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This paper  deals with the local behavior of solutions of quasi-linear partial dif- 

ferential equations of second order in n/> 2 independent variables. ~re shall be concerned 

specifically with the a priori majorization of solutions, the nature of removable sin- 

gularities, and the behavior of a positive solution in the  neighborhood of an isolated 

singularity. Corresponding results are for the most par t  well known for the case of 

the Laplace equation; roughly speaking, our work constitutes an extension of these 

results to a wide class of non-linear equations. 

Throughout the paper we are concerned with real quasi-linear equations of the 

general form 
div .,4(x, u, uz) = ~(x, u, ux). (1) 

Here ~ is a given vector function of the variables x, u, ux, ~ is a given scalar func- 

tion of the same variables, and u~= (Ou/Ox 1 . . . . .  Ou/Oxn) denotes the gradient of the 

dependent variable u=u(x) ,  where x=(x l ,  ...,xn). The structure of (1) is determined 

by the functions .,4(x,u,p) and B(x,u,p) .  We assume tha t  they are defined for all 

points x in some connected open set (domain) ~ of the Euclidean number  space E n, 

and for a l l  values of u and p. Furthermore,  they are to satisfy inequalities of the form 

IAI < a [ p l ' - l + b l u f  ~-l+e,  

< (2) 

p.A a-llPl - lul -g. 

Here :r > 1 is a fixed exponent, a is a positive constant, and the coefficients b through 

9 are measurable functions of x, contained in certain definite Lebesgue classes over 

(see Chapter I). 
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The generality of these assumptions naturally requires tha t  equation (1)be  inter- 

preted in a weak sense. Let  D be a subdomain of ~ ,  and let u be a function having 

strong derivatives ux which are locally of class L~ over D. Then u will be called a 

weak solution (or simply a solution) of (1) in D if 

f (r A + ~ )  dz = 0 (3)  

for any continuously differentiable function ~b = r with compact support in D. Ob- 

viously any function which satisfies (1) in the classical sense would be a solution in 

the sense just defined, though of course not conversely. 

Before turning to a description of results, it is worth noting tha t  the above 

structure includes linear elliptic equations, where a = 2, and also the Euler equations 

of a wide class of regular as well as non-regular variational problems. The reader may  

consult reference [22], where this observation is made more explicit. 

The main body of the paper  is divided into three chapters. In  Chapter I we 

consider various a priori estimates concerning the majorization of solutions. To begin 

with, Theorem 1 states tha t  a solution u in D is essentially bounded on any compact 

subset D'  of D, the bound depending only on the structure of (1), on the L~ norm 

of u over D, and on the geometry of D and D'. If  u is continuous in the closure 

of D, one can further estimate the maximum of u in terms of its L~ norm together 

with the maximum of its boundary values (Theorem 3). The most  important  result 

of the first chapter is an inequality of Harnack type, Theorem 5, which generalizes 

to non-linear equations a recent result of Moser for linear equations. This theorem is 

basic for much of the following work. Finally, in Theorem 8 we show tha t  solutions 

of (1) are necessarily HSlder continuous, possibly after redefinition on a set of measure 

zero. A more detailed outline of the contents of this chapter is impossible here; the 

reader is referred directly to the paper for more specific conclusions. 

The proofs are based on the iteration technique introduced by  Moser in references 

[16] and [17], and a t  the same time make strong use of the general Sobolev inequalities. 

We must  also remark on the papers of Stampacchia, Morrey, and Ladyzhenskaya and 

Uraltseva, whose spirit is much the same as tha t  of the first chapter here. In  parti- 

cular, Ladyzhenskaya and Uraltseva have proved by  quite different methods the HSlder 

continuity of bounded solutions of (1), under conditions rather  similar to (2). 

The second chapter deals with the general problem of removable singularities. If  

we consider Laplace's equation, it is known tha t  a set of capacity zero constitutes a 

removable singularity for a bounded harmonic function, while, on the other hand, a 
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single point is removable provided only that  the solution is o(logr) or o(r ~- ' )  in the 

neighborhood. For sets of intermediate size a corresponding removable singularity 

theorem was recently discovered by Carleson [1, p. 78], the idea there being to relate 

the Hausdorff dimension of the singular set to the Lebesgue class of the solution. The 

following result extends Carleson's theorem to all equations of the general form (1), (2). 

Let Q be a compact set ol s-capacity zero,(!) where a<~s~  n, and let D be a domain 

in  ~ .  Suppose that u is a continuous solution o I (1) in  the set D -  Q, and. that 

u E Z0o+0), 

where O = s ( a - 1 ) / ( s - o : )  and ~ is some positive number. Then u can be defined on the 

set Q so that the resulting 1unction' is  a continuous solution o/ (1) in  the entire domain D. 

In  order to see this result more clearly, let us consider its implications for the 

Laplace equation (where a = 2). When n =  2 nothing new is obtained, for then s = 2 

and we simply regain the result that a set of ordinary capacity zero is removable 

for a bounded (L=) solution. When n >2,  however, s can vary from 2, where we 

obtain the usual result, to n, where we get the result that  a set of n-capacity zero 

is removable provided that u E Ln/(n-e)+a. Since a single point has n-capacity zero, 

this case of the theorem is seen to be associated with the usual growth condition at 

an isolated singularity. In other words, when n >2  the above result constitutes an 

interpolation theorem of the desired sort. (Actually our result is not  quite as sharp  

for Laplace's equation as the one obtained by Carleson, though, of course, it does 

apply to a larger class of equations. We add that  our work was done independently 

of Carleson's, and that  the overlap was discovered only after the manuscript had been 

submitted for publication. Other work of a similar nature is due to Picone [19].) 

In  addition to the above result we shall also prove the following removable sin- 

gularity theorem, which has the advantage of a considerably less abstract hypothesis. 

Let Q be a smooth manifold of dimension m <~ n -  o~, and let D be a domain in  ~ .  

Suppose that u is a continuous solution o/ (1) in  the set D - Q ,  and that 

u G Lo(l+o) i /  m < n - o~, 

u=O(llog#l 1-~) i l  m = n - ~ ,  

where 0 = (n - m) (cr - 1 ) / ( n -  m -  o~), 6 is some positive number, and ~ is the distance 

/ tom Q. Then u can be defined on Q so that the resu l t ing /unc t ion  is a continuous solu- 

tion of (1) in  all o I D. 

(1) Cf. Section 7. We note that any non-empty set has positive (n+ e)-capacity, so that only 
values s ~< n need be considered. 
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The preceding theorems raise obvious questions concerning the existence of solu- 

t ions of (1) having non-removable singularities. In Chapter I I I  we investigate this 

problem in considerably more detail for the special equation 

div A(x, u, u~) = 0 (o~ < n). (4) 

I t  is shown tha t  at  an isolated singularity a positive solution of (4)has  precisely the 

order of growth r (~-n)/(~-l) if ~ < n  and log 1/r if a=n.(1) For linear equations of the 

special form (a~j(x)u,~),j=O a corresponding result is due to Royden [20]; cf also 

[10, 17]. A weaker version for the non-linear case was given earlier by  the author [21]. 

Our present proof is basically the same as in [20], though the reader will see tha t  

the idea there serves only as a theme upon which numerous variations have been 

played. We may  also mention tha t  in the case of linear equations of the general form 

aiiu,~t+ b~u,~ = 0 there are corresponding isolated singularity theorems, requiring how- 

ever, some continuity of the coefficients, and not necessarily providing an explicit 

order of growth at  the singularity [3, 4, 6]. 

In  Section 13 we show under suitable conditions tha t  there exist solutions of (4) 

with precisely the behavior indicated above. A corresponding result for linear equa- 

tions is due to Lit tman,  Stampaechia, and Weinberger. The final section of the paper  

contains some further results for linear equations. Although these theorems are quite 

special in comparison with the rest of the work in the paper, they have an interest 

in their own right, and indicate to some extent  the underlying differences between 

linear and non-linear equations. 

I wish finally to thank Professor Hans Weinberger for his interest in this work, 

and for several quite helpful suggestions. 

I. Majorizat ion o f  solutions 

In  this chapter we shall consider various a priori estimates for solutions of the 

equation 
div A(x, u, ux) = ]g(x, u, ux). (5) 

I t  will be assumed tha t  the functions ~4(x, u, p) and ]g(x, u, p) are defined for all values 

of u and p, and for all points x in some fixed domain ~.  Moreover, we suppose tha t  

they satisfy inequalities of the form 

(1) An explicit example is provided by the equation 

div (u~l~}~-5 = o, 

which has the solutions Ar(a-n)/(~-l)+B and Alogr+B when ~r162 and ~=n respectively. 



LOCAL BEHAVIOR O1~ SOLUTIONS OF QUASI=LIlffEAR EQUATIONS 251 

IAI <alPl:=l+blul:- + , 

p.A lPl -dlul -g, 
(6) 

for x E g2 and all values of u and p. Here ~ > 1  is a fixed exponent, a is a positive 

constant, and b through g are measurable functions on ~ (the slightly simpler form 

of (6), as compared with (2), can be achieved by a simple normalization). I f  1 < a <  n 

we assume tha t  b through g are in the respective Lebesgue classes 

b; e E Ln/(a-1); C E Ln/<l-,); d,/,  g E Lnj<,_~), (7) 

being some positive number  less than or equal to one. I f  ~ = n  we suppose tha t  b 

through g satisfy 

b, e ~. Ln/(n-l-~); c ~-. inl(1-~); d, 1, g E Ln/(n=~), (8) 

again with s some positive number  less than or equal to one. Since the remaining 

case a > n  is somewhat anomalous, we shall discuss it separately in Section 5. In  any 

event, the discrepancy between the conditions required for the various cases 1 < ~r < n, 

~ =  n, and ~ >  n seems to be an essential par t  of the situation. Finally, certain alter- 

native hypotheses will be considered in the concluding section of the chapter. 

:Now let D be a subdomain of ~ ,  and let u = u(x) be a function having strong 

derivatives which are locally of class L~ over D. As already explained in the intro- 

duction, u will be called a solution of (5) in D if 

f (r + CB) dx = 0 (9) 

for any continuously differentiable function ~b = r with compact support  in D. In  

writing equation (9) it is tacitly assumed tha t  the functions ..4=.,4(x,u, ux) and 

=~(x ,  u, u~) are measurable, as will certainly be the case in all reasonable situa- 

tions. Since u~ is locally in L~, it follows tha t  also 

I L~. if ~ < n ,  

UELL~ if ~ = n  

locally in D, where ~* = an/(n  - ~) is the Sobolev conjugate of a, and a is any positive 

real number. Thus, using assumptions (7) and (8), it is a straightforward consequence 

of H61der's inequality tha t  M(x, u, ux) is locally in L~/(~-I)while B(x, u, ux)is locally in 

L<~.). if a <  n, or locally in LI+~ if ~ = n ,  where (:r is the HSlder conjugate of r162 
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and  ~ = e / 2 ( n -  ~). I t  follows therefore t h a t  if u is a solution of (5), then (9) holds 

no t  only for cont inuously differentiable functions ~b, bu t  in fact  for any  ~b with strong 

derivatives in L~ and with compact  support  in D. This remark  will be of considerable 

importance later on. 

0. Preliminary lemmas 

The theorems of the following sections require some prepara to ry  results which 

we group together  here. 

LEMMA 1. Let a~, i ~ 1 . . . .  , N ,  be non-negative real numbers, and let ot be a positive 

exponent. Then 

where 2 = Min(1, N ~-1) and A =- Max(l ,  N~-I). 

Proo]. We m a y  assume wi thout  loss of generali ty t h a t  ~ 4= 1 and ~a~ = 1. The 

m a x i m u m  of the quan t i ty  ~. a~ is then easily found to  occur either when all the a~ 

are equal, or (endpoint  maximum) when all bu t  one at are zero. This proves the left- 

hand  inequality.  The r igh t -hand result  is obtained the same way. 

LEM~A 2. Let  o~ be a positive exponent, and let a~, fit, i = 1 . . . .  , N ,  be two sets o/ 

N real numbers such that 0 < a~ < ~ and 0 ~ fl~ < ~. Suppose that z is a positive number 

satis]ying the inquali ty 

Z ~ << ~. a t~ ~.  

Then z 4 C ~ (at) ri, 

where C depends only on N ,  ~, and fir, and where ~ = (or-fi t)  -1. 

Proof. We make  use of Young ' s  inequali ty 

1 r + l  
ab <~ - a a q, 

P q 

where 1 / p §  Then if 0 < f i < ~  and a > 0  we have 

Pu t t ing  e = (~/2Nfl) ~/~ yields therefore 
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az ~ <~ (1/2N) z ~ + (2Na) ~I(~-~). (10) 

Note also tha t  (10) holds trivially when fl=O. Now applying (10) to each term of the 

sum ~ aiz ~, we obtain a t  once 

z ~ <~ ~. {1 /2N)  z ~ § (2Na,)~l(~-&)}, 

whence by transposition there arises 

z ~ <~ 2 ~ (PNa~) ~'. 

The required conclusion follows immediately from Lemma 1. 

The next  four lemmas are general calculus inequalities, due basically to Sobolev 

and Morrey. A simple proof of Lemmas 3 and 4 is given in reference [18], and 

Lemma 5 can be obtained by  quite similar methods. Although Lemma 6 is essentially 

well-known, we include a proof for completeness. 

Now let ~0=~(x) be a measurable function on an open set D, and let p be a 

real number,  l ~ < p ~  ~ .  The /~v norm of v 2 is defined by 

II,Pll~.o=(fol~,pdx) "~, (p<~),  II ~, II ~.~, = ess sup,~ I~'1. 

:For simplicity we shall write II~lh, rather  than IIv, lb.,~ when the domain D is apparerlt 

from the context. 

L E P T A  3 (Morrey). Let ~o be a strongly di]]erentiable ]unction on the unit  ball Ixl < 1, 

and suppose that I]~px}l~ is ]inite /or some o~ > n. Then ~f is (essentially) HSlder contin- 

uous, with 

Iv(x)  - ~ ( y )  t < C o n s t .  I z - yt  1- ~ tt ~ It~, 

t he  constant depending only on ~ and n. 

