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Abstract. This article has two clear motivations, one technical and one prac-
tical. The technical motivation unifies in a single formulation a huge family of
inequalities that have been produced separately over the last ninety years in
different contexts. But we do not just join inequalities; our method also creates
a family of inequalities that were invisible by previous approaches. The prac-
tical motivation is to show that our new approach has the strength to attack
various problems. We provide new applications of our family of inequalities,
continuing recent work by Maia, Nogueira, and Pellegrino.

1. Introduction

Absolutely summing linear operators (see [13]) can be generalized to the non-
linear framework by several different approaches. There is a vast recent literature
in this line and also some works attempting to unify different approaches (see,
e.g., [9], [20], [25]).

The following notion, conceived by Popa and, independently, by Bayart, Pelle-
grino, and Rueda, is perhaps the most general approach to absolutely summing
multilinear operators. Let m ≥ 1, let E1, . . . , Em, F be Banach spaces, and let
T : E1×· · ·×Em → F be an m-linear operator. Let also Λ ⊂ Nm. For r ∈ (0,∞)
and p ≥ 1, we say that T is Λ-(r, p)-summing if there exists a constant C > 0
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such that, for all sequences x(j) ⊂ EN
j , 1 ≤ j ≤ m,(∑

i∈Λ

∥∥T (xi)
∥∥r
) 1

r ≤ C
∥∥x(1)∥∥

w,p
· · ·

∥∥x(m)
∥∥
w,p

,

where T (xi) stands for T (xi1(1), . . . , xim(m)) and ‖x‖w,p stands for the weak
`p-norm of x defined by

‖x‖w,p = sup
‖x∗‖≤1

( ∞∑
i=1

∣∣x∗(xi)
∣∣p) 1

p
.

When Λ = {(n, . . . , n) : n ∈ N}, we get the definition of an (r, p)-absolutely
summing map which was introduced in [2]. When Λ = Nm, we recover the notion
of an (r, p)-multiple summing map introduced in [8] and [19] (see also [5] for recent
advances in the theory). In this article, we investigate intermediary situations,
that is, the cases of sets Λ strictly located between {(n, . . . , n) : n ∈ N} and Nm.

For p ∈ [1,∞], as usual, we consider the Banach spaces of weakly p-summable
sequences

`wp (E) :=
{
(xj)

∞
j=1 ⊂ E :

∥∥(xj)
∞
j=1

∥∥
w,p

< ∞
}

and strongly p-summable sequences

`p(E) :=
{
(xj)

∞
j=1 ⊂ E :

∥∥(xj)
∞
j=1

∥∥
p
:=

( ∞∑
j=1

‖xj‖p
) 1

p
< ∞

}
.

Throughout this article, the topological dual of E is denoted by E∗ and the
conjugate of 1 ≤ p ≤ ∞ is represented by p∗; that is, 1

p
+ 1

p∗
= 1. As usual, the

ej’s are canonical vectors and

‖T‖ := sup
‖x1‖,...,‖xm‖≤1

∥∥T (x1, . . . , xm)
∥∥

for any continuous m-linear mapping T : E1 × · · · × Em → F . Henceforth
L(E1, . . . , Em;F ) stands for the Banach space of all bounded m-linear operators
from E1 × · · · × Em to F endowed with this sup norm.

The canonical isometric isomorphisms (see [13, Proposition 2.2]) L(`p∗ , E) =
`wp (E) and L(c0, E) = `w1 (E) tell us that certain cases of summability of multilin-
ear operators are equivalent to investigating(∑

i∈Λ

∥∥T (ei)∥∥r
) 1

r ≤ C‖T‖,

for T : `p × · · · × `p → F or T : c0 × · · · × c0 → F , and this is precisely when the
theory of Hardy–Littlewood inequalities meets the theory of absolutely summing
multilinear operators.

Results related to summability of multilinear operators date back, at least,
to the 1930s, when Littlewood proved his seminal 4/3 inequality. Since then,
several different related results and approaches have appeared. For example, the
Bohnenblust–Hille [7] and Hardy–Littlewood [16] inequalities can be considered
two keystones in the theory of multilinear operators. In the last thirty years,
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several multilinear variants of these classical inequalities have emerged. Let us
classify them depending on whether the involved sum is done in one or all indices.

Let K be R or C, let m be a positive integer, and let 1 ≤ p1, . . . , pm ≤ ∞. From
now on, for p := (p1, . . . , pm) ∈ [1,+∞]m, let∣∣∣ 1

p

∣∣∣ := 1

p1
+ · · ·+ 1

pm
.

We will also denote Xp := `p for 1 ≤ p < ∞, and X∞ := c0.
(I) Sums in one index (Λ = {(n, . . . , n) : n ∈ N}).

