, as Z, @Zez—graded
matrix factorizations of a( yN T X5 +1) over Ry,

N-2

(5-13) M, = ( ey szk) (@ @k)

k=0

From the matrix form of f given above, one can see that

f(Egg) =uges  f(@g)=ufy  fork=0,
SEFy =B @) = T o > 0,
o Sy =ulE @y = W5 for k=0, N -2
So
e f maps O isomorphically onto ® for k >0,
e f maps Qi isomorphically onto Q4 for 0 <k <N —2.

Thus, by Lemma 5.1 and decompositions (5-9), (5-13), we know that

(5-14) 0> M, L5 My >0~0-> Q —0.
—— —— ——
—1 0 0
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fall

as chain complexes over the category hm a(y]

N+ N1 Note that

_ I ,
(5-15) Qo= Ryi—2,2—2N} 222 Ryt 1=N} ZNOLXD poe 5 2 on)

= (ahn(y1,x2), y1—X2) Ry (IH{—1, 1=N}.
Combining (5-1), (5-14) and (5-15), we get that

Cn(T4) = 0— (ahn(y1.x2), V1 —Xz)Ra — 0~ Cn(T)

as chain complexes over the category hmf all a1 Ny a
a(y;
1 1 Y1 4!
X1 11 ) 1
1
X2 X2 X2
F() 1_‘1 l/—:
Figure 14

The following is a simple corollary of the proof of Proposition 5.5.

Corollary 5.6 Let f‘o , f‘l and T’ be the MOY graphs in Figure 14. Then, as objects

of the category hmfgl[a yixala(y N Ny

Cn(To) ~ Cn (D) (1) {=1, 1= N} @ Cy(T1){0. 1.
Proof This corollary follows from Lemma 5.4, decompositions (5-9), (5-13), isomor-

phism (5-15) and the fact that f maps @k isomorphically onto ®; and maps Qk
isomorphically onto Q41 - a

5.4 Negative stabilization

The main result of this subsection is Proposition 5.8, which implies Theorem 1.5 and
Corollary 1.6. The proof of Proposition 5.8 is parallel to that of Proposition 5.5.

Before stating Proposition 5.8, we define a morphism of matrix factorizations. Note
that the tangle 7" can also be viewed as a MOY graph. Its matrix factorization is

ahn(y1,x2)

Y1—X
CN(T) = (ahn (31, X2), Y1 — X2) R, = Ry ————> Ry{—1,—N + 1} —> Ry,
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where Ry = Qla, y1, x»]. Moreover,

CN(T) ®qla) (0,a)q[a) = CN(T) R, (0,a)R,

_ (a¢hn(y1.x2) y1—x2
0 a R
il

Ry Ay, Ro{=1,-N +1} A Rj
= S — S — S )
Ry{0,—2N} Ry{l,—N —1} Ry{0,—2N}

Al = (ahN(YI’XZ) —a ) A = (J’l — X2 a )
0 0 yi—x2) ! 0 ahn(y1.x2)

where

Definition 5.7 Using the above explicit forms of Cx (T') and Cn (T') ®Q[q] (0, @)Q[q] -
we define an Ry—module map j: Cn(T) — Cn(T') ®q[q] (0, @)g[q) bY

((1)) Ry ((1)> Ry{—1,—N + 1}
Ry — @ R Ry{—1,-N + 1} — b .
Ry{0,—2N} Ry{l,—N —1}

It is easy to check that ; is a homogeneous morphism of matrix factorizations of
Z» ® 792 —degree (0,0, 0).

Y1 1 /1' Y1
1 Xl(x
X2 1\ X2
T T_
Figure 15

Proposition 5.8 Let T and T— be the tangles in Figure 15, Ry = Qla, y1, x»] and
w= a(yf\erl —xéVH). Denote by j: CN(T) — Cn(T) ®g, (0,a) g, the morphism

given in Definition 5.7. Then, for N > 1,

J
CN(T-) = 0—CNn(T){—2,0} > CN(T) ®Q[q (0,a)Q[a]1—2,0} — 0
D

0 1

as chain complexes over the category hmfj‘g w"
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Proof Let Iy and T'; be the MOY graphs in Figure 12. Set R = Q[a, x1, X2, y1].
From Lemma 5.4 we know that
~ 0 ~
(5-16)  Cn(T-) =0 Cy(To)(){=1. =N + 1} Z> Cn (T (1){=1. =N} — 0
0 1
=~ 0— Mo(1){—1,—N + 1} -5 M (1){~=1,—N — 1} — 0,

0 1

where M, M, are the matrix factorizations defined in (5-2) and (5-3), and g is the
morphism obtained by applying Lemma 3.14 to the second rows of My and M.

We prove the proposition by simplifying the chain complex
0—> My -5 M{0,—2} —0.
N—— ————
0 1

Again, we use the explicit forms (5-4) and (5-5) of My and M. Under these explicit
forms, the morphism g: My — M is given by

X2 — X1 0
Ryo 0 1 Ryo
@ % @ 9
R{1{-2,2—2N} R{1{—-2,4—-2N}
X2—x1 0
Rio{—1,1-N} 0 1) Rio{-1,1-N}
) _— &) .
Ro1{—1,1-N} Ro11—1.3—-N}

Let B and B be the Ry-bases for My and M given in (5-6) and (5-10). We have
el =l g = gk for k0,
. g(v[k]) = v(glf], g(v[k]) = v[k] for k >0,

. g(u[k]) = u([)li], g(u[k]) = u[k] fork=0,...,N —2.

So

e g maps ®; isomorphically onto @k+1 for k >0,
e g maps 2 isomorphically onto Qp for 0<k <N -2,

where the Z, @ Z®2—graded matrix factorizations O, Qy, ék and Q , are defined
in (5-7), (5-8), (5-11) and (5-12).
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Moreover, note that there are unique polynomials pg(x2), p1(x2),..., pN—2(x2) €
QJx2] such that

N-2
(2 =x)N T = (DN Ty G x) + Y pr(x) (= xp)
Therefore, =0
(5-17) g™y = N1+ sz(xz)um,
=0
(5-18) g@ ™) = N5+ ZPI(Xz)““
=0

By the Gaussian elimination lemma (Lemma 5.1), these properties of g imply that

(A

(5-19) 0= My 5 M{0,—2} >0 ~ 0— Qn_; —2— B0, -2} — 0,
—— —— —— ————
0 i 0 1
J ~
= 0— Qy-_1 — 0910, -2} — 0,
0 1

where J(u01 1]) = ~[0] and J(u[N 1]) = 51[(1)]'

From (5-4), one can see that as Z, & Z®2—graded matrix factorizations over Rj,

Qn_y = Ry-ul 2 2 ony 225 Ry N 1 - vy
h R _
ahn (y1,x2) Ra'“[ﬁ[ 1]{—2,2—2N}

ahn(y1,x2)

~ Ry{—2,0% 2% Ryf—1, N — 1} 22720 Rt 2.0
Thus,

(5-20) Qn_1(I){—1,—N +1}

h »
~ Ry{—2,00 INOLXD o 3 N 413 2 Ry(—2, 03

= (ahn (y1,x2), y1 — Xx2)Ry{1—2, 0} = CN(T){-2,0}.
Similarly, from (5-5), we have

