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The multiple-point schemes of a finite 
curvilinear map of codimension one 

Steven Kleiman(1), Joseph Lipman(2) and Bernd Ulrich(3) 

A b s t r a c t .  Let X and Y be smooth varieties of dimensions n - 1  and n over an arbi trary 
algebraically closed field, f :  X---~Y a finite map tha t  is birational onto its image. Suppose tha t  
f is curvilinear; tha t  is, for all xCX, the Jacobian Of(cc) has rank at least n - 2 .  For r_>l, 
consider the subscheme Nr  of Y defined by the ( r - 1 ) t h  Fi t t ing ideal of the Oy-module  f .Ox ,  
and set Mr:=f-1]Vr. In this se t t ing-- in  fact, in a more general set t ing--we prove the following 
statements,  which show tha t  Mr  and Nr behave like reasonable schemes of source and target  r-fold 
points of f .  

If each component of M~, or equivalently of Nr, has the minimal possible dimension n- r ,  
then Mr and Nr are Cohen-Macaulay, and their fundamental  cycles satisfy the relation, f .  [Mr]---- 
r[Nr]. Now, suppose tha t  each component of Ms, or of Ns, has dimension n - s  for s = l ,  ... , r + l .  
Then the blowup BI(Nr, Nr+l) is equal to the Hilbert scheme Hilb~, and the blowup BI(Mr, Mr+l) 
is equal to the universal subscheme Univ~ of Hilb~ • moreover, Hilb~ and Vniv} are Goren- 
stein. In addition, the structure map h: Hilb~---~Y is finite and birational onto its image; and its 
conductor is equal to the ideal J r  of Nr+] in Nr, and is locally self-linked. Reciprocally, h.(..OHilb ~ 

is equal to ~-~om(,.~r,(.~Nr). Moreover, h.[h-lNr+l]=(r+l)[Nr+l]. Similar assertions hold for 
the structure map hi :  U n i v ~ - * X  if r ~ 2 .  

1 I n t r o d u c t i o n  

1.1. O v e r v i e w  

Consider a finite map f: X--*Y. In the theory of singularities of f ,  a leading role 
is played by the loci of source and target r-fold points, Mr=Mr(f) and Nr=Nr(f). 
They are simple sets: Mr is just the preimage f-lNr, and Nr consists of the 
(geometric) points y of Y whose fiber f-ly contains a subscheme of degree r (or 
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length r). However, Mr and N~ support more refined structures, which reflect the 
multiplicities of appearance of their points. First of all, they support natural positive 
cycles, whose classes are given, under suitable hypotheses, by certain multiple-point 
formulas, which are polynomial expressions in the Chern classes of f .  In fact, 
there are two different, but related, derivations of these formulas: one is based on 
iteration [19]; the other, on the Hilbert scheme [20]. In this paper, we use the 
method of iteration to derive results about Mr from corresponding results proved 
about N,,  to prove results about the Hilbert scheme Hilb} (of degree r-subschemes 
of the fibers of f ) ,  and to derive corresponding results about the universal subscheme 
Univ} of Hilb} • 

Secondly, Mr and N~ support natural scheme structures: N,  is the closed 
subscheme of Y defined by the Fitting ideal .Pitt~_l(f.Ox), and Mr is the closed 
subscheme f-lN~ of X. Under suitable hypotheses, which will be introduced in 
Article 1.3 below and developed in detail in Sections 2 and 3, these subschemes 
have many lovely and desirable properties. Work on this mat ter  was carried out by 
Gruson and Peskine [12] in 1981 and by Mond and Pellikaan [29] in 1988. (Beware: 
Mond and Pellikaan's M, is our N,; moreover, neither they nor Gruson and Peskine 
really studied our Mr.) In this paper, we aim to carry their work further. In 
Section 3, we establish some basic properties of the schemes M,. and Nr, and we 
prove a relation between their fundamental cycles. In Section 4, we relate M~. and 
Nr to Hilb} and Univ} using some technical commutative algebra developed in 
Section 5, the final section. 

In Section 3, under suitable hypotheses, we prove, that  Mr and Nr are 'perfect' 
subschemes, and that  their fundamental cycles satisfy the basic relation, 

(1.1.1) f .  [M~] = r[N~]; 

see Theorems 3.5 and 3.11. Intuitively, this relation says that  a general point of N~ 
has exactly r preimages. However, the relation takes into account the multiplicity 
of the point as an r-fold point. In other words, the Fitting ideal gives the "right" 
nilpotent structure to the schemes M,. and N~. Of course, off N,+I,  the map 
M~--~N~ is finite and flat of degree r by a standard property of the Fitting ideal. 
The subtlety appears when some component of N~ is also a component of N,+I.  

For example, under suitable hypotheses, Proposition 3.4 says that  N1 is equal 
to the scheme-theoretic image of f ,  and that  N2 is defined in N1 by the conductor 
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of f.Ox into ON1. Therefore, with r=2 ,  Relation (1.1.1) recovers the following 
celebrated result (proved in various forms around 1950 by Apery, by Gorenstein, by 
Kodaira, by Rosenlicht, and by Samuel): given the local ring of a (closed) point of 
a curve on a smooth surface, the eolength of the conductor in the normalization is 
equal to twice the colength of the conductor in the given ring; here X is the normal- 
ized curve and Y is the smooth surface. However, even with r=2 ,  Relation (1.1.1) 
is more general than that. For instance, it is valid for the birational projection 
into the plane of any reduced projective curve. Furthermore, it yields the equation 
degM2=2degN2 proved indirectly by J. Roberts [31, 2nd par. p. 254] in the case 
of the birational projection of a smooth projective variety of arbitrary dimension 
onto a hypersurface. 

In Section 4, under suitable hypotheses, we study the Hilbert scheme and 
the universal subseheme. Notably, we prove Theorem 4.2, which asserts that  the 
structure maps, 

h:Hilb} >Y and hl:Univ}----*X, 

have a number of desirable properties; also, h-lNr+l is a divisor, and 

(1.1.2) h, [h-lNrq-1] : (rq- 1 ) [ N ~ + I ] ,  

and similar assertions are valid for hi and Mr+l. We also prove Theorem 4.3, which 
asserts the equations, 

(1.1.3) Hi lb}=Bl(Nr,  Nr+l) and Univ}=Bl(Mr ,  Mr+l). 

The first equation is obvious off Nrq-1; indeed, Hilb} is equal to Nr off Nr+l, because 
M,.-+NT is finite and flat of degree r there. However, it is not obvious, a priori, 
even that  h - l N r + l  is a divisor. 

Theorem 4.4 asserts that  the ideal J r  of Nr+l in NT and the direct image 
h.OHilb~ are reciprocal fractional ideals; that  is, the pairing by multiplication, 

~J~. X h ,  (.gHilb ~ ~ (.gN~ , 

is well defined and perfect; in particular, J r  is the conductor of h, OHngy in ONt. In 
addition, ~ .  is locally a self-linked ideal of ON,.. Furthermore, if r>_2, then similar 
assertions hold for hi. These results about h and hi require the development of 
a lot of supporting commutative algebra; some of it is developed at the end of 
Section 4, and the rest, including a generalization of Huneke's theory of strong 
Cohen-Maeaulayness, is developed in Section 5. 

Intuitively, the first equation of (1.1.3) says that  when N r  is blown up along 
2Vr+l, then the ( r+  1)-fold points of f on Y are resolved into their constituent r-fold 
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points. Equation (1.1.2) says that  the number of constituents is r + l ,  just as there 
should be since there are r + l  different ways in which a group of r points can be 
chosen from a group of r + l  points. Similar statements hold for the r-fold points of 
f on X. Moreover, the second equation of (1.1.3) formally implies the equation, 

[Mr] = hz, [Univ}], 

which says that  [M~.] is equal to the cycle whose class is given by the refined r- 
fold-point formula of [20, (i.18), p. 107]. Furthermore, the first equation of (1.1.3) 
implies that the r-fold-point formula is valid when Ns has codimension s for s= 
i,... , r (assuming the usual hypotheses on f and Y in addition). Thus the present 
paper clarifies the enumerative significance of the refined r-fold-point formula. 

1.2. Applications 

The theory in this paper applies, for example, to the enumeration of the secant 
curves of a given space curve C. Indeed, Gruson and Peskine [12] made their 
development of the theory to give modern derivations of the nineteenth century 
formulas for the degree and genus of the curve of trisecant lines of C, and for the 
number of quadrisecant lines. They used the following setup: Y is the Grassmannian 
of lines; X is the incidence variety of pairs (P, L) where P is a point of C, and L 
is a line through P; and f:X---+Y is the projection. Then N~ is the scheme of 
r-secant lines. So the degree of N4 is the number of quadrisecants, and it is given 
by a formula of Cayley. To obtain this formula, Gruson and Peskine used the 
Grothendieck-Riemann-Roch theorem and Porteous's formula; however, instead, it 
is possible to use the 4-fold-point formula. 

Similarly, by using a stationary multiple-point formula, Colley [8, 5.8, p. 62] 
recovered Salmon's formula for the number of reincident tangent lines of C. In much 
the same way, S. Katz [18, 2.5, p. 151] recovered Severi's formula for the number of 
8-secant conics to C: he worked out the 8-fold-point formula for the map f:  X---+Y, 
where Y is the variety of conics in space, and where X is the incidence variety of 
pairs (P, L) where P is a point of C and L is a conic through P.  Later, Johnsen [17] 
established the enumerative significance of Severi's formula for curves C of two 
types: (1) complete intersections of general pairs of surfaces, each of degree at 
least 15, and (2) general rational curves of degree at least 15. He did so by using 
Gruson and Peskine's local analysis as a model to show that  in each case Nr has 
codimension r for all r; then he referred to a preliminary version of the present 
paper, and quoted the discussion given at the end of Article 1.1 above to complete 
the proof. 
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Gruson and Peskine obtained the geometric genus of N3 as follows [12, Theo- 
rem 3.6, p. 25]: first they found its arithmetic genus; then they determined that,  
under blowing-up along Na, the arithmetic genus drops by the amount of 3 deg N4; 
and finally they proved a necessary and sufficient geometric condition for this blowup 
to be smooth. To determine the amount of the drop in the genus, they proved an 
abstract algebraic result [12, 2.6, p. 13] and a related geometric result [12, 2.7, 
p. 14]. The former applied, a priori, to a certain modification of N3, and the latter 
result identified this modification as the blowup of N3 along N4. Now, this blowup 
is equal to Hilb) by (1.1.3). Correspondingly, their algebraic result, which they 
proved for an arbitrary r, becomes simply equation (1.1.2). Thus we recover their 
result. In fact, we derive (1.1.2) from (1.1.1) by induction on r. Initially, the two 
results coincide as Hi lb}=X and h=f; more precisely, (1.1.2) with r = l  coincides 
with (1.1.1) with r=2 .  Gruson and Peskine [12, p. 13] themselves observed that,  
when r = l ,  they had recovered the old result about the colength of the conductor 
of a curve on a smooth surface. Thus (1.1.2) and (1.1.1) may be viewed as different 
generalizations of this old result. 

It is of some importance to determine how Mr and N~ vary in a family. Of 
course, since they are defined by the ( r - 1 ) t h  Fitting ideal of the Oy-module f. Ox, 
their formations commute with base change. So the problem is to find conditions 
guaranteeing that  these schemes are fiat when X and Y are fiat over a given pa- 
rameter space. Mond and Pellikaan devoted much of their paper [29] to the issue; 
they considered only Nr, but the situation is similar for Mr. Assuming that  the 
parameter space is smooth, they noted [29, top p. 113] that  Nr is fiat if it is Cohen- 
Macaulay and its fibers are equidimensional of constant dimension. Although Nr 
is defined by a Fitting ideal, the expected codimension r of Nr is not the "generic" 
value for that  Fitting ideal. So a portion of [29] is devoted to re-expressing the ideal 
of N~, locally, as the zeroth Fitting ideal of a suitable Oy-module under suitable 
hypotheses; see (1.3.1). Then they could conclude that  N~ is Cohen-Macaulay. 

Similarly, we prove Theorem 3.5 below by re-expressing the ideal of N~ as a 
zeroth Fitting ideal; this theorem asserts, in particular, that  Nr is perfect of grade r. 
We derive the corresponding result for Mr from this result for Nr in Theorem 3.11. 
These results yield the flatness of Mr. and Nr., by virtue of the local criterion, 
without any special assumptions on the parameter space. 

1.3. Hypotheses 

In this paper, we work with a finite map f :  X-+Y of arbitrary locally Noether- 
Jan schemes (whereas Gruson and Peskine [12] worked with algebraic varieties, and 
Mond and Pellikaan [29] worked with complex analytic spaces, although much in 
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their papers generalizes with little or no change). Thus our results apply not only 
to individual varieties in arbitrary characteristic, but also to families of varieties, 
including infinitesimal families and families of mixed characteristic. Moreover, for 
the most part, there would be little technical advantage in it if we worked over a 
field, let alone over an algebraically closed field or over a field of characteristic 0. 