• Aron and Globevnik [4]: For every continuous m-linear form T : c0×· · ·×
c0 → K,

∞∑
i=1

∣∣T (ei, . . . , ei)∣∣ ≤ ‖T‖. (1.1)

• Zalduendo [26]: Let | 1
p
| < 1. For every continuous m-linear form T :

Xp1 × · · · ×Xpm → K,( ∞∑
i=1

∣∣T (ei, . . . , ei)∣∣ 1

1−| 1p |
)1−| 1

p
|
≤ ‖T‖. (1.2)

(II) Sums in all indices (Λ = Nm).

• Bohnenblust–Hille inequality (see [7]): There exists a constant CK
m,∞ ≥ 1

such that, for every continuous m-linear form T : c0 × · · · × c0 → K,( ∞∑
i1,...,im=1

∣∣T (ei1 , . . . , eim)∣∣ 2m
m+1

)m+1
2m ≤ CK

m,∞‖T‖. (1.3)

• Hardy–Littlewood [16] and Praciano-Pereira [22]: Let | 1
p
| ≤ 1

2
. There exists

a constant CK
m,p ≥ 1 such that, for every continuous m-linear form T :

Xp1 × · · · ×Xpm → K,

( ∞∑
i1,...,im=1

∣∣T (ei1 , . . . , eim)∣∣ 2m

m+1−2| 1p |
)m+1−2| 1p |

2m ≤ CK
m,p‖T‖. (1.4)

• Hardy–Littlewood [16] and Dimant–Sevilla-Peris [14]: Let 1
2
≤ | 1

p
| < 1.

There exists a constant DK
m,p ≥ 1 such that( ∞∑

i1,...,im=1

∣∣T (ei1 , . . . , eim)∣∣ 1

1−| 1p |
)1−| 1

p
|
≤ DK

m,p‖T‖ (1.5)

for every continuous m-linear form T : Xp1 × · · · ×Xpm → K.

All exponents involved in the previous inequalities are sharp. An extended
version of the Hardy–Littlewood/Praciano-Pereira inequality was presented in [1]
(see also [24] for a slightly general version).
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• Albuquerque, Bayart, Pellegrino, and Seoane-Sepúlveda [1]: Let | 1
p
| ≤ 1

2

and q := (q1, . . . , qm) ∈ [(1 − | 1
p
|)−1, 2]m. There is a constant CK

m,p,q ≥ 1

such that( ∞∑
i1=1

(
· · ·

( ∞∑
im=1

∣∣T (ei1 , . . . , eim)∣∣qm) qm−1
qm · · ·

) q1
q2

) 1
q1 ≤ CK

m,p,q‖T‖ (1.6)

for every continuous m-linear form T : Xp1 ×· · ·×Xpm → K if and only if

1

q1
+ · · ·+ 1

qm
≤ m+ 1

2
−

∣∣∣ 1
p

∣∣∣.
Remark 1.1. Throughout the article, the optimal constants of each of the above
inequalities will be denoted exactly as they were previously stated.

We note the following.

(a) Zalduendo’s theorem, for p1 = · · · = pm = ∞, recovers Aron and Globev-
nik’s theorem.

(b) The Hardy–Littlewood/Praciano-Pereira inequality, when p1 = · · · =
pm = ∞, recovers the Bohnenblust–Hille inequality.

(c) If q1 = · · · = qm = 2m
m+1−2| 1

p
| in (1.6), then we recover the Hardy–

Littlewood/Praciano-Pereira inequality and we will denote

CK
m,p,( 2m

m+1−2| 1p |
,..., 2m

m+1−2| 1p |
)

by CK
m,p. Moreover, if p1 = · · · = pm = p, then we will denote CK

m,p by

CK
m,p.

The first main objective of this article is to combine—in a single formulation—
all the above inequalities that were produced separately and in different contexts
and that apparently did not match. We do not do this only for the mathemat-
ical beauty of unifying theories that were treated in completely different ways,
but because this also provides subtle bits of information that were not previ-
ously accessible, such as, for example, giving a definitive answer to a problem ini-
tially considered by Carando, Defant, and Sevilla-Peris [10] (this improvement was
recently made by Maia, Nogueira, and Pellegrino [17] using our main theorem).
This and some other findings were only possible at the time when the theories were
no longer seen separately. Despite their importance in several fields of mathemat-
ics (e.g., quantum information theory, Dirichlet series, and so forth), the optimal
constants of the m-linear Hardy–Littlewood inequalities are still unknown. For
the real case of the Bohnenblust–Hille inequality, it is known that the optimal
constants are not contractive and, very recently, a computational approach to
calculate the optimal constants of the Bohnenblust–Hille inequality was success-
fully implemented using the Wolfram Language (see [11]). As an application of
our unified approach, we can analyze under what conditions we can improve such
inequalities in order to have contractive constants. In fact, in Section 3 we will
study how the consideration of the blocks in the Bohnenblust–Hille inequalities
can make the new inequalities become contractive.
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Let n be a positive integer, and from now on eni denotes the n-tuple (ei, . . . , ei).
Furthermore, if n1, . . . , nk ≥ 1 are such that n1+ · · ·+nk = m, then (en1

i1
, . . . , enk

ik
)

represents the m-tuple:

(ei1 ,
n1 times. . . , ei1 , . . . , eik ,

nk times. . . , eik).