[0] [0] [0]
_ Ry -uy, Ao oi—1LL1=N} A Ry -uy,
O = 57 — @ —
Ry-vl%—2,4—2N} Ra-v([)ol]{—l,3—N} Ry-v%(—2.4—2N}
Ry i, Ro{-LLI-N} 3z Ry
= (&) — — ,
Ry{-2,2} Ry{—1,N +1} Ry{-2,2}
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where

Zo=(ahN(yl’x2) 0 ) le(J’l_xz 0 )

a y1i—x2 —a ahn(y1,x2)
Thus,

(5-21) Op(1){—1,—-N —1}

Ryp{—2.—2N} 3, Rp{—1.—-N —1} 5, Rp{-2.-2N}
= @ — ® — ®
Ry{—2,0} Ry{—3,—N + 1} Ry{—2,0}

Rp{=2.0} Ay Ro{=3.—N+1} a1 Rp{=2,0}

= @ — ® —> ®
Ry{—2,—2N}  Rp{—1,—N—1}  Ry{—2,—2N}

~ (AN (V1. X2) y1—Xx2 (=20}
- 0 a R, ’

=Cn(T) ®Qja] (0. @) Q[a{—2, 0},

A — (ahN()}leZ) —a ) A — (yl — X a )
0 0 yi—x2) ! 0 ahn(yi,x2)

Note that under isomorphisms (5-20) and (5-21), the morphism J: Qn_; — C:)O{O, -2}
is identified with the morphism j: Cx (T){—2,0} — Cn(T) ®q[q] (0. @) Qa1 —2. 0}
defined in Definition 5.7. Thus, by (5-16) and (5-19), we have

where

J
CN(T-) = 0—CN(T){—2.0} = CN(T) ®q[q] (0, a)Q[a)1—2, 0} — 0. O
0 1

Theorem 1.5 and Corollary 1.6 follow easily from Propositions 5.8 and 2.17.

Proof of Theorem 1.5 By Proposition 5.8,

J
CN(L-) = 0—>Cn(L){—2,0} > CN(L) ®Q[a] (0,a)Q[a{—2,0} — 0.
0 1

So the chain complex (H(Cn(L-).dpy). dy) is isomorphic to the total chain complex
of

0 — HCN(L), dip){—2,0} > HCN (L) ®qa) (0. @)ga]: dims){—2, 0} — 0.

0 1
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By Part (2) of Proposition 2.17, there is a quasi-isomorphism

o: (CN (L) ®Qq (0, @)Q[a)s dmys) — (CN(L)/aCn (L), dpy)

that preserves the Z, @ Z®3 —grading. From the definitions of ;, & and 7y, one can
check that o = oo ;. Thus, the chain complex (H(Cn(L-),dy,r).dy) is isomorphic
to the total chain complex of

0 — H(CN(L), dipp){—2,0} Z> H(CN(L)/aCN (L), dyy){—2,0} — 0.

0 1
The above total chain complex is of course the mapping cone of 7y. The long exact
sequence in Theorem 1.5 is the long exact sequence of this mapping cone. a

Proof of Corollary 1.6 We put a single marking x on U. Then
Cn(U)=((N+ l)axN, O)Q[a,x] = (axN» O)Q[a,x]

ax™N 0
= Q[a’ ‘x] — Q[av X]{—l, _N + 1} - Q[av x]'
From this, one can see that

HO" " (U) = Qla, x]/(axN){~1,—N + 1}

N—-1 00
~ ( P Qlali-1. —N+1+21}) ® ( P Qlal/ (@)1, N+1+2m})
=0 m=0

and H’]"\}i’*’*(U) =~ 0 for any other pair of (¢,i) € Z, @& Z. This completes the
computation of Hy (U).

Next, we compute #n(U) := H(H(Cn(U)/aCn(U),dpr).dy). Since U has no
crossings, dy is 0 for U. So

HnU) = HHCNU)/aCN(U). dpy))

= H(Qla. x]/(a) > Qla. x]/(@){~1.—N + 1} > Qla. x]/(a)).

and therefore,

Qla, x]/(a) ife=0andi =0,
Wy (U) = Qla,x]/(a){—1,—N + 1} ife=1andi=0,
0 otherwise.
For ¢ =1, the homomorphism 7y: Hl’*’*’*(U) — %1’*’*’*(U) is the standard quotient

map

Qla, x]/(ax™) X Qa, x]/(ax™, a) = Qla, x]/(a).
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So the long exact sequence in Theorem 1.5 reduces to
0 — H;\}O’*’*(U_) N H}\}O’*’*(U){—Z, 0} ﬂ) %;\,{0,*,*(1]){_2’ 0 — 0.

Thus,
ker o = a - Q[a, x]/(ax™N){=3,—N + 1}
N—1

lle

Qlal{—1,—N +1+21I} ifi =0,
=0
0 if i #0.

HH M (U2) =

For ¢ = 0, the homomorphism 7y: H?\}*’*’*(U) — %?\}*’*’*(U) is the zero map
0 — Q[a, x]/(a). So the long exact sequence in Theorem 1.5 reduces to

0 — HOHH(U){=2,0} — HY " (U-) — 0.
Thus,
Qla. x)/(@){=2.0} = B2, Qlal/(@){~2.2m} ifi =1,
0 ifi #1.
This completes the computation of Hx(U-). a

HY*(U-) = {

6 Reidemeister move 11

In this section, we prove the invariance of H  under braid-like Reidemeister II moves.
The main result of this section is Proposition 6.1. Our proof here is a straightforward
adaptation of the proofs in [10; 11].

Proposition 6.1 Let Ty and T be the tangles in Figure 16. Then, for N > 0,
Cn(Ty) ~Cn(T}) as chain complexes over the category

hmf N+1, N+1__N+1__N+1

Qla,x1,x2,x3,xala(x) " +x5 T —x3 T —x, )
X1 X2
1 1
X5 X6
X3 X4
To
Figure 16
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In the rest of this section, we let Ry = Qla, x1, X2, X3, X4] and w = a(va"'1 +xév+1 —

xév + —xiv *1) | The resolutions of 7} are listed in Figure 17. To prove Proposition 6.1,

we need the following lemma.

Lemma 6.2 Let I'g,; and I'_y o be the MOY graphs in Figure 17. In the category
hmfg, ,,, we have that

Hompme(Cy (I'o,1). Cn (T0,1)) = Hompme(Cy (I'=1,0),.Cn(I'—1,0)) = Q.

Both of these spaces are spanned by the identity morphisms.