To develop the theory fully, we need to make a number of hypotheses. Often 
we need to assume, for an appropriate r, that  Y satisfies Serrc's condition (St); 
that is, every local ring Oy, y is either Cohe~Macaulay  or of depth at least r. In 
addition, we make six hypotheses on f :  X--~Y. However, they are not independent. 
We now discuss these six, one after the other. 

The first hypothesis on f is that f be locally of codimension 1; in other words, 
every local ring (.gx,~ is of dimension 1 less than that  of OY, yx. Without this 
hypothesis, the Nr need not be Cohen-Macaulay when they should be. To illustrate 
this point, Mond and Pellikaan [29, bot tom p. 110] gave the following example: X 
is the t-line; Y is 3-space; and f(t):=(t 3, t 4, ts). Here N1 is not Cohen-Macaulay 
at the origin because it is not reduced there. However, this f is not dimensionally 
generic, as f is singular at the origin; so N2 has codimension 1 in N1, whereas its 
expected codimension is the codimension of f ,  namely, 2. On the other hand, Joel 
Roberts (private communication, April 18, 1991, see also [35, Cor. 2.7]) gave the 
following argument, which shows that  the preceding phenomenon is not accidental. 
Suppose that  X and N1 are both Cohen Macaulay, and consider the sheaf 

Ad2 := 0 / . o ~ / O N ~ .  

Its support is the set N2 and, at any point x of N2, its depth is at least depth((.gx,x) - 
1, which is equal to d im( (9x ,x ) - l .  However, the depth of a sheaf is at most the 
dimension of its support. Hence, at x, the codimension of N2 in N1 cannot be 2 or 
more. However, again, its expected value is the codimension of f .  

The second hypothesis is that  f be locally of flat dimension 1; in other words, 
every local ring (gx,x is an OY, yx-module of fiat dimension 1. It is equivalent that 
f.(gx be presented, locally, by a square matrix with regular determinant; see [29, 
2.1, p. 114] and Lemma 2.3 below. By the same token, it is equivalent that N1 
be a divisor. Now, the second hypothesis implies the first by Corollary 2.5. In 
practice, often Y is nonsingular; if so, then, by the Auslander-Buchsbaum formula, 
the second hypothesis obtains if and only if the first does and X is Cohen-Macaulay. 

The third hypothesis is that f be birational (or of degree 1) onto its image. 
Suppose that  Y satisfies Serre's condition ($2), and that the first three hypotheses 
obtain. Then Proposition 3.4 implies that  N1 is equal to the scheme-theoretic image 
of f ;  in other words, the Fitting ideal ZittYo(f.Ox) is equal to the annihilator 
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Anny ( f .Ox ) .  Moreover, then N2 has codimension 2 in Y, and 

Army (f,  Ox ~ON1 ) = Jzitt Y1 (f* OX) = 2:ittYo (f,  OX ~ON1 ). 

The history of these equations is involved, and was indicated in the discussion of 
(1.6), (1.7) and (1.8) in [21, p. 202]; since then, Zaare-Nahandi [35] handled a 
few additional, but special, cases, in which f need not have codimension 1. The 
first equation above implies that  N2 is defined in N1 by th~ conductor; the second 
equation implies that  N2 is perfect (compare also with J. Roberts [31, Thm. 3.1, 
p. 258]). 

The fourth hypothesis is that  f be curvilinear, in other words, the differential 
eorank of f ,  that  is, the corank of the Jaeobian map 

Of(x): f*91(x)  , ~2~x(x), 

is at most 1 at every x in X. This hypothesis implies that  f is cyclic; that  is, 
locally the C0v-algebra f . O x  has a primitive element. This implication was proved 
in the case that  X is smooth by Marar and Mond [26, 2.9, p. 560], and it is proved 
in full generality in Proposition 2.7 below. As a special case, this proposition con- 
tains the usual theorem of the primitive element for a field extension with limited 
inseparability. 

Assume that  f is cyclic and that  Y satisfies Serre's condition (S,.). If, in 
addition, N~ locally has codimension r in Y, then ArT is perfect by Theorem 3.5; in 
fact, if a is a primitive element at yEN~, then 

(1.3.1) JZittY_l ( f .Ox)y  : ~i t t~  (3d~) 

where 
r - -2  

Mr := 
i:0 

This relation between Fitting ideals was proved by Mond and Pellikaan [29, 5.2, 
p. 136] under the additional assumption that  Nr+l has codimension r + l .  Briefly 
put, they proved that  the two ideals are equal off Nr+l,  where the job is simpler 
because ( f .Ox)y  is generated by 1,...  ,a~- l ;  then they concluded that  the two 
ideals are equal everywhere because the one on the left contains the one on the right, 
and the latter has no embedded components. However, the relation had already 
been proved without the assumption on the codimension of N,.+x by Gruson and 
Peskine [12, 1.3, p. 4]; they gave an elementary argument which applies to any finite 
cyclic extension of an arbitrary commutative ring. The relation plays an essential 
role in the present paper, entering in the proofs of Lemma 3.6 and Theorem 4.4. 
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In passing, let us note some other interesting properties of M r .  First, 

Proj($ym(Adr)/ON-torsion) = BI(Nr, Nr+l) 

if Y satisfies (Sr+l), if Nr and Nr+l are locally of codimensions r and r + l  in Y, 
and if f is also locally of flat dimension 1. This equation was proved by Gruson 
and Peskine [12, 2.7, p. 14] for r=3 ,  and here in brief is a version of their proof for 
arbitrary r. There is a natural surjection # from Adr onto the sheaf associated to 
the ideal I in the proof of Theorem 4.4 below. In that  proof, it is shown that BI(I) is 
equal to BI(Nr, Nr+l). Now, # is, obviously, an isomorphism modulo ON~-torsion; 
in fact, # is an isomorphism because the (Fitting) ideals defining Nr and Nr+l have 
the correct grades, namely, r and r + l .  Thus the equation holds. Second, there is 
a natural surjeetion from Symr+ 1 Adr onto the ideal J r  of Nr+l in Nr, as Gruson 
and Peskine [12, 2.2, p. 8] show, and it factors through Symr+ 1 (#). 

The fifth hypothesis is that  f be Gorenstein; that is, f has finite flat dimension 
and its dualizing complex f!Oy is quasi-isomorphic to a shifted invertible sheaf. If 
also the second hypothesis obtains (that is, f is locally of flat dimension 1), then 
f .Ox is presentable locally by a symmetric matrix. This result was proved over 
the complex numbers by Mond and Pellikaan [29, 2.5, p. 117], and a version of it 
had been proved earlier by Catanese [7, 3.8, p. 84]. Mond and Pellikaan [29, 4.3, 
p. 131] went on to prove that,  if N3 has eodimension in Y at least 3, then N3 has 
codimension exactly 3 and N3 is Cohen-Macaulay because then J:ittY(f.Ox)y is 
locally a symmetric determinantal ideal. Those results will not be recovered in this 
paper; however, see [22] where there are new proofs, which, unlike the old, work in 
the present general setting, and there are related new proofs of the characterization 
(due to Valla and Ferrand) of perfect self-linked ideals of grade 2 in an arbitrary 
Noetherian local ring as the ideals of maximal minors of suitable n by n -  1 matrices 
having symmetric n - 1  by n - 1  subblocks. 

The sixth hypothesis is that  f be a local complete intersection; that is, each 
point of X has a neighborhood that is a complete intersection in some (and so 
any) smooth Y-scheme (see [2, VIII 1, pp. 466-475]). For example, if X and Y are 
smooth, then the graph map of f embeds X in X x Y; so f is a local complete inter- 
section. In the presence of the second and fourth hypotheses, the fifth and sixth are 
equivalent. Indeed, the sixth obviously implies the fifth; the converse is proved in 
Proposition 2.10 via a version of an old argument of Serre's. (The converse should 
now be borne in mind when reading [21, bottom p. 200].) Moreover, by Proposi- 
tion 2.10, the sixth hypothesis, combined with the first, implies the second. The 
sixth hypothesis is required in global enumerative multiple-point theory to ensure 
an adequate theory of Chern classes of f and of the pullback operator f*. Although 
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the sixth hypothesis played no special role in Mond and Pellil~an's paper [29], the 
hypothesis plays an essential role in the present paper. 

The various hypotheses on f are inherited by the iteration map f l  thanks 
to Lemma 3.10, and this fact plays a leading role in this paper. The iteration 
map fl: X2--*X is defined as follows: X2:=P(27(A)) where 27(A) is the ideal of the 
diagonal, and f l  is induced by the second projection. It is remarkable how strong a 
condition it is for f l  to satisfy the second hypothesis; indeed, by Proposition 3.12, 
if f l  does, if Y satisfies ($2), and  if f satisfies the second and fourth hypotheses, 
then f satisfies all six. The usefulness of f l  stems from the equations, 

M r ( f ) - - N r - l ( f l )  and Univ}- -Hi lb~  -1 for r_>2, 

which are proved in Lemma 3.9 and Proposition 4.1. These equations permit us 
to derive general properties of the source multiple-point loci and the universal sub- 
schemes from corresponding properties of the target multiple-point loci and the 
Hilbert schemes, proceeding by induction on r when convenient. 

2. Special  finite maps 

Definition 2.1. A map f :X- -*Y of schemes will be said to be locally of flat 
dimension s if X is nonempty and if, for every x in X, the local ring Ox,x is of flat 

dimension s over Oy, fx. 

P r o p o s i t i o n  2.2. Let f: X--+Y be a finite map that locally has a finite pre- 
sentation. Then f is locally of fiat dimension 1 if and only if its scheme of target 
points N1 is a divisor of Y.  

Proof. The assertion results immediately from the equivalence of (iii) and (v) 
in the following lemma, where the rings need not be Noetherian. 

L e m m a  2.3. Let r R--+ B be a nonzero homomorphism of rings. Assume that 
B has a finite presentation as an R-module. Then the following five conditions are 
equivalent: 

(i) The ring B has fiat dimension 1 over R, and for every prime p in B, the 
prime q : = r  is nonminimal in R. 

(ii) For every prime p in B, the prime q : _ C - l p  is nonminimal in R, and the 
localization Bp has fiat dimension at most 1 over Rq. 

(iii) For every prime p in B, the localization Bp has fiat dimension exactly 1 
over Rq where q : = r  

(iv) For every maximal ideal q of R, the Rq-module Bq:=B| is presented 
by a square matrix whose determinant is regular. 

(v) The zeroth Fitting ideal :PittRo (B) is invertible. 
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The preceding (equivalent) conditions imply the following condition, and they are 
all equivalent if R is Noetherian. 

(vi) The R-module B is perfect of grade 1. 
Furthermore, if (iv) obtains, then a suitable square matrix may be obtained from 
any matrix presenting B by omitting suitable columns. 

Pro@ Assume (i). Now, for any R-module M, 

(2.3.1) Bp| M) = Tor~ q (Bp, Mq); 

indeed, for any free resolution E. of M, 

BpQBHi(BQRE.)  = Hi(BpQBBQRF,.) = Hi(J~p@Rq RqQRE.). 

Hence Bp has flat dimension at most 1 over Rq, because every Rq-module N is of 
the form Mq (for example, take M : = N ) .  Thus (ii) holds. 

Assume (ii). Then the minimal primes p' in Bp have nonminimal preimages 
q' in Rq. So, if q" is a minimal prime contained in q' and if a E ( q ' - q " ) ,  then a is 
regular on Rq/q",  but not on Bp, /q"Bp, ,  since its image in Bp,/q"Bp,  is nilpotent. 
Hence Bp is not flat over Rq. Therefore, Bp has flat dimension exactly 1 over Rq. 
Thus (iii) holds. 

Assume (iii). To prove (iv), we may assume that  qDker6,  because otherwise 
Bq=0.  Then q is of the form 6-1p because 6 is finite. So (2.3.1) implies that  Bq 
has flat dimension at most 1 over Rq. By hypothesis, there is a short exact sequence 
of Rq-modules, 

0 )E----~F---~Bq ~0, 

in which F is free and E is finitely generated. Hence E is flat, and therefore free 
by, for example, [27, 7.10, p. 51]. 

Set I:=:FittR(B). Then Ann(Iq) vanishes by McCoy's theorem [28, Thin. 51, 
p. 159] (or by [24, Lem., p. 889]) because E is free. Hence, q is not a minimal prime 
of R; indeed, otherwise, Rq would have dimension 0, so Bq would be free because 
I n would be equal to Rq, but Bp has flat dimension exactly 1. Hence, if q' is any 
minimal prime of R contained in q, then Bq@Rq,=0. Therefore, r k E = r k F .  In 
other words, Bq is presented by a square matrix M. Now, det M generates Iq, and 
Ann(Iq)=(O); so act g is regular. Thus (iv) holds. 