The main result of this article (Theorem 2.4) extends and unifies (1.1), (1.2),
(1.3), (1.4), (1.5), and (1.6) by considering intermediary setups for Λ. Theorem 2.4
provides the following particular case whenever p1 = · · · = pm = p, which has a
more friendly statement.

Theorem 1.2. Let m ≥ k ≥ 1, let m < p ≤ ∞, and let n1, . . . , nk ≥ 1 be
such that n1 + · · · + nk = m. Then for every continuous m-linear form T :
Xp × · · · ×Xp → K, there is a constant MK

k,m,p ≥ 1 such that( ∞∑
i1,...,ik=1

∣∣T (en1
i1
, . . . , enk

ik
)
∣∣ρ) 1

ρ ≤ MK
k,m,p‖T‖,

with

ρ =
p

p−m
for m < p ≤ 2m and MK

k,m,p ≤ DK
k,( p

n1
,..., p

nk
)

and

ρ =
2kp

kp+ p− 2m
for p ≥ 2m and MK

k,m,p ≤ CK
k,( p

n1
,..., p

nk
). (1.7)

Above, CK
k,( p

n1
,..., p

nk
) and DK

k,( p
n1

,..., p
nk

) are the constants from (1.4) and (1.5), respec-

tively. Moreover, in both cases, the exponent ρ is optimal.

Remark 1.3. It is interesting to stress that the optimal exponent for the case
p > 2m is not the exponent of the k-linear case. It is a kind of combination of
the cases of k-linear and m-linear forms, as can be seen in (1.7). In general, we
have the following.

• If m < p < 2m, then the optimal exponent depends only on m.
• If p = 2m, then the optimal exponent does not depend on m or k.
• If 2m < p < ∞, then the optimal exponent depends on m and k.
• If p = ∞, then the optimal exponent depends only on k.

The proof of the main result combines two different tools based on tensor
products. First, we prove a k-linearization method for n-linear operators (n ≥ k)
which is an inductive refinement of the well-known linearization method. Second,
we use the description of the diagonal of the tensor product of `p-spaces based
on [3, Theorem 1.3] and [23, Example 2.23(b)]. It is worth mentioning that the
Zalduendo and Aron–Globevnik inequalities can be proved in a straightforward
way by means of this technique (see Remark 2.5).

The search for optimal constants for the Bohnenblust–Hille inequality is an
active research area nowadays (see, e.g., [1], [6], [12], [18], [21] and the references
therein). Very recently, our main theorem (Theorem 2.4) was applied in [17] to
show that the asymptotic constants of the Bohnenblust–Hille inequality for com-
plex m-homogeneous polynomials whose monomials have a uniformly bounded
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number of variables do not depend on m. This is a striking result since the prior
work [10], using a completely different technique, just obtained constants growing
polynomially with m. Section 3 provides applications of our main result (The-
orem 2.4) in the analysis of the contractivity of the constants appearing in the
inequalities when considering special sets Λ. We will prove that the Bohnenblust–
Hille inequalities are “almost” contractive. More precisely, if m, k, n1, . . . , nk ≥ 1
are positive integers such that n1 + · · · + nk = m, by considering sums over
the index set Λ ⊂ Nm that gathers all m-tuples (note that Λ is composed of k
“blocks”)

(i1, n1 times. . . , i1, . . . , ik, nk times. . . , ik), i1, . . . , ik ∈ N,
and if k = k(m) is such that

lim
m→∞

k log k

m
= 0,

then Theorem 3.1 will provide the contractivity of the Bohnenblust–Hille inequal-
ity.

2. Bohnenblust–Hille and Hardy–Littlewood for block-type sets Λ

Besides motivating the introduction of a new approach to the theory of summa-
bility of multilinear operators, the main purpose of this section is to present
a unified version of the Bohnenblust–Hille and Hardy–Littlewood inequalities
with partial sums (i.e., we will consider sums allowed to run over a set Λ with
fewer indices) which also recovers Zalduendo’s and Aron–Globevnik’s inequalities.
A tensorial perspective will present an important role in this matter, establishing
an intrinsic relationship between the exponents and constants involved and the
number of indices taken on the sums.