X1 X2
1 1
X5 X6
X3 X4
To,o
X1 11 X2
2
1 1
X5 X6
X3 X4
-1,

Figure 17

Proof By Lemma 3.6, Cxy(I'o,1) = Cn(I'—1,0). So Hompme(Cn (T0,1).Cn(Io,1)) =
Hompme(Cn (I'~1,0), CnN(I'—1,0)) . Thus, we only need to compute

Hompm¢(Cn (To,1), Cn (To,1))-
By Proposition 2.16, we have

aU; X1+ X2 —XxX3— X4

Cn(To,1) (aUz X1y — X34 )RB{O,—l},

where U; and U, are given by Equation (3-6). From this, it is easy to check that
gdimg, Cn(To,1) # 0. So Cn(To,1) is not homotopic to 0 and therefore, idc (1, )
is not homotopic to 0. Thus,

dimg Hompme(Cn (To,1),Cn(Io,1)) > 1.
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By Lemma 2.10 and Proposition 2.17, we have that

aU1 X1+X3—X3—X4
aU2 X1X2—X3X4
aU1 —X1—X2+X3+X4
aU2 —X1X2+X3X4

~ 770,000 [ (aV1 O _
~ H ((avz O)R{z,zN 4}),

where R = Ry/(x1 + Xy — X3 — X4, X1X2 — X3X4), and Vy, V, are the images of Uy,
U, in R. As a Z, ® Z®%—graded R-module,

Homymt(Cx (To.1).Cn(To.1)) = HOO {2,2N —4}

Ry

(aV1 0) (2,2N —4} = (R{1, N — 1} @ R(1)) ®g (R{1, N — 3} & R(1)).
aV2 0 R

Note that the homogeneous component of the right-hand side of Z, @ Z®? —degree
(0,0,0) is 1—-dimensional over Q. Hence dimg Hompmi(Cx(I'0,1).Cn(T0,1)) < .
Thus, Homume(Cn (T'o,1). Cn(To,1)) = Q. O

We are now ready to prove Proposition 6.1.

Proof of Proposition 6.1 1Itis easy to check that Cn(I'g,9) and Cx (I'g,1) ~Cn(I'—1,0)
are all homotopically finite over Ry. So

Cn(To) =0— Cn(o,0) —> 0
——
0

is a chain complex over hmfg, ,,. By Lemma 3.11, we have

(6-1) Cn(T—1,1) = Cn(T0,1)10, 1} B Cn (-1 ,0){0, —1}.

So Cn(T—y,) is also homotopically finite over Ry. Denote by xL, xO the -
morphisms associated to the upper 2—colored edge in I'_; ; and by X]l , X? the
x—morphisms associated to the lower 2—colored edge in I'_; ;. Then,

(X})
Cn(Ty) = 0 — Cy (T )0, 1}~
—_— ——

-1

Cn(To0) (x9.—x})
® @ —5
Cn(T-1,1)

————
0

Cn(I'-1,0){0, =1} — 0,

0

which is a chain complex over hmfg, ,,.

To prove Proposition 6.1, we need to use the morphisms involved in decomposition
(6-1). By Lemma 3.13,
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e the projection Cn(I'-1,1) = Cn(T,1){0, 1} in decomposition (6-1) is the mor-
phism ¢ induced by edge merging,

e the inclusion Cy(I'~1,0){0, =1} — Cnx(I'—1,1) in decomposition (6-1) is the
morphism ¢ induced by edge splitting.

In addition, let

J
* Cn(Tp,1){0,1} — Cn(I'_y,1) denote the corresponding inclusion in decompo-
sition (6-1),

P
e Cn(I—1,1) = Cn(I'—1,0){0, —1} denote the corresponding projection in decom-
position (6-1).

Then, as a chain complex over hmfg, ,

Cn(Lo,0)
(o3 @ )
Cn(T1) =0 —Cn(T0,1){0,1} — Cn(Ip,1){0,1} —>Cn(I—1,0){0,—1} =0,
\—/_-d @
! Cn (T—1,0){0, —1} !
0
where
_Xll 0 0 1 1
Dr=[doxd]. Po=(x2.—xoJ.—x]o0).
Poxg

Consider the morphism q; ) Xg- First, note that it is a homogeneous morphism of
Z» ® 792 —degree (0,0, 0). Moreover, by Lemmas 3.13 and 3.15, we have

poxyoxnop=pom(xg—x1)od~pom(xs)od—m(x1)pod ~ideyry )

which implies that ¢ o x?2 is not homotopic to 0. By Lemma 6.2, this means that

(6-2) b o Xy~ idey Ty ,)-
Similarly,
(6-3) X} 0 ~ideyr_, o)-

Thus, q_5 o Xg and Xll o ¢ are both homotopy equivalences. Now, applying the Gaussian
elimination lemma (Lemma 5.1) to these two homotopy equivalences in the above

chain complex, we get that 0

e e
CN(Tl)’ZO—)CN(F0,0)—)O:CN(T()) O
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7 Reidemeister move 111

In this section, we prove the invariance of H  under braid-like Reidemeister III moves.
The main result of this section is Proposition 7.5. We follow the ideas in [10; 11].
However, we include graphical descriptions of all morphisms used in our proof, which
makes our proof somewhat more explicit than those in [10; 11].

7.1 A decomposition

Now we establish for Cp a version of “Direct Sum Decomposition IV from [10]. The
main result of this subsection is Proposition 7.1.

{xlsXZ} 2 1 X3 {X],Xz} X3
Xg
x711 11 o) 2 1
X9
{X4,X5} 2 ! X6 {X4,X5} X6
r T
Figure 18

Proposition 7.1 Assume that
e I', Ty, I'y are the MOY graphs in Figure 18,

* Ry =Qla,x3,x6] ®qQ Sym({x1, x2}) ®q Sym({x4, x5}),

.« w :a(fo“ +xév+1 +x§v+1—xjv+l —xéV“—xéV“).

Then, for N =0, Cn(I') = Cn (o) @ Cn(I'1) as objects of hmfg, .
Lemma 7.2 Cn(I'), Cn(Ip) and Cn(I'y) are objects of hmfg, ,,. Moreover,
gdimpg, Cn (') = gdimg, Cn (Fo) + gdimpg, Cn (I'y).

Proof It is easy to see that the Z®?—gradings of Cx ("), Cx(Ip) and Cx(T'y) are
bounded below. By Definition 3.5 and Proposition 2.16, we know that

[ *22N  X1HX2—X4—X5

(7-1)  Cn(To) = | *2,2N—2  X1X2—X4X5 ,
* X3—X
2,2N 3—X6 Ry
*22N X1+X3+X3—X4—X5—Xg
(7-2)  CN(I'1) = | *2,2N—2 X1X2+X2X3+X3X1—Xg4X5—X5X6—XeXg | 10,2},
*2,2N—4 X1X2X3—X4X5X6 R,
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where *; ; stands for a homogeneous element of the base ring of 792 _degree (j, k).
So Cn(T'g) and Cn(T';) are homotopically finite over Ry and, therefore, objects of
hmfg, ,, . Note that the maximal homogeneous ideal of Rj is

J=(a,x1 + Xx2,X1X2, X4 + X5, X4X5, X3, Xg).