Obviously (iv) implies (v). The converse is a special case of [25, Lem. 1, 
p. 423], but may be proved directly as follows. Assume (v). Take any matrix M 
presenting Bq over  /~q; say M is m by n with m<<_n. Moreover, we may assume 
that  the zeroth Fitting ideal is generated by the determinant of the submatrix N 
formed by the first m columns because the ideal is invertible'and Rq is local. Hence 
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det N is regular, and divides the determinant of every m by m submatrix of M. 
Hence, by Cramer's rule, every column of M is a linear combination of the first m. 
Therefore, N too presents Bq. Thus (iv) and the last assertion hold. 

Assume (iv). Then, for every prime q of R, the Rq-module Bq has flat dimen- 
sion at most 1. Hence the R-module B has flat dimension at most 1. If q = r  for 
some prime p in B, then qRq contains a regular element, namely, the determinant 
of a matrix presenting Bq; indeed, this determinant lies in AnnRq Bq, which is con- 
tained in q R q .  Hence, q is not minimal. Moreover, HOmRq(Bq, Rq)----0; whence, 
HomR(B, R ) = 0  because B has a finite presentation. Now, if p is a minimal prime 
of B, if q~ is a minimal prime contained in q = r  and if a E ( q - q t ) ,  then a is 
regular on R/q ~, but not on B/q~B; hence B is not flat over R. Alternatively, B is 
not flat over R because its zeroth Fitt ing ideal is invertible, so nonzero. Thus both 
(i) and (vi) hold. 

Finally, assume that  (vi) holds and that  R is Noetherian. Then AnnR B con- 
tains a regular element. This element lies in any prime q of R of the form q = r  
where p is a prime of B. Hence, q is not minimal. Thus (i) holds, and the proof is 

complete. 

Definition 2.4. Let f :  X--*Y be a map of locally Noetherian schemes, and s an 
integer. Call f locally of codimension s if X is nonempty and if, for every x in X, 

dim Ox,x = dim O y ,  f x  - -  S. 

C o r o l l a r y  2.5. Let f:X--~Y be a finite map of locally Noetherian schemes. 
Assume that f is locally of fiat dimension 1. 

(1) Then f is locally of codimension 1. 
(2) Then the fundamental cycles satisfy the relation, f .  [X] = [N1]. 

Proof. To prove (1), let x be a point of X, and y its image in Y. Let R and B 
be the corresponding local rings, and C the semi-local ring of f - l y .  Let '^' denote 
completion. It suffices to check that  d i m / ~ = d i m / ~ - l .  Now, ~ittRo C is invertible 

by Proposition 2.2; hence, Jzitt~ C is invertible. However, B is a direct summand of 

C. Hence Jzitt~ B is invertible. Therefore, d im(R/JZi t t~  B) is equal to d im /~ -1 .  

Finally, R/~it tRo B and B have the same dimension because JzittRo B and Ann~(B) 
have the same radical. Thus (1) holds. 

Consider (2). Since N1 is a divisor by Proposition 2.2, at the generic point 
of any of its components, the lengths l ,(f ,(gx) and l,((gil) are equal by the 

determinantal length formula, [6, 2.4, 4.3, 4.5] or [3, 2.10, p. 154]; in other words, 
(2) holds. 
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Definition 2.6. Let f :  X - ~ Y  be a map of schemes, x E X .  Call the number, 

dimk(x) ~}(x), 

the differential corank of f at x. In terms of a base scheme S, this number is simply 
the corank of the Jacobian map, 

* 1 Of(x): f ~y / s ( x )  ---+ ~lx /s(x  ). 

Call f curvilinear if its differential corank is at most 1 at every x in X. 

P r o p o s i t i o n  2.7. Let f : X - + Y  be a finite map of schemes, t> l. 
(1) Let x C X .  Then f has differential corank at most t at x if and only if x 

has a neighborhood U such that the restriction f l u  factors through an embedding of 
U into the affine t-space A ~ .  

(2) Let y e Y  be a point whose residue class field is infinite. Then f has differ- 
ential corank at most t at every point x of f - l y  if and only if y has a neighborhood 
V such that the restriction f-Zv---+V factors through a closed embedding of f - i V  
in the affine t-space Atv . 

Proof. The assertions follow immediately from the next lemma. 

L e m m a  2.8. Let R be a local ring (which need not be Noetherian). Let B be 
an R-algebra that is finitely generated as an R-module, t>_l. 

(1) Let In be a maximal ideal of B, let C be an R-subalgebra of B generated 
by t elements, and set n : = m A C .  If  the canonical map Cn--+Bm is surjective, then 

(2.8.1) < t. 

(2) Let m be a maximal ideal o r b  such that (2.8.1) obtains. Then there exists 
an R-subalgebra C of B generated by t elements such that, if n : = m N C ,  then the 
natural map Cn--~Bm is bijective. 

(3) Assume that (2.8.1) obtains for every maximal ideal In of B,  and that 
the residue class field of R is infinite. Then B is generated as an R-algebra by t 
elements. 

Proof. In (1), say C is generated by x l ,  ... , xt. Then the images of dXl, ... , dxt 
generate 1 (~c/R)n.  Hence (2.8.1) holds, as asserted. 

To prove (2) and (3), we may assume that  R is a field. Indeed, let k be the 
residue field of R. First, consider (3). Suppose that  B |  is generated by t elements. 
Lift them to B, and let C be the resulting subalgebra. Then the inclusion C-+B is 
surjective by Nakayama's lemma, because C|174 is surjective by assumption 
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and B is finitely generated as an R-module by hypothesis. Thus, to prove (3), we 

may replace R and B by k and B Qk. 
Next, consider (2). Suppose that  there exists a subalgebra C of B generated by 

t elements, such that  if n : = m n C ,  then C~|174 is surjective. If Xl lies in 
n, replace it by Xl+ l ;  obviously, doing so does not change C. Now, BGk is equal 
to the direct product of its localizations at the maximal ideals of B; so there is an 
element x of B whose image in BmQk is equal to 1 and whose image in the other 
localizations is equal to 0. For each i, replace xi by xix; doing so may change C, 
but Cn | k --~ B ~  | k remains surj ective. The following argument, adapted from [11, 
(18.4.6.1), p. 120], shows that  Cn---*Bm is now bijective. 

The map C~---+Bm factors as follows: 

Cn ~>B~ ~ B ~ .  

Consider/3. It will be bijective if every element of B - m  becomes a unit in Bn, so 
if every maximal ideal p of Bn contracts to m. Since (~ is finite, c t - l p  is a maximal 
ideal of Cn; hence, c t - l p = n C n .  Therefore, if q denotes the trace of p in B, then 
q N C = n .  Since B is a finitely generated C-module, n is a maximal ideal of C, and 
so q is a maximal ideal of B. Now, x l ~ q  because x l ~ n  and xlEC. Since Xl lies 
in every maximal ideal of B other than m, necessarily q = m ,  as required. Thus/3 

is bijective. 
Consider a. It is injective because CC_B. Now, c~ is finite; hence, by Naka- 

yama's lemma, it will be surjective if (~| is. However, (~a) |  is surjective by 
assumption, and/3 is bijective by the preceding paragraph. Hence c~ is surjective, 
so bijective. So Cn---*Bm is bijective. Thus, to prove (2) as well as (3), we may 
assume that  R is a field. 

We may also assume that  B is local. Indeed, since R is a field, B is equal 
to the direct product, over its finite set of maximal ideals m, of its localizations: 
B = r I  Bin. Suppose one of the localizations Bm has t generators. Lift them to 
elements Xl ,... , xt of B whose images in the other localizations are equal to 0. 
Then form C and n as usual. Clearly C = B ~  and Cn=C. Hence, to prove (2), 
we may replace B by Bin, and then we have to prove that  B is generated as an 
R-algebra by t elements. 

Consider (3). Suppose that  each Bm has t generators xm,i. Set x i :=(xm#)  
in B. Now, in the polynomial ring in one variable R[A], let fm()~) be a polynomial 
of minimal degree such that  fm(xm,1)=0.  Suppose that  R is infinite. Then we may 
assume that  the f~(A) are relatively prime; indeed, replacing X~,l by Xm,l-~-am 
where the am are suitable elements of R, we may ensure that  no two f~()~) share 
a root in some algebraic closure of R. Set f : = r I  fin. Then R[A]/(f) is isomorphic 
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to the subalgebra B1 of B generated by xx. Hence, by the Chinese remainder 
theorem, B1 contains the idempotents  of the decomposition B = I ]  Bm. Therefore, 
B is generated by the x~. Thus, to prove (3) as well as (2), we may assume that  B 
is local. 

We may also assume t = l .  Indeed, suppose 1 1 FtB/R/mftB/R has dimension at 
least 2, and let Xl be an element of B such that  the residue class of dxx is nonzero. 
Let B1 be the subalgebra of B generated by xl.  Then B is a finitely generated 
Bl-module;  so, by the Cohen-Seidenberg theorem, B1 is local as B is. Moreover, 

ft,~B1 is equal to the quotient of f t l / R  by the submodule generated by dxl. Hence, 
we may assume by induction on t that  there exist t -  1 elements x2 ,... , xt of B that  
generate it as a Bl-algebra.  Then Xl ,... , xt generate B as an R-algebra. 

Suppose tha t  the natural  map  R---~B/m is an isomorphism. Then there exists 
an element z in m that  generates B as an R-algebra. Indeed, m / m  2 is equal to 

1 1 . see, for example, [23, Cor. 6.5(a), p. 96]. So d im(m/m2)_<l .  Let 

x be an element of m whose residue class generates m / m  2 over R; possibly, x=0 .  
Then B=R[z]. (The argument is standard. Let y be an element of B. For all n_>0, 
there is a polynomial Y ~ ' = ~  0 aixi with aiER and y - y ~  in mn+l ;  indeed, take 

a0 to be the image of y in R = B / m ,  and given yn, take a~+l so that  y-y~ is equal 
to an+iX ~+1. However, m ~ = 0  for n>>0, so Y=Yn for n>>0.) 

Suppose that  R is infinite. Let R '  be an algebraic closure of R, and set B ' : =  
B| Then there exists an element z '  of B '  that  generates it as an R'-algebra 

by the preceding paragraphs, because B '  is a finite R' -a lgebra whose residue class 
fields are all equal to R '  and because the formation of f~l commutes with base 

change. To descend the existence of a generator, let Yl ,... , Yn be a vector space 
basis of B over R, and let r l  ,... , rn be indeterminates. In the polynomial ring 
B[T1 ,... , 7n], set u : = ~  riyi and expand the powers u j for j = O , . . .  , n -  1. Form the 
matr ix  (I)(rl ,... , r~) such that  

( 1 , U , . . .  ,Un--1)  t r  ={ ] ) (T1 , . . .  , T n ) ( y l , . . .  ,yn) tr 

where ' t r '  denotes transpose. Say x ' = ~ r ' y i  where r'ER'. Then the r '  do not 
satisfy the equation det ~ ( r l  ,... , r n ) = 0  because x '  generates B '  as an R'-algebra. 
Hence, since R is infinite, there exist elements r~' , . . .  , r "  in R that  do not satisfy 
this equation. Therefore, x:=y~ r['yi generates B as an R-algebra. 

Finally, suppose that  R is finite, say of characteristic p. Take q:=pr so large 
that  mY=0 and zq=z for all z c B / m .  Consider L:=Bq. Obviously, L is an R- 

subalgebra. In fact, L is a field: if xEB and xq~O, then x ~ m  as mq=0 ;  hence, 
there is a yCB such that  x y = l ;  so xqyq=l. Now, since zq=z for all zEB/m,  the 

natural  map L--+B/m is surjective; so it is an isomorphism because L is a field. 
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1 Since ~IB/L is a quotient of ~B/R, by the paragraph before the last, there is an 
x C m  such that B=L[x]. Since L is finite, its multiplicative group is generated 
by an element y. Set z :=x+y,  and Bt:=R[z]. Then zq=xq+y q, so zq=y. Thus 
y E B  p. Hence LC_Bq Moreover, z - z q = x + y - y = x .  Thus x E B  ~. So L[x] lies in B/. 
Therefore B = B  t, and the proof is now complete. 

Definition 2.9. Let f :  X--+Y be a map of locally Noetherian schemes. Follow- 
ing [2, 1.1, p. 466] call f a local complete intersection if, locally on X, there is a 
factorization f=Tri where i: Xc--+P is a regular embedding and ~: P - + Y  is smooth. 
Following [13, p. 144], call f Gorenstein if it has finite flat dimension and if in the 
derived category f ! O y  is isomorphic to a (shifted) invertible sheaf. 

P r o p o s i t i o n  2.10. Let f: X--+ Y be a finite map of locally Noetherian schemes, 
s an integer. If f is a local complete intersection and is locally of codimension s, 
then f is Gorenstein and locally of flat dimension s. Moreover, the converse holds 
if also s= 1 and f is curvilinear. 

Proof. Suppose f is a local complete intersection and is locally of codimen- 
sion s. Then clearly f is Gorenstein; see [13, Cot. 7.3, p. 180], and [13, 3, p. 190]. 
Now, for every x in X, clearly 

depth Ox,x = depth Oy, fx - s. 

