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This paper deals with the local behavior of solutions of quasi-linear partial dif-
ferential equations of second order in » >2 independent variables. We shall be concerned
specifically with the a priori majorization of solutions, the nature of removable sin-
gularities, and the behavior of a positive solution in the neighborhood of an isolated
singularity. Corresponding results are for the most part well known for the case of
the Laplace equation; roughly speaking, our work constitutes an extension of these
results to a wide class of non-linear equations.

Throughout the paper we are concerned with real quasi-linear equations of the

general form
div A, , u,) = B(x, u, us)- (1)

Here 4 is a given vector function of the variables z,u,u,, B is a given scalar func-
tion of the same variables, and u,= (du/0x,, ..., du/dx,) denotes the gradient of the
dependent variable u=w(x), where x=(x,, ..., 2,). The structure of (1) is determined
by the functions A4(x,u,p) and B(z, u,p). We assume that they are defined for all
points x in some connected open set (domain) Q of the Euclidean number space E7,

and for all values of » and p. Furthermore, they are to satisfy inequalities of the form
|A| <al|p|*+blul*+e,
|B] <clpl+d]ul +, )
p-A>apl*~dlul*~g.

Here oo>1 is a fixed exponent, a is a positive constant, and the coefficients b through

g are measurable functions of z, contained in certain definite Lebesgue classes over (2
(see Chapter I).
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The generality of these assumptions naturally requires that equation (1) be inter-
preted in a weak sense. Let D be a subdomain of Q, and let u be a function having
strong derivatives u, which are locally of class L, over D. Then u will be called a

weak solution (or simply a solution) of (1) in D if

f(¢,-A+¢B)dx=0 (3)

for any continuously differentiable function ¢ =d(x) with compact support in D. Ob-
viously any function which satisfies (1) in the classical sense would be a solution in
the sense just defined, though of course not conversely.

Before turning to a description of results, it is worth noting that the above
structure includes linear elliptic equations, where oo=2, and also the Euler equations
of a wide class of regular as well as non-regular variational problems. The reader may
consult reference [22], where this observation is made more explicit.

The main body of the paper is divided into three chapters. In Chapter I we
consider various a priori estimates concerning the majorization of solutions. To begin
with, Theorem 1 states that a solution % in D is essentially bounded on any compact
subset D’ of D, the bound depending only on the structure of (1), on the L, norm
of uw over D, and on the geometry of D and D’. If u is continuous in the closure
of D, one can further estimate the maximum of % in terms of its L, norm together
with the maximum of its boundary values (Theorem 3). The most important result
of the first chapter is an inequality of Harnack type, Theorem 5, which generalizes
to non-linear equations a recent result of Moser for linear equations. This theorem is
basic for much of the following work. Finally, in Theorem 8 we show that solutions
of (1) are necessarily Holder continuous, possibly after redefinition on a set of measure
zero. A more detailed outline of the contents of this chapter is impossible here; the
reader is referred directly to the paper for more specific conclusions.

The proofs are based on the iteration technique introduced by Moser in references
[16] and [17], and at the same time make strong use of the general Sobolev inequalities.
We must also remark on the papers of Stampacchia, Morrey, and Ladyzhenskaya and
Uraltseva, whose spirit is much the same as that of the first chapter here. In parti-
cular, Ladyzhenskaya and Uraltseva have proved by quite different methods the Hélder
continuity of bounded solutions of (1), under conditions rather similar to (2).

The second chapter deals with the general problem of removable singularities. If
we consider Laplace’s equation, it is known that a set of capacity zero constitutes a

removable singularity for a bounded harmonic function, while, on the other hand, a
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single point is removable provided only that the solution is o(logr) or o(r*") in the
neighborhood. For sets of intermediate size a corresponding removable singularity
theorem was recently discovered by Carleson [1, p. 78], the idea there being to relate
the Hausdorff dimension of the singular set to the Lebesgue class of the solution. The
following result extends Carleson’s theorem to all equations of the general form (1), (2).

Let Q be a compact set of s-capacity zero,(1) where a<s<n, and let D be a domain

in Q. Suppose that u is a continuous solution of (1) in the set D—@Q, and that
% € Lya 14,

where 0=s(a—1)/(s—a) and & is some positive number. Then u can be defined on the
set @ so that the resulting function is a continuous solution of (1) in the entire domain D.

In order to see this result more clearly, let us consider its implications for the
Laplace equation (where o=2). When # =2 nothing new is obtained, for then s=2
and we simply regain the result that a set of ordinary capacity zero is removable
for a bounded (L) solution. When =>2, however, s can vary from 2, where we
obtain the usual result, to n, where we get the result that a set of n-capacity zero
is removable provided that u € Lnn_g.s. Since a single point has n-capacity zero,
this case of the theorem is seen to be associated with the usual growth condition at
an isolated singularity. In other words, when n>2 the above result constitutes an
interpolation theorem of the desired sort. (Actually our result is not quite as sharp
for Laplace’s equation as the one obtained by Carleson, though, of course, it does
apply to a larger class of equations. We add that our work was done independently
of Carleson’s, and that the overlap was discovered only after the manuscript had been
submitted for publication. Other work of a similar nature is due to Picone [19].)

In addition to the above result we shall also prove the following removable sin-
gularity theorem, which has the advantage of a considerably less abstract hypothesis.

Let Q be a smooth manifold of dimension m<n—ax, and let D be a domain in Q.
Suppose that w is a continuous solution of (1) in the set D—Q, and that

w ELg(l_H;) @f m<n-—o,
u=0(logé|'"% if m=n—aq,
where 0=(n—m)(x—1)/(n—m—a), O is some positive number, and & is the distance

from Q. Then u can be defined on Q so that the resulting function is a continuous solu-
tion of (1) in all of D.