So
020N
Cn(To)/T-Cn(To) = [ 02,2n—2
022N

©

020N
Cn(T'1)/T-Cn(T1) = | 02282
022nN—4

{O’ _2}7

(=R e ) o O O

©

where 0; ; is “the zero element with 7.%2 _degree (j,k)”. (This is only used to keep
track of grading shifts.) Note that the differential maps of these chain complexes are 0.
Thus,

(73)  edimg,Cy(To) = (1 + ra £ NFH2(1 4 1 1gNF3),
(7-4)  gdimp,Cn(Ty) =& 2(1+ e eV (1 + ra eV T?)
(1 +ra lg7NF3),

Next we consider C (I"). By Corollary 2.22, to show that Car(I") is homotopically fi-
nite over Ry, we only need to show that dimg Hg,(Cn (I")) is finite. By Definition 3.5
and Proposition 2.16,

*¥p 0N X1+ X2 —X7—Xg
*2,2N—2 X1X2 —X7Xg

*¥20N X7+ X9 —X4—X5
*2,20N-2 X7X9 — X4X5

*¥22N Xg+X3—X9—Xg
*2,2N—2  X8X3 — XoX6 R

Cn(T) ~ {0, -2},

where R = Ry ®qg Q[x7, x3, x9]. So

020N —X7—x3
O2on—2 —Xx7X3
en(D)/3-C(T) = | 23N 2T H
2,2N-2 X7X9
0228  Xg—X9
022N-2 0

{0, —21.

Q[x7,x8,x9]
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Applying Proposition 2.17 successively to the matrix factorization on the right-hand
side, we get that

( 0on O
Hg,(CNn(T') = H | | 02282 0 {0, -2}
\02.28-2 0/ g2y
/OZ,ZN 0 02,2N 0
=~H||02onv—2 0 10,2y H||022nv—2 0
\ 0228-2 0/ 02282 0/

From this, we get
(7-5) gdimp, CN(T) = (1+& )1+ 1o g VT (1 4 1o gV T3)2,

Equation (7-5) implies that dimg Hg,(Cn(I')) = 16. So Cy(I') is homotopically
finite over Ry. Moreover, comparing Equations (7-3) and (7-4) to Equation (7-5), we
have gdimg, Cny (') = gdimg,Cn (Fo) + gdimg, Cn (I'1). a

Lemma 7.3 In the category hmfg, .,, we have

Hompyt(Cy (o), Cn (o)) = Hompme(Cn (I'y), Ca(I'1)) = Q,
Hompnt(Cy (I'0), Cn (I'1)) = Hompme(Cn (I'y), Cn (I'p)) = 0.

Proof We prove Hompys(Cy(I'1),Cy(T'1)) = Q and Hompme(Ca (1), Cn () = 0
here. The proofs of the other two isomorphisms are very similar and left to the reader.

First, we compute Hompme(Cn (I'1),Cn(I'1)). Since gdimg, Cn (1) # 0, we know
that C(I"1) is not homotopic to 0. So id¢,,(r,) is not homotopic to 0. This implies
that dimg Hompme(Cx (I'1),Cn (1)) = 1. By Equation (7-2) and Lemma 2.10, we
have

Homg, (Cn (I'1).Cn(T'1))

*2 2N X1+ X2+ X3—X4—X5—Xg
*22N—2 X1X2 + X2X3 + X3X] — X4X5 — Xs5X6 — XeX4
~ *2,2N—4 X1X2X3 — X4X5X¢ (3){3,3N —9}.
*22N —(x1 + X2 + X3 — X4 — X5 —X¢)
*22N—2 —(X1X2 + X2X3 + X3X] —X4X5 — X5X6 — X6X4)
*2,2N—4 — (o1 x2X3 — X4X5X6) Ry
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Applying Proposition 2.17 to the top three rows of the right-hand side, we get

*¥2oN 0
Hompme(Cn (T1),CN(T1)) = HOOO | [ #2,n—2 0] (3){3.3N -9} |,
*22N—4 0/p,

where R' = Ry/(x1 + X2 + X3 — X4 — X5 — X6, X1X2 + X2 X3 + X3X] —X4X5 —X5X¢g —
X6X4, X1X2X3 — X4X5Xg). Asa Z, & ZGBz—graded R’—module,

%228 0
x32N—2 0] (3){3,3N =9} = (R(1){l,N —1}® R
*20N-4 0/p, Qr(R(1){I,N =3} ® R

®p (R(I{1.N -5} @ R,

whose homogeneous component of Z, @ Z®2—degree (0, 0, 0) is 1-dimensional over
Q. This implies that dimg Hompme(Cx(I'1),Cx(I'1)) < 1. Thus,

Hompm¢(Cn (I'1), Cn (T)) = Q.
Similarly, by Equations (7-1), (7-2), Lemma 2.10 and Proposition 2.16, we have

Homg, (Cn (I'1), Cn (o))

( *2 2N X1+ Xy —Xgq4—Xj5
*22N-2 X1X2 — X4X5
ES X3 —X
~| TN 3706 (3){3,3N —7}
*2 0N —(x1 + X2+ X3 — X4 — X5 — Xg)
*¥2 0N—2 —(X1X2 + X2X3 + X3X1 —X4X5 —X5X6 — X6X4)
*2,2N—4 —(X1X2X3 — X4X5X6) R
*2oN 0
~| %2282 0 (3){3,3N — 17},

*22N-4 0/ p

where R= R,/ (x1 +X2—X4—X5, X1 X3 —X4 X5, X3—X6) = Q[a, X3]@@Sym({x1. x2}).
As a Z, @ Z®2—graded R—module,

*22N 0 R R
s2an-2 0| (33,38 =7} = (RU){1.N —1}® R)
*20N-4 0/ 3 ®#(R(1){1,N =3} & R)

QR (R{{1,N -3} @ R{0,2}),
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whose homogeneous component of Z, @ Z®2—-degree (0,0, 0) vanishes. This implies
*20N 0
Hompi(Cv (T'1), Cy(To)) 2= H*O | | #208—2 0| (31{3.3N =7} | =0. O
*22N-4 0/ 3

We are now ready to prove Proposition 7.1.
Proof of Proposition 7.1 Define morphisms /: Cn(Tp) = Cn(I') and f:en(@) —
Cn(To) by Figure 19. Thatis, f = x’o¢ and f = ¢ o x!, where

e ¢ and <; are the morphisms associated to the edge splitting/merging in the left
side of I'g and I'y defined in Lemma 3.13,

o x%and x! are the y—morphisms associated to the right side of I'" and I', defined
in Lemma 3.15.

{x1, X2} X3 {x1.x2}4, 143
! 8
2 1 _ X511 11 2
/ 2 Y9
{x4, x5} X6 {x4, X5} X6
o r
¢
A {xlsxz} 2
¢
X7 1 1
2
{x4,x5} X6
I',
Figure 19
Note that

e ¢ and q_b are homogeneous morphisms of Z, @ Z®?—degree (0,0, —1),
e x° and x! are homogeneous morphisms of Z, @ Z®2—degree (0,0, 1).