Hence, f is locally of flat dimension s by the Auslander-Buchsbaum formula, which 
applies after completion because f is finite. Thus the direct assertion holds. The 
converse follows from 2.7(1) and the following lemma. 

L e m m a  2.11. Let R--+B be a quasi-finite local homomorphism of Noetherian 
local rings, and t an integer. Assume 

(i) that B is of the form S / I  where S is a localization at a prime ideal of the 
polynomial ring in one variable R[u], 

(ii) that E x t , ( B ,  S) vanishes for i ~ t  and is isomorphic to B for i=t ,  and 
(iii) that B has fiat dimension 1 over R. 

Then t = 2  and I is generated by a regular sequence of length 2; moreover, d i m B =  
dim R -  1. 

Proof. Assumptions (i) and (iii) imply that  I is fiat over R. Say I is generated 
by n elements with n minimal, and form the exact sequence, 

(2.11.1) 0 ~F )S  n ~ ) I  )0. 

Then F is flat over R. Moreover, if k denotes the residue field of R, then F |  is free 
over S|  because S |  is a Principal Ideal Domain. Hence F is a free S-module. 
So, clearly , F = S  ~-1. 
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Sequence (2.11.1) therefore yields this free resolution of B over S: 

(2.11.2) 0 ) S n - 1  ) S n > S ) B ~ 0. 

Hence t~2 .  Suppose t<2 .  Then, because of (ii), dualizing (2.11.2) yields a surjec- 
tion v: Sn---~S n-1. However, v| because n is minimal. Hence n = l .  Therefore, 
the map a: S--~I is an isomorphism. Consequently, there is a short exact sequence, 

0 ) Tor~(B, k) ) S |  ~ S Q k  ~ B Q k  ~ O. 

Since B / R  is quasi-finite, dimk B |  is finite. Hence the map in the middle is 
nonzero. Therefore, it is injective because S |  is a domain. So TorS(B ,k )=0 .  
Hence B is fiat over R by the local criterion. Thus (iii) is contradicted, and so t=2.  

Because t = 2  and because of (ii), dualizing (2.11.2) yields the following exact 

sequence: 
0 ) S - - - ~ S  ~ ~Sn- I - - -*B  ~0. 

Because S is local, this sequence may be reduced to the sequence, 

0 ~ S ~ S 2 ~ S ) B ) 0, 

by splitting off copies of the trivial exact sequence O--~S--*S-*O. Therefore, I is 
generated by two elements, and because t=2 ,  they form a regular sequence. Finally, 
by hypothesis, S is the localization of R[u] at a prime ideal, and this ideal must 
be maximal because B is quasi-finite over R; hence, d i m S = d i m R + l .  Therefore, 
dim B = d i m  R - 1  because I is generated by a regular sequence of length 2. 

3. T h e  m u l t i p l e - p o i n t  s c h e m e s  

Definition 3.1. A map f:  X--~Y of locally Noetherian schemes will be said to 
be birational onto its image if there is an open subset U of Y such that (i) its 
preimage f - l U  is dense in X and (ii) the restriction f - IU--~U is an embedding. 

P r o p o s i t i o n  3.2. Let f: X--~Y be a finite map of locally Noetherian schemes. 
(1) The map f is birational onto its image if and only if the source double-point 

scheme M2 is nowhere topologically dense in X .  These two equivalent conditions 
imply that N2 is nowhere topologically dense in N1, and all three conditions are 
equivalent if f is locally of codimension 1. 

(2) The scheme-theoretic image of f is a closed subscheme of the scheme of 
target points N1. The two schemes have the same support, and they are equal off the 
scheme of target double-points N2. If  they are equal everywhere and if f is locally 
of flat dimension 1, then f is birational onto its image. 

(3) The map f induces a finite, surjective map Mr--~Nr for r> l. 
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Proof. Let U be the largest open subset of Y such that  f - IU--*U is an embed- 
ding. Since f is finite, U consists of all y E Y  at which the comorphism Oy--+f, Ox  
is surjective. So, by Nakayama's lemma, U consists of the y at which the vector 
space (f ,  Ox)(y) has dimension at most 1. Hence, U = Y - N 2 .  Therefore, since 
M2=f- IN2,  the first assertion of (2) holds. Obviously, if M2 is nowhere topologi- 
cally dense in X, then N2 is nowhere topologically dense in N1. Finally, if f is 
locally of codimension 1, then every component of X must map onto a component 
of N1; hence, if also N2 is nowhere topologically dense in N1, then M2 is nowhere 
topologically dense in X. Thus (1) holds. 

The scheme-theoretic image of f is defined as the smallest closed subscheme Z 
of Y through which f factors [10, (6.10.1), p. 324]. Because f is quasi-compact and 
quasi-separated, Z exists and is associated to the ideal Army (f,  Ox). Since locally 
on Y there is an integer n such that  

A n n y ( f . O x  ) n c Jzitt'~ ( f . O x  ) c_ A n n y ( f . O x  ), 

the image Z is a closed subscheme of N1, and the two schemes have the same 
support. They are equal off N2 because there f ,  Ox is a cyclic (_gy-module. If they 
are equal everywhere, then A n n y ( f ,  Ox)=~ittYo(f ,  Ox). On the other hand, by 
[5, Thm. 3.1], 

A n n y ( f ,  Ox) = :PittY (f,  Ox) : 9cittY (f,  Ox). 

It follows that  the stalk Jzitt Y (f ,  Ox)x is not contained in any associated prime of 
the stalk JZittYo(f, Ox)x for any xEX.  So N2 is nowhere topologically dense in N1. 
Therefore, f is birational onto its image by (1) and Corollary 2.5(1). Thus (2) holds. 

By definition, Mr=f- IN~ .  Hence f induces a finite map M~--~N~. It is sur- 
jective because N~C_N1 and because f carries X onto N1 by (1). Thus (3) holds. 

Definition 3.3. Following [11, (5.7.2), p. 103], a locally Noetherian scheme Y 
will be said to satisfy Serre's condition (St), if for every yEY,  

depth( Oy, y) >_ inf(r, dim( Oy, y) ). 

P r o p o s i t i o n  3.4. Let f: X--+Y be a finite map of locally Noetherian schemes. 
Assume that f is locally of flat dimension 1 and is birational onto its image. Assume 
also that Y satisfies ($2). Let Z denote the scheme-theoretic image of f .  

Then Z = N1. Furthermore, N2 is defined by the adjoint ideal .dnny ( f , O z / O z ) 
and M2 is defined by the conductor Cx. Each component of M2 has codimension 1 
and maps onto a component of N2; each component of N2 has codimension 2; and 
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the fundamental cycles of these two schemes are related by the equation, 

f ,  [M2] = 2[N2]. 

Finally, ON~ and Of, M2 arc perfect Oy-modules of grade 2. 

Proof. By Proposition 3.2(2), we have ZCN1, with equality off N2, and N2 
is nowhere topologically dense in N1 by Proposition 3.2(1) and Corollary 2.5(1). 
Now, N1 has no embedded components because it is a divisor by Proposition 2.2 
and because Y satisfies ($2). Hence NI=Z, as asserted. 

The cyclic Oy-module with ideal Anny( f ,  Ox/Oz)  has a Hilbert Burch res- 
olution, and 

(3.4.1) Anny( f ,  Ox/Oz)  =.Titt'~(f, Ox) =Yritt'~(f, Ox/Oz); 

see [21, (3.5), p. 208]. The first equation of (3.4.1) says that  the adjoint ideal 
defines N2. Since Cx is the ideal on X induced by the adjoint ideal, therefore Cx 
defines M2. Because of the Hilbert-Burch resolution, (3.4.1) implies that  ON2 is a 
perfect Og-module of grade 2. Hence Of.M2 is perfect of grade 2 too because Z 
is a divisor. Moreover, the determinantal length formula (see [6, 2.4, 4.3, 4.5] or 
[3, 2.10, p. 154]) gives the following equation, in which p is the generic point of an 
arbitrary component of N2 and l ,  indicates the length of the stalk at u: 

l , ( f ,  Ox/Oz)  = l , (Oy/  ~itt'~(f, Ox/Oz)).  

Let Cz denote the conductor on Z, namely, the ideal induced by the adjoint ideal. 
Then, clearly, 

f , (Ox /gx )  = (f, Ox)/gz  and Ov/~ i t t~ ( f ,  Ox/Oz)  = Oz/gz.  

The preceding two displays yield 

I, (f, (Ox /Cx ) ) = 2l~ (Oz /Cz). 

Rewritten, the latter equation will become IN2] = 2 f ,  [M2], once we prove the asser- 
tion about the components of N2 and M2. 

Let r/ be the generic point of a component of M2. Then OM~,v is an Artin 
ring, and its residue field is a finite extension of that of Oy, f, 7. So OM2,,~ is an 
Ov, fv-module of finite length, and of flat dimension at most 2, hence of projective 
dimension at most 2. Therefore the intersection theorem of P. Roberts [32] implies 
that  Ov, fv has dimension at most 2. However, every component of N2 has codi- 
mension at least 2. Consequently, the original component of M2 has codimension 1 
by Corollary 2.5(1). Finally, every component of N2 is the image of a component 
of M2 by Proposition 3.2(3). The proof is now complete. 
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T h e o r e m  3.5. Let f :X--~Y be a finite map of locally Noetherian schemes, 
and r an integer, r>_l. Assume that f is locally of flat dimension 1 and curvilinear. 
Then each component of N~ has codimension at most r (that is, the local ring at 
the generic point has dimension at most r). Assume further that each component of 
N~ has codimension r and that Y satisfies Serre's condition (S~). Then ON,. and 
OM~ are perfect Oy-modules of grade r, each component of M~ has codimension 
r - 1  and maps onto a component of Nr, and the fundamental cycles of these two 
schemes are related by the equation 

f,[Mr] 

Pro@ The assertion results from Propositions 2.2 and 3.2(3) and the next 

lemma. 

L e m m a  3.6. Let R be a local Noetherian ring, and B an R-algebra that is 
finitely generated as a module. Assume that, for every maximal ideal m of B, 

�9 1 1 dlmB/m(QB/R/mQB/R) < 1. 

Assume that the R-module B is presented by a square matrix whose determinant 
is regular. Fix r>_l and let F : = F i t t R _ I ( B )  denote the Fitting ideal, and h t F  its 
height. If FCR,  then ht F<r.  If ht F=r  and if R satisfies (St), then both R / F  
and B / F B  are perfect R-modules of grade r; moreover, then, any minimal prime 
of FB  has height r - l ,  and its preimage in R is a minimal prime of F of height r. 
Finally, if dim R = r  too, then the following length relation obtains: 

IR(B/FB) = r lR(R/F).  

Pro@ By using a s tandard device, we may assume tha t  R has an infinite 
residue class field: replace R and B by R p and B|  ~, where R ~ is the flat local 
R-algebra obtained by forming the polynomial ring in one variable over R and 
localizing it at the extension of the maximal  ideal of R. Then Lemma 2.8(3) implies 
tha t  there is an x in B such tha t  B -X-'n-1 -z - , i=0  Rxi where n>_r. By Lemma  2.3, there 
is an n by n matr ix  ~ with entries in R such tha t  the corresponding short sequence 

is exact: 

0 ----~ R ~ ~ R  ~ ~ B - - ~ O  

where the natural  basis element ei of R ~ is mapped  t o  the generator X i - 1  of B. 
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Let M be the R-module B~ V'~-2 ~_i / z-~i=0 -~x , and let r be the n - r + 1  by n matrix 
consisting of the last n - r +  1 rows of ~. Then there is a commutative diagram with 
exact rows and surjective columns, 

R n ~ > R n=O~ 1Rei > B > 0 

R '~ > R n - ~ + l = O ~ R e i  > M > O. 

Let I,~-~+1(r and I~-,-+1(r denote the ideals of n - r + l  by n - r + 1  minors. So 

F=In-~+I(r  and F i t tR (M)=In _ ~+ l ( r  

Now, Gruson and Peskine [12, Lem. 1.3, p. 4] proved (using the multiplicative 
structure of B) that F=Fit t0R(M). So F is generated by the maximal minors of r 
So, by the classical height result [4, (2.1), p. 10], 

ht F =  ht In-r+l(r <_n--(n-r  + l )+ l. 

Suppose ht F = r  and R satisfies (S~). Then R / F  and M are perfect R-modules 
of grade r by Eagon's theorem [4, (2.16)(c), p. 18]. 

Let ' - '  denote reduction modulo In-~+l (r We will construct a commutative 
diagram with exact rows 

~n-r+lQRAn-r+l  ~n 5 > ~n ~ > ~n > B |  > 0 
I 

~n- - r+l |  ~n  5 > Rn r > R n!r+l  > M > 0 

in which the right vertical map is surjective. Once constructed, this diagram yields 
an exact sequence, 

(3.6.1) 0 > _ ~ - i  > B| > M --~  0. 