LEMMA 4 (Sobolev). Let ~ be a strongly di//erentiable /unction with compact support 

in E n, and suppose that IIy)~[[~ i s / i n i t e  /or some ~ < n. Set ~*= ~ n / ( n -  ~). Then ~p is 

in JL~. and 

II ~ II,, ~< Const. II ~'~ I1-, 

where the constant depends only on o~ and n. 

In  the next  lemma, we use e to denote the distance from a point x to the hyper- 

plane xt = ... =xs  = 0, 1 ~< s,.< n ,  while ~ is some fixed positive number. 
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LE~MA 5. Let ~p be a strongly di]/erentiable ]unction de]ined in the domain ~ > a and 

having compact support in E". Suppose that II~[l~ is /inite /or some :r Then ~ is 

in L~, and 

the constant depending only on a and n. 

LEMMA 6. Let yJ be a strongly di]]erentiable ]unction de]ined in an open ball S o/ 

radius h. Then i/ ~l)s~-IS1-1 ~s~)dx, w e  have 

I/v2 - Vsi]l ~< Const. h II WlI,, 

the constant depending only On n. 

Pro@ Let x and y be two points in S, and set ~ = Ix-Yl .  Then, assuming that  

~0 ~ C I, we  h a v e  

~ ( y )  - ~ ( x )  = 

(setting ]~p~] ~:0 at  points outside 

integrating over S yields 

; ;h 
(~p//~') d~'~< I~,1 d~' 

S). Multiplying both sides by dy=~n-ld~do~ and 

Then by the well-known convolution inequality of Young, 

IS/` ]] Vs - v2 H1 ~< (2h)~ II ~x 1]1" I I -n  + 1  []1 = Conflt. h ~ +1 I/~0x ]h" 
n 

This completes the proof when W is continuously differentiable. The general case follows 

by standard approximation arguments. 

The final lemma is due to John and Nirenberg. Its use in connection with the 

a priori estimation of solutions of differential equations already occurs in the paper 

of Moser which we have discussed in the introduction. 

LV.MMA 7. Let v 2 be a summable ]unction on the unit ball So, and suppose that 

/or every open ball S c S  o. Then there e~ist constants ~ anal lu, depending only on n, 

such that 

f soe~,dX. f se-~ ,dx<#~.  (II) 
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The conclusion of t h e  theorem of John  and Nirenberg is actually tha t  

f s  e~l~-v~ dx<~ i~, 
a 

but (11) is an immediate consequence of this inequality. 

We close the section b y  noting a useful derivation rule in the theory of strong 

differentiation. Let  G be a piecewise smooth funct ion of the real variable u , -  ~ < 

u < + co, with corners at  the points l l , . . . ,  l~. Suppose also tha t  G satisfies a uniform 

Lipschitz condition. Then if u(x) i s  strongly differentiable in a domain D, the com- 

posite function G(u(x ) ) i s  also strongly differentiable in D, and 

I G' (u) %, where u ~= 11 . . . . .  l~, 

G(u)x = [ O, where u = l I . . . . .  1 N .  

(12) 

Formula (12) of course defines only a particular representative of G(u)x, as is only 

natural  since strong derivatives are, technically, equivalence classes of measurable 

functions. In  particular, changing u and ux on a set of measure zero alters the re- 

presentative but  not the equivalence class. 

An interesting consequence of (12) is tha t  the  strong derivative of a function u 

is zero almost everywhere on any  set where u is constant. Indeed set 

a(u) = Max  (0, u), H(u) = Min (0, u), 

and note tha t  u = G(u) + H(u),  ux = G(u)x + H(u)x.  

Evaluat ing the second relation on the set where u = 0  yields the desired conclusion 

for the case when the constant is zero. The general result follows a t  once. 

1. Majorization of lu[ 

We shall show in this section that  weak solutions of (5) are locally bounded. 

This is of Course obvious in case :r > n by  virtue of Lemma 3. The remaining cases 

are considerably more difficult, and will be t reated separately. 

Let  P b e  a fixed point in the basic domain ~,  and let S(R) denote the open 

ball of radius R centered at  P. For simplicity we use the symbol [[. [[v.R to denote 

the Lp norm of a function over S(R).  

TH~ORE~ 1. Let u be a weak solution o/equation (5) de/ined in some ball S(2R) c ~ .  

Suppose that ac < n and that conditions (6) and (7) ho/d. Then 

1 7 -  642946 A c t a  ma themat i ca .  111. Imprim6 le 8 juin 1964 
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Ilull~.R< CR-nI~(IlulI~.~R + kR ~l~) 

and ]1 u~ ]1~. R <<- CR-'(II u ]1~. 2R + kRnl~), 

where C and k are constants depending only on the structure o] (5). In  par$icular 

C = C ( a , n , e ;  a,]lb]], R~Hc]], /{Hd]]),  

k = (11 e H + / V  H/]])1'(~-1) + (R e ]] g II)1/~, 

the norms o/ the coe//icients b through g being taken in the respective Lebesgue spaces (7). 

Proo]. We consider first  the  case when R = 1, wi th  the  solution correspondingly 

defined in the  open ball  S ( 2 ) c ~ .  Set 

~ = ] u l + k ,  x e 8(2), 

where  k = (11 ~ II + II/ll) 1~r + II g II TM" Then  obviously 

I B I ~< ~ Ipl ~-~ + ~l~l ~-~, (~s) 

p .  A > ~ l p l ~ - d l ~ , l  ~ , 

with  $=b+k~-~e ,  d = d + k ~ - ~ / + k - ~ g .  Moreover,  the  norms  of b and  d are bounded,  

I1511~<11b11+1, Ildll<lldll+2- 

The  proof  now rests  on an appropr ia te  choice of the  tes t  funct ion in relat ion (9). 

For  f ixed numbers  q ~> 1 and  1 > k we define the  funct ions 

F(~) = 

ql q- I Ct _ (q _ l ) l q if 1~<~2, 

and  G(u)=s ignu .  {F(~t)F'(Ct)~-l-q~-lkm}, - oo < u <  0% 

where  q and  fl are re la ted b y  ~q = a + fl - 1. Ev iden t ly  F is a cont inuously differentiable 

funct ion of the  var iable  ~, which is l inear beyond  the  "cu to f f "  value l. Similarly G 

is a piecewise smooth  funct ion of u, wi th  corners a t  u =  + ( l - k ) .  Now let  ~/=~(x) 

be  a non-negat ive  smooth  funct ion with  compac t  suppor t  in S(2), and  p u t  

r162 (u=u(x)). 

Since G is l inear in u for ]u I > l - k ,  i t  follows f rom the preceding section t h a t  r has  

s t rong der ivat ives  in L~. Thus  r is admissible in (9). 
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NOW in the set where ]u] # l -  k we have obviously 

with G,=Iq-lf l(F')  ~ if l u l < l - k ,  
L (~')= if l u l > ~ - k .  

Therefore, using (13) and the fact  t ha t  IGl~<F(F) ~-1 one has 

-~IGI {ClUxl 0r247 ~1@ -~} 

>/I~F'~=l ~ -  ~a I~Yl" I~P'~=l ~-~-  ~gl~Yl" I~F'~I ~-~-  c,TFI,TF'~=I ~-~ 

_ ~{q-1/~ I vl.F, ~21~ + ~ F  I~F'al=-l}, (14) 

valid wherever lu l# l -k . ( t )  The last inequali ty m a y  be fur ther  simplified by  sett ing 

v = v(x) = F(~). Since ~F' ~ qF we get 

~b;c" +4 + ~b~ >~ I~v~] :r -- aa  ] ~ v ] .  Iv/v~] :'-1 - ~q~-i ~ i~]zV] " (v/v)~-I 

- c ~ v l ~ v = l = - i - ( l + f l ) q  ~ ~i(~v) ~. (15) 

I n  the set where l u l = l - k  we have ~ z = a ~ - ~ x G  and u z = ~ = 0  (a.e.), so tha t  (15) 

holds also on this set. We m a y  therefore integrate (15) over S(2), with the result  

+ fc~vl~v:l:-ldx+(l+~)q:-=~d(~v):dx. (16) 

Here for simplicity we have wri t ten 1[-[[: ra ther  than  [[. [l:,:- 

The terms on the r ight -hand side of the preceding inequali ty can be est imated 

by  using HSlder 's  inequali ty together  with Lemma 4. Thus 

fl~:vl. I~vxl= ~ [l~:vll: ]l~v:llv 1, l d x  

~b (~v) :-1 II II~+<=" II~:vll: II ~v I[::: ],:v I" dx 

c II ~xv I1= [I (~v)xll: -1 

c([[~:vl[==+ II~=vll=ll~v:ll:-l}. 

(1) The substitution lu:l = la:l is obviously valid in the set where lul*0" Xt ~lso holds when 
u = 0, since uz = 0 almost everywhere on this set. 
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The letter C here denotes a constant (which usually changes from one line t o  the 

next) depending only on the quantities listed in the statement o] the theorem. Similarly 

e 1-e ~(-1 

< II Zll ~.~-~)II ~ II: II ~ II:- ~ 

< o II ~v II= {ll ~xv II: -~ + II ~v~ II:-~}. 

If the four previous estimates are inserted into the right-hand side of (16), and we set 

the result may be written 

z~'<~C[z=-l+~-l(l+z'-i)+~'(z=-l+z~'-')+(l+fl)q~-lU(l+z~'-~)]. (17) 

Applying Lemma 2 and simplifying the result, one obtains (since 1 + f l <  (~+ 1)q) 

z ~< Cq'/~ (1 + ~), 

or in terms of the original quantities 

tl ~vx II. < Cq~(ll~ v [l~ + II n~v [[.). (is) 

Another use of Lemma ,4 yields finally 

II 7 ,  II ~. < C q "  (ll 7 ,  II. + I[ , ~v  l b .  (19) 

The preceding inequalities (18) and (19) are the basic estimates of the paper; they 

will appear in one form or another in almost all of the following results. 

To proceed with the proof of Theorem 1, let h and h' be real numbers satis- 

fying h' < h ~< 2. Let  the function ~/ be chosen so that  ~/= 1 in S(h'), 0 ~< ~/~< 1 in S(h), 

and identically zero outside S(h). We can do this, moreover, in such a way that  

Max[~/x] =2(h-h ' )  -~. Setting this function into (18) and (19) yields immediately 

II v~ II..~. < c r  - h') -1 II v II..~ (20) 

and  }l v II ~..~' < c r  '~ (h-  r)-I  II v II ~.~. (21) 
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We may let l-->oo in inequality (21), Since v -+~  q, one Obtains by virtue of Lebesgue's 

monotone convergence theorem, 

II ~~ I1~,..,,. ~ cr  (h - h')-1 II ~' I1,,.,,. (22) 

Note that  this is valid irrespective of the finiteness of either norm. Finally, (22) may 

be simplified by  setting 

p = ~ q = ~ + ~ - l ,  ~=~*/~=~/(,~-~), 
whence it becomes 

II ~ I1,,,.,,. < [e(p/~)'; (h - h')- if"" II a I1,-,- (2a) 

The required conclusion follows by iteration of this inequahty. We 

v = 0 ,  1,2, ..., 

set, for 

and h ,=  1 + 2 - ' ,  h: =h,+l, whence (23) becomes 

II ~ I1,,,,.,,,+, ~ O"~'K ' "  II ~ Ih,,.,,,, 

where K = 2~ ~/,. I teration yields 

since both series are convergent. Letting v--> oo, and observing that  II ~ II =., < lira H fi Ilp:. n,, 

there results 

I1~11~.,< cll~ll,.~. 
Recalling that  ~ = l u l  + k then yields the  ,conclusion 

II ~ll-.~ <- c{l lulk~+ k}. 

This proves the first p a r t  of the theorem for t h e  case R = 1. The second part  follows 

immediately by setting q= 1, h ' =  1, h = 2  in (20). 

To complete the proof it remains only to show that  the general case R 4 = 1 can 

be obtained from the special case R = 1. This involves only a simple change of linear 

dimension, however, which the reader may carry out for himself. Theorem 1 is there- 

fore completely proved. 

THEOREM 2. Let u be a weak solution o[ equation (5) de]ined in some open ball 

S(2R) c ~ .  Suppose that ~ = n  and that ~ i t i o n s  (6) and (8) ho/d. Then  
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II ~11=,. ~ oR-~(II uil..2R + kR) 

and II uz [I n.R <~ CR-l([I u IIn.2R + kit), 

where C and k are constants depending only on the structure o/ (5). In  particular 

o=o(n,~; a,~llbll, R~llell, R=lldll) 

and k = (liV lie ]i § R~ ]1/]l)l/(n- 1) § (liV ]l g ]l)lln. 

Proo/. Although this follows the same pattern as the proof of Theorem 1, certain 

alterations are necessary because the Sobolev inequalities must be applied in a slightly 

different way. Up to and including inequality (16) there are, of course, no changes. 

The various integrals in (16) are then estimated as follows, with ~=n(1  +e /2n )  -1 and 

e' = e(n § 1)/2n, 

~ [ ' x  l" (•?))n-1 dx  < II bll 1[ IIn/( 1 II II ~:1 V V +e') ~v 

~< c II ,~. ~, II .,,, +,.)II (,Tv). II ~, -~ 
n-1 c 11,7,,, II. II ( ~ ) ,  II, 

c{l l ,~.v I1." + II,w, II, 11,Tv. I1,"-'}, 

fC~V I'~Ytl "--1 dx : f<,~v)":(,7,,)l-": 1,7,,:1"-' d= 

e n 1 z) V e/2 V 1 el2 V z l l n - 1  <11 II , , -  11,7 I1~, II,1 I1~: I1,~ 

~< c II ,Tv I1:~ ~ (II ,7, v I1"-"~- II ,~,,. '~- '  + II ,7,,. II ~ - %  

and = 

< II ,~ IIn,(---)II ,Tv liE' II ,Tv I1~:"' 
8/2 n -8/2 n -el2 "~ <cll,~,,lln {ll,w~ll. + l l ,~ , , : .  ~. 

This leads exactly as in Theorem 1 to the inequality 

11,Tv, ll, < cq~"'8(ll,Tv II. + II,~:vll,). 