So f and /7 are homogeneous morphisms of Z, @ Z®2—degree (0,0,0). Using
Lemmas 3.13 and 3.15 again, we get

(7-6)  fof=¢ox' ox’op~pom(xs—xz)o¢
= —¢ om(xg) 0P + m(xe) 0P o A idey (ry).-
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Next, define g: Cy (') — gN(F) and g: Cy(I') = Cn(T'y) by Figure 20. That is,
g=x'ohogpand g={gohoX°, where
e ¢ and ¢ are the morphisms associated to the splitting/merging of the upper-left
2—colored edge in I'; defined in Lemma 3.13,

e h and h are the homotopy equivalences induced by the edge sliding given in
Lemmas 3.9, 3.10 and are homotopy inverses of each other,

e %° and ¥! are the Y—morphisms associated to the lower half of I" and |4
defined in Lemma 3.16.

{x1,x2}

{x1.x2}4, 143

xaft b2

{x4, x5} X6

Figure 20

Note that
e ¢ and @ are homogeneous morphisms of Z, @ Z®2?-degree (0,0, —1),
e handh are homogeneous morphisms of Z, @ Z®2—degree (0,0, 0),
e % and ¥! are homogeneous morphisms of Z, @ Z®?—degree (0,0, 1).

So g and g are homogeneous morphisms of Z, @ Z®2—degree (0,0,0). Using
Lemmas 3.13 and 3.16 again, we get
(7-7) gog=pohoxoxlohop~pohom(xg—x7)ohog
=gom(xg—x7)ohohog
~@om(xg—x7)0Q
m

(xg)opop—pom(xy)op~ ide (r))-
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By Lemma 7.3, we know Hompni(Cy (I'o), Cy (1)) = Hompme(Cv (I'1), Cy (Tp)) = 0.
So

(7-8) fog~0 and go f ~0.

£)
g Cn(T
L DE— e

(f, g) v
From homotopies (7-6), (7-7) and (7-8), we know that, after possibly scaling f and g,

]T ° ~ idey (ro) 0 )
(E) (f, g)_( 0 idey () .

Recall that, by Proposition 2.25, hmfg, ,, is fully additive. So, by Lemma 2.24, there
exists an object M of hmfg, ,, such that

Now consider the morphisms

CN() =Cn (o) &CN(T) & M.
From Lemma 7.2, we know that
gdimg, M = gdimp, Cn (') — gdimp, Cn(Tp) — gdimg, Cn(I'1) = 0.
By Corollary 2.22, this implies that M ~ 0. Thus, Cy(I") = Cn(Tg) ®Cn(Ty). O

{x1,x2}

{xi.xak4, 143

{x4,x5} X6

Figure 21
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Corollary 74 Let g: Cny(I'1) > Cn(T) and g: CN(F)_—>_CN(F1) be the morphisms
defined by Figure 21. Thatis, g = X\ ohov and g =y oho %9, where

o 3 and Y are the morphisms associated to the splitting/merging of the lower-left
2—colored edge in I'; defined in Lemma 3.13,

e b and b are the homotopy equivalences induced by the edge sliding given in
Lemmas 3.9, 3.10 and are homotopy inverses of each other,

e %% and ¥ are the ¥—-morphisms associated to the upper half of T and I,
defined in Lemma 3.16.

Then g~ g and g ~ g, where g and g are the morphisms defined by Figure 20.

Proof Similar to the proof of Proposition 7.1, one can check that g and g are ho-
mogeneous morphisms of Z, @ Z®?—degree (0,0,0) satisfying gog ~ idey () -
Thus, g, g, g and g are all homotopically non-trivial homogeneous morphisms of
7, ® 7.9? —degree (0,0, 0). By Proposition 7.1 and Lemma 7.3, we have that

Hompm(Cy (I7), Cn (I'1)) = Hompme(Cy (Tp), Cv (') @Hompme(Ca (I'1), Ca (T'1))
=~ Q.

This implies that g ~ g. Similarly, we have Homp,¢(Cn (I'1),Cn (")) = Q, which
implies that g ~ g. O

7.2 Invariance under braid-like Reidemeister III moves

Proposition 7.5 Let Ty and T, be the tangle diagrams in Figure 22. Then, for N > 0,
Cn(Ty) =~ Cn(T3) as chain complexes over the category hmfg, ,,, where

Ra = Q[Cl,XI,XZ,X3,X4, Xs,XG],

N+1 N+1 N+1 N+1 N+1 N+1
1 =X, T =X5 =X ).

w=a(x +x, T+ X3

Let us consider 77 . Its resolutions are listed in Figure 23. We call the three crossings
in 77 the upper crossing, the lower crossing, the right crossing and denote by

. X2 and X; the x—morphisms associated to the upper crossing,

. X? and X]l the x—morphisms associated to the lower crossing,

e xY%and x! the y—morphisms associated to the right crossing.
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Then
Cn(T110)(3){3,3N -1}
@
d_
(79 Cn(T1) =0— Cy(T111)(3){3,3N} —> Cn(T101)(3){3,3N — 1}
®
- Cn(To11)(3)43.3N — 1}
-2
Cn(T100)(3){3,3N =2}
d_y & d_,
—> Cn(Lo10)(3){3.3N —2} — Cn(To00)(3){3.3N =3} — 0,
®
Cn(To01)(3)43,3N — 2} °
—1
where
X! —x; —xr O o
da=|-x |- da= xi 0 —x;| dov=0w x5 %)
Xa 0 Xu X

From Lemma 7.2, we know that Cy (I'111) is an object of hmfg, ,,. Itis straightforward
to verify that Cp (I'g,y) is also an object of hmfg, ,, for any other resolution 'y, of
Ty. Thus, Cn(Ty) is a chain complex over hmfg, .

x1‘\ X3 Xl\xz\ X3

AN
1\U LN/
X4 \ Xs X6 X4 Xs \ X6
Ty g
Figure 22

Next, we consider the MOY graphs in Figure 24. It is obvious that
(7-10) Lo =T100 = o10-

By Lemma 3.11, we know that

(7-11) Cn(T'110) = CN(T0){0, 1} & Cn (I'0){0, —1}.

From the proof of Proposition 6.1, we know that homotopy equivalence (7-11) is given
by a pair of morphisms of the form

Algebraic & Geometric Topology, Volume 16 (2016)



A family of transverse link homologies 113

')

(P Cn(T0){0, 1}

(7-12) Ty &
(J. ¢) Cn(Tp){0, -1}

where ¢ and ¢ are the morphisms associated to the splitting and merging of the
2—colored edge in I'g. By Proposition 7.1 and the proof of Lemma 3.9, we know that

(7-13) Cn(T111) = Cn(To) @ Cn ().

le\l}vxz 14X3
2 X8
x71 1 2
2 X9
x4/1"1\ X5 1'Xxe
T
X1 11 X2 X3
2 Xg
2
X471 1N X5 X6
I'i1o
X1 1 X2 1 X3 X1 1 1 X2 X3 X1 11 X2 X3
2
1 2 1 1
2
X4 1{xs 1lxg X4 PN Xs X¢ Xall 1ixs X¢
Coo1 Coto 100
X1 X2 X3
1 1 1
X4 X5 X6
Tooo
Figure 23
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From the proof of Proposition 7.1, we know that homotopy equivalence (7-13) is given

by the morphisms
N( 0)

Chn@y) 7 @

(/. 2) CN(FI)’

where f, ]7 and g, g are the morphisms given by Figures 19 and 20.