Now, B |  is equal to B / F B ;  hence, B / F B  is perfect over R of grade r because 
/~ and M are. 

Let p be a minimal prime of the B-ideal FB,  and let q be its preimage in R. 
Then ( B / F B ) p  is an Artin ring, and its residue field is a finite extension of that  
of Rq. So ( B / F B ) p  is an Rq-module of finite length, and of flat dimension at most 
r, hence of projective dimension at most r. Therefore the intersection theorem 
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of P. Roberts [32] implies that  Rq has dimension at most r. However, ht F=r. 
Consequently, q is a minimal prime of F of height r. So, Corollary 2.5(1) implies 
that  Bp has dimension r - 1 ,  as asserted. 

If dim R=r too, then the determinantal length formula [6, 2.4, 4.3, 4.5] and [3, 
2.10, p. 154] yields 

lR(M) =/R(Cok r = IR(R/In-r+l (r = IR(R/F). 
Since R/F=R and B| then (3.6.1) yields the asserted length relation. 

To define 8, use the bases {er ,... , en} and {el , . . .  , Ca} of R ~-~+1 and R n. For 
r<i<n, for l < j < n - r + l ,  and for l < k l  < . . .<k~-~+l  <n,  denote by d kj the minor 
(of r that  is obtained from r by deleting rows 1,...  , r - l ,  i and taking columns 

k l  , . . .  , k j _ l ,  kj_l_l , . . .  ,kn_r_t_ 1. NOW, define 

n--r+1 

&R ~-~+I| A Rn ~ R~ by 

n - r + 1  

j = l  

It is easy to see that  the image of the composite map, 
n--r+1 

~R A R~ R~ R~-r+l' 

is exactly In- r+x( r  ~-~+1. 
On the other hand, since I~-~+1(r has generic grade in R, it follows that  an 

R-resolution of M = C o k  r is given by the Buchsbaum~Rim complex [6, 2.4, p. 207], 
n--r+2 

"'" ) A R n  ~ ) R n  r  ) M  )0  

where r Since r maps Im~ onto In_r+l(r n-r+l, therefore the preimage 
r (I~-~+1 (r n-~+l) is exactly Im ~+Im/3 and so the sequence 

( 
is exact. Thus the bottom row of the diagram is exact, since #~=0 and M| 

It is also easy to see that the image of the composite map 
n--r+l 

R~-~+IQR A R~ ~ ~ R~ r Rn 

is contained in I~_~+~(r ~, which is equal to In-~+l(r n. Therefore, the top 
row of the diagram is a complex. This complex is exact, because every relation on 
the columns of ~} is a relation on the columns of r and hence contained in the image 
of 8. The proof is now complete. 
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Coro l l a ry  3.7. Let f: X--~Y be a finite map of locally Noetherian schemes, 
and r an integer, r>_l. Assume that f is locally of flat dimension 1, and, if r>_3, 
then assume that f is curvilinear. Assume also that Y satisfies (S,+I), that each 
component of N,. has codimension r, and that each component of N,+I has codi- 
mension r + l .  Then N,  is the scheme-theoretic image of M,.  

Proof. Since M , = f - I N ,  and f is finite, f ,  OM,. is equal to the restriction of 
f ,  Ox  to N,. Hence, f ,  OM,. is locally free of rank r on N , - N r + I  by standard 
linear algebra. So the comorphism 7: ON~--~f, OM,. is injective off N,+I.  Now, N, 
is perfect by Proposition 2.2 if r = l ;  by Proposition 3.2(2), Corollary 2.5(1), and 
Proposition 3.4 if r=2;  and by Theorem 3.5 if r_>3. Hence ON,. has no embedded 
points because Y satisfies (St+l). Therefore, 7 is injective everywhere because each 
component of N~.+I has codimension r + l .  The proof is now complete. 

Definition 3.8. Let f :  X--~Y be a finite map of locally Noetherian schemes. 
Following [19, 4.1, pp. 36-37], [20, (2.10), pp. 112-113], and [21, (3.1)], define the 
iteration scheme X2 and the iteration map fx: X2--~X of f as follows: 

X 2 : = P ( Z ( A ) )  and fx:X2 P , X •  P2~X, 

where A is the diagonal, Z(A) is its ideal, p is the structure map, and P2 is the 
second projection. (Thus, X2 is the residual scheme of A.) 

L e m m a  3.9. Let f: X--~ Y be a finite map of locally Noetherian schemes, and 
assume that f is curvilinear. Then, for any r > 2, 

Mr(f) = N r - 1  ( f l ) .  

Proof. The structure map p: X2 --~X • y X is a closed embedding if and only if 
f is curvilinear. If so, then P,(gx2 is locally isomorphic to Z(A), and therefore, for 
any r_>0, 

(3.9.1) J z i t tx  ( f l ,  Ox2) = ~i t t  x (p2,Z(A)). 

These statements are not hard to prove; see [21, (3.2), (3.4)]. In that  reference, 
(3.9.1) is stated only for r=0 ,  but the proof works without change for any r. 

Since f is an affine map, the operator f ,  is exact and commutes with base 
change. Hence, applying P2, to the natural exact sequence, 

0 , Z ( A ) ~ O x •  ,0, 
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yields an exact sequence, 

0 ) p2.Z(A) ) f * f . O x  ~ Ox  ) O. 

Hence, by standard properties of Fitting ideals, 

JZitt x (p2.Z(A)) = JZittX+l ( f ' f .  Ox)  = Jzitt~+l ( f .  Ox)  Ox .  

Therefore, (3.9.1) yields the assertion. 

L e m m a  3.10. Let f: X--+ Y be a finite and curvilinear map of locally Noether- 
ian schemes. 

(1) Then fx: X2--~X is finite and curvilinear. 
(2) Assume that X has no embedded components. Assume either (i) that each 

component of N2 has codimension at least 2 in Y ,  or (ii) that each component of M2 
has codimension at least i in X ,  or (iii) that f is birational onto its image. Finally, 
assume that f is a local complete intersection and is locally of codimension 1. Then 
f l  is also a local complete intersection and locally of codimension 1. 

Proof. Assertion (1) holds because (a) the map p : X 2 - - * X •  is a closed 
ftx -~*~21 embedding; (b) the projection P2: X x v X - - * X  is finite; and (c) p2-~'2 f.  

Consider (2). Conditions (i) and (ii) are equivalent because f is locally of 
codimension 1. Conditions (ii) and (iii) are equivalent by Proposition 3.2(1); in 
particular, (ii) obtains. By (1), f l :  X2--*X is finite, and by Proposition 3.2(2), it 
factors through Nl ( f l ) .  By Lemma 3.9, NI( f l )=M2.  So, for any xEX2,  

dim Ox2,x <_ dim ON1 (fl),fix : dim OM2 ,fix ~-- dim O x , f l x  - -  1. 

Since X has no embedded components, and since f is a local complete intersection 
and locally of codimension 1, it follows that  f l  is also. Indeed, it is not hard to 
show, see [19, 4.3, p. 39], that  X2 is, locally at any point x, cut out of some smooth 
X-scheme P, say of relative dimension p, by p + l  elements. Since fx is finite and 
locally of codimension 1, a subset of p of the elements must restrict to a system of 
parameters in the fiber of P through x. Since the fiber is smooth, this system is a 
regular sequence. Hence, by the local criterion of flatness, the p elements themselves 
form a regular system and they cut out of P a flat X-scheme Q. Since X has no 
embedded components, neither does Q because Q is X-flat. Since the remaining 
element cuts )(2 out of Q, it is regular on Q. Thus the p + l  elements form a regular 
sequence on P. Thus (2) holds. 
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T h e o r e m  3.11. Let f: X--~Y be a finite map of locally Noetherian schemes, 
and r an integer, r>_2. Assume that f is a local complete intersection, is locally of 
codimension 1, and is curvilinear. Assume also that either (i) each component of 
N2 has codimension at least 2 in Y ,  or (ii) each component of M2 has codimension 
at least 1 in X ,  or (iii) f is birational onto its image. 

If  X has no embedded components, then each component of Mr has codimension 
at most r -  1 in X .  Furthermore, if each component of Mr has codimension r -  1 
and if Y satisfies Serre's condition (St), then Mr is a perfect subscheme of X .  

Proof. If Y satisfies (St), then X satisfies (Sr-~) because f is locally of codi- 
mension 1, and because, for every x in X, clearly 

depth O x , ~ = d e p t h O ~ / ~ - i  

since f is also a local complete intersection. Hence, in any event, X has no em- 
bedded components. Therefore, fl:X2---~X is a local complete intersection and 
locally of codimension 1 by Lemma 3.10(2). Moreover, fl  is finite and curvilinear 
by Lemma 3.10(1). Hence f l  is locally of flat dimension 1 by Proposition 2.10. 
Therefore, Lemma 3.9 and Theorem 3.5 yield the assertions. 

P r o p o s i t i o n  3.12. Let f: X--*Y be a finite map of locally Noetherian schemes. 
Assume that f is curvilinear and that Y satisfies ($2). Then the following conditions 
are equivalent: 

(i) f is a local complete intersection, is locally of codimension 1, and is bira- 
tional onto its image; 

(ii) f and f l  are both locally of flat dimension 1; 
(iii) f is locally of flat dimension 1 and M2 is a divisor; 
(iv) f is locally of flat dimension 1, is birational onto its image, and is Goren- 

stein. 
Moreover, in (i) or (iv) or both, the condition that f is birational onto its image 
may be replaced either by the condition that M2 is nowhere topologically dense in 
X or by the condition that N2 is nowhere topologically dense in N1. 

Proof. In the course of proving Theorem 3.11, it was shown that (i) implies 
(ii). Assume (ii). Then N l ( f l )  is a divisor by Proposition 2.2, and N I ( f l ) = M 2  
by Lemma 3.9. Thus (iii) holds. Next, assume (iii). Then f is birational onto its 
image by Proposition 3.2(2), and it is locally of codimension 1 by Corollary 2.5(1). 
Moreover, the ideal of M2 is equal to the conductor Cx by Proposition 3.4; so gx  is 
invertible. Hence f is Gorenstein by [21, (2.3)]. Thus (iv) holds. Now, (iv) implies 
(i) by Proposition 2.10. Finally, the last assertion holds by Proposition 3.2(2). 
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4. T h e  H i l b e r t  s c h e m e  

P r o p o s i t i o n  4.1. Let f: X--~Y be a finite map of locally Noetherian schemes, 
and assume that f is curvilinear. Let r >_ 2. Then the universal subscheme Univ} of 
Hilb} •  is equal to the Hilbert scheme Hi lb~  1 of the iteration map fl: X2---~X 
defined in Definition 3.8, 

Univ} = Hilb}~ -1 . 

Proof. For convenience, set U} :=Univ} and ~ " Hf :=I-hlb d. It will be shown that  
both U} and H r-1 have canonical closed embeddings in H} -1 x y X  and then that  fl 
the two subschemes are equal. First of all, the structure map p: X2--*X x y X  is a 
closed embedding because f is curvilinear. Hence, there is a canonical embedding 

r - -1  ofH~-lfl i n H  r-lp2 , which is equal to H d x y X .  
Secondly, there is a canonical map v: V--~U} where V is the residual scheme 
r - -1  r - -1  of Uf in H f x y X  by [20, (2.9)(1), p. 111]. The map v is an isomorphism 

by [20, (2.9)(4), p. 111]; indeed, every length-r subscheme z of every fiber f - l ( y )  
is Gorenstein, because f - l ( y )  is isomorphic, locally at each of its points, to a 
closed subseheme of the affine line over the field k(y) by Proposition 2.7(2) as f 
is curvilinear. Moreover, the structure map V ~ H ~  -1 x v X  is a closed embedding 

because the ideal of U) -1 is locally generated by a single element. Indeed, the 

formation of this ideal commutes with base change through H} -1 because U} - i  is 

flat, and on each fiber of H} -1 xX,  the ideal is generated by a single element; the 
latter obtains because the fiber comes via base field extension from a fiber f - l ( y ) ,  
and as noted above, f - l ( y )  is isomorphic to a closed subscheme of the affine line 
over the field k(y). 