Application of the Sobolev inequality with exponent ~ gives next, as in Theorem l,  

II ,~ I1~.. ~, ~ cq  ~n'8 (h - h ' ) - '  II v II.. ~. 

The rest of the proof is exactly the same as Theorem l,  except that  now u = ~*/n = 2n/e. 
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Remark. Both Theorems 1 and 2 remain true for the equation 

div A(x, u, u~) = B(x, u, u~) + C(x, u), 

where the functions A and B are the same as before, while C is subject only to the 

simple restriction u C(x, u)>10. The only change which this requires in the proof is 

to note tha t  the integral of the left side of (15) is now equal to - ~ r  and is 

therefore non-positive. Then (16) holds as before, and the rest of the proof is identical. 

2. Uniform estimates. A maximum principle 

The estimate of Theorem 1 can be made uniform over the whole domain of 

definition of the solution, provided tha t  u is continuous in the neighborhood of the 

boundary. More precisely we have the following result, whose s ta tement  will be re- 

stricted for simplicity to the case ~ < n. 

THEORE~ 3. Let u be a weak solution of (5) in a domain D ~ .  Suppose u ~ M  

on the boundary of D, in the sense that /or every e '> 0 there exists a neighborhood o F 

the boundary in which u <~ M §  e ~. Assume also that o~ < n and that conditions (6) and 

(7) hold.(1) Then 

maxu<C(IDl-l~=ll~lL~,+k)+ M, ( ~ = M a x ( O , u - M ) ) ,  

where C and k depend only on the structure of (5). In  particular 

and 

where the norms o F the 

spaces (7). 

(24) 

C : C ( ~ , n , ~ ;  IDl:'nllcll, IDl:'nlldll) 

k :  (IDI :'n II/II)'+<:-'> + (IDI :+n IIg II) ~':, 

coe/ficients c through g are taken in the respective Lebesgue 

Remark. The symbol max in (24) of course stands for essential supremum. This 

agreement will be followed also in later theorems. 

We should also mention tha t  a result similar to Theorem 3 was obtained by  

Stampacchia [23, 24] and Mazya [11] n the case of linear divergence structure equa  

tions. 

(1) The inequality I A l < a l p l : - l + b l u l = - ' + e  is in fact unneee:sa:y, except that we must of 
course require A (x, u, ux) E L~/<x_1). 
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Proo[. We as sume  first t ha t  ]D I =  1, and  define for x E D, 

~ = M a x  (M + e'~ u) + ]c- M - e ' .  

Then obviously we h a w  

I B l < c [ p [ : - : + ~ l ~ [  :-1, p . A > ~ l p [ : - ~ l ~ l : ,  (25) 

with I1~11 bounded as in the proof of Theorem 1. The proof now rests on an  appro- 

priate choice of the test  funct ion 4. We consider two real functions F(~) and G(u), 
the funct ion F(fi) being the same as in Theorem 1, while 

G(u) = F(~) F ' ( ~ ) ~ - I -  q~-i k/~ ' - c~ < u <  oo. 

Ev iden t ly  G is a piecewise smooth  funct ion of u, w i t h  comers  at  u = M + e '  and 

M + e' +:( / -1~) .  Moreover, G--  0 for u < M + e' and G is linear for u > M + e' + (l - k). 

Thus  it is clear t h a t  the funct ion 

r = G ( u ) ,  (u  = u (x ) ) ,  

is admissible in (9). 

For  u > M + e' and different f rom M + e' + (1 -  k) we have r = G' (u) u~, with 

G , = { q - l ~ ( F ' f  if u < M + e ' + ( l - k ) ,  
( F ' ) =  if u > M + e ' + ( l - k ) .  

Hence, sett ing v = v(x)=F(~), we obtain as in the proof of Theorem 1 

~b~ . ,,4 + ~ B >1 Iv~[" - cv }vzl ~-1 - (1 + fl) q~-I ttv ~, (26) 

valid in the set indicated above. Outside this range we have ~ =  0 and ~x = 0 almost  

everywhere,  so t h a t  (26) in fact  holds almost  everywhere in D. Therefore, integrat ing 

over  D and using (9), we have 

II v=H~, ~ fcvlv:[ : - ldx  + (l + ~)q:-I f~v :  dx. (27) 

These terms on the r ight  side can be es t imated by  using HSlder 's  inequali ty together  

with Lemma 4.(1) Thus 

(1) The function v has not compact support, of course, but v -  ]r a does. Thus from Lemma 4 

[{v-k~]]~,< Const. [[(~-k~)=][,, 

and hence Hv}{~ * ~< Const. {Io=H=+ k ' l D l ' = ' ~  Const. [{v=l].+ ID1-1~" I l v L  
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< o{ll,  ll: II v= I1: -~ + II, I1=" J[ v= ll: '}, 

fdv=d~= f ~ + + - ~ d x  

< II ~ Jl,+<:-:)II vii: tl ~ tl::: 

<c(llvl[:  IIv:ll= +II,ll:}. 

Inserting these estimates into (27), and setting z--I[vz[l:/l[vll:, y ie lds  

z:<ofz:-,+z:-~ +q=+:-,+ l)], 

whence by Lemma 2, z<~ Cq ~ ,  

tha t  is I1~=11= < Cq~:llvll:. (28) 

Applying Lemma 4 once more (see the preceding footnote) gives finally 

II v II:, < cr II, I1:, (29) 

We may  no w carry out the iteration process of Theorem l, with the important 

exception that  there is no necessity to reduce the radius at  each step. The final 

result is clearly 

II ~11= < c II ~ll:. (30) 

Recalling the definition of ~ this is easily seen to imply 

max u < M +  e '+  C( II +2 II= + k). 

To obtain the required conclusion we let e'-+0, and then normalize back to the given 

value of IDI. 

THEOREM 4. l e t  u satis[y the hypotheses o/ Theorem 3. Then there exists a con- 

stant Do, depending only on the structure o[ equation (5), such that i/ [D[<D 0 then 

max u < M + Ck. 

Proo/. I t  is convenient to make use of the calculations already carried out during 

the proof of Theorem 3. Retaining the assumption that  [D I = ], we obtain respectively 

from H61der's inequality, Lemma 4 (footnote), and inequality (28)wri t ten for q = l ,  



2 6 4  JAMES SE RRIN 

II II I1 . < Const. II + k CII + k. (31) 

Now suppose that  in the original definition of ~ the constant k is replaced by e - l k  

where 0 is a (small) positive number to be determined later. Then in place of (31) 

we obtain 

I t  will be important  to assess the dependence of C on the parameters [[ c ][, ]1 d H, and 0. 

Assuming that  [I c]l, Ildll, and 0 are all ~ 1, say, one easily finds that  

C = Const. (t[ c II + IId l[ TM + 0(g-1)/~r 

where the Const. depends only on g,n,  and ~. Clearly if 0(~< 1) is chosen suitably 

small, and if II c]l § IId II ~< 0, then we may take C ~ ~. Consequently we have from (31') 

11 ll <2o- k. 

Substituting this into (30) yields finally ]]~][~ ~Ck,  that  is to say, max u~<M+ Ck. 

The proof is completed by observing that  the values of II c I], H d ]8 which actually arise 

through normalization to unit volume are ID] ~/n Hell and [nle/'lldl], whence we may 

take D 0 = 0 "z~ (11 c II • n d II )-n/~. 

Remarks. If c=  d = 0  in (6) then Do= ~ and the maximum principle holds for 

arbitrary bounded regions D. 

Finally; we observe that  these results also hold if the hypothesis u ~<M on the 

boundary is replaced by the assumption tha t  u is the strong limit in W I ( D ) o f  con- 

tinuous functions which are ~ M on the boundary of D. We leave the details to the 

reader. 

3. The Harnack inequality 

The following theorem of Harnack type will be used to estimate the HSlder con- 

t inui ty of solutions of (5), and will also be of importance in our later discussion of 

the behavior of a solution near an isolated singularity. The main idea of the proof 

is the same as in Moser's celebrated paper, though the details are considerably more 

delicate and involved. 

THEOREM 5. Let u be a non-negative weak solution o/ equation (5) in some open 

ball S ( 3 R ) c ~ .  Assume that a < n  and that conditions (6) and (7) hold. Then 

max u ~< C (rain u + k) in S(R), 

where C and k are constants depending only on the structure o/ (5), as in Theorem 1. 
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Proo/. I t  is enough to prove the result for the ease R =  1, with the solution 

correspondingly defined in an open ball S(3). By  Theorem 1 the solution is bounded 

on any  compact subset of S(3). Thus if ~ is a non-negative smooth function with 

compact support  in S(3), then 

r  ~, a = u + k + g  

is admissible in (9) for any  real value of fl and any  e' > 0. I t  is our purpose to insert 

this function into (9), and in this way to derive an estimate similar to (18). The 

resulting calculations are slightly different in the ranges 

f l < l - ~ ,  1 - ~ < f l < 0 ,  f l > 0 ,  

while the values f l=  1 - a  and f l = 0  are singular. We take up these various cases 

in order. 

I. fl > 0. Here the calculation is essentially the same as tha t  of Theorem 1, with 

v = ~q and q and fl related by  ~tq = a +  f l -  1. In  carrying out the details it is helpful 

to note tha t  ~q and ~ here correspond to F(~) and Const. G(u) ill Theorem 1. The 

main difference is tha t  there is no longer a cutoff value l, so tha t  we must  always 

use the formulas of Theorem 1 corresponding to the range lul<l-k. This means, in 

particular, that  the factor q-lfl should be inserted in front of the first term on the 

right sides of (14) and (15), and in front of the term on the left side of (16) and (17). 

Thus we have finally 

flz~<~C[qz~-l+q~'(l§247247 (32) 

the notation being the same as in Theorem 1. Applying Lemma 2 then leads to 

Z • Cq ~r (1 § ~ -  1)1/6 (1 + ~), 

where we have used the fact tha t  q >  ( ~ - 1 ) / ~ .  Thus 

[l~vx l[~ ~ Cr 1 + P-i)1~(ll'~v II~ + II~,~II~). (33) 

Choosing W as in Theorem I there results, in conclusion, 

ilvll=.,h.<cq~(h_h,)-,(1 +fl-~),~611vll.,h, (34) 

I I .  1 - : t < f l < 0 .  This goes as Case I,  except tha t  now q-Xfl is negative and 

inequalities (14) and (15) must  run the opposite way. Otherwise there are no essential 

changes, and we obtain finally 
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II v I1~..~, ~< v ( h - h ' )  -1(1 - /3_,)1, ,  I1 vll~.~, (v = ~~ (35) 

(the term q .... can be omitted since 0 < q < l ) .  

III .  /3 < 1 -  a. This goes exactly as Case I, except that  q is negative and absolute 

values are necessary. The result is 

Ilvll..,~. <. C(h-h')- l ( l  + lql)"+llvll.,~, (v=~O) 

(here one uses the fact that  [/31 > a - l ) .  Since the case /3=0 is trivial there remains 

only case 

IV. /3 = 1 -  a. Substituting the functions 

4,=,~a 1-~, 4,~=a(,7/~,)'-~,n + (1 -a )  (n/~,)'u~ 

directly into relation (9), we obtain with the help of (13) 

r  A + CB << (1 - a) (v/a)~ {] ux I ~ - a~ l a I ~} 

+ al~, l"  (~/a)'-' {a I. ,I "-~ + 5 lal "-~} + n ' a ' - ' { ~  lu~l'-~ + dial's 1} 

where v =v(x)=log~2. Hence integrating over S(3) there results 

( a - 1 ) [ ] , v z l l : < < . a a f l , ~ l - ] , v x ] ~ - i d x + a f s , ~ - l [ , z l d x + f c ~ l , v z l ~ - l d x + a f v T ~ d x .  (36) 

Before estimating the integrals on the right-hand side, it is convenient to specialize 

the function ~. Let  S be an arbitrary open ball of radius h contained in S(2). We 

choose v/ so that  ~ = 1  in S and 0~<~<1 in 8(3) ~ S .  This may be done, moreover, 

in such a way that  the support of ~ is contained in a concentric sphere about S of 

radius (3/2)h, and so that  Max[~/z[=3/h. Then by HSlder's inequality we have the 

estimates 

f (n - ~)/~ , - 1 1,7=l'l,Tv=l'-'dx~Ch II~v=ll. , 

f r~ ' - I  1,7~1 a~.< o h "  -, 

f ~,71,7,~,1"-' d~ <<. ch ̀ "-')" II I1:-', ~vx 

fd~'dx<~Ch"-', 
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where conditions (7) have been used a t  each stage. Inserting the preceding inequalities 

into (36) there follows 
V ~-1 11,7,,  I1: < 11,7 + h--=]. 

Thus by  Lemma 2 we have ][vx][,.s~< Ch ("-')/', since ~ / - 1  in S. Finally by Lemma 6 

and a simple use of H61der's inequality we obtain 

11V -- V S []1 ~< ~ h  [[ Yz [[1 ~'< Chi + n(a-D/at ][ ~)z ][~ ~ ~hn, 

tha t  is fsb,-v ldx<ClSl, (v= log~) .  (37} 

This estimate, valid for any  ball S contained in S(2), completes the discussion of 

case IV. 

This being accomplished, the required conclusion will now be obtained by  an 

iteration process somewhat similar to tha t  of Theorem 1. For any  real number/9 4 0  

we define 

(thus for p ~> 1 we have @(p, h) = II a II,.h)- Now from (37) and Lemma 7 it follows tha t  

f s(~) e~~200 dx" f s(2) e-v'v dx < 22n !~ , 

where po=2//C; the constant C is here the same as in (37), while 2 and /~ depend 

only on the dimension. Since v = l o g ~  this inequality m a y  be rewrit ten simply 

(I)(p 0, 2) < C r  -/90, 2). (38) 

Next,  put t ing p=gq=~c+fl-1 in (34) and (35), taking the qth root of each side, 

and combining the results in a single inequal i ty ,  we obtain 

(I)(g/9, at)  ~< [C(h - h ' ) - l  (1 § ]ill-1)1/e (1 §176 ctlp I~)(/9, h), (39) 

where u = a*/:r and /9 is any  positive number  other than  g - 1 .  We wish to iterate 

this inequality, beginning with (I)(/90, 2) and setting generally 

P~ = ~/90, v = 0, 1, 2, . . . ,  

and h~ = 1 + 2 -~, h: = h~+l. In  order tha t  (39) be applicable a t  each stage, the sucessive 

iterates ~ must  avoid the point /9 = ~ - 1 .  To accomplish this in a definite way we 
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shall in fact  choose a new initial value Po ~</90 so t h a t  the point /9  = ~ -  1 lies midway  

between some two consecutive iterates of /90. The value /90 being thus  fixed, we ob- 

serve t h a t  a t  all stages of the i teration process one has 

l f l l  = I /9  - - 1 ) I  i> 2 n -  ~ " 

The term ( l + [ f l ] - l )  lie in (39) can thus  be absorbed into the general cons tant  C. 