(7-14)

Substituting (7-10)—(7-14) into Cx (T7), we get that, as a chain complex over hmfg, ,,,

Cn(To){3,3N}

S5
CN(To)(3){3.3N} 7 . Cn(T0){3.3N -2}
(7-15) Cn(T}) = 0 — fan) — s
Cn(T(3)43.3N} CN(F101)(3E)B{3»3N -1}
-3 Cn(To11)(3){3.3N —1}
-2
3 CN(FO)(3)$3,3N—2} )
E) CN(FO)(3)€~I{93,3N—2} E>CN(I—‘()()O)(3){3,3N —3}1—0,

Ca(Too1) (3){3, 3N — 2} °

-1

where
_O 1O _O 1Og
B SRR —xj°J —x°¢ —x 0
Poy,of Poyx,og 5 1 1 1
d_s; = doa=| xyoJ xuo¢ 0 —x

’

1 1
—xjof  ~Xx°g 0 0 1
Xu X
Xwel — Xu©g o

’

d—l = (Xl? Xl ’ X;l')v
and the morphism x! in 3_1 is the x!-morphism associated to the 2—colored edge
in Fo .

Similar to the proof of Lemma 7.3, one can check that Hompmt(Cn (I'1), Cn (o)) = 0
in hmfg, ,,. This implies that the entry (j) oxlogof d_3 is homotopic to 0. Recall
that by Figure 19, f is defined to be the composition

0
Cn(To) -5 Oy (Th10) 25 Oy (Th11).
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X141 14x5 X3 xivd lx; Lrxs
2 1 3
xql 1 11xs X6 X471 11X5 1™\ X6
) Iy
Figure 24

So we have that, by Lemmas 3.13 and 3.15,

poxlof =doxloxlop~pom(xs—2xgs)op=m(xs)opop—pom(xg)og ~idey (ry)-

Now let us apply the Gaussian ehmmatlon of Lemma 5.1 to the homotopy equivalence
¢ oxlofin d_3 Note that since d) o x}og ~0, the correction term from Lemma 5.1
is 0 in this case. Thus, as a chain complex over hmfg, ),

Cn(T'9){3,3N -2}
@

(716)  Cx(T1) =0 — Cy (T (3)43.3N} 5 Cy (T01) (3)43.3N — 1}

Cn(To11){(3){3,3N — 1}
-2
Cn(To)(3)43.3N —2}
d_, & d_,
—> Cn(To)(3){3.3N —2} — Cn(Tp00)(3){3,3N =3} =0,
®
Cn(To01)(3){3,3N — 2} 0
—1
where
~ Poxyog\ —x;°¢ —x O R o
dy=| —xjog |. da=| xuc¢ 0 —x;|. d1=0" 1" %0
Xuog 0 Xxa X

and the morphism x! in c?_l is again the x!-morphism associated to the 2—colored
edge in Ty.

Consider the entries — X]l o¢ and le4 o¢ in 3_2. Applying the argument used to estab-
lish homotopies (6-2) and (6-3), we get that —Xll 0P~ le4 o¢ ~idcy (1) - Applying
Gaussian elimination (Lemma 5.1) to the homotopy equivalence — Xll o ¢, we get that
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as a chain complex over hmfg, ,,

iy CN(T10)(3){3.3N — 1}
(7-17)  Cn(Ty) ~0— Cy(T1)(3){3,3N} —>

-3

)
Cn(To11)(3){3,.3N — 1}

-2

i, CNTo)(3{3.3N -2} ;.
R D —>CN(F000)<3){3,3N—3}—)0
CN(Too1)(3)43,3N -2}

-1

1 1 1
Y —X;°8 p C Xy —X i 1 .1
d_=( l ) d_=( ' ) d_y = (b,
T\ xlog 2 Xy Al r

where ¢ is a non-zero scalar,” and the morphism x' in d_; is once more the x'-
morphism associated to the 2—colored edge in I'y.

0

with

Schematically, we represent chain complex (7-17) by the diagram

Fior —— 1

v N

LCooo,

. 7

Fo11 —— Too1

(7-18)

in which each arrow represents the corresponding entry in the above matrix presentation
of the differential map d. The following two lemmas are straightforward adaptations
of [10, Lemmas 26 and 27].

Lemma 7.6 [10, Lemma 27] The composition of any pair of consecutive arrows in
diagram (7-18) is homotopically non-trivial.

Proof Let R=Q[x{, X2, X3, X4, X5, Xg] and wy = x{VH —i—xéVle +x§v+1 —xiVH —
xéVH — xé\”rl. The standard quotient map 7y: Ry — Ry/(a — 1) = R induces a
functor w: hmfg, ,, — hmfg ,,, that takes an object M of hmfg, ,, to the object
M/(a—1)M of hmfg ,,, . Comparing the definitions in the current paper to those

in [10], one can see that

5The entry c - X; in d_, comes from the correction term in Lemma 5.1.
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e for any MOY graph I’ in this subsection, @ (Cx(I")) is the matrix factorization
associated to I' in [10],

e for any morphism in this subsection, zr; maps it to the corresponding morphism
in [10].

As a functor from hmfg, 4, to hmfg y,,, @ maps homotopic morphisms to homo-
topic morphisms. From [10, Lemma 27], we know that the image under w; of the
composition of any pair of consecutive arrows in diagram (7-18) is homotopically
non-trivial. This implies that the composition of any pair of consecutive arrows in
diagram (7-18) is homotopically non-trivial. a

Lemma 7.7 [10, Lemma 26] Assume that I and "' are two MOY graphs in diagram
(7-18) and that there is an arrow pointing from " to T'" in diagram (7-18). Then, in the
category hmfg, ,,, we have

Hompmi(Cn (T). Cn (I){0, -1}) = Q.

In particular, this space is spanned over Q by the corresponding arrow in diagram
(7-18).

Proof The arrow pointing from I' to I in diagram (7-18) is, by Lemma 7.6, a
homotopically non-trivial element of Hompm,(Cn (T"), Ca(T'7){0, —1}). It follows that
dimg Hompme(Cx (), Ca (T7){0, —1}) > 1. To complete the proof we now show that
dimg Hompme(Cxr(T), Ca(T7){0, —1}) < 1. We only check this for the pair I'jo; and
T'p. The proofs for the other pairs are similar and left to the reader.