Consider the r th  iteration scheme X~ and the corresponding iteration map 
f~- l :  X~--+X~-I of f .  For r=2 ,  they are simply the iteration scheme X2 and the 
iteration map f l:X2--*X, and, for r_>3, they are defined recursively as the iteration 
scheme and iteration map of f~-2; see [19, 4.1, pp. 36-37] or [20, (4.4), p. 120]. Since 
f is curvilinear, there is a canonical finite, flat, and surjective map u: X~--*U} by 
[20, (5.10)(i), p. 128]. Then u.Ox~ is a locally free Ou}-module, so the eomorphism 
Ou}--~u.Ox~ is injective. Hence, U} is equal to the scheme-theoretic image of Xr 

7"--1 in Hf x y X .  
It is clear from the definition of X~ that  it is equal to the ( r - 1 ) s t  iteration 

scheme of f l .  Hence, there is a canonical finite, flat, and surjective map Xr---+H;-~ 1 
by [20, (5.10)(i), p. 128]. This map yields a second map from X~ to H} -1 x y X ,  and 

its scheme-theoretic image is equal to H ~-1 It may be checked using the universal 
f l  " 

property of the Hilbert scheme that  the two maps from X~ to H} -1 x g X  are equal. 
Therefore, U} and H r-1 fl are equal too. 
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T h e o r e m  4.2. Let f: X--~Y be a finite map of locally Noetherian schemes, 
a n d  let r>_l. Assume that f : X--~Y is a local complete intersection, locally of codi- 
mension 1, and curvilinear. Assume that Y satisfies Serre's condition (S~+1). Fi- 
nally, assume that each component of N~ has codimension s for s = l , . . .  , r + l .  Let 
h:Hilb}--*Y be the structure map. Then h is finite, locally of flat dimension r, 
locally of codimension r, and Gorenstein. Moreover, h-lN~+m is a divisor, and 

h,  [h = ( r +  

Similar assertions hold for the structure map hi: Univ}--~X too. 

Pro@ First of all, h has finite fibers because f does. Hence, h is finite because 
it is proper. Now, f is locally of flat dimension 1 by Proposition 2.10. Hence, by 
Theorem 3.5, 

(4.2.1) f .  [Mr+l] = ( r+  1)[N~+I]. 

The proof proceeds by induction on r. Suppose r = l .  Then h is equal to f ,  
and the asserted equation becomes (4.2.1). Now, N2 is nowhere topologically dense 
in N1; hence, f is locally of flat dimension 1, locally of codimension 1, and Goren- 
stein, and M2 is a divisor by Proposition 3.12. However, M 2 = f - I N 2  essentially by 
definition. Thus the assertions about h hold. Furthermore, Univ} is equal to the 
diagonal subscheme of X •  Hence the assertions about hi hold too when r = l .  

Suppose r_>2. Consider the map f l :  X2---+X and the diagram 

X < hi Univ} Hilb~ -1 

y < h Hilb} 

in which hi and u are the natural maps and the equality is that  of Proposition 4.1. 
Since f is a local complete intersection and is locally of codimension 1 and since 
Y satisfies (S~+I), clearly X satisfies (S~). In particular, X has no embedded 
components. So f l  is finite, curvilinear, a local complete intersection, and locally 
of codimension 1 by Lemma 3.10. Now, Ns( f l )=Ms+l  for s > l  by Lemma 3.9, and 
f induces a finite, surjective map Ms+I--~Ns+I by Corollary 3.7; hence, N~(fl)  is 
of pure codimension s for s =  1, ... , r. 

The induction hypothesis therefore applies to f l .  Hence, hi is locally of flat 
dimension r - l ,  locally of codimension r - l ,  and Gorenstein; moreover, h~-lM~+l 
is a divisor, and 

[h lM +l] = r IMp+l]. 
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Since f is locMly of fiat dimension 1, locally of codimension 1, and Gorenstein, 
therefore fha is locally of flat dimension r, locally of codimension r, and Gorenstein. 
(With the residue field of an arbitrary point in the image of f h l  as first argument, 
the "change of rings" spectral sequence for 'Tor' shows that  f h l  is locally of flat 
dimension at least r.) 

Since f h l  is locally of flat dimension r and locally of codimension r, so is h 
because f h l = h u  and because u is flat and finite. Also because u is finite, the 
dualizing complexes of hu and h are related by the formula, 

U,Cdhu = 7-~om(U,OUniv~, Cdh). 

Since u,Ovnivy is locally free and since hu is Gorenstein (being equal to fh l ) ,  it 

follows that  h is Gorenstein. Finally, since h l lM~+l  is a divisor, so is h-lN,.+l 
because f h l = h u  and because u is flat and finite. Since u is of degree r, 

u, [h11M,.+1] = r[h-l Nr+l]. 

Since f ,  h l ,= h ,u , ,  therefore 

h, [h-lN~+l] = f ,  [M,+I]. 

Consequently, the asserted equation follows from (4.2.1). Thus, the theorem is 
proved. 

T h e o r e m  4.3. Under the conditions of Theorem 4.2, the Hilbert scheme Hilb} 
is the blowup BI(Nr, N~.+I), and the universal subscheme Univ} of Hilb} x y X  is 
the blowup Bl(Mr, Mr+i); that is, 

Hilb} =BI(Nr,  N~+I) and Vniv} =BI(M~,M~+I).  

Proof. First of all, the structure map h: Hilb}---~Y factors through a map 

/3: Hilb} > BI(N,, Nr+l) , 

which restricts to an isomorphisnl off h - lNr+ l .  Indeed, a map g: G---~Y factors 
through Nr -N~+I  if and only if g*f, Ox is locally free of rank r by [30, (*), p. 56]. 
Hence, h induces an isomorphism, 

(Hilb} - h - l X ~ + l )  -% (N~.-N~+I). 

Therefore, the ideal of h-lN~ ill Hilb} vanishes off h - l N , + l .  So the ideal vanishes 
everywhere because h-iN,+1 is a divisor by Theorem 4.2. Consequently, h factors 
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through N~. Therefore, since h-lN~+l is a divisor, the universal property of the 
blowup implies that  h factors through a map/~, as claimed. 

For convenience, set B:=BI(Nr ,  Nr+l) ,  denote the exceptional divisor by E, 
and set U : = B - E .  To construct an inverse 7 to t3, it suffices to construct a length-r 
subscheme Z of X x B / B  whose restriction over U is equal to X • U. Indeed, such 
a Z defines a map 7: B--~Hilb} such tha t /~7  is equal to the identity off E and 7/~ 
is equal to the identity off h-iN,+1. Since E and h-lN~1+1 are both divisors and 
since B and Hilb} are both separated over Nr, each composition is equal to the 
identity everywhere. (Indeed, each is equal to the identity on a closed subscheme 
of the source because its target is separated; this subscheme is equal to the source 
because it contains an open subscheme that  includes every associated point of the 
source.) 

Let L: U--~B denote the inclusion, let fB and fv  denote the base extensions of 
f ,  and let C denote the image of fB ,OXxB in ~,(fu,OxxU). Since E i8 the image 
of an fB,Ox• E is an fB,OXxB-module. Hence E is equal to the direct 
image of the structure sheaf of a subscheme Z of X x B/B .  This Z has the desired 
properties, because E is locally free of rank r, as will now be proved. 

The question is local on B. Now, each point of B has a neighborhood V on 
which fB,(gX• has a free quotient 3 c of rank r by Lemma 4.7(3) applied to any 
matrix X presenting fB ,OxxB  over the local ring R of the point and applied with 
any minor generating the ( r §  Fitt ing ideal as Ai. On UNV, the canonical 
surjection from fB.OXxBIV to 5 c is an isomorphism because the source is locally 
free of rank r. Hence there is an induced map u: 5--*glv, which is an isomorphism 
on UNV. Since E is a divisor, )c has no associated point off U. Hence, u is injective 
on all of V. On the other hand, u is surjective because g is a quotient of fB.OXxB. 
Thus g is locally free, and the first assertion is proved. 

The second assertion follows from the first applied to f l :  X 2 ~ X  because of 
Proposition 4.1 and because f l  satisfies the corresponding hypotheses; the claim 
about f l  was established in the proof of Theorem 4.2. 

T h e o r e m  4.4. Under the conditions of Theorem 4.2, the map h: Hilb~--+N~ 
is finite and birational, its conductor is equal to the ideal j]~ of N~+I in N~, and 
reciprocally, h.OHilb} is equal to 7-tom(J~, ON.). Moreover, Jr is locally a self- 
linked ideal of (gNu; in fact, locally there exist sections t of ~7~ such that J~OHilb~ 

is equal to t(gHilb~, and J~=(tON~):J~ for any such t. Furthermore, if r>_2, then 
similar assertions hold for the structure map hi: Univ}--~M~. 

Proof. First of all, the assertions about hi follow formally from those about h; 
see the third paragraph of the proof of Theorem 4.2. Now, h is finite and birational 
by Theorems 4.2 and 4.3, and h - l J ~  is invertible by Theorem 4.2. Hence, locally, 
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h - i S r  is generated by a single section of J r .  The remaining three assertions are 
local on Y; so we may assume that  Y is the spectrum of a local ring R. 

By using the standard device of making a suitable (faithfully) flat change of 
base, we may assume that  R has an infinite residue class field; namely, we may, 
clearly, replace R by the flat local R-algebra obtained by forming the polynomial 
ring in one variable over R and localizing it at the extension of the maximal ideal 
of R. Then f ,  Ox can be presented by a square matrix X that  satisfies the hy- 
potheses of Theorem 5.9 below; indeed, the condition on grade l i(X) follows from 
the hypotheses, and the condition I i (X)=I i (Xi )  follows by the reasoning in the 
first two paragraphs of the proof of Lemma 3.6. Hence Theorem 5.9 implies that,  in 
the local ring A of Nr, there are an A-regular element A and an ideal I containing 
A such that I J = A J  and J = ( A ) : I  where J is the ideal in A of Nr+l. Hence, 
Lemma 4.5 will yield the remaining three assertions after we prove that  the Hilbert 
scheme Hilb} and the two blowups Bl(I) and BI(J) are all equal. 

The isomorphism 7 in the proof of Theorem 4.3 clearly factors as follows: 

7:Bl(J)  "~BI(I)  0 ~Hilb~ 

where 7? is the map  given by Lemma 4.5(5) and 0 is given by a construction similar 
to that  of 7, but based on the fact that  I is generated by elements of the form given 
in Theorem 5.9. The composition UT-10 is equal to the identity off the exceptional 
divisor of Bl(I); so it is equal to the identity everywhere, because BI(I) is separated 
over Nr. Therefore, the maps ~] and O are isomorphisms, and the proof is complete. 

L e m m a  4.5. Let A be a ring, A an A-regular element, I an ideal containing A, 
and J an ideal containing I. Let K be the total quotient ring of A. Set B:=A[I /A]  
and C : = { x E K I x B C A  }. 

(1) If J=(A) : I ,  then CCJ.  
(2) If I J = A J ,  then J B = J  and J c C .  
(3) If  I J = A J  and if JB  is invertible, then B = { x E K ] x J C J } .  If in addition 

J=(A): I ,  then B = { x e K ] x Y C d } .  
(4) If I g = A J  and if J is finitely generated, then Spec(B)=Sl(I) .  
(5) / f  I J = A J ,  then there is an A-map ~: BI(J)--*BI(I). 
(6) If J = C  and if J = t B  for some t, then t is an A-regular element of A, and 

J=tA:J .  

Proof. (1) Let xEC. Then x=x.1,  so xEA. Moreover, x ( I / A ) c A ,  so x I c A A .  
Hence xe(A) : I ,  but ( A ) : I = J .  

(2) By hypothesis, I J = A J .  So J ( I / A ) = J .  Hence, J ( I / A ) n = J  for any n ~ l .  
Therefore, JB=-J. Consequently, J cC.  
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(3) Let x C K ,  and suppose x J C J .  Then x J B c J B .  Hence x E B  because J B  
is invertible. Conversely, if x c B ,  then x J C J  by (2). 

Let y c K ,  and suppose y J C A .  Then y J B c A  by (2). So y J c C  by definition 
of C. If in addition J = ( A ) : I ,  then y J C J  by (1), and so y E B  by the preceding 
paragraph. 

(4) First, consider any local A-algebra D such that  ID  is invertible. Say I D =  
dD and A=ed.  Then I J D = A J D .  So J D = e J D  because d is regular on D. Hence 
e is a unit by Nakayama's lemma because J is finitely generated. Hence I D = A D .  
Therefore, the map A - ~ D  factors through B. 

Obviously, Spec(B) is a principal open subscheme of Bl(I). Let xEBI(I) and 
set D:=Ox. By the preceding observation, there is an A-map from Spec(D) to 
Spee(B). This map agrees with the canonical map of Spec(D) into Bl(I) because 
Bl(I) is separated and the two maps agree off the closed subscheme V(ID) ,  which 
is a divisor. Hence, xESpec(B). 

(5) Since I J = A J  and since JOBl(g) is invertible, IOBI(J) is generated by A. 
Moreover, A is regular on (_0re(j) because it is regular on the complement of the 
exceptional divisor. Thus I(_9BI(j ) is invertible. Hence the asserted map ~ exists. 

(6) Since tEY, also tEA.  Since A=bt  for some bEB and since A is A-regular, 
so is t. Now, J 2 = J t  because J=tB;  hence, J C t A : J .  Finally, suppose xE tA:J .  
Then x t B C A t .  Hence xEC,  but C = J .  Thus J~_tA:J, and the proof is complete. 

L e m m a  4.6. Let R be a ring, and X an m by n matrix. Fix p> l, and set 
A:=R/Ip+I(X)  and J :=Ip (X)A  where Iq(X) denotes the ideal of q by q minors. 
Denote the image in J of the minor of X formed using rows i l ,  ... , i p  and columns 
k I , . . .  , k p  by d k. 