We need to introduce some other terminologies. The product
π⊗̂

j∈{1,...,n}

Ej = E1⊗̂
π · · · ⊗̂π

En

denotes the completed projective n-fold tensor product of E1, . . . , En. The tensor
x1⊗· · ·⊗xn is denoted by

⊗
j∈{1,...,n} xj for short, whereas

⊗
n x denotes the tensor

x⊗· · ·⊗x. In a similar way,×j∈{1,...,n}Ej denotes the product space E1×· · ·×En.
Recall that Xp = `p if 1 ≤ p < ∞ and that Xp = c0 if p = ∞. Let n be a

positive integer, and let 1 ≤ p1, . . . , pn ≤ ∞ be such that 1
p1
+ · · ·+ 1

pn
< 1. From

now on in this section, r, s are defined by 1
r
= 1

p1
+ · · · + 1

pn
and 1

s
+ 1

r
= 1. Let

Dr ⊂ Xp1⊗̂
π · · · ⊗̂π

Xpn be the linear span of the tensors
⊗

n ei, and let Dr be
its closure. Additionally, we will use the following notation. For Banach spaces
E1, . . . , Em and an element xj ∈ Ej, for some j ∈ {1, . . . ,m}, the symbol xj · ej
represents the vector xj ·ej ∈ E1×· · ·×Em such that its jth coordinate is xj ∈ Ej,
and 0 otherwise.

The following lemma, although known for 1 ≤ p1, . . . , pn < ∞ (see [3, Theo-
rem 1.3]), is the key to Theorem 2.4 and so we give a constructive proof inspired
by [23, Example 2.23(b)].
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Lemma 2.1. The map ur : Xr → Dr, given by ur(
∑∞

i=1 aiei) =
∑∞

i=1 ai
⊗

n ei,
is an isometric isomorphism that is surjective.

Proof. For the sake of simplicity, we will show only the case 1 ≤ p1, . . . , pn < ∞.
In all the other cases, that is, when one or more Xi’s are c0, the proof can be
easily adapted.

Let θ =
∑k

i=1 ai
⊗

n ei. Using the orthogonality of the Rademacher system, we
get

θ =

∫
[0,1]n−1

n−1⊗
j=1

( k∑
i=1

|ai|
r
pj ri(tj)ei

)
⊗
( k∑

i=1

sgn(ai)|ai|
r
pn ri(t1) · · · ri(tn−1)ei

)
dt,

where dt = dt1 · · · dtn−1 and ri are the Rademacher functions, and sgn(a) is the
scalar of modulus 1 such that sgn(a)a = |a|. Hence,

π(θ) ≤
∑

0≤tj≤1

1≤j≤n−1

[n−1∏
j=1

∥∥∥ k∑
i=1

|ai|
r
pj ri(tj)ei

∥∥∥
pj

]∥∥∥ k∑
i=1

ri(t1) · · · ri(tn−1) sgn(ai)|ai|
r
pn ei

∥∥∥
pn

=
∥∥(ai)ki=1

∥∥
r
.

To prove ‖(ai)ki=1‖r ≤ π(θ), consider the n-linear form on `p1 × · · · × `pn given
by

B(x(1), . . . , x(n)) :=
k∑

i=1

bix
(1)
i · · ·x(n)

i ,

where bi = sgn(ai)
|ai|

r
s

‖(ai)ki=1‖
r
s
r

. By Hölder’s inequality,

‖B‖ = sup
x(j)∈B`pj

1≤j≤n

∣∣∣ k∑
i=1

bix
(1)
i · · ·x(n)

i

∣∣∣ ≤ sup
x(j)∈B`pj

1≤j≤n

∥∥(bi)ki=1

∥∥
s
‖x(1)‖p1 · · · ‖x(n)‖pn = 1.

Therefore,

π(θ) ≥
∣∣〈θ,B〉

∣∣ = ∣∣∣ k∑
i=1

aiB(ei, . . . , ei)
∣∣∣ = ∣∣∣ k∑

i=1

aibi

∣∣∣ = ( k∑
i=1

|ai|r
) 1

r

and thus π(θ) = ‖(ai)ki=1‖r. By extending the isometric isomorphism to the com-
pletions, we get that Dr is isometrically isomorphic to `r. �

Using the isometry between Dr and `r provided in the preceding lemma, we
get the following.

Lemma 2.2. The sequence (
⊗

n ei)i∈N belongs to `ws (Xp1⊗̂
π · · · ⊗̂π

Xpn) and∥∥∥(⊗
n

ei

)
i∈N

∥∥∥
w,s

= 1.
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Proof. Observe that∥∥∥(⊗
n

ei

)
i∈N

∥∥∥
w,s

= sup
ϕ∈B(Xp1 ⊗̂π ···⊗̂π

Xpn )∗

( ∞∑
i=1

∣∣∣ϕ(⊗
n

ei

)∣∣∣s) 1
s

= sup
ϕ∈B(Dr)∗

( ∞∑
i=1

∣∣∣ϕ(⊗
n

ei

)∣∣∣s) 1
s

= sup
ϕ∈B`s

( ∞∑
i=1

∣∣ϕ(ei)∣∣s) 1
s
= 1.