Application of the i terat ion process just  described then leads, as in the proof of 

Theorem 1, to the inequali ty 

max  ~ ~< CO(po,  2). (40) 
8(1) 

I t  remains to  examine the inequali ty of Case I I I .  Again sett ing 19 = aq and  taking 

qth roots, this inequal i ty  becomes 

O(~/9, h') >~ [ V ( h -  h')(1 + I/9 I)~'e] ~ 0(/9, h), 

where the sign is reversed since p and q are now negative. I te ra t ing  as before, with 

Pv = - u ' / 9 o  and hv = 1 + 2 -~, h: =h ,+l ,  there results wi thout  difficulty 

(I)(/gv+l, hv+l) ~ C -1 (1)( --/90" 2). 

Let t ing  ~-->oo then  establishes the inequal i ty  

rain ~ ~> C -1 O( -/90, 2). (41) 
8(1) 

The proof is now easily completed. F r o m  (40), (38), and (41), and a simple ap- 

plication of H61der's inequality,  (1) we have 

m a x  ~ ~ C0(/9'o , 2) ~< C~P(po, 2) ~< C ~ (  -/90, 2) ~< C min ft. 
S(1) S(1) 

Since ~ = u + I c + e '  this implies in tu rn  m a x u < . C ( m i n u + k §  Let t ing  s'---->O con- 

cludes the demonstrat ion.  

THEOREM 6. Let u be a non-negative weak solution o/ (5) in some open ball 

S(3R) ~ .  Assume that ~ = n and that condition8 (6) and (8) hold. Then 

m a x u ~ C ( m i n u §  in  S(R),  

where C and Ic are constants depending only on the structure o/ (5), as in Theorem 2. 

(1) To obtain O(po, 2) ~< C(I)(po, 2). In particular we find 

r 2) < Is(2)I ~/~:-~/~' r 2), 

where the exponent can be assumed less than (~-1) /p  0 since surely one can choose p0 >~-lp0- 



LOCAL BEHAVIOR Or SOLUTIONS OF QUASI-LInEAR EQUATIONS 269 

The proof may be omitted, since it is simply a modification of the preceding 

argument, in exactly the same way as Theorem 2 was a modification of Theorem 1. 

A Haruack inequality for the case ~ > n  will be proved in Section 5. 

4, Applications. H//lder continuity of solutions 

The Harnack inequalities of the foregoing section can be extended without diffi- 

culty so as to apply to arbitrary regions D. In  particular, the following result holds. 

THEOREM 7. I /  U is a non-negative weak solution o/ (5) in a domain D, and i/ 

D' is any compact subset o/ D, then 

m a x u ~ < C ' ( m i n u + k ' )  in D', 

where C' depends only on the structure o/ equation (5) and on the domains D and D', 

and k ' =  (llel[ + ]1/11) 1/(~ 1)4-Hgll TM. 

The proof is standard, depending only on covering D' with spheres and on a 

simple chaining argument. 

We turn now to a fundamental estimate of the HSlder continuity of solutions 

of (5). I t  is enough to consider the case a~<n, for when ~ > n the result is immediate 

from Morrey's lemma. Also, if ~ < n, it will be supposed that  e is in a more restric- 

tive Lebesgue class than originally supposed, namely 

e E Lnl(a-l-e),  

(e should now be less than both 1 and g - 1 ) .  In  this case the parameter k in Theo- 

rems 5 and 6 has the form 

We may now prove 

k = ( R  ~ II e II + II/II)1/(  1) + ( R  e II a II )1/:r 

THEOREM 8. Let u be a weak solution o/ (5) in a domain D c ~ ,  Then u is 

(essentially) H6lder continuous in D. Moreover, i/ l ul <~L in D and i] D' is any com- 

pact subset o/ D, then 

[u(x) -- u(y)] < H(k' + L) Ix - y I ~, x, y e D', 

where ~=2(~ ,n ,  ~; a, IIbll, IIctl, IIdl[), an i  H depends only on the structure o / ( 5 ) a n d  on 

the geometry o / D  and D'. 
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Proo/. I t  will first be shown tha t  u is HSlder continuous a t  any  fixed point P 

in D.  The general result will then follow easily. 

Thus let P be a po in t  of D, and let R be chosen so tha t  the ball S(R) has 

compact  closure in D. By a suitable change of variables we m a y  suppose R = 1. The 

expressions 

M(r) = max u, /~(r) = min u 
5(r) S(r) 

are then well defined for O<r<~ 1, and it  follows tha t  both functions 

f ~ = M - u  and u = u - #  

are non-negative in S(r). Obviously ~ satisfies the differential equation 

div ~(x,  ~, ~x) = ~(x, ~, ~x) 

with ~(x,  4, ~) = •(x, M -  ~2, - ~) and a similar formula for ~. These quantities clearly 

obey the inequalities 

I.~1 ~ al~J~-i § b I~1~-1§ ~, etc., 

where ~ = 2 % ,  g = e + 2 ~ b L  ~-1, etc. Thus we may  apply Theorem 5 (or Theorem 6 ) t o  

in the open ball S(r), with the result 

M - / ~ '  = max ~2 ~< C (min ~ + ~) = C ( M  - M '  § ~), 0 < r ~< 1, (42) 
S(r/3) ,~(r/3) 

where M ' =  M '  ( r )=  M(r /3) ,  # ' = / ~ '  (r)=/~(r/3).  In  this inequality the constant C depends 

on the variables listed in the theorem, while 

= ( r8 H ~ IJ + re J[ fH) 1/(g-1) + ( r* ]] g H) 1/~" 

In  the same way, we have 

M '  - ~u = m a x  u ~ C ( m i n  u + ~) = C ( # '  - lu + ~) .  (43)  
S(r/3) S(r/3) 

Adding (42) and (43) and transposing terms then gives 

M ' - ~ u '  C -  1 2C~ 
< ~ ( M -  t,) + C +---i" (44) 

Now ~ ~</r r~'~ where k0= (11 [I + IIt11) 1'~-' + (IlYII) 1'~. Thus setting 

v~ C -  1 2C/c o 
C + I '  C + I '  
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and  denot ing the  oscillation M - / x  of u in S(r) b y  co(r), we m a y  write (44) in the  

form 

co(r/a) --<v~{co(r) + Tr"f~}, 0 < r ~< i .  

Since co(r) is an increasing function,  i t  is clear t h a t  for a n y  n u m b e r  s ~> 3 one 

has also 

co(r/s) <~ ~{co(r) + ~r~l~}, 0 < r ~ 1. 

I t e ra t ion  of this relat ion f rom r = 1 to successively smaller  radii  yields 

co(s -v) ~< 0~{co(1) + 311 + (v%~/~) -1 + . . .  + (z~se/~)-u+i]}, (45) 

val id for v = 1, 2, 3 . . . . .  Now choose s according to the  relat ion 

whence f rom (45) follows 

zOs ~/~ = 2, (s >i 4). 

co(8 -~) < o'{co(1) + 2~}. (46) 

For  any  fixed e, 0 < e , . < s  -1, let ~ be chosen such t h a t  s - ' - l < e ~ < s  -~. Then  b y  

vi r tue  of (46), 

co(e) ~< co(s-v) ~< v~" {co(1) + 2v}. (47) 

Now one easily checks t h a t  co(1)+2v<~C(L+k) .  I n  addit ion,  if 7 is defined b y  the  

relat ion 2 - r = v  ~, then  we have  v~=s  -~ where 2 = e 7 / / ~ ( 7 + 1 ) > 0 .  Therefore  (47) impl ies  

co(Q) ~ C(L + k) e ~, e <- 2-(~+1)~/~, 

or when R ~= 1, co(e) ~< C(L + k) (e /R)  ~, e <<- 2-(r+l)~/~R" (48) 

This proves  t h a t  u is essential ly H61der cont inuous a t  P .  

I t  is a tr ivial ,  t hough  not  ent i re ly  simple, t a sk  to  show t h a t  we can redefine u 

on a set  of measure  zero so t h a t  the  result ing funct ion is H51der cont inuous a t  every 

point  of D. Leaving  aside this demonst ra t ion ,  the  first  pa r t  of the  theorem is there-  

fore proved.  The  second pa r t  follows easily f rom the es t imate  (48), using a simple 

chaining a rgmnen t  (choose R = M i n  (1, ~), where ~ is the  distance f rom D '  to the  

bounda ry  of D). 

5.  T h e  H a r n a c k  i n e q u a l i t y  for  a > n 

I n  the foregoing sections we have  considered the  major iza t ion  and  cont inui ty  of 

solutions when a ~< n. The  s i tuat ion for  ~ > n is somewha t  different,  since b y  Morrey ' s  

l e m m a  solutions are necessari ly bounded  and  H61der cont inuous on compac t  subsets  

18--642946 Aota mathematica. 111. Imprim6 le 9 juin 1964 
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of their  domain of definition. For this reason we may  confine our discussion solely 

to the Harnack inequality. 

We retain the basic structure (6), and assume further tha t  

b, eEL~/(~_l); eEL~;  d , / , g E L  1. (49) 

Then the following result holds. 

THEOREM 9. Let u be a non-negative weak solution o/ ( 5 ) i n  some open ball 

S(2R) c ~ .  Assume that ~ > n and that conditions (6) and (49) hold. Then /or any two 

points x, y in S(R)  we have 

u(x) <~ {u(y) § k} exp {C(Ix - yl/R)l-n/~}, (50) 

where C = C( o~, n; a, R (~- n),~, II b II, R(~- n)l~ II c II, R~-~ II d H) 

and k =  (R ̀a-n)/~ lie[[ § ~-n II/H)l!,a-1, § (R ~-" II gl]) 1,~, 

the norms o/ the coe//icients being taken in the respective Lebesgue spaces (49). 

Proo/. Suppose first tha t  R = 1. Let  ~ be a smooth function with compact support  

in 8(2), such tha t  ~1= 1 in S(1), and 0~<~1~<1 in S (2 ) -S(1 ) .  Now set 

r  = ~'a  1-" 

in (9), where 4 = u + k + e'. Then, as in Case IV of the proof of Theorem 5, we find 

(a-1) H~lvxH~<<.~fa[,~[.],v~]~ idx§247 

Here v = l o g ~ ,  and ~ and d are defined as in Theorem 1. We may  assume tha t  

Max [~/~] = 2, hence by H61der's inequality 

II, , ,  I1: c [1 + I1 ,v ,  117']. 

Application of Lemma 2 then yields (since 7 - 1  in S(1)) 

Ilv=ll  <c, (5a) 

the integral being taken over the unit  ball S(1). 

Since 11 v~ 1[~ is finite we conclude from Morrey's lemma tha t  v is HSlder continuous 

in S(1), 

I V(~) -- v(y) l ~ 0 IX -- y 11- n/.. 
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But  v = log ~, so tha t  this implies 

~ ( x ) ~  ~(y)e clx-yll-'/~, (x, yES(1)) .  

Recalling the definition of ~, the required inequality now follows immediately. The 

case R 4  1 offers no additional difficulty, and the theorem is proved. 

As an immediate consequence of Theorem 9 we have the result tha t  

max u ~ C (rain u + k) ; 

this is, of course, considerably weaker than  the actual inequality (50). 

6. Generalizations 

We begin by noting tha t  certain equations which nominally do not fall into the 

categories above can in fact be considered as special cases. In  particular, in case 

~ <  n let us suppose tha t  (6) is replaced by  

1.41 <-..a([pl ~-1 + [ul(~-l'/~ + e), 

] B ] <a(]p]  ~-~ + ]ul(=-~ §  

p-  >/Ipl a(lu]~'~ + g), 
where ~ = ( n - ~ +  ~ ) / n .  I f  we now consider a /ixed solution u, we can set 

b(x)=alu] (~-1)(1-~)1r c(x)=alux] 1-~, d(x)=a]u] a(i-O/~ 

and it  is easily verified (assuming tha t  ux E L~, u E L~.) tha t  conditions (7) are in fact 

satisfied. Thus the conclusions of Theorems 1, 3, 4, 7, and 8 remain valid, with the 

exception that  the coefficient C now must  depend on the W 1 norm of the solution. 

A similar result holds when a>~n, but  it is not necessary to carry this out in detail. 

A slightly different situation arises if we know a priori tha t  u is bounded. Then 

under genuinely weaker conditions it is  possible to carry through the arguments leading 

to the Harnack inequality and the HSlder continuity of solutions. Since a result of 

this sort will not be required in the later sections of the paper, we shall not pause 

to consider the situation in any  detail. I t  may  be remarked, however, tha t  the argu- 

ments of references [8], [9] are in general based on such an a priori estimate for the 

magnitude of u, which partially explains the difference between their hypotheses 

and ours. 

In  conclusion, there has been some interest in the situation when the "inhomo- 

geneous" terms e, /, g do not lie in the respective Lebesgne spaces (7). For this case 

we have the following results, analogous to Theorems 1, 3, and 4. 
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THEOREM 1'. Let the hypotheses o/ Theorem 1 be satis/ied, with the exception that 

eEL~,,  / E L f ,  g E L  t, where 

1(1 =)1 
~ - 1  - ~ t - n  - ( r  

and (r is some number in the range ~* <~ a < ~ .  Then 

II u I1~.~ < OR"~ (11 ull:.:~ + kR~+:), 

where C and k depend only on the structure o/ equation (5). 