(1) Let R i  denote the ith row of X .  Then, for any i and k, 

dikRi = ~-~(-l~J+Pd k R 
j=l  

where iij is the sequence i l ,  ... , i p ,  i without its j th  element. 
(2) (Sylvester's relation) Then k 1 k 1 d i d] =d]d i for any i, j, k, and 1. 

Proof. We may assume that X is a matrix of indeterminates and that R is 
obtained by adjoining them to the integers. Then A is a domain. 

To prove (1), form a p + l  by n matrix Y using rows Ril ,... ,Rip, Ri. For 
each k, form a p + l  by p + l  matrix y(k) by taking out of Y columns kl ,... , kp and 
colmnn k. Finally, expand the determinant of y(k) along the last column to get the 
asserted equation. 
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To prove (2), denote the p by n submatrix of X consisting of rows il ,... , ip 
by Xi. Set d:=d]. Then, (1) implies that  there is a p by p matrix M such that  
d X i = M X j ;  here M depends on i, j and 1, but not on k. Hence, 

dPdkd! IMrdkd]=dpdk,~ 1 
~ l  ~ j  = -- ~ j  ~i"  

Since d e 0  and A is a domain, the assertion follows. 

L e m m a  4.7. Preserve the conditions of Lemma 4.6. Let k range over all 
sequences 1 <_ kl <... < kp <_n. Given elements a k of A, set 

Ai := akd . 
k 

Let I be the ideal generated by the various Ai. 
(1) Let X 1 be the submatrix of X consisting of columns ll , ... , lp. Then d ] / =  

%rp(xi). 
(2) Let Xj be the submatrix of X consisting of rows ja ,... , jp. Then/ki/~p(Xj) 

%J. Furthermore, if J=Ip(Xj)A, then H=%J.  
(3) Suppose that Ai is regular on A and generates I. Then every row of X is 

a linear combination of rows i1,.. .  , ip modulo Ip+l(X). 

Proof. Sylvester's relation Lemma 4.6(2) yields 

(4.7.1) Aid] = A j d  I. 

Varying i in (4.7.1) yields (1). On the other hand, varying 1 in (4.7.1) yields 
A i l p ( X j ) C A j J .  If Ip (X j )A=J ,  then IJC_AjJ; hence, I J = A j J  because AjEI .  
Thus (2) holds. Finally, Lemma 4.6(1) yields 

p 

A i R i  = E ( -  1 ) J + P A i i y  Rij .  
j--1 

By hypothesis, A i is regular on A and divides each Aiij. Hence (3) holds. 

5. Strongly perfect ideals 

Definition 5.1. Let B be a Noetherian ring, A a factor ring of B, and I an 
A-ideal of grade g such that  grade B A / I = s .  Call I strongly perfect over B if there 
exists a generating set f l  ,.-. , fn of I such that,  for 0 < i  < n - g ,  the Koszul homology 
modules Hi(f1 ,... , fn; A) are perfect B-modules of grade s. 
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Remark  5.2. The notion of strong perfection generalizes Huneke's notion of 
strong Cohen-Macaulayness [16, p. 739]. Indeed, let I be an ideal of a local Cohen-  
Macaulay ring A, and write fi~ as a factor ring of a regular local ring B. Then I is 
strongly perfect over B if and only if I is strongly Cohen Macaulay. 

Some general results about strong perfection will now be proved. The corre- 
sponding results about  strong Cohen-Macaulayness were proved by Huneke in [15] 
and [16]. 

L e m m a  5.3. Let  B be a Noetherian ring, A a fac tor  ring of  B ,  and I an 

A-ideal. Set  s :=grade  B A / I  Let f l  , ... , fn  be an arbitrary generating set  of  I .  

(1) The ideal I is strongly perfect over B i f  and only if, for  every i, the f iat  

d imension over B of  H i ( f 1 , . . .  , fn; A)  is at mos t  s. 
(2) I f  I is strongly perfect over B ,  then the condition in Defini t ion 5.1 is sat- 

isfied for  f l , . . .  , f~ .  

Proof. To prove (1), recall that  I annihilates H i ( f1 ,  ... , fn; A) for all i and that  
Hi ( f l  ,... , fn; A)  ~ 0 if and only if 0 < i < n -  g where g := grade I.  Hence, I is strongly 
perfect if the fiat dimension of all the Koszul homology is at most s. Moreover, the 
converse holds if the condition in Definition 5.1 is satisfied for f l ,  ... , fn; so the full 
converse follows from (2). 

To prove (2), it suffices to compare a generating set f l  ,.-. , fn with one of the 
form f l  ,.-- , fn, f .  However, there is a natural  isomorphism, 

H i ( f 1 , . . .  , f~ ,  f ;  A) = H i ( f 1 , . . .  , f~; A ) |  ( f l  , ... , f~; A), 

and the assertion follows from the portion of (1) already proved. 

L e m m a  5.4. Let  B be a Noetherian ring, A a fac tor  ring of B ,  and I an 

A-ideal. Let f l  ,... , fn  be a generating set  of  I .  
(1) Let A 1 ,  ... , A m  be an A-regular sequence contained in I ,  and let ' " i n d i c a t e  

the image in A t : = A / ( A 1  ,... , A m ) .  Then I '  is strongly perfect over B i f  and only 

i f  I is so. 
(2) Let al ,... , ar be a sequence of  e lements  in B that is regular on B ,  on A,  

and on A / I .  Set  B : = B / ( a l , . . .  , a r ) B  and f i l : = A / ( a l , . . .  , a r )A .  Let ' - '  indicate 

the image in B and in A.  I f  I is strongly perfect over B ,  then there are natural 

isomorphisms,  

H i ( f 1 , . . .  , fn; A)  = H i ( f 1 , . . .  , fn; A ) |  flt, 

and [ is strongly perfect over B .  

Proof. To prove (1), we may assume that  m = l .  Since A I H j ( f l  ,... , f n ;A)  
vanishes, the exact sequence, 

O ---~ A ~ A----~ A ' ~ 0 , 
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induces exact sequences 

O---*Hi(fl  ,... ,f~;A)----~Hi(f~ ,... , f ' ; A ' )  ~g i - l ( f ]  ,... , fn;A) ~0. 

The assertion now follows by induction on i from Lemma 5.3(1). 

To prove (2), we may assume that  r = l .  Set s:=grade B A/ I .  Let p be an 
associated prime of the B-module Hi(f1,  ... , f~; A). Since I is strongly perfect over 
B, it follows tha t  depthBp=s; hence, since p is in the support  of A/I ,  it follows 
that  p is associated to A/I;  for both  these conclusions, see [4, (16.17), p. 209] for 

example. Set a : = a l .  Then, therefore, a is regular on Hi(f1 ,... , f~; A). Now, the 
exact sequence, 

0 ~A-~A----~fi~ ~0, 

induces exact sequences, 

0 - - ~ H ~ ( f l , . . . ,  f~; A) - -~H~(f~ , . . . ,  f~; A) - -~H~(f~ , . . . ,  A;  A) - - . 0 .  

Hence, they yield the asserted natural  isomorphisms. Furthermore, [ is strongly 
perfect over B because grade B A/I>_s. 

P r o p o s i t i o n  5.5. Let B be a Noetherian ring, A a factor ring orB, and I an 
A-ideal that is strongly perfect over B. Let A1 ,... , Am be an A-regular sequence 
contained in I, and let al ,... , a~ be a sequence of elements in B that is regular on 
B, on A, and on A/ I .  Let '-' denote images in f i - : = A / ( a l , . . . ,  a~)A, and assume 
that A1,.. .  , Am form an ft-regular sequence. Then, in A, 

( A 1 , . . .  , /krn) : 1 = :  ( A I , . . .  , A m )  : I .  

Proof. It  suffices to verify the asserted equality locally at every associated 
prime ideal of the ideal on the right; so we may assume that  all the rings in 
question are local. Then, since a l ,  ... , a t ,  A1, ... , A,~ form an A-regular sequence, 

A1, . . .  , A,~, a l , . . .  , ar do as well, and hence the sequence a l , . . .  , a~ is regular on 
A / ( A 1 , . . . ,  A,~). Hence, using Lemma 5.4(1), we may reduce to the case m = 0 .  
Now, let f l ,  ... , fn be a generating set of I with n ~ l .  It  follows from the definition 
of the Koszul complex that  there are natural  identifications, 

O : I = H ~ ( f l , . . . , f ~ ; A )  and O:I=H,~ ( f l , . . . , f ~ ;A ) .  

Hence the assertion follows from the first assertion of Lemma 5.4(2). 
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L e m m a  5.6. Let B be a Noetherian ring, A a factor ring of B, and I an 
A-ideal that is strongly perfect over B with grade B A / I = s .  Set J = 0 : I .  Assume 
that I + J ~ A, that grade(I+J)_> 1, and that grade B A / ( I + J ) >_ s t  1. Finally, let ' ' 
denote images in f ih=A/J .  Then [ is a strongly perfect over B with grade B A / I =  
s + l .  

Proof. Obviously, J # 0 .  Hence grade [ = 0  because J = 0 : I .  Therefore, INJ=O 
because grade( I+J)_>l .  Let f l  ,... , f~  be a generating set of I. Then, by [16, 1.4, 
p. 744], for each i, there is an exact sequence, 

0 > @ J  )Hi ( f l , . . .  , A ; A )  >Hi(~  , . . . ,  fn;-~) )0, 

where the first term is a direct sum of copies of J .  Now, J=O:I=H~( f l  ,... , fn; A). 
And, the H ~ ( f l , . . . ,  f~; A) have flat dimension at most s by Lemma 5.3(1). Hence 
the Hi( f l , . . .  , fn; fit) have flat dimension at most s + l .  Hence Lemma 5.3(1) yields 
the assertion. 

P r o p o s i t i o n  5.7. Let R be a Noetherian ring. Let X be a p + l  by n matrix 
of variables with n_>p+l_>2, let Y be the p + l  by p matrix consisting of the first p 
columns of X ,  and set 

B:=R[X] ,  A : = B / I p + I ( X ) ,  I : = I B ( Y ) A  

where Ip+l(X) and Ip(Y) are the ideals of minors of the indicated sizes. Then I is 
an A-ideal of grade 1 that is strongly perfect over B.  

Proof. Induct on n. Suppose n=p+ 1. Then I= fp (Y ) / Ip+ l  (X) where Ip+l (X) 
is generated by a single B-regular element. On the other hand, Avramov and Herzog 
[1, (2.1)(a), p. 252] proved that  Ip (Y) is a strongly perfect B-ideal of grade 2. Hence, 
Lemma 5.4(1) implies that  I is an A-ideal of grade 1 that  is strongly perfect over B. 

Suppose n>_p+2 and that  the assertion holds for n - 1 .  Let X'  be the matrix 
consisting of the first n -  1 columns of X, set 

A ' : = B / I p + I ( X ' ) B ,  I ' : = I p ( Y ) A ' ,  J ' :=Ip+l (X)A ' ,  

and let A 'EA'  be the image of the p + l  by p + l  minor of X made of colmnns 
1 ,... ,p, n. Then I '  is an A'-ideal of grade 1 that  is strongly perfect over B by 
induction, because the properties in question are stable under the flat base extension 
from R[X'] to B. Since, moreover, A' is a perfect B-module of grade n - p - l ,  it 
follows (from [4, (16.18), p. 209] for example) that  

s := grade B A ' / I '  = grade u A '+grade  A, I '  = n - p .  
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First, we show that  A' is A'-regular. To this end, let q' be an associated prime 
of A', and let q be the trace of q' in R. Since A' is R-flat and A'/qA' is a domain 
by [4, (2.10), p. 14], it follows that  q '=qA ' .  Therefore, A '~q ' .  

Next, we verify that gradeBA'/(I'+J')>_s+l and gradeI '+J '_>2.  Suppose 
that  the grade of Ip(Y)+Ip+l(X) were equal to that  of Ip+l(X), which is r i -  
p. Since the grade of an ideal is the minimum of depth Bq as q ranges over all 
primes containing the ideal, there would be some q containing Ip(Y)+Lp+I(X) 
with depthBq=n-p. Since q also contains Ip+l(X), and that  ideal is perfect of 
grade n-p, it follows that q would be an associated prime of Ip+l (X). However, 
an argument like the one above shows that  the B-ideal Ip(Y) is not contained in 
any associated prime of the B-ideal I p + l ( X ) .  Thus 

grade( Ip  (Y)  + Ip+l (X))  > g rade  [p+l (X) = / ' t  - p .  

Therefore, grade u A'/(I'+d')>_n-p+l=s+l. F~rthermore, since A' is perfect over 
B of grade n - p - l ,  it follows (from [4, (16.18), p. 209] for example) that  

grade I'+J' >_ grade B A'/(I'+J')-gradeB A' > 2. 