�

The following result is a kind of k-“linearization” of a given m-linear operator
and will be used in the proof of our main result.

Proposition 2.3. Let m be a positive integer, and let E1, . . . , Em, F be Banach
spaces. Let 1 ≤ k ≤ m and I1, . . . , Ik be pairwise disjoint nonvoid subsets of
{1, . . . ,m} such that

⋃k
j=1 Ij = {1, . . . ,m}. Then, given T ∈ L(E1, . . . , Em;F ),

there is a unique T̂ ∈ L(
⊗̂π

j∈I1Ej, . . . ,
⊗̂π

j∈IkEj;F ) such that

T̂
(⊗
j∈I1

xj, . . . ,
⊗
j∈Ik

xj

)
= T (x1, . . . , xm)

and ‖T̂‖ = ‖T‖. The correspondence T ↔ T̂ determines an isometric isomor-

phism between the spaces L(E1, . . . , Em;F ) and L(
⊗̂π

j∈I1Ej, . . . ,
⊗̂π

j∈IkEj;F ).

Proof. We will proceed by transfinite induction on m. Note that for m = 1 or

m = 2, there is nothing to be proved (T̂ is just the linearization of T whenever
m = 2 and k = 1). Assume that the result is true for any positive integer less than
m, and let T ∈ L(E1, . . . , Em;F ) and I1, . . . , Ik be as in the statement. Assume
that |Ik| = mk, and fix xj ∈ Ej, for any j ∈ Ik. Fix

∑
j∈Ik xj · ej ∈×j∈Ik Ej.

Consider the continuous (m−mk)-linear mapping given by

T(
∑

j∈Ik
xj ·ej)

(∑
i∈I1

xi · ei + · · ·+
∑

i∈Ik−1

xi · ei
)
:= T (x1, . . . , xm).

By the induction hypothesis, there exists a unique

T̃
(∑
j∈Ik

xj · ej
)
∈ L

( π⊗̂
j∈I1

Ej, . . . ,

π⊗̂
j∈Ik−1

Ej;F
)

such that

T̃
(∑
j∈Ik

xj · ej
)(⊗

i∈I1

xi, . . . ,
⊗

i∈Ik−1

xi

)
= T(

∑
j∈Ik

xj ·ej)

(∑
i∈I1

xi · ei + · · ·+
∑

i∈Ik−1

xi · ei
)

= T (x1, . . . , xm)
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and ∥∥∥T̃(∑
j∈Ik

xj · ej
)∥∥∥ = ‖T(

∑
j∈Ik

xj ·ej)‖.

Define now the mk-linear mapping

A : ×
j∈Ik

Ej → L
( π⊗̂
j∈I1

Ej, . . . ,

π⊗̂
j∈Ik−1

Ej;F
)

given by

A
(∑
i∈Ik

yi · ei
)
:= T̃

(∑
i∈Ik

yi · ei
)
,

and let AL ∈ L(
⊗̂π

j∈IkEj;L(
⊗̂π

j∈I1Ej, . . . ,
⊗̂π

j∈Ik−1
Ej;F )) be its linearization,

that is, the unique linear map from
⊗̂π

j∈IkEj into L(
⊗̂π

j∈I1Ej, . . . ,
⊗̂π

j∈Ik−1
Ej;F )

such that AL(
⊗

j∈Ik yj) = A(
∑

j∈Ik yj ·ej). Finally, T̂ :
⊗̂π

j∈I1Ej×· · ·×
⊗̂π

j∈IkEj →
F defined by

T̂ (θ1, . . . , θk) := AL(θk)(θ1, . . . , θk−1)

is k-linear, continuous, and satisfies

T̂
(⊗
j∈I1

xj, . . . ,
⊗
j∈Ik

xj

)
= AL

(⊗
j∈Ik

xj

)(⊗
j∈I1

xj, . . . ,
⊗

j∈Ik−1

xj

)
= T̃

(∑
i∈Ik

xi · ei
)(⊗

j∈I1

xj, . . . ,
⊗

j∈Ik−1

xj

)
= T (x1, . . . , xm)

and

‖T̂‖ = sup
θj∈B⊗̂π

i∈Ij

Ei

j=1,...,k

∥∥AL(θk)(θ1, . . . , θk−1)
∥∥

= ‖AL‖ = ‖A‖

= sup
yi∈Ei

i∈Ik

∥∥∥T̃(∑
i∈Ik

yi · ei
)∥∥∥

= sup
yi∈Ek

i∈Ik

‖T(
∑

i∈Ik
yi·ei)‖ = ‖T‖.

�

Now we prove our main result, which unifies (1.1), (1.2), (1.3), (1.4), (1.5), and
(1.6).