By Definition 3.5 and Proposition 2.16,

*22N X1+ X2 —X4—Xg
~ | *2.2N-2 X1X2 — X4Xg
Cn(Tro1)
*¥22N  Xg+X3—Xs5—Xg
*¥2,2N—2  XgX3— Xs5X6 Ry [xs]

{Ov _2}

( *22N X1+ X2+ X3—X4—X5—X¢
*¥22N—2  X1X2 —X4(x5+ X —X3) 10, -2},
*20N-2 (X5 4X6—X3)X3—X5X¢ ) p

[

*¥22N X1+ X2—X4— X5
CN(To) = | *22N—2  X1X2—X4X5 {0, —1}.
*22N X3 —Xe¢ Ry
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So, by Lemma 2.10 and Proposition 2.17,

Hompme(Cn (I'101). Cn (Fp){0, —1})

*2 2N X1+ X2 —X4—Xs

*22N-2 X1X2 — X4X5
* X3 —X

~ H0,0,0 2,2N 3 6 <3){3,3N—7}

*¥2oN  —(X1+ X2+ X3 —X4 —X5—X¢)

*¥2o0N—2 —(x1x2 —x4(x5 4+ X6 —X3))

*¥3o0N—2 —((x5+ X6 —X3)X3 —X5X¢) Ro
#3208 0

~ HOOO [ saon—2 O] (3M3,3N -7} ],
*20N-2 0/ p,

where R’ = Ry/(x| 4+ X3 — X4 — X5, X1X2 — X4X5, X3 —Xg). As a Z, & Z®?—graded
R’—module,

*2oN 0
s22v-2 0| (3)3.3N =7} = (R(){1, N—1}®&R") @ (R'(1){1, N-3}®R)
*22N-2 0/ p, Qr (R'(1){1, N-3}®R’),

whose homogeneous component of Z, @ Z®%—degree (0, 0,0) is 1—-dimensional. This
implies that

*2oN 0
Homymt(Cx (T101), Cnv (To){0, —1}) = HOOO | [ 5,555 0] (3){3.3N -7}

*22N-2 0/ p,

is at most 1-dimensional. Thus, Hompns(Cn (I'191), Ca (I9){0, —1}) = Q. a
Proposition 7.5 now follows easily.

Proof of Proposition 7.5 Note that diagram (7-18) is invariant under horizontal
reflection of the MOY graphs. So, using a similar argument, we can show that Cn (75)
is also homotopic as a chain complex over hmfg, ,, to a chain complex of the schematic
form (7-18) such that arrows in this new chain complex also satisfy Lemma 7.6. By
Lemma 7.7, corresponding arrows in the two schematic forms (7-18) for C(7T7) and
Cn(T3) are scalar multiples of each other. Using Lemma 7.6, it is easy to verify that
these two chain complexes of schematic form (7-18) are isomorphic to each other
as chain complexes over hmfg, ,,. This proves that Cn(T1) ~ Cn(T3) as chain
complexes over hmfg, . a
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8 The decategorification of H y

In this section, we establish the skein description of the decategorification Py of H
in Theorem 1.8. We start by recalling the “invariant computation tree” constructed
in [7].

Definition 8.1 [7, Definitions 1.1 and 1.3] For an m—strand closed braid B4 =
,Boii)/, the Conway split of B at the crossing oii produces two m—strand braids
By =Py and Bx = fo; y.

An invariant computation tree is a connected rooted oriented binary tree with each node
labeled by a closed braid such that:

(1) If a node is labeled by a braid B and its two children are labeled by B’ and B”,
then B’ and B” are obtained from B by first applying a sequence of transverse
Markov moves® and then doing a Conway split.

(2) Every terminal node is labeled with a closed braid with no crossings.

Theorem 8.2 [7, Theorem 1.7] For any closed braid B, there exists an invariant
computation tree whose root is labeled by B.

Before proving Theorem 1.8, we establish the following lemma, which will be used to

prove part (3) of Theorem 1.8.

Lemma 8.3 Denote by U™ the m —strand closed braid with no crossings. Define
Hn(U™) = HH(CNU™)aCN(U™™), di ), dy),

which inherits the 7., ® Z.%3 —grading of Cy(U"™). Its graded Euler characteristic is

PyUI = Y (=Dictal R dimg 965K (UBm)
(6,0,) k) €L SZD3

€ Zlo. &l €71 1]/ (2> - 1),
Then

1+7a lg= N+
)

6Transverse Markov moves are call “invariant Markov moves” in [7].

P (UY™) = (
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Proof Put one marked point on each strand of U"" . Note U™ has no crossings. It
is straightforward to check that
0208 0
02,28 O
CN(U"™) JaCn(UY) =~ 0 — o — 0,

02on 0 Olxs

where the Koszul matrix factorization has m rows and 0, ;n is a “homogeneous 0 of
Z%%—degree (2,2N)”. Note that both dy,r and dy in Cx(U"™)/aCn (U™) are 0.
So

0208 O

. 02’2]\[ 0 1+’L’(X_1 —N+1\"
97)N(Uum) = gdimg : = ( 1_52 ) )

We are now ready to prove Theorem 1.8.

Proof of Theorem 1.8 Part (1) is a direct consequence of Theorem 1.2.

Now we consider part (2). From local chain complexes (4-2) and (4-3), one can see

() =t () () atva ()
() = st () ()=o)

It follows easily from these equations that

o NPy (D)~ en (O ) = —orw () ().

This proves part (2).

Next, we prove part (3). For m > 2, denote by onfll the closed m—braid with a single
+ crossing between the (m — 1)™ and the m™ strands. By part (2), we have

@1  PyUY™) = (T EN PN (om—1) — &V PN (0,1 ).

T
E-1-¢
From part (1), we know that

(8-2) PN(Om—1) =Py (U1
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By Theorem 1.5 and Lemma 8.3, we have

8-3)  Pn(o,L)=a2(PNUYTH) —PN U

—1g=N+1\7"1
:a—Z(PN(U”m‘l)—(“”Oi_gz +) )

Plugging (8-2) and (8-3) into (8-1), we get that, for m > 2,

121

e m—1
84 Py = (NPn s + g () )

£- -

where [N]:= (§N —&N) /(! — ). From Corollary 1.6, we have

Uty _ 1 1 EN
(8-5) PNU=)=PyWU) =10 ([N]l_az-l-g_l_%_).

Let
_ Pn(U"™)
" (e N

Then, by (8-4) and (8-5), the sequence {f,,} satisfies the recursive relation

N -1 g=N "1
fm =f_1 + § (TO{S +§ ) form > 2,

—N_¢gN —N_¢&N
(8-6) | (& §N5 AN
fl= gt gy
Therefore,
L ’”‘l(ms—1+s—N)’
Tl-a? (N -gN) & N N
1 (fa$_1 +"§_N)m
I N S O . £ 2
1 —a? (E—N_%—N) { ‘L’O[E_l-i-f_N
e
(taé_l-i-S_N)m |
o e ) -
C1-a? taN-141

Algebraic & Geometric Topology, Volume 16 (2016)



122 Hao Wu

Thus,
(8-7) PNU™) = (ra” ' [N])™fm
(foeé_1+5_N_)m —1
_ -1 m 1 é_-—N_é_—N
= (e IN]) 1—a? taé~N-1 41

This proves part (3).

Finally, from Theorem 8.2, it is easy to see that parts (1)—(3) uniquely determine Py .
So part (4) is true. m|

9 Relation to the s[(/V) Khovanov—-Rozansky homology

We prove Theorem 1.10 in this section. Let us start with two algebraic lemmas.