Proo/. This proceeds in the same way as Theorem 1, except tha t  we take the 

initial substitution in the form 4 =  [u I . I t  is clear tha t  certain terms involving e , / ,  g 

must  then be carried along in relations (14) through (23). In  particular, to the right 

side of (16) one must  add the expression 

"(~lv)~"q-ldx+q~-lf/OTv)~Jqdx+flq~-lfg(~ v)~(q-l)lqdx" ~q~-I el~Tzv [ 

These integrals can be estimated only if q ~< a /a* .  For example, with this restriction 

on q one has 

f e I,=vl" (,") fl/q-idx~ II ell~. II,=vll= II,vllg; ~-1 

o(lle II~e'(:-:> + II ~:~ I1:) + Const. II ~v: I1:, 

where the constant in front of Ilnv=ll: can be taken as small as we like. The re. 

maining two integrals likewise have similar estimates. Thus, by  following the steps 

of Theorem 1, one obtains in place of (23) 

II ull~. h,-< O (h-  h') -~'p {tl ulb.h + II e I1". (=-1) + IItll 1'(~-1, + II gll,~'~}, 

valid for p = a q  ~< a /u .  The required conclusion now follows by  a [inite i teration of 

this inequality. 

THEOREM 3'. Let the hypotheses o/ Theorem 3 hold, with the exception that e , / ,  g 

are assumed to be in the preceding Lebesgue classes. Then 

II ~11o., < c l n l  x"-l'~ (ll ~ II=.o + IDl"=k). 

where ~ = M a x  (0, u -  M) and C and k are constants depending only on the structure 

o! (5). 
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This is proved by  the a rgument  of Theorem 3, beginning with the subst i tut ion 

~ = M a x ( 0 ,  u - M - e ' ) .  The details can be omit ted,  as also in the case of 

THEOREM 4'. Let u satis/y the hypotheses o/ Theorem 3'. Then there exists a con- 

constant Do, depending only on the structure o/ equation (5), such that i /  ID] <~D o then 

[[~rl~,. < ClD[~/~ 
where ~ = Max (0, u - M). 

There are also similar results for the  case ~ <  a*, though  the proofs are quite a 

bit  more delicate. Since this case is somewhat  artificial (recall t ha t  u is always locally 

in class L~,), the discussion m a y  be omitted.  

II. Removable singularities 

The methods  of Chapter  I will here be used to prove two basic theorems con- 

cerning the removable  singularities of solutions of equat ion (5). We shall retain the 

s tructure outlined in the opening discussion of Chapter  I ,  with the exception tha t  e 

will be assumed in Ln/(~-i ~) ra ther  than  Ln/(~_l ). 

We m a y  fur ther  confine the discussion to the case ~ ~< n, for the  al ternate  case 

> n  can admi t  no removable  singulari ty theorems of the ordinary  sort. Indeed,  con- 

sider the equat ion 
div(ux]ux]~-2)=O 

with :r > n. I t  is easily checked t h a t  u = r (~-n)/(~-l) is a bounded solution in the domain 

0 < r <  1. On the other  hand,  the origin is definitely a non - removab le  singularity for 

this solution, since if r is a cont inuously differentiable function with compact  support  

in the uni t  open ball, then 

_ ( ~ - n ~  ~-: 

and  this need no t  vanish. Tha t  is, when ~ > n there can exist bounded solutions with 

non-removable isolated singularities. The above example indicates in addit ion the type  

of behavior  one can expect  a t  an  isolated singulari ty when ~ <  n, and will therefore 

be useful in test ing the sharpness of some of our later  results. 

7. Statement of results 

I n  the following it is convenient  to restrict  consideration to continuous solutions of 

(5), t h a t  is, weak solutions which have fur thermore the proper ty  of being continuous 
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functions. This involves no real loss of generality, of course, since by  Theorem 8 any 

weak solution can be made continuous by  appropriately redefining it on a set of 

measure zero. 

We shall require also the notion of capacity. Let  Q be a bounded set in E n. 

The s-capacity of Q, 1 ~<s < co, is defined to be 

inf f l xl" dx, 

where the infimum is taken over all continuously differentiable functions ~ which are 

>/1 on Q and have compact support  in E" (if s >~ n, we require compact support  in 

some fixed sphere I xl < R0). When s = 2 this definition reduces to the familiar one of 

potential  theory. We may  now state our fundamental  result. 

TH~.OR~.M 10. Let Q be a compact set o/ s-capacity zero, where ~ s < ~ n ,  and let 

D be a domain in ~ .  Suppose that u is a continuous solution o/ (5) in the set D - Q ,  

and that /or some ~ > 0 we have 

u E Lo(l+o), 0 = s(g--  1)/(s--  g). (52) 

Then u cau be defincd on the set Q so that the resulting /unction is a continuous solu- 

tion o/ (5) in all o/ D. The exponent 0 in (52) is best possible. 

As  a special case, i/ the g-capacity o/ Q is zero, then Q is a removable singularity 

/or any bounded solution o/ (5). 

This theorem has several corollaries which further clarify its meaning, and relate 

the size of the exceptional set to the classical concepts of potential theoretic capacity 

and Hausdor/ /dimension.  (Definitions of these concepts appear  in references [1] and [26], 

and in other places; they may  be omitted here since the corollaries will not be used 

in the sequel.) 

COROLLARY 1. Let Q be a compact mani/old o/ Hausdor//  dimension m, and let 

D be a domain in ~ .  Suppose that m < n -  g. Let u be a continuous solution o/ (5) in  

D - Q ,  such that /or some (~ > 0 

u e Lo(l+~), O= ( n - m )  ( g - 1 ) / ( n - m -  o~). (53) 

Then u can be defined on the set Q so that the resulting /unction is a continuous solu- 

tion o/ (5) in all o/ D. 



LOCAL B E H A V I O R  Oil" SOLUTIOI~S OF Q U A S I - L I N E A R  EQUATIOI~S  277 

Proo[. Le t  Ap denote  the  Hausdor f f  p -measure  of the  mani fo ld  Q. Then  c lear ly  

A m ~ =  0 for a n y  e > O. This  impl ies  (cf. [26]) t h a t  the  s - capac i ty  of Q is zero, where  

s = n - m - e. On the  o the r  hand,  b y  (53) 

s ( a -  1) 
u e L ~ ,  ~ =  (1 + 5'), 

( s -  a) 

prov ided  e is su i t ab ly  small .  I t  now follows f rom Theorem 10 t h a t  Q is removable .  

COROLLARY 2. Let Q be a compact mani/old o/ potential theoretic A-capacity zero, 

and let D be a domain in  ~ .  Suppose also that 0 <~ ~ < n - a  or that 2 = n -  a and a >~ 2. 

Let u be a continuous solution o/ (5) in  D -  Q, such that /or some ($ > 0 

u E Loo+~), 0 = (n - ~) ( a -  1 ) / ( n -  ~ t -  a). 

Then u can be de/ined on the set Q so that the resulting /unction is a continuous solu- 

tion o/ (5) in  all o / D .  

Proo/. If  0 ~ < 2 < n - a ,  t hen  b y  [26], Theorem A, the  s - capac i ty  of Q is zero, 

where s = n - 2 - e .  Thus  Q is removable ,  as in Corol lary  1. I f  2 = n - a  and  a > / 2 ,  

t hen  ~ ~ < n - 2  and  b y  [26], Theorem A, the  a - c a pa c i t y  of Q is zero. Since u E Loo in 

the  p resen t  case, we conclude once more  f rom Theorem 10 t h a t  Q is removable .  

Ano the r  s l ight ly  di f ferent  version of Theorem 10 can  be given if we replace  t he  

Lebesgue class hypothes is  on u b y  a s t r ic t  g rowth  p rope r ty .  F o r  th is  purpose  we 

u n d e r s t a n d  t h a t  a smooth  mani fo ld  of co-dimension s is a c ompa c t  set  in E n wi th  

the  p r o p e r t y  t h a t  there  exis ts  a C 1 d i f feomorphism x-->y of E n onto  itself such t h a t  

the  image  of the  mani fo ld  lies in the  hype rp l a ne  Yl = - . .  = ys=O. 

T~EOI~EM 11. Let Q be a smooth mani/old o/ co-dimension s, where a<--.s<.n, and 

let D be a domain in  ~ .  Suppose that u is a continuous solution o/ (5) in  D - Q ,  and 

that /or some ~ > 0  we have 

/ 0(r i/ s > a, 
u = [ O(llog ~11_~) i /  8 = a ,  

where ~ is the distance /rom Q. Then u can be de/ined on the mani/old Q so that the 

resulting /unction is a solution o/ (5) in  the whole domain D. (1) 

(1) If Q is a single point, and r denotes the distance to this point, the hypothesis of Theorem 11 
becomes u = O(r (~ e~) or O(llog rll-O). When cr = 2 this further reduces to u = O(r 2-n+o) or 
O(llogrli-~), as might be expected. Earlier results of this type appear in [6] and [21]. 
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When s >  ~ this theorem is a special case of Corollary 1 (if desired, the reader 

m a y  show directly tha t  Q has s-capacity zero and so reduce the result directly to 

Theorem 10). The case s = ~, on the other hand, requires its own separate proof. 

The proof of Theorem 10 will be given in the next  section. Following this we 

prove the logarithmic case of Theorem 11. Finally, in Section 10 we prove a lemma 

on capacity which was crucial at  one stage in the demonstration of Theorem 10. 

There is some interest in the existence of solutions with non-removable singu- 

larities. In  the following chapter we shall take up this question in some detail for 

the special equation divA(x,u~)=O. Here we shall only remark tha t  i/ a positive 

solution o/ (5) has a non-removable isolated singularity at a point P, then the solution 

necessarily tends to in/inity at P. Indeed by  Theorem 10 or 11 there must  exist a 

sequence of points xv, v =  1, 2 . . . . .  tending to P, such tha t  u(x~)-->~. We now wish 

to apply the Harnack inequality (Theorem 7) in annular domains about  P. For sim- 

plicity of notation suppose P is the origin. Then by  normalizing each sphere Ix] = Ix~l 

to radius 1 and applying Theorem 7 we obtain 

/~ = min u(x) --> ~ .  
Jxl=lxvl 

Finally by  Theorem 4 one sees tha t  (for sufficiently large v) 

u(x)>~Min(l~, /~+l)-Ck,  [x,+l[~<[x[~ < [x~]. 

The required conclusion follows a t  once. I t  should be noted tha t  this argument  is 

essentially the same as one in reference ~6]. 

8. Proof  o f  Theorem 10 

I t  is enough to show tha t  u can be made a continuous solution in the neigh- 

borhood of any  point of D. Thus let P be in D and let R be such tha t  the ball 

S(2R) is also in D. By a suitable change of variables it may  be supposed tha t  R =  1. 

As in the proof of Theorem 1 we define 

a=lul+k, x e S ( 2 ) - Q ,  

where ]g= 1 ~-(]]e][ ~-II/H)1/(~-1)-~ ][g]]i]g We now introduce an appropriate test  func- 

t ion r Let  z/ and ~ be non-negative smooth functions, ~ having compact support  

in S(2), and ~ vanishing in some negborhood of Q. Then since u is locally bounded 

and has strong derivatives which are locally in L~, it is clear tha t  the function 

r = ( ~ ) "  sign u-  { ~ -  ~}  
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is admissible in (9) for any  fl,>0. The resulting calculation(z) is essentially the same 

as in Theorems 1 and 5, and gives the results 

II ~v=  I1~ ~< Cq='~(1 + ~l)l ,~(ll~v I1= + II (~)=v ]D, (54) 

II ~vl l : ,  < Cq ~':(1 + ~-l)l/e(ll~v II= + II (~)=v II:), (55) 

where v = ~q and ~q = ~ + fl - 1. 

We now require a lemma, whose proof will be deferred until  Section 10. I n  order 

to formulate  the lemma more simply we use the nota t ion  U(Q) to  denote the class 

of smooth  functions ~(x) which satisfy 0 ~< ~ ~< 1 and vanish in some neighborhood of Q. 

LEMMA 8. Let  Q be a compact set o/ s-capacity zero, l ~ s<~n .  T h e n  there exists 

a sequence o/ /unctions ~<~) contained in U(Q) such that ~(~)--+ 1 almost everywhere, while 

]l~(:lls-+0. 
Now consider the term lib=vii ~ which appears  in bo th  (54) and (55). We have, 

if s > ~ ,  
[ ~ \ l -~ /S  

. 

Choosing fl = fl0 = ~(~ - l) one finds tha t  ~qs/ (s  - ~) = (~ + fl - 1 ) s / ( s  - a) = 0(1 + ~), whence 

using the hypothesis  (52), 

II ~=v II: < Const. II ~: Ils. (56) 

On the other  hand, if s = ~  then O= o+ and by  hypothesis  u E L ~  and [ [~v[[~< 

Const. [[~/~[[=. This being shown, let us replace ~ in (54) and (55) by  the elements 

~(") given by  Lemma 8. Then  letting v--+.c~, we obtain  from the dominated  conver- 

gence theorem 

II ~v:ll: ~ Cq:': (ll ~v I1: + II ~:vll=), (57) 

II vo I1=, ~< cq:':(ll vvll= + II ~:vlD, (hS) 

where the norms are taken  over S ( 2 ) -  Q, and the constant  C now depends also on 

the value of ~}. 

I f  ~ is now chosen as in Theorem 1, inequali ty (58) m a y  be wri t ten in the form 

(I)(upo, h') <~ [C(po/~) :j: (h - h ' ) - l ]  :/p~ (I)(po, h), (59) 

where P0 = ~ § fl0 - 1 = (~ - 1) (1 + (~), and Op(p, h) = (~s(a)-Q uPdx) 1/p. 

(1) F o r  s impl ic i ty  we suppose  t h a t  cr The  case r  requi res  on ly  t r iv ia l  changes  (cf. 
T h e o r e m  2). 
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W e  wish to  proceed as in Theorem 1, ob ta in ing  a cor responding i ne qua l i t y  for  

each /o > P0- This  requi res  a more  de l ica te  choice of the  t e s t  func t ion  t h a n  previously .  