Theorem 2.4. Let 1 ≤ k ≤ m and n1, . . . , nk ≥ 1 be positive integers such that
n1 + · · ·+ nk = m, and assume that

p := (p
(1)
1 , n1 times. . . , p(1)n1

, . . . , p
(k)
1 , nk times. . . , p(k)nk

) ∈ [1,∞]m
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is such that 0 ≤ | 1
p
| < 1. Let r := (r1, . . . , rk) with ri given by 1

ri
= 1

p
(i)
1

+ · · ·+ 1

p
(i)
ni

,

i = 1, . . . , k. Then the following hold.

(1) If 0 ≤ | 1
p
| ≤ 1

2
and q := (q1, . . . , qk) ∈ [(1 − | 1

p
|)−1, 2]k, then for every

continuous m-linear form

T :
(
×

1≤i≤n1

X
p
(1)
i

)
× · · · ×

(
×

1≤i≤nk

X
p
(k)
i

)
→ K,

( ∞∑
i1=1

(
· · ·

( ∞∑
ik=1

∣∣T (en1
i1
, . . . , enk

ik
)
∣∣qk) qk−1

qk . . .
) q1

q2

) 1
q1 ≤ CK

k,r,q‖T‖ (2.1)

if and only if | 1
q
| ≤ k+1

2
− | 1

p
|. In other words, the exponents are optimal.

(2) If 1
2
≤ | 1

p
| < 1, then for every continuous m-linear form

T :
(
×

1≤i≤n1

X
p
(1)
i

)
× · · · ×

(
×

1≤i≤nk

X
p
(k)
i

)
→ K,

( ∞∑
i1,...,ik=1

∣∣T (en1
i1
, . . . , enk

ik
)
∣∣ 1

1−| 1p |
)1−| 1

p
|
≤ DK

k,r‖T‖. (2.2)

Moreover, the exponent in (2.2) is optimal.

Proof. (1) Assume that | 1
q
| ≤ k+1

2
− | 1

p
|. We will use the notation

(p
(1)
1 , . . . , p(1)n1

, . . . , p
(k)
1 , . . . , p(k)nk

) = (p1, . . . , pm).

We take the k-linear mapping given in Proposition 2.3,

T̂ :

π⊗̂
1≤i≤n1

X
p
(1)
i

× · · · ×
π⊗̂

1≤i≤nk

X
p
(k)
i

→ K,

that satisfies

T̂
( ⊗
1≤i≤n1

x
(1)
i , . . . ,

⊗
1≤i≤nk

x
(k)
i

)
= T (x

(1)
1 , . . . , x(1)

n1
, . . . , x

(k)
1 , . . . , x(k)

nk
).

Then

T̂
(⊗

n1

ei1 , . . . ,
⊗
nk

eik

)
= T (en1

i1
, . . . , enk

ik
)

and ‖T̂‖ = ‖T‖. Thus( ∞∑
i1=1

(
· · ·

( ∞∑
ik=1

∣∣T (en1
i1
, . . . , enk

ik
)
∣∣qk) qk−1

qk . . .
) q1

q2

) 1
q1

=
( ∞∑
i1=1

(
· · ·

( ∞∑
ik=1

∣∣∣T̂(⊗
n1

ei1 , . . . ,
⊗
nk

eik

)∣∣∣qk) qk−1
qk . . .

) q1
q2

) 1
q1 .
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For each j = 1, . . . , k, we take uj : Xrj → Drj defined by

uj

( ∞∑
i=1

aiei

)
=

∞∑
i=1

ai
⊗
nj

ei.

Lemma 2.2 will give

‖uj‖ =
∥∥∥(⊗

n

ei

)
i∈N

∥∥∥
w,r∗j

= 1.

Finally, it is sufficient to deal with the k-linear operator S : Xr1 × · · · ×Xrk → K
defined by

S(z1, . . . , zk) := T̂
(
u1(z1), . . . , uk(zk)

)
,

which is bounded and fulfills ‖S‖ ≤ ‖T̂‖. Combining this with (1.6) and observing
that

1

r1
+ · · ·+ 1

rk
=

∣∣∣ 1
p

∣∣∣,
the result follows. To show that the inequality (2.1) forces the exponent to be
| 1
q
| ≤ k+1

2
− | 1

p
|, it suffices to prove by (1.6) that( ∞∑

j1=1

(
· · ·

( ∞∑
jk=1

∣∣A(ej1 , . . . , ejk)∣∣qk) qk−1
qk · · ·

) q1
q2

) 1
q1 ≤ CK

k,r,q‖A‖,

for all continuous k-linear forms A : Xr1×· · ·×Xrk → K whenever (2.1) is fulfilled
by all bounded m-linear forms

T :
(
×

1≤i≤n1

X
p
(1)
i

)
× · · · ×

(
×

1≤i≤nk

X
p
(k)
i

)
→ K.