Lemma 9.1 Let Q[a] be the graded polynomial ring with grading given by deg, a =2.
Suppose that M is a Z —graded Q[a]-module whose grading is bounded below and
that f(a) = Z;'n=0 Cjaj € Qla] satisfies cy # 0. Then the endomorphism

M f(a) M
is injective.

Proof Assume the multiplication by f(a) is not injective on M . Then there is an
element # of M such that u # 0 and f(a)u = 0. Write u = Zj uj, where u; is the
homogeneous part of u of degree j. Since the grading of M is bounded below, there
exists a jo such that uj, # 0 and u; =0 if j < jo. Note that couj + > 1=, ciaiuj_Zi
is the homogeneous part of f(a)u of degree j and Zj (couj + > iy ciaiuj_Zi) =
f(@u=0. So couj + Y iL, ciaiuj_Zi = 0 for all j. When j = jj, this implies
uj, = 0, which is a contradiction. O

The following is a graded version of the well-known structure theorem of a finitely
generated module over a principal ideal domain. With minor modifications, the proof
of the structure theorem still applies in this case.

Lemma 9.2 Suppose that M is a finitely generated 7 —graded Q[a]-module. Then, as

a Z—graded Qla]-module, M = (P[_, Q[al{s;}) ® (Bk=, Q[al/(a*){1}), where
the sequences {51, ....Sm} C Z and {(I1,t1), ..., (In, ta)} C Z®? are uniquely deter-
mined by M up to permutation.
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Proof Let G be a finite homogeneous generating set of M . Denote by 7 the Q[a]-
module map 7: @, cq Qlal{degu} — M which maps the 1 in Q[a]{degu} to u.
Since 7 is homogeneous, ker 7 inherits the grading of @, c; Q[al{degu}. Since
Qla] is a principal ideal domain, ker v is also a free Q[a]-module. Note that the
gradings on @, Qla]{degu} and ker 7 are both bounded below. So, by Lemma 2.2,
both of these admit homogeneous bases over QQ[a]. From this, it is easy to verify that
there is a decomposition of chain complexes of graded Q[a] modules

0— kerm — @ Qlal{degu} — 0

—1 ueG
0
o~ (jGjO—)@_[%is_d—)O) @ (ICG=910—>Q[61]{2_11:+tk}—>Q[a(]){zk}_>())'

(See, for example, [22, Lemma 4.13].) This implies that

M =~ (@ Qlal{deg u})/keryr ~ ( Q[a]{s,'}) D (
j=1

ueG

P olal/ @)t} ).

k=1

The uniqueness part of the lemma is a slight refinement of the usual uniqueness theorem
of the standard decompositions of finitely generated modules over a principal ideal
domain. Suppose that

M

Il

(@ @[a]{s,-}) ® ( a @[a]/(a’k){tk})
j=1 k=1

(@@[a]{s;}) & (@ @[a]/(a’b{t;}).
j=1 k=1

Define M, = {r € M | a¥r = 0 for some k > 0}. Then M, is a submodule of M and

Il

M, = P Qlal/ (@) {1} = P Qlal/ (@) {1 .
k=1 k=1

By [22, Lemma 4.14], the sequences {(/1.?1).....(In.ty)} and {(/{.1]).....(L,,.1,;))}
are therefore permutations of each other. Moreover, we have

M= M/Mq = P Qlalis;} = P Qlalisy}.

j=1 Jj=1
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Thus, as a Z—graded Q-space, the graded dimension of M/aM is

m m’ ,
gdimgM/aM = Zocsf = Zasi.

j=1 Jj=1

This implies that {sy,...,sm} and {s].....s, } are permutations of each other. [
Now we are ready to prove Theorem 1.10.

Proof of Theorem 1.10 We prove part (1) first. Fix a marking of B. Assume the
X1,...,Xm are all the variables appearing in this marking. Let R =Q[xy, ..., Xmn]. Re-
call that the matrix factorization of each resolution of B is a Koszul matrix factorization
over R[a]. So each of these matrix factorizations comes with a standard homogeneous
R[a]-module basis. Therefore, Cp(B) comes with a standard homogeneous R[a]-
module basis. And the differentials d,,, s and dy of C(B) are represented by matrices
whose entries are homogeneous elements of R[a]|. Let f be the standard quotient
homomorphism f: R[a]— R (= R[a]/(a—1)) givenby f(a) = 1. Under this identifi-
cation of the base ring, (Cy(B)/(a—1)Cn(B),dp s, dy) is a chain complex of matrix
factorization over R. The standard R[a]-basis of Cx (B) corresponds to the standard
R-basis of Cy(B)/(a—1)Cn(B). Matrices of dp, and dy of Cnx(B)/(a—1)Cn(B)
under the standard basis are obtained from those of d,,,s and dy of Cy(B) by applying
f to each entry. Now compare (Cny(B)/(a—1)Cn(B), dp,y, dy) to the chain complex
(C(B),dys,dy) constructed in [10] to define the sI(NV) link homology Hy (B). It is
easy to see that these two chain complexes are isomorphic as chain complexes of matrix
factorization over R. Moreover, this isomorphism preserves the Z,—, homological and
x—gradings.

Recall that C(B) is a free Q[a]-module. So we have a short exact sequence

0—Cn(B) 5 cn(B) 25 C(B) = 0

preserving the Z,—, homological and x—gradings, where m; is the standard quotient
map

CN(B) = Cn(B)/(a—1)Cn(B) = C(B).

This short exact sequence induces a long exact sequence

e HOH O (B). dyg) > HO (O (B). dyg) —> HE* (C(B). diyny)

a—1

— HT L Oy (B). dyp){=1. =N =1} —> -
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preserving the x—grading. By Lemma 9.1, the multiplication by a — 1 is an injective
homomorphism. So this long exact sequence gives a short exact sequence

a—1
0— (Ho" " (CN(B). dyy). dy) —> (H*""(CN(B). dpy). dy)
— (H®***(C(B).dmys).dy) — 0
preserving the homological and x—gradings, which, in turn, induces a long exact
sequence

—>H§V’*k(3)a__l>7{j\;",*,k(3)_)H]e\;i,k(B)_)Hiv,iH,*,k(B) a-1

Again, by Lemma 9.1, the multiplication by @ — 1 is an injective homomorphism. So
we get a short exact sequence
0 — HE*R(B) L5 15k (B) — HEF(B) > 0,

which implies that Hf\;’ k(B) H‘;:\,l’*’k (B)/(a— 1)?—[8 doxk (B). This proves part (1)
of the theorem.

Now we prove part (2). Recall that Cf\’,i’*’k (B) is finitely generated over Q[a] for
each trlple (e,i,k) € Z, ® Z®2. Since Q[a] is a Noetherian ring, this implies that

M l’*’ (B) is afinitely generated Z-graded Q[a]-module. Thus, by Lemma 9.2, there
isa decomposmon

Me ik Reik

1) = (€ Qlasd) @ (€D Qlal/@ing).
p=1 7=1

which is unique up to permutation of direct sum components. The only thing remaining
is that m,; ; = dimg H]i;”k (B), which follows from part (1) and the simple fact that

Qal/(a—1)=Q,  (Qla)/(@))/(a—1)=0.

This completes the proof. a
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