F o r  q >7 qo =Po/~ and  / >  k, we define 

{ ~q if k<.~<~l, 
F(~)  = 

q~i[qlq-q~ if l ~<~, 

and  G(u)=signu.{F(~)F'(a)'-l-q~-l~}, - ~ < u <  cr 

where q and  fl are  r e l a t ed  b y  :r = ~r + f l -  1. E v i d e n t l y  F is a con t inuous ly  differen- 

t i ab le  func t ion  of ~, a n d  G is a piecewise smoo th  funct ion  of u, wi th  corners  a t  

u = _  ( l - k ) .  Moreover ,  these  funct ions  have  the  p roper t i e s  

F <~ (q/qo) P-q'~q~ ~F' < qf, 

if lul< -k, 
and  G'~> [ q ~ l f l 0 ( F ) a  if ]u]>l-k.  

The f i rs t  two of these inequal i t ies  are  qui te  s imple to es tabl ish .  The  th i rd  arises from 

the  calcula t ions  (1) 

G'(u) = (F ' )"  + ( a -  1) FF"(F') ~-9 

=(F')~+ (o~- l ) ( V )  (F')~=q-l fl(F')~ 

if ~ <  l, and  G'(u) = (F')~ (a-  1) FF"(F') ~-2 

>~(F'):'+(~-l)(q~ 

when ~ > 1. W e  m a y  now subs t i tu t e  

r = (,70) a ( u ) ,  (u = u(x) )  

in to  (9). Since IG]<~F(F')~'-I, one f inds e x a c t l y  as in Theorem 1 t h a t  

where  v = v(x) = F($). 
Since v~<Cons t .$  "~ i t  is c lear  as in the  ear l ier  p a r t  of the  proof  t h a t  

Con~t. I1  11 . Thus  replac ing  0 b y  z~ (') a n d  le t t ing  , - + c r  we ob t a in  

(x) For the range q2>l we use the relation qo~<l, which is in turn equivalent to fl0~<l and 
hence to ($~< (g -1 )  -1. But this last inequality can always be assumed without loss of generality. 
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Here we may  let 1-->oo. Since v - + ~  q there results by  Lebesgue's theorem 

C ~/* ~q ~ + 

Finally, choosing ~ as in Theorem 1 (and as in the earlier par t  of the proof) yields 

r h') < [C(h - h')-l (p/zt)~'~*] :'Ip e)(p , h), (60) 

where p = zr P0. We emphasize tha t  (60) is valid whether or not  the integrals in- 

volved are finite. 

Now iterate the inequalities (59), (60) starting with P=Po. This clearly yields 

the conclusion 

II ll=.<cll ll.,, (61) 

where the left hand norm is over the set S ( 1 ) - Q  and the right-hand norm is over 

S ( 2 ) - Q .  But  ]]4[[,o~<]]al]0<1+~), so tha t  the right side of (61) i s  finite. Thus we have 

shown tha t  u is uniformly bounded on the set S ( 1 ) - Q .  

I t  remains to establish tha t  u can be made a continuous solution of (5) in all 

of S(1). Choosing ~ so tha t  ~ / - 1  in S(1), we have from (57) 

II v: II:.: -< Const. II 

Since ri0-<.l and ~ is bounded in S ( 1 ) - Q ,  this proves tha t  ux is in L~ on the set 

s(1)-Q. 
A set of capacity zero is also a set. of measure zero (see the corollary in sec- 

tion 10). We shall show tha t  if u is arbitrari ly set equal to zero on Q the resulting 

function is strongly differentiable in S(1). Indeed, for any  smooth function ~ with 

compact  support  in S ( 1 ) - Q ,  we have 

Setting q~=tlO , where ~/ has compact  support  in SOL then yields 

f u(~O~ + ~l~) dx= - f TlOuxdx. 

Thus replacing ~ by  ~ff) and letting v - - + ~ ,  we obtain from the dominated conver- 

gence theorem 
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f u~x dx = - f ~ux dx, (62) 

the integrals being evaluated over the set S ( 1 ) -  Q. I f  one arbitrari ly sets uz=O on Q, 
relation (62) becomes valid over all of S(1). But  this is just the condition tha t  u be 

strongly differentiable in S(1), and the assertion is proved. 

Finally, the functions /j(x, u, ux) and B(x, u, ux) are clearly in L~/(~-I) and L(~,). 

over S(1), and 

f (r .,4 + dx = O CB) 

when ~b has compact support  in S ( 1 ) - Q .  Again setting r we easily obtain in 

the limit as v - >  ~ ,  

f (~x" .,.4 + dx = O, 

valid whenever ~ has compact support  in S(1). I t  follows tha t  u, as defined over Q, 

is a weak solution of (5) in the ball S(1). Finally by Theorem 8 we can redefine u 

on a set of measure zero so tha t  it is HSldcr continuous in S(1). Since this rede- 

finition cannot effect the values of u on S ( 1 ) - Q ,  where it is already continuous, 

we see tha t  by  suitably assigning values to u on the set Q, it becomes a continuous 

solution of (5) in S(1), tha t  is, in a non-empty neighborhood of the point P.  This 

completes the main par t  of the proof. I t  remains only to show tha t  the exponent 

O = s ( ~ - l ) / ( s - ~ )  is best possible, and to prove Lemma 8. 

In  order to show tha t  O is the best possible exponent, consider the equation 

div (ux l u~ 1~-2)  = O, 

and let Q be the hyperplane x l = . . . =  x~ =O. Clearly Q has s-capacity zero. Now one 

checks easily tha t  the function 

/ e  ~ - ' )~ -~ ,  ~ < s  

u =  [ log q, :r 
(63) 

is a solution, where ~ denotes the distance to Q. Moreover, if :r < s then 

u ELo-a, 
for any  e' >0 ,  while if ~ = s then 

uti le ,  

for any  a < oo. Thus an exponent smaller than 0 in (52) would allow the solution (63) 

into competition, and the conclusion of the theorem would become impossible. 
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9. The logari thmic case of  Theorem 11 

By a smooth change of variables, leaving the form of inequalities (6) invariant, 

it may  be assumed tha t  Q is contained in the set 

x l = . . . = x ~ = 0 ,  I xl ~<3, (64) 

and tha t  D in turn includes the ball Ix[ < 2. In  fact, we may  even suppose tha t  Q 

is precisely (64), for this at  most enlarges the singular set. 

Now, retaining the notation of the preceding section, let us make the same sub- 

stitution 
r = (~)~  sign u .  { ~ -  k~}, (fl > 0), 

in relation (9). Then we find, by  separating out the terms involving ~x, 

q-1 fl II @vx [[: < ~af l,=v[" [@Vx] ~ 'dx + ~q=-l f sl,=v I �9 (@v) =-ldx 

.4- f c, vt,~vzl" ldx'4" (1.4- fl)q,-1 f cT(~v)'dx 

4- o:f[~zv]" (a [Vvx] ~-1-4- q~-I ~ (Vv)~-,)dx, (65) 

where it is assumed tha t  both ~ and ~ are less than  or equal to one. Next,  let p 

denote the distance to Q, and for fixed a > 0 choose 

0 if ~ < a  

~(x)=  1 if ~>~a+h, 

and linear in the interval a<<.O<<.a§ Now consider the effect of letting h - + 0  

while keeping a fixed. Since ]~xl=h -1 it is clear from Lebesgue's differentiation 

theorem that,  for almost all values of a, 

fl  vl (al~vzl ~-1§ q~-151~vl~-l)dx-~ v(a]~v~] ~-1 +q~-X5 ]~vl~-i)ds. 

The limit process on the remaining terms of (65) is trivial, hence we have for almost 

all values of a, 

q-l fl llnvxll: < ~a f lnxvl" l,v.l'-l dx + ~q'-l f S lnxvl" (,v)'-l dx 

+ f c,vlnv.['-iax+ (l + fl)q'-' f d(,v)'ax 

.4.o~ v(alr]vx]~-i.§ 
Q=a 
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the  volume integrals being t aken  over  the  set  where ~o > q. The first  four t e rms  on 

the  r ight  m a y  be es t imated  as in Theorem 1 (we assume ~ <  n for  simplicity),  wi th  

the  except ion t h a t  L e m m a  4 mus t  be replaced b y  the  slightly different  L e m m a  5. 

Thus  we obta in  wi th  the  help of L e m m a  2, 

][ ~vx ][g ~< C( 1 -~ fl-x)i/z qOt,le (H ~V ]]g -4- ][ ~xV ][~) "~ Ct~-ll~qI(q) 1/~ (66) 

where  I ( a )  = ~q=~ v( [~v~ [~-1 + $ [~v [~-1) ds. 

Now b y  H61der 's  inequal i ty  and  L e m m a  1 

[wv, l '+$"'- l ' l~vl ' )ds)  , 

while by  hypothes is  

~v~ds:~.~qds<~CffS-l]log(~l (~+~-1)(1-'), 

where C is some constant .  Since s=~ in the  present  case, one has by  set t ing 

fl = flo = (~(:r - 1) and e' = (~2, 

~vatd8 < O((T[ o ' [1 -e ' )  ~t-1 . log 

Fur thermore ,  since s > l  it  is easy  to see t h a t  the t e rms  II vll. and  II~xvll, in (66) 

are uni formly  bounded as a--> 0. Le t  us set  

J = J(a) = fQ>, [~vz]~dx, �9 = LF(x) = $~/(~-x)]~vl~. 

Then  noting t h a t  J ' ( a ) = - ~  ]~vx[~ds and using the  preceding est imates ,  a s traight-  

forward calculation establishes t h a t  (66) m a y  be wr i t ten  in the  fo rm 

( J -  K)~/(~-x) <~ Oallog all-"" ( -  J' + ~ ~'ds),  (67) 

where K = C~r , v  I1~ + II ,~v L) ~, 

the  norms  in the preceding line being t aken  over  the  set  where o > 0, t h a t  is, over  

the  complement  of Q. 

We assert  t h a t  J < K for  all a > 0. Indeed,  suppose to the con t ra ry  t h a t  a t  

some value a = a o  we have  J ( a o ) >  K.  Since J increases as a decreases we have  also 

J > K in the in terva l  0 < a ~< a o. Thus  set t ing H(a)  = J (a )  - K in (67) it m a y  be re- 

wr i t ten  
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1 H :1(:-1) __CH' + V a l l~  ~  I " %~, 1) ~Fds, 
H(o0) /< - 

valid for almost all values of o in the interval 0 < a <  0 0. Integrat ion of both sides 

from o to o 0 yields 

- 1 1 C 
1- ([ l~ o ] " -  [ l~ o0[e') ~< ( ~ -  1) C [H(o0)l/<~-l) H(a)-~l(~-l)]~H(ao)-~/<=-l)f,<o<o, ~Fdx. 8 r 

(68) 
_ a l n  \ l - ~ l n  

and the right side is uniformly bounded as 0-->0, (recall tha t  u = O ( [ l o g  ~[t-a)). The 

right hand side of (68) therefore remains bounded as 0--> 0, while the left-hand side 

becomes infinite. This contradiction proves the assertion J ~< K. Interpret ing this in 

terms of the original functions yields 

II v:ll: Cq:+:(ll vll: + II =vll:), 

where the norms are taken over the complement of Q, and the constant C depends 

only on ~ and on the structure of equation (5). Finally, applying the Sobolev in- 

equality (Lemma 5) we obtain 

II I1 , < (l[ I1= + II I1=). 

The preceding two inequalities are the analogues in the present case of (57)and (58) 

in the foregoing section. 

The remainder of the proof is exactly the same as before, except tha t  the limit 

process v - +  ~ must  be replaced by  the present .technique of differential equations. 

Theorem 11 is thus completely proved. 

10. Capacity 

Here we shall prove Lemma 8, and also present some simple results about  s- 

capacity which will be useful in the sequel. 

Proo/ o/ Lemma 8. For simplicity we shall consider only the the case s < n, the 

remaining case s = n being treated by  similar methods. Now according to hypothesis, 

there exists a sequence of continuously differentiable functions V (~ with compact 

support  in E n, >~ 1 on Q, and such tha t  



2 8 6  JAMES SERR1N 

fl v ')l sdx-< 

The function 2 F(') is > 1 in some neighborhood of Q. 

functions 
0, where 

v7 )= 2yj (~), where 

1, where 

(69) 

Consider then the truncated 

~p(~) < 0, 

0 ~< 2 v/(~) ~< 1, 

2 v2(~) > 1. 

Evidently v 7 )  is strongly differentiable, equals one in some neighborhood of Q, and 

satisfies 

f l~TlS dx < 2s f l,yi~)lS dx < 2sly. (70) 

Moreover, ~(~) has compact support in EL Therefore by Lemma 4 and (70), 

II < Const./ . 

Consequently ~(~) converges to zero in measure, whence for some subsequenee (still 

denoted by v7 )) we have 

v7 ) -+ 0 almost everywhere. (71) 

This being shown, it is easy to see that  the sequence ~(~)= 1 -  ~(v) fulfills the 

conditions of the lemma, with the single exception that  each ~(~) is only Lipschitz 

continuous and not continuously differentiable. This defect can be removed by a 

suitable mollification, or alternately one can easily justify the direct substitution of 

~(~) for ~. This completes the proof. 

COROLLARr. I/  Q is a compact set o/ s-capacity zero, l < s ~ n ,  then [Q]=0.  

Proo/. The function v~ (') above is equal to one on Q for each value of v. On the 

other hand, ~(~) --> 0 almost everywhere. Hence obviously ]Q] = 0. 

LEMMA 9. I/  ~p is any continuous strongly di//erentiable /unction with compact 

support in E n, and i/ y)>~ 1 on Q, then 

f l~lS dx >~ Caps Q. 

Proo/. If  the result were not true we could construct a continuously differen- 

tiable function v~ with compact support in E ~, such that  ~ >~ 1 on Q and H ~ I1: < Caps Q, 
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which would be impossible. The construction involves first multiplying ~ by (1 +e ' ) ,  

so tha t  the resulting function is >~ (1 +e ' )  on Q, and then forming a smooth integral 

average. The details may  be omitted. 

LEM~A 10. For a ball S(R) o/ radius R we have 

[ n  - -  a \  ~-1 

con - -  (1 < a < n ) ,  
Cap~ S(R)=  a -  1} 

L co~ log (Ro/R) 1-n (a = n). 