We also have I ' d ' c ( A ' ) ;  see [16, proof of 4.1, p. 754]. Indeed, let dl,... ,dp+l 
denote the maximal minors of Y, with alternating signs. Then in A'/(A'), 

(dl,  ... , dp+l)X = 0, 

and hence Ipq_l(X) annihilates each of the di in A'/(A'). Therefore, J'C(A'):I', 
and equality will hold if it holds locally at every associated prime p of the B-module 
A'/J'. However, since A'/J' is a perfect B-module, depth Bp is equal to grade A'/J' 
(by [4, (16.17), p. 209] for example). Hence Ip=Ap because 

grade A' / J' < grade A' / ( I' + J'). 

Therefore, J ' = ( A ' ) : I '  holds locally at p, so globally. 
Note that  I=(I '+J')/J 'cA=A'/J' .  Factoring out (A') and using Lemmas 

5.4(1) and 5.6, we now conclude that  I is strongly perfect over B with 

gradeBA/I=s+l=n-p+l.  

But then, by [4, (16.18), p. 209] for example, 

g r a d e I = g r a d e  B A/I-grade B A= 1. 
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L e m m a  5.8. Let B be a Noetherian ring, A a fac tor  ring of  B ,  and I an 

A-ideal of  grade 1 that is strongly perfect over B .  A s s u m e  that A is perfect over B ,  
and let J be a proper A-ideal  such that J -~ I .  Then J is an A-ideal o f  grade I that 

is strongly perfect over B .  

Proof. Set s :=grade B A / I .  Since A and A / I  are perfect B-modules with 
g r a d e I = l ,  it follows (from [4, (16.18), p. 209] for example) that grade B A = s - 1 ;  
hence grade B A / J > s .  ~51rthermore, a I = b J  for some non-zero divisors a and b in A. 

Say I = ( f z , . . .  , f ~ )  and J = ( h l , . . .  ,hn)  with a f j = b h j .  
Let Be and Zi denote the modules of boundaries and cycles in the Koszul 

complex (K., cO.). For every i, there is a commutative diagram 

K i ( f l , . . .  , f n ; A )  o~(I1 ..... fn) K i - z ( f z , . . .  , f n ; A )  

1.~ 
K~(af l , . . .  , a f<  A) o~(aS~ ..... ~S9 K ~ - ~ ( a k , . . .  , a f t ;  A) 

where #a denotes multiplication by a. Since Pa is injective, this diagram yields an 
identification, 

Z~(f~ , ... , f~; A)  = Z~(a fz  , ... , afn; A).  

Hence, the isomorphism theorem yields a natural isomorphism, 

B i - l ( f l  ,... , f,~; A)  = B i - l ( a f l  ,... , afn; A).  

Thus there are natural isomorphisms (compare [15, 1.10 pf., p. 1050]): 

Z i ( f l  , ... , fn; A)  = Z~(afz , ... , a f t ;  A)  

= Z~(bhl , . . .  , bhn; A)  = Z~(hz , . . .  , hn; A).  

Likewise, B i ( f l  ,... , fn; A ) = B i ( h l  , ... , hn; A).  

The B-module A has flat dimension s - 1  because it is perfect of grade s - 1 .  
The B-module H ~ ( f l , . . .  , f n ; A )  has flat dimension at most s by Lemma 5.3(1). 
It follows by induction on i that Z i ( f l , . . . ,  f~; A)  and B i ( f l , . . . ,  f~; A) have flat 
dimension at most s - 1  because their quotient is H i ( f 1 , . . .  , f n ; A )  and because 
Z~(f~,... , f~; A) is a first syzygy module of B i - z ( f l , . . .  , fn; A).  Therefore, the 
above isomorphisms yield that  H i ( h i ,  ... , h~; A)  has flat dimension at most s. But 
s<grade  B A / J .  Hence J is strongly perfect over B by Lemma 5.3(1), and the proof 
is complete. 
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T h e o r e m  5.9. Let R be a Noetherian ring. Let X be an m by n matrix with 
n>rn>2 and with entries in R. For l < i < m ,  let Xi  denote the submatrix of X 
consisting of the last i rows. Fix p>_l, and assume that the ideals of minors satisfy 
these conditions: 

g r a d e I i ( X ) = n - i + l  and I i (X)=I i (Xi )  f o r i = p , p + l .  

Set A:=R/Ip+I(X)  and J:=Ip(X)A.  Denote the image in J of the minor of X with 
rows il ~... dip and columns kl <... <kp by d k. 

(1) Let p be the sequence m - p + 1 , . . .  ,m. Then there exists an A-regular 
element A of the form A--  ~ k  kdp.k 

(2) Given an A-regular element A as in (1), set A i : = ~ k a k d  k and let I be the 
subideal of J generated by the various Ai. Then I J = A J  and J = ( A ) : I .  

Proof. Obviously, A=R/Ip+l(Xp+l) .  Since Ip+l(Xp+l) has generic grade, A 
is a perfect R-module; so A is grade unmixed (by [4, (16.17), p. 209] for example). 
Moreover, grade Ip(Xp)>grade Ip+l (X). Therefore, (1) holds. 

Consider (2). Obviously, Lemma 4.7(2) yields I J = A J .  So J C  (A):I. To prove 
the opposite inclusion, we may replace X by Xp+l. Indeed, A and J are obviously 
unchanged. Let I '  be the ideal generated by the Ai with m - p < i l ,  and suppose 
J_D(A):I'. Now, (A):I'_D(A):I since I'C_I. Hence J = ( A ) : I .  Thus we may assume 
p-~m-1 .  

Since JC_ (A):I, equality will hold if it holds locally at every associated prime 
q of J. Therefore, localizing at q, we may assume that R is local with (A), I, and 
J contained in the maximal ideal of A. 

The equation J = ( A ) : I  will now be proved in the "generic" case and then 
specialized. Let m be the maximal ideal of R, let :~ be an m by n matrix of 
indeterminates over R, and let /~ denote the localization of the polynomial ring 
R[X] at the ideal (re, X - X ) .  Let ' - '  indicate the corresponding objects defined 
using/~ and ,~ instead of R and X, except for J, which will now d e n o t e  Ip(Xp)fft. 
Let a be the/~-regular sequence consisting of the mn entries of the difference matrix 
X - X .  Then A/(a) is equal to A. Furthermore, since A is a perfect B-module and 
since grade R A is equal to grade~ A, it follows that a is -~-regular. Hence a, ~ is 
A-regular, and so/~, a is ~i.-regular. In particular, /~ is A-regular. 

Obviously, Lemma 4.7(2) yields Tjc_ (s Hence, jc_ ( s  and equality will 
hold if it holds locally at every associated prime Cl of J. The trace q of ~ is 
an associated prime of R, and ~ / ( J + q A )  is an associated prime of A / ( J+qA) ;  
indeed, A / J  is equal to B/Ip(Xp)  because Ip(Xp) contains Ip+l(X) as m = p + l ,  
and B/Ip(Xp)  is (well-known to be) flat over R. Now, A/(3+q2) is a domain 
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because it is equal to B/(Ip(Xp)+q/~) and the latter is a domain because R/q is a 
domain by [4, (2.10), p. 14]. Therefore, ~ = f f + q A .  

Suppose _TC_~. Then /XiEO for every i. Take i to be the sequence 1,... ,p, 
and pass momentarily modulo the ideal generated by the last row of X. Then ff 
vanishes, whence ~ is equal to qA. Hence, since the a k are the coefficients in the 
definition of/~i, they must lie in q. Returning to the previous setup, conclude that 
~ E q A .  Now, A/qA is equal to B/(Ip+I(X)+qB), which is a domain. So qA is a 
prime. So it is an associated prime because q is. Hence /~ is a zero divisor on 5,, 
contrary to the conclusion drawn above. Now, _T~; so (A): /=(/X) locally at ~. 
However, (/~)_Cff. Thus f f : ( /X): I .  

To prove that this equation specializes, we first prove that  the ideal i has grade 
1 and is strongly perfect over/~. Now, Lemma 4.7(1) yields 

d l I  = Ap/p(Xl )A 

for any 1. This equation yields an isomorphism of .4-modules between I and Ip(Xl)~l 
because clip and /~p are regular on A. Furthermore, Proposition 5.7 implies that 

i p (~ l ) ~  is either the unit ideal or else an A-ideal of grade 1 that  is strongly perfect 
over/3. Hence, Lemma 5.8 yields that  i is an A-ideal of grade 1 that  is strongly 
perfect over B. 

Finally, gradeh A/i_<grade n A/I because _T has grade 1; hence, because A//~ is 
perfect, a is regular on A/ f .  Proposition 5.5 now implies that  the equation if= (A):I  
specializes to J = ( A ) : I .  Thus (2) is proved. 

Remark 5.10. If we assume in Theorem 5.9 that  grade(dk)=l  for some k, then 
in (2) we can take A=dp  k and I=Ip(Xk)A where X k is the m by p submatrix of X 
consisting of columns kl <... < kp. Moreover, the proof becomes slightly shorter. 

Remark 5.11. Lemmas 5.4(1) and 5.8 yield answers to some unpublished ques- 
tions asked by Avramov and Huneke. Let t3 be a Noetherian ring, and A a factor 
ring that  is a perfect/3-module. The lemmas imply that, given two A-ideals in the 
same even linkage class, one ideal is strongly perfect over/3 if and only if the other 
is too; in particular, every/3-ideal in the linkage class of a complete intersection is 
strongly perfect over/3. Huneke [15, Thin. 1.11, p. 1051] proved the corresponding 
result for strongly Cohen-Macaulay ideals in a Gorenstein local ring. 

To prove the general case, obviously it suffices to prove the following assertion. 
Let K be a proper A-ideal, let Xl ,... , x~ and Yl ,... , Y~ be A-regular sequences 
contained in K,  and set 

/ := (x l , . . . , x ,d :K  and 
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Then I is the unit ideal or is strongly perfect over B if and only if J is one or the 

other. 
Induct on m. If m = 0 ,  then I=J and the assertion is trivial. Suppose m = l .  

If I=A, then K = ( x ) ,  and so (x2):K=(x). Now, (x) is a proper ideal; moreover, 
it is strongly perfect because A is perfect. Hence, we may replace x by x 2, and 

so assume tha t  I is proper. Similarly, we may assume that  J is proper. Now, 
in the total  quotient ring of A, consider the fractional ideal xK -1. It lies in A 
because xeK. Hence xK-l=(x):K. Similarly, yK-~=(y):K. Therefore, I and J 
are isomorphic. Consequently, the assertion follows from Lemma 5.8. 

Suppose m > l .  Then we can modify Yl modulo Y2, -.. , Y,~ so that  Xl, ... , x ,~- l ,  
Yl form an A-regular sequence and Yl is still A-regular (see [15, proof of Thm. 1.11, 
p. 1051]). Set 

L:=(xl,...,Xm-I,yl):K, fft:=A/(Xl), and A':=A/(yl), 

and let ' - '  indicate the image in ft. and " '  that  in X .  Then I is the unit ideal or 
is strongly perfect over B if and only if _f is so by Lemma 5.4(1), if and only if L, 
is so by the induction hypothesis, if and only if L ~ is so by Lemma 5.4(1) applied 
twice. Now, L'  is so if and only if J '  is so by the induction hypothesis because the 

ideals ( X l , . . . ,  x ,~- l )  and (Y2,.-. ,  Y,~) are still generated by A'-regular sequences 
of length m - 1  although the given generators need not form A'-regular sequences. 
Finally, J~ is so if and only if J is so, by Lemma 5.4(1) again. Thus I is the unit 
ideal or is strongly perfect over B if and only if J is so, as asserted. 

It  follows that  certain powers of certain ideals I of B have finite projective 
dimension; more precisely, if I has grade rn and is in the linkage class of a complete 
intersection, then I i has projective dimension at most re+i-2 in the range 1 < i < k 
provided that ,  for every prime p containing I with depth Rp <_re+k-2, the number 
of generators of Ip is at most depth Rp. Indeed, given a generating set f l  ,... , fi~ 

of I ,  set 
Hj:=Hj(fl,...,fn;B) and Sj:=Symj(Bn). 

Consider the component Adi of degree i of the 'approximation complex'  of Simis 

and Vasconcelos [33, p. 351]: 

Mi:0 ,Hi| , Hj |  ,...---+No| ,0. 

These component  complexes are acyclic in the range 0 < i  < k - 1  by the acyclicity 
lemma because the B-modules Ha. are either zero or perfect of grade m and because 
of the assumption on the number of generators of each Ip; see the proof of Theo- 
rem 4.2 in [33, p. 353]. Hence, by the proof of Theorem 4.6 in Herzog, Simis, and 
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Vasconcelos [14, p. 105], 

H o ( A d i ) = I i / I  i+1 f o r 0 < i < k - 1 .  

Hence, I i / I  i+1 has projective dimension at most m + i  for 0 < i  < k - 1  again because 
the Hj  are either zero or perfect of grade m. Therefore, I i+l has projective dimen- 

sion at most m + i - 1  for 0 < i < k - 1 ,  as asserted. 
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