Let A : Xr1 × · · · ×Xrk → K be a bounded k-linear form. For each i = 1, . . . , k,
the diagonal space Dri is complemented in X

p
(i)
1
⊗̂π · · · ⊗̂π

X
p
(i)
ni

(see [3]). Con-

sider the diagonal projection dri from X
p
(i)
1
⊗̂π · · · ⊗̂π

X
p
(i)
ni

onto Dri such that

dri(
∑

j1,...,jni
a(j1,...,jni )

ej1 ⊗· · ·⊗ejni
) is equal to

∑
j1,...,jni

a(j1,...,jni )
ej1 ⊗· · ·⊗ejni

if

j1 = · · · = jni
and to 0 otherwise. Define the m-linear map TA : Xp1×· · ·×Xpm →

K by

TA(x
(1)
1 , . . . , x(1)

n1
, . . . , x

(k)
1 , . . . , x(k)

nk
)

:= A
(
u−1
r1

◦ dr1(x
(1)
1 ⊗ · · · ⊗ x(1)

n1
), . . . , u−1

rk
◦ drk(x

(k)
1 ⊗ · · · ⊗ x(k)

nk
)
)
.

The following equalities give the result:

TA(e
n1
i1
, . . . , enk

ik
) = A

(
u−1
r1

◦ dr1
(⊗

n1

ei1

)
, . . . , u−1

rk
◦ drk

(⊗
nk

eik

))
= A

(
u−1
r1

(⊗
n1

ei1

)
, . . . , u−1

rk

(⊗
nk

eik

))
= A(ei1 , . . . , eik).
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(2) While the argument is similar to that of the case 0 ≤ | 1
p
| ≤ 1

2
, we just need

to use (1.5) instead of (1.6). �

An immediate and illustrative corollary is the case p1 = · · · = pm = p which
can be stated in a cleaner form (see Theorem 1.2).

The previous theorem unifies (1.1), (1.2), (1.3), (1.4), (1.5), and (1.6). To realize
this, we just need to proceed as follows. If k = 1 in the first item of Theorem 2.4,
then we recover (1.2) for 0 ≤ | 1

p
| ≤ 1

2
; k = 1 in Theorem 2.4(2) provides (1.2)

for 1
2
≤ | 1

p
| < 1. These items together give us Zalduendo’s result (1.2), which

for p1 = · · · = pm = ∞ recovers Aron–Globevnik’s theorem (1.1). If k = m in
Theorem 2.4(1), then we obtain (1.6). On the other hand, (1.6) implies (1.4) if
q1 = · · · = qm = 2m

m+1−2| 1
p
| and (1.4) implies (1.3) if p1 = · · · = pm = ∞. To

obtain the Hardy–Littlewood/Dimant–Sevilla-Peris result (1.5), we just need to
consider k = m in the second item of Theorem 2.4.

Remark 2.5. Looking at the proof of Theorem 2.4 and choosing k = 1 and n1 = m,
we not only recover Zalduendo’s and Aron–Globevnik’s theorems but we also
provide an alternative proof for them. In fact, for the sake of simplicity let us
choose p1 = · · · = pm = p. Let T : Xp × · · · ×Xp → K be a continuous m-linear
form, and let p > m. Denoting by TL the linearization of T and, as usual, letting

p
p−m

= 1 when p = ∞, we have( ∞∑
j=1

∣∣T (ej, . . . , ej)∣∣ p
p−m

) p−m
p

=
( ∞∑

j=1

∣∣∣TL

( π⊗
m

ej

)∣∣∣ p
p−m

) p−m
p

≤ ‖TL‖
∥∥∥( π⊗

m

ej

)∞

j=1

∥∥∥
w, p

p−m

.

But, from Lemma 2.2 we know that ‖(
⊗̂π

mej)
∞
j=1‖w, p

p−m
= 1 and since ‖TL‖ =

‖T‖, the proof is done. Concerning the optimality of the exponents, it can be easily
proved using an idea borrowed from [14]. In fact, consider Tn : Xp×· · ·×Xp → K
given by

Tn(x
(1), . . . , x(m)) =

n∑
j=1

x
(1)
j · · ·x(m)

j .

Then, since ‖Tn‖ = n1−m
p and( n∑

j=1

∣∣Tn(ej, . . . , ej)
∣∣r) 1

r
= n

1
r ,

we conclude that

r ≥ p

p−m
.

Remark 2.6. Using the canonical isometric isomorphisms for the spaces of weakly
summable sequences (L(`p;E) = `wp∗(E), 1 < p < ∞, and L(c0;E) = `w1 (E)),
all the aforementioned inequalities can be translated to the theory of absolutely
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summing operators, motivating a general approach that encompasses the notions
of absolutely summing and multiple summing operators.