Proo/. Suppose first tha t  a < n ,  and set T = ( a - n ) / ( a - 1 ) .  The function 

r ' -  R~ 
h = h(r) - R~ _ R~' 

where r =  I x] and R 0 > R, is then a solution of the differential equation 

a i r  (ux ]ux I ~-~) = 0, (72) 

tha t  is, the Euler equation of the variational problem S ]ux] ~ d x = M i n i m u m .  Evidently 

h = 0  when r = R 0 and h =  1 when r = R .  By standard comparison arguments in the 

calculus of variations if follows tha t  

ilY~tll~>llh~l]~ ( o v e r R < r < R o )  , 

where ~v is any continuously differentiable function ~> 1 on S(R) and with compact  

support  in r <  R 0. Therefore it is clear tha t  

Cap~ S(R)>~ lim ]]h~]]~. 
Ra--~ oo 

Similarly by  se t t i ng  ~0(x) = 0 for r/> Re, ~v(x) = h(r) for R < r < R0, and ~v(x) = 1 for 

r ~ R, and using Lemma 9 we have 

Cap~ S ( R ) ~  lim ][hxil:. 

The required conclusion follows immediately from the calculation 

The case a = n is handled in the same way, except tha t  h(r )=log  (r /Ro)/ log (R/Ro) .  

This result indicates the close connection between a-capacity and equation (72), 

a connection well-known if a =  2. 

19-642946  Acta mathematica. 111. Imprim6 le 9 juin 1964. 
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11. A remark concerning the case ~ = 1  

The result  of Theorem 10 can be generalized to apply  to equat ion (5) even for 

the case ~ = 1, t h a t  is, when the functions ~4 and B satisfy 

IAI <Const., IBI</, 

and  p...,4 >~ lpI - d  lul - g  

with d , / ,  g E L./(x_~ ). Indeed  we have the following 

TR~.OR~.M 10'. Let Q be a compact set o/ 1-capacity zero, and let D be a domain 

in ~ .  Suppose that u is a solution o/ (5) in the set D -  Q, and that the /unctions .,4 

and ~ satis/y the conditions above. Then, i/  

ueL~ 

/or some 5 > O, we can define u on the set Q so that the resulting /unction is a solution 

of (5) in all o/ D. 

Proo/. Let  8(2) be an open ball in D, and define 

~ = ] u [ + k ,  f i , = M i n ( l , ~ ) ,  

where /c = 1 + [[gl], and l is some large constant .  We introduce the test  funct ion 

= ( ~ )  sign u" { ~  - ~} ,  x E S(2) - Q, 

as in the proof of Theorem 10. I n  the set where ~ < l  we have 

Cx" A § ~ B  ~> (z]~)Iv~l- Const. (~)~ v - ( r id§  ri~v, 

where we have pu t  v = ~ .  Similarly, when fi ~> 1 

~x" J4 § ~ ~ ~> - Const. (~ )~  l ~ - / ~ l ~ 

>~ (~) ]vx]  - Const. (~?(7)xv - ( r i d§  ~(?v 

since v = l  ~ in this set. Hence as in the proof of Theorem 1 (or Theorem 10), we 

m a y  derive the relations 

I]~Vx[]l ~ C(1 § ~)i/e (.][ ?]~ v][ 1 § ][(~]O)xv][i ) 

and l]~'77v]1~, <<. C(1 + fl)~l~ ([[ ~ v[[~ + [[(~7/)xv [[ O. 



LOCAL BEHAVIOR OF SOLUTIONS OF QUASI-LINEAR EQUATIONS 289 

Now the term ]]~xvl[ which appears in both preceding lines satisfies the inequality 

[[~xvHl~</~]l~/,[[L. Hence replacing ~ by ~ ( ' ) and  letting v - + o  o, we obtain 

[[ ~] Vx n l ~'~ C ( l  "~- ~)l/e ([[ ~] V ]]1 + ]1 ~x V [11) (73) 

and II vlh, + (11 vii1 + II Ih). (74) 

Here we may  let 1--> or Since v--> fi~ and v~--> (fi~)~, it follows from the monotone 

convergence theorem tha t  (73) and (74) hold with v replaced by  fi~. 

I terat ion of (74) beginning with f l=~  establishes tha t  ~ is bounded in S ( 1 ) - Q .  

The rest of the proof is then the same as in Theorem 10. I t  should be remarked, 

however, tha t  since there is no analogue of Theorem 8 for the case :r 1 the conti- 

nui ty  of the solution remains an open problem; in special cases (e.g. the minimal 

surface equation in two dimensions) one may, of course, be able to settle this question 

by  an independent investigation. 

In  conclusion, we note tha t  Theorem 10' is quite similar in both hypothesis and 

conclusion to a well known removable singularity theorem due to Finn. 

III. Isolated singularities 

A detailed description of the behavior of solutions at  an isolated singularity 

seems to require some specialization of equation (5). We  shall consider the equation 

div .,4 (x, u, ux) = O, (~ ~ n), (75) 

which is, of course, sufficiently general t o  include the Euler equations of variational 

problems with integrand independent of u. 

A (x, u, p)  satisfies the conditions 

[.,4J <.a [p[~-l + b ]u[~-l + e, 

I t  will be assumed tha t  the function 

(76) 

where b, d, e and g are measurable functions defined in the basic domain ~ and con- 

tained in the respective Lebesgue classes 

bELnl(~ 1); eELn/(~_l_~); d, gEL~/(~_~); (77) 

(when ~ = n  we require further tha t  b EL~/(~_I_~)). 

In  Section 12 we shall consider the general behavior of a solution a t  an isolated 

non-removable singularity. The final sections of the paper  establish the existence of 

solutions with positive singularities under suitable additional conditions. 
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12. Behavior of  solutions at an isolated s ingular i ty  

Under  the assumptions (76, 77) noted above we have the following basic result. 

T~EOREM 12. Let u be a continuous solution o/ (75) in the set D - ( 0 ~ ,  where D 

is a domain in ~ .  Suppose that u>~L, /or some constant L. Then either u has a 

removable singularity at O, or else 

{ r(~-l)l(~-l) s ~ ~ n~ 
u ~ (78) 

log 1/r, o~ = n, 

(Here / ~  g means that C'<~ [/g ~ C'" where C' and C" in the neighborhood o/ the origin. 

are positive constants.) 

Proo[. Let  O be a s trongly differentiable funct ion with compact  support  in D, 

which is identically 1 in some neighborhood of the origin. We assert  t ha t  

f ox" .,4 dx = Const. = K,  (79) 

where the constant is independent o/ the particular choice o/ O. 

I n  order to see this, let 0 and ~) be two functions satisfying the above condi- 

t ion ( that  is, with compact  suppor t  in D and identically 1 in a neighborhood of 0). 

Then r = O -  O has compact  support  in D -  (0}. Therefore 

f (O - O)x " A dx = O, 

or in o ther  words, f ox" ,4 dx = f o x "  A dx. 

This proves the assertion. 

Now assume that the singularity at 0 is not removable. We mus t  then prove t h a t  

u has the asymptot ic  behavior  (78) a t  0. Le t  R be chosen so t h a t  D contains the 

ball r = [xl ~< R. We m a y  assume wi thout  loss of generality,  moreover,  t ha t  u < 0 on 

the circumference I xl = R. By  the remark a t  the end of Section 7 it is clear t h a t  

u --> co as x--> 0. Hence there exists some constant  a 0 > 0 such t h a t  u > 0 for I xl ~< a0. 

Le t  M =M(a)  and p = p ( q )  be respectively the max imum and  min imum of u on a 

given circumference Ix I = a < a 0. Fur thermore ,  for ~ < Ix I < R let us define the funct ion 
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0 

v=v(x,a)= u(x) 

IX 

if u(x) <<O, 

if 0 < u ( x )  <IX, 

if u(x)  >1 IX. 

291 

We m a y  suppose the definit ion of v is ex tended  to all of E n b y  set t ing v = 0  for  

Ixl ~>R and v = #  for Ixl~<a. Then  v is s t rongly differentiable in all space, has com- 

pac t  suppor t  in D, and  is identically equal  to # in some neighborhood of the origin. 

Now for f ixed a <  a 0, and  IX =ix(q),  v = v(x, a), we have  by  (79) 

IxK= f vx. A(x, u, u )dx= f A(x, v, vx)dx, (80) 

since v = u  and  vx=u~ a lmost  everywhere  in the  set  where v x 4 0  (see the  remarks  a t  

the  conclusion of Section 0). B y  inequal i ty  (76), moreover ,  

The  second t e rm  on the  r ight  m a y  be es t imated  by  HSlder ' s  inequal i ty  and  L e m m a  4, 

thus  (1) 

fd Ivl dx < lid II.,  < Const. II d IIn,  II ll:. II  ll:. (82) 

Now the radius  R int roduced a t  the  beginning of the  proof  m a y  be t aken  as small  

as we please, and  therefore it  is clear t h a t  we m a y  suppose Const. Ildll~/~< �89 Hence  

b y  (81) and  (82) 

f , A(x, v, vx)dx  �89 f lvxl  dx-C. (8a) 

Moreover,  by  L e m m a  9 and  L e m m a  10, since v - i x  for  I xl ~< a, 

(assuming a <  n). Thus  f rom (80), (83), and  (84) follows 

{ a  ~-n, at < n,  (85) 
IX~ < Const. (IXK + C) i log a I n-l ,  ~ = n, 

val id  for  a < a 0. 

(1) The calculation is given only for the case ~r < n. If ~ = n only slight changes are necessary. 
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We assert that  K > 0 .  Indeed in the contrary case we obtain from (85) 

{0 "(~-n)/~, 6r < n, 
/z~<Const. i logal t  1/~, a = n .  

But then by the Harnack inequality, (Theorem 7), the value M = M(a) obeys the same 

relation. Thus u=O(r (~ n)/~) or O(llogrl  1 l/n) depending on whether a < n  or ~ = n .  

Therefore by Theorem 11 the singularity at  0 is removable, which contradicts our 

initial assumption. The assertion thus being established, it now follows from (85) and 

Lemma 2 that  
f a (~-n)i(~-l), a < n ,  

/~ < Const. ~ [ I log a I, ~ = n .  
(86) 

The next step in the proof is to obtain a reverse inequality (cf. (92) below) for 

the value M. To this end we introduce a new comparison function V= V(x, (r) ac- 

cording to the formula 

V =  

0 when I xl ~> R 

Max (0, u) when ao<lxl<R 

u when a< lx l~<a  0 

Min(M,u)  when 0 < l x l < a  

M when Ixl=0.  

Evidently V is continuous and strongly differentiable, has compact support in D, and 

V=-M in some neighborhood of the origin. Moreover, for fixed a<a0 ,  and v =  

( ~ - n ) / ( ~ -  1), we set( t ) 

i when I x[~>a o 

U=H(r,a)= r~-a-~ when a<tx l<O'o  
(~T _ O'~ 

when I xl ~< a. 

Again H is strongly differentiable, has compact support in D, and H - - M  in a neigh- 

borhood of the origin. Thus letting A denote the annulus a <  r <  a0, we have by (79), 

MK= f H~" Adx < f ~ { 1 H~ ~+ ~- l le Al~l(~-l)} T (87) 

using Young's inequality. Now by (76) 

(1) Cf. the preceding footnote. 
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= o f  {luxl=- 2alu[=- 2g + (2~+ b=,<=-l,)luV + (2g+ e,<=-,)} ~ .  (88) 

The integral  on the  r ight  side of (88) is only  increased if i t  is ex tended  over  the  set  

of points  in 0 < l x [ < R  where V = u .  Denot ing  this set  b y  A' we have  

f A ( 2 d + b~(~- l)) l u l~' dx <~ f ( 2 d + b'/(~- l)) l V l~ dx 

IIb lia/(r <Co.st .  (lldll~,=~, ,.,<=-.," tlv=ll: 

(lldll~,=+ lib =,<=-1>,. ~n/(ce_l)/ �9 lu=l=dx, (89) ~ C o n ~ t ,  

since Vx = u~ a lmost  everywhere  in A' and  Vx = 0 a lmost  everywhere  in the  comple- 

m e n t  of A'.  Again supposing t h a t  R is sui tably  small,  (89) implies 

fA  ( 2d + b='(:'-1)) lul= dx < f lu=l= dx. 

Subst i tu t ing this into (88), and then  using (76), yields 

f l>ax V(,+ (90) 

Combining (87) and  (90) there  results 

M E  <~ ( 1 / a s  ~) i1H~ I1~ + Cs'/(~-l) (1 + ME).  

Thus  choosing e so t h a t  Cs ~1(:' 1)= �89 we obta in  

M E  <~ Const. H H~ i[~ + 1. 

On the other  hand,  b y  the  calculat ion of L e m m a  10, 

{(a ~ - a~) ~-1, a < n, (91) 
Therefore  CM ~ >~ ( M E -  1) i log ( ~ / ~ 0 ) [ ' - ' ,  a = n, 

val id for a < ao. 

some n u m b e r  a~, 0 < ~ < a0, such t h a t  for  all q ~ ~ ,  

I t  has a l ready been noted  t h a t  u--> co as x--> 0. Hence  there  exists  
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M K ~ 2 ,  (a/ao)~ ~> 2. 

I t  follows from (81), therefore, that  

/ a(~-n)/(~-l)' ~ < n '  (92) 
M />  Const. [ I log a[, ~ = n, 

valid for all a ~< 01. 

What  has been shown, then, is (by (86)) tha t  the minimum of u grows at  most 

a t  the rate r (~--n)j(~-l), while the maximum grows at  least this fast. The required 

asymptotic estimate then follows from the Harnack inequality. Indeed, by (86) and 

Theorem 7 we have 

M ~ C' (p + k') ~ Const. a (~-")/(~-1), ((~ <~ al) , 

while by (92) and Theorem 7 

/ ~ M / C ' - k ' > ~  Const. a (~-n)/(~-l), (0"40"1) 

(in applying Theorem 7 one first normalizes each sphere Ix I = ~ to unit radius). Thus 

(78) holds in a neighborhood of the origin, when ~ <n .  The result for ~ = n is ob- 

tained in the same way, and Theorem 12 is completed. 

13. Existence of solutions with isolated singularities 

The very light hypotheses required for the proof of Theorem 12 do not  seem 

strong enough to prove the general existence of solutions having positive isolated 

singularities. We shall therefore restrict consideration in this section to the equation 

div ~4 (x, uz) = O, (o~ ~ n), (93) 

where the function J4 is independent of u. In addition to the usual conditions on 

~4, we shall suppose that  (93) also has the following four properties. 

P1. For all x E ~  and all values o/ p and q 

(p-  q). {A (x, p) - A (x, q)}/> 0, 

with equality holding i/ and only i[ p = q. 

P2. For smooth boundaries and smooth (continuous) boundary data there exist smooth 

(continuous) solutions o/ (93) taking on the given boundary data. 

P3. The uni[orm limit o/ solutions o[ (93) is also a solution o/ (93), and 
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P4.  Let  F denote a spherical annulus in ~ with center a t  the origin. By  P 2  

there exists a solution v of (93) in F, taking the constant values m 0 on the outer 

circumference and m on the inner. Also by  virtue of assumption P1 a weak m a x i -  

mum principle holds for the  difference o f  any two solutions. Consequently at  any 

point P in F the values v(P) increase monotonically with m. As  the /inal assump- 

tion, we suppose that v(P) tends to in/inity as m does. 

We observe tha t  P1 is easily verified for linear elliptic equations, and also for 

variational problems whose integrands are strictly convex in the variable p. More 

generally if • is of class C 1 in p, then P 1  follows from the condition tha t  A~.),~i~ 

be positive definite. 

Assumption P 2  is satisfied for a wide class of equations of the form (93), as 

shown by  the work of Morrey, Ladyzhenskaya and Uraltseva, Gilbarg, and Stampacchia. 

I t  would be superfluous to elaborate on this, however, for on the one hand new 

classes of equations for which P 2  holds will certainly be discovered, while on the 

other it  seems tha t  only in pathological circumstances will P 2  generally fail. 

Turning to assumption P3,  i t  is not  hard to see tha t  it holds for linear equa- 

tions, and for equations admitt ing an a priori estimate of the continuity modulus of 

the first derivative of solutions. P 3  may  also be established in case .,4(x,p) is con- 

tinuous in all its variables, though this is more delicate and is stated merely for 

the record. 

Assumption P 4  is of ra ther  a different sort, and we shall therefore note here a 

class of equations for which it is valid. In  particular, suppose tha t  A is of class C 1 

in x and p, at  least for all suitably large values of p, and let 

2 = 2(x,p),  A = A(x ,p)  

be respectively the minimum and maximum eigenvalues of the quadratic form ,~. k ~ ~k 

(by condition P 1  it is clear tha t  ~t>~0). We now assume tha t  the quantities 

A / ~  and I ~ j 4 , / ~ x k l / 2 l p l  (94) 

are uniformly bounded for suitably large values of p. (x) Then P 4  holds, 

T o  see this, suppose for definiteness tha t  the annulus F has outer radius 1 and 

inner radius a, and consider the function 

(1) This condition is satisfied by many of the equations studied in the recent literature (cf. [5], 
[8], [9], [15], [25], etc.). 
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r v - 1 
k = k ( r ) = ( m - m 0 ) ~ + m  0' ( ~ = C o n s t . < 0 ) .  

Then d iv  A (x, k~) = (A,. k ~ ~k) k" § (Ai., - A~. ~ ~ ~k) k ' /r  + ~ - -  

>12k" + (n - 1 ) A k ' / r -  [~ ~A, , 
I 

~x~ 

where  ~ = x /r  a n d  the  pr imes  deno te  d i f fe ren t ia t ion  wi th  respect  to r. Now let  B be a 

bound  for the  quant i t i es  (94) when p ~> N,  say.  W e  choose ~, according to the  re la t ion  

1 - ~ , = n B .  

Therefore  t k~ [ = - k '  = - 7(m - too) (a v - 1)- i C -  i is g r ea t e r  t han  N for all  m suff ic ient ly  

large.  Consequent ly  for large m, 

d iv  A (x, k~) ~> - ~ty(m - too) (a r - 1) -1 r ~-~" {(1 - 7) - nB)  = O. 

Thus  b y  v i r tue  of the  m a x i m u m  principle  one has  v>~k, where v is the  solut ion 

pos tu l a t ed  in a s sumpt ion  P4.  B u t  k(P) -> ~ as m -~  co, hence so does v(P), comple t ing  

the  demons t r a t ion .  

This  comple tes  our  discussion of a s sumpt ions  P1  t h rough  P4.  W e  emphas ize  

t h a t  the  res t r ic t ions  p laced  on (93) b y  these  condi t ions  are  no t  pa r t i cu l a r ly  heavy ,  

so t h a t  the  following resul t  holds  in considerable  genera l i ty .  

T H ~ O R E ~  13. Suppose that equation (93) admits the properties P1  through P 4  

listed above. Let smooth (continuous) boundary data v2=~p(x ) be assigned on the sphere 

Ix [= 1, it being assumed that [x I < 1 is contained in ~.  

Then there exists a one parameter, linearly ordered, /amily o/ solutions G = G(x) in 

the domain 0 < lxl < 1, taking on the given boundary values and satis/ying 

l _ . - 
G ~ r(~ ")'(~ 1), ~ < n, (95) 

[ log l / r ,  ~ = n, 

in the neighborhood o/ the origin. The value o/ G may be assigned arbitrarily at a given 

point P, subject only to the restriction G(P) > w(P), where w denotes the solution o/ (93) 

in the ball [x I < I which talces on the assigned boundary values. 

Remark. B y  linearly ordered, we mean  t h a t  if G 1 and  G 2 are two di f ferent  me mbe r s  

of the  family ,  t hen  e i the r  G I ~ G  2 or Gi>~G ~ in 0 < I x  I <  1. 
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Proo I o I Theorem 13. We shall first construct a solution G=G(x) in 0 < I x  I<  1 

taking on the assigned boundary data, and with a prescribed value Z > w(P) at  some 

fixed point P. I t  will then be shown tha t  this solution satisfies (95), and finally 

tha t  it can be assumed to increase as Z increases. By  making the change of depend- 

ent variables 4 = u +  eonst., with the constant suitably chosen, it may  be supposed 

without loss of generality tha t  w >/0. We assume this done, and then drop the bar  on u. 

Now let 1~o denote the annulus a < [ xl < 1, and let v~. m be the particular solution 

of (93) in F ,  which obeys the boundary conditions 

v=~v on Ixl=l ,  v = w + m  o n  [xl=a. 

Obviously such a solution exists by  assumption P2. We assert tha t  m can be chosen 

in such a way tha t  
v~. re(P) = g (96) 

(it is assumed tha t  a is small enough for P to be contained in F.).  Indeed, if m = 0 

then obviously v.,m = w, while by  the maximum principle the value V.,,n(P) continu- 

ously increases as m increases. By  assumption P4 it is evident tha t  V.,m(P)tends to 

infinity as m does. Hence there exists a first value m =m(a)  such tha t  (96) holds. 

We shall henceforth write v. for the function v..m(.). 

Now each function v. is a positive solution of (93) in the corresponding annulus 

F.,  and satisfies v.(P)=Z. I f  we write O= I x~l, then by  the Harnack inequality 

(Theorem 7) we have for fixed C' and k' 

v~(x)<~C'(Z+k') on Ix [=0 ,  

so long as a ~< 0/2. Let  W be the solution of (93) in the annulus F0 taking on the 

boundary values 

W=~o on I x l = l ,  W=C'(Z+U) on Ix[=O. 

Then according to the maximum principle 

w<~v,<~W in F0, 

valid for all a ~< 0/2. We assert also tha t  in each fixed annulus h <  I xl < 1 -  h the 

functions v, are uniformly bounded and equicontinuous, provided tha t  a ~< h/4. Indeed 

by  the Harnack inequality it  is not hard to see tha t  v~ must  be uniformly bounded 

in h/2  < I xl < 1, when a <~ h/4. But  then by  Theorem 8 these functions are equicon- 

tinuous in h < I xl < 1 ~ h, as asserted. 
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Now consider the family {v,} as 0 - >  0. I t  is clear from what  has already been 

shown tha t  there is a sequence of values Ol, 02 . . . .  such tha t  

v.. (x) -+ limit, 0 < Ix I < 1, 

the convergence being uniform in any fixed annulus h <  Ixl < 1 - h ,  (Ascoli's theorem). 

We denote the limit by  G(x). Clearly G(x) is a continuous function satisfying G(P)= g. 

Moreover, 
w<~G<~W in F0. 

I t  thus follows tha t  G is continuous in 0 < I xl ~< 1 and takes the assigned boundary 

values on I xl = 1, as required. 

Tha t  G is a solution of (93) in 0 <  Ix] < 1 follows immediately from property P3. 

I t  still must  be shown tha t  G has the asymptot ic  behavior (95). By  Theorem 12, 

however, any solution which is bounded below must  either satisfy (95) or have a 

removable singularity a t  0. I t  is therefore enough to show tha t  G cannot have a 

removable singularity. Thus suppose for contradiction tha t  G could be defined a t  0 

so as to be a solution in the entire ball I x l < l .  Then since G=~p on I x l = l  we 

would necessarily have G - - w  by the maximum principle. This is impossible, however, 

since G(P) = Z > w(P). Thus (95) is established. 

I t  remains to show tha t  the above construction leads to a one parameter  linearly 

ordered family of solutions. Let  a dense denumerable set of values g be chosen in 

the interval (w(P), oo). Then it is clear that ,  by a diagonal process, a / ixed  sequence 

a 1, o2 . . . .  can be used to define the functions G corresponding to every g in the set. 

But  in this case the functions v,, corresponding to a particular value of :Z are less 

than or equal to those belonging to a larger value of g (recall the unique definition 

of each function va). I t  follows tha t  if 2~1 and 2~ are two values in the set, with 

Z1 < Z~, then also G 1 ~< G~. Having thus obtained a monotone family of solutions G 

for the values of Z in a dense set, it is now a simple mat te r  to construct solutions 

for the omitted values of Z, by taking limits of those already constructed. We may  

omit  the details of this process, which depend of course on Theorem 8 and property 

P3. This completes the proof of Theorem 13. 

14. Linear equations 

The results of the preceding sections can be sharpened somewhat in case (93)is 

linear, tha t  is, of the form 
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Ox~ a~j(z) = 0, (97) 

where ~.~2 ~a~j~ ~ej ~ A ~  and ~. and A are positive constants. We note tha t  assump- 

tions P 1  through P 4  are satisfied in the present c a s e - - P /  quite obviously, P 2  on 

the basis of the work of Ladyzhenskaya and Uraltseva, P 3  in view of Theorem 1 

and the weak compactness of L~, and finally P 4  by virtue of linearity. This being 

established, it follows tha t  both Theorems 12 and 13 hold for equation (97), with 

e =  2.(1) In  addition, we have the following supplementary results. 

THEOREM 14. Let G be a particular solution of (97) in the set D - { 0 } ,  such that 

G ~ r  ~-n or G ~ l o g  1 / r  depending on whether n > 2  or n = 2 .  Then every non-negative 

solution of (97) in  D - { 0 }  has the form 

u = Const. G + w, 

where w is a solution of (97) in the entire domain D. 

Remark. I t  follows tha t  in the case of equation (97) the one parameter  family 

of solutions given by  Theorem 13 is unique. 

Theorem 14 is an exact analogue of Theorem 5 of reference [6], and is demonstrated 

by  the same method. Note tha t  the proof in [6] is restricted to two dimensions 

because the Harnaek inequality used there was proved only for two variables; since 

in the present case we have a Harnack inequality irrespective of dimension, it is clear 

tha t  the argument  carries over intact. 

THEOREM 15. Let u be a continuous solution of (97) in the set D - { 0 } ,  where D 

is a domain in ~ .  Suppose that u = O ( r  ~-n) or u = O ( l o g  I / r ) ,  depending on whether 

n > 2 or n = 2. Then either u has a removable singularity at 0, or else (possibly after 

multiplication by - 1) 

r" , n > 2 ,  (98) 
U ~ [ l o g l / r ,  n = 2, 

in the neighborhood of the origin. 

Proof. For a suitably large constant A we have 

u + A G > O  

in the neighborhood of the origin, where G is some particular solution satisfying 

(1) As we have remarked in the introduction, these special results are due originally to Royden 
and to Littman, Stampacchia, and Weinberger. 
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G ~ r  ~ or G ~ l o g  1 / r  (such a function exists by  Theorem 13). The function u + A G  

is therefore a positive solution of (97) in some neighborhood of the origin. Conse- 

quently by  Theorem 12 we have u + A G  ~ r ~-'~ or log l / r ,  and the required conclusion 

follows a t  once. 

The above argument  is essentially due to Gevrey, who proved a similar result 

for linear equations of the form a~ju,~j+b~u,~+cu=O with certain smoothness condi- 

tions placed on the coefficients aij. 

Remarks. For  the Laplace equation the result of Theorem 15 can be considerably 

improved. In  fact in this case the hypothesis can be weakened to read 

u=o(r1-~), 

without affecting the conclusion. For the general class of equations under considera- 

tion here, however, there is no immediately analogous resu l t - - tha t  is, the order o/ 

growth O(r ~-n) or O(log 1/r) is best possible in Theorem 15. 

Indeed, consider equation (97) with 

a~s = (~j + (a - l) x~ x j / r  ~, (99) 

where a is a constant greater than  one (cf. [6], p. 336). One easily verifies tha t  

so tha t  (99) is an allowable set of coefficients. We consider solutions of the form 

u = H ( x )  / (r), (100) 

where H is a harmonic polynomial of degree m, and r =  Ix I" After a straightforward 

calculation we find that  (100) satisfies (97), (99) provided / = r  e . . . . . .  and a and e 

are related by  
m ( m  + n - 2) 

a =  e ( e + n - 2 )  ' ( 0 < e < m ) .  

The solution (100) is therefore O(re-'~-~), tha t  is, there exist solutions el linear equa- 

tions o/ the /orm (97) which are O(r e-n-~) /or any preassigned e > 0  and yet are not ~ r  2--n. 

Note. This work was partially supported by  the United States Air Force Office 

of Scientific Research under Grant  No A F - A F O S R - 6 2 -  101. 
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