3. Applications: Constants associated to special choices of Λ

For real scalars, from [15] we know that in (1.3) we have

CR
m,∞ ≥ 21−

1
m ,

so the Bohnenblust–Hille inequality for real scalars is obviously noncontractive. In
this section, as a consequence of the main result of this article, we show that the
Bohnenblust–Hille inequality is, however, somewhat “almost” contractive. More
precisely, we consider sums in certain sets Λ, that is,( ∞∑

i1,...,ik=1

∣∣T (en1
i1
, . . . , enk

ik
)
∣∣ 2m
m+1

)m+1
2m ≤ NK

k,m,∞‖T‖,

and we show that if the set Λ is composed by a certain number of “blocks”
k := k(m) such that

lim
m→∞

k log k

m
= 0,

then

lim
m→∞

NK
k,m,∞ = 1.

A somewhat similar job can be done for the Hardy–Littlewood inequalities, but
we omit the technical details.

It is well known that (for both real and complex scalars)( ∞∑
i1,...,im=1

∣∣T (ei1 , . . . , eim)∣∣2) 1
2 ≤ ‖T‖ (3.1)

for all continuous m-linear forms T : c0× · · ·× c0 → K. In fact, for every positive
integer n, by the Khinchin inequality for multiple sums (since the constant of the
Khinchin inequality in this case is 1) we have( n∑

i1,...,im=1

∣∣T (ei1 , . . . , eim)∣∣2)1/2

≤
(∫ 1

0

· · ·
∫ 1

0

∣∣∣ n∑
i1,...,im=1

ri1(t1) · · · rim(tm)T (ei1 , . . . , eim)
∣∣∣2 dt1 · · · dtm)1/2

=
(∫ 1

0

· · ·
∫ 1

0

∣∣∣T( n∑
i1=1

ri1(t1)ei1 , . . . ,
n∑

im=1

rim(tm)eim

)∣∣∣2 dt1 · · · dtm)1/2

≤ ‖T‖.

The next theorem can be understood as a refinement of (1.3) and shows when
inequalities of the Bohnenblust–Hille-type have contractive constants as the num-
ber of variables m increases. It is worth mentioning that if m increases, the num-
ber of “blocks” k can be maintained constant or increased as a function of m. By
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k = k(m), we mean that k can vary as a function of m. This trivially includes
the case when k is kept constant.

Theorem 3.1. Let m, k be positive integers with k ≤ m, and let n1, . . . , nk ∈
{0, 1, . . . ,m} with n1 + · · ·+ nk = m. Then( ∞∑

i1,...,ik=1

∣∣T (en1
i1
, . . . , enk

ik
)
∣∣ 2m
m+1

)m+1
2m ≤ (CK

k,∞)
k
m‖T‖

for all continuous m-linear forms T : c0 × · · · × c0 → K. Besides, if k = k(m) is
such that

lim
m→∞

k log k

m
= 0,

then

lim
m→∞

(CK
k,∞)

k
m = 1.

Proof. We know from Theorem 2.4 that( ∞∑
i1,...,ik=1

∣∣T (en1
i1
, . . . , enk

ik
)
∣∣ 2k
k+1

) k+1
2k ≤ CK

k,∞‖T‖ (3.2)

for all continuous m-linear forms T : c0 × · · · × c0 → K. Since

1
2m
m+1

=
θ
2k
k+1

+
1− θ

2

with

θ =
k

m
,

by (a corollary of) the Hölder inequality, and using (3.1) and (3.2), we have( ∞∑
i1,...,ik=1

∣∣T (en1
i1
, . . . , enk

ik
)
∣∣ 2m
m+1

)m+1
2m

≤
[( ∞∑

i1,...,ik=1

∣∣T (en1
i1
, . . . , enk

ik
)
∣∣ 2k
k+1

) k+1
2k

] k
m
[( ∞∑

i1,...,ik=1

∣∣T (en1
i1
, . . . , enk

ik
)
∣∣2) 1

2
]1− k

m

≤
[( ∑

i1,...,ik=1

∣∣T (en1
i1
, . . . , enk

ik
)
∣∣ 2k
k+1

) k+1
2k

] k
m‖T‖

≤ (CK
k,∞)

k
m‖T‖,

and the inequality is proved.
Besides, using the best-known estimates for CK

k,∞ (see [6, Corollary 3.2]), we
have

(CK
k,∞)

k
m ≤ (αkβ)

k
m

for suitable α, β > 0. Note that

lim
m→∞

(αkβ)
k
m = 1
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if and only if

lim
m→∞

log(αkβ)
k
m = 0,

if and only if

lim
m→∞

k

m
(logα + β log k) = 0.

This last equality is valid because

lim
m→∞

k log k

m
= 0

implies that

lim
m→∞

k

m
= 0. �

Example 3.2. It is interesting to verify that our hypotheses hold for

k =
⌊ m

(logm)1+
1

log log log m

⌋
and k = bm1− 1

log log m c.
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