(1) Cf. Section 7. We note that any non-empty set has positive (n+ &)-capacity, so that only
values s<n need be considered.
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The preceding theorems raise obvious questions concerning the existence of solu-
tions of (1) having non-removable singularities. In Chapter III we investigate this

problem in considerably more detail for the special equation
div Az, u,u;) =0 (x<n). @)

It is shown that at an isolated singularity a positive solution of (4) has precisely the
order of growth r@ ™™V if y<n and logl/r if «=n.(1) For linear equations of the
special form (a;(x)%,;),;=0 a corresponding result is due to Royden [20]; of also
[10, 17]. A weaker version for the non-linear case was given earlier by the author [21].
Our present proof is basically the same as in [20], though the reader will see that
the idea there serves only as a theme upon which numerous variations have been
played. We may also mention that in the case of linear equations of the general form
@i, +b;u,; =0 there are corresponding isolated singularity theorems, requiring how-
ever, some continuity of the coefficients, and not necessarily providing an explicit
order of growth at the singularity [3, 4, 6]. _

In Section 13 we show under suitable conditions that there exist solutions of (4)
with precisely the behavior indicated above. A corresponding result for linear equa-
tions is due to Littman, Stampacchia, and Weinberger. The final section of the paper
contains some further results for linear equations. Although these theorems are quite
special in comparison with the rest of the work in the paper, they have an interest
in their own right, and indicate to some extent the underlying differences between

linear and non-linear equations.

I wish finally to thank Professor Hans Weinberger for his interest in this work,

and for several quite helpful suggestions.

I. Majorization of solutions

In this chapter we shall consider various a priori estimates for solutions of the
equation

div A(z, u, u;) = B(x, u, 4;). (5)

It will be assumed that the functions A(z,u, p) and B(z, u, p) are defined for all values

of # and p, and for all points z in some fixed domain Q. Moreover, we suppose that

they satisfy inequalities of the form

(1) An explicit example is provided by the equation
aiv (uz |u /% =0,

which has the solutions Ar(“‘")’(“"1)+B and Alogr+ B when a+n and a=n respectively.
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|A] <a|p|*'4b|ul~"+e,
[B| <c|pl*'+d|ul~'+/, (6)
p-A=|pl*—dlul*—y,

for z €€ and all values of # and p. Here a>1 is a fixed exponent, a is a positive
constant, and b through g are measurable functions on € (the slightly simpler form
of (6), as compared with (2), can be achieved by a simple normalization). If 1 <a<n

we assume that b through g are in the respective Lebesgue classes
b; e e Ln/(«—l); c e Ln/(l—e) 5 d; ,f’ 9 e Ln/(a—£)7 (7)

¢ being some positive number less than or equal to one. If x=n we suppose that b
through g satisfy
be€Lun-1-5; €€Lna.o9; a,f,9€Layn-s, (8)

again with ¢ some positive number less than or equal to one. Since the remaining
case o>n is somewhat anomalous, we shall discuss it separately in Section 5. In any
event, the discrepancy between the conditions required for the various cases 1 <a<n,
x=mn, and a>n seems to be an essential part of the situation. Finally, certain alter-
native hypotheses will be considered in the concluding section of the chapter.

Now let D be a subdomain of Q, and let »=wu(z) be a function having strong
derivatives which are locally of class L, over D. As already explained in the intro-

duction, v will be called a solution of (5) in D if
f(¢,-,4+¢3)dx=0 (9)

for any continuously differentiable function ¢ =d¢(x) with compact support in D. In
writing equation (9) it is tacitly assumed that the functions A= A(z,u,u,) and
B=B(z,u,u, are measurable, as will certainly be the case in all reasonable situa-

tions. Since %, is locally in L,, it follows that also

Lat if a< n,
u €
L, if x=n

locally in D, where «*=an/(n—«) is the Sobolev conjugate of «, and ¢ is any positive
real number. Thus, using assumptions (7) and (8), it is a straightforward consequence
of Holder’s inequality that A(z,u,u,) is locally in Ly,-1, while B(z, %, u,) is locally in
Lgw if a<mn, or locally in Ly,s if «=n, where («*) is the Holder conjugate of o,
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and §=¢/2(n—¢). It follows therefore that if u is a solution of (5), then (9) holds
not only for continuously differentiable functions ¢, but in fact for any ¢ with strong
derivatives in L, and with compact support in D. This remark will be of considerable
importance later on.

0. Preliminary lemmas

The theorems of the following sections require some preparatory results which

we group together here.

LEMMA 1. Let a;, i=1, ..., N, be non-negative real numbers, and let a be a positive

exponent. Then

AaE<Ca)<Aaf,
where 4 =Min(l, N*!) and A =Max(l, N*).

Proof. We may assume without loss of generality that a1 and 2 a;=1. The
maximum of the quantity > af is then easily found to occur either when all the a;
are equal, or (endpoint maximum) when all but one a@; are zero. This proves the left-

hand inequality. The right-hand result is obtained the same way.

LemMA 2. Let o be a positive exponent, and let a;, B, =1, ..., N, be two sets of
N real numbers such that 0 <a;< oo and 0<pf,<a. Suppose that z is a positive number
satisfying the inquality
#< D a2

Then 2< 02 (a)",
where C depends only on N, o, and ;. and where yi=(oc—ﬁf)"l.
Proof. We make use of Young's inequality
absla"-kza",
4 q

where 1/p+1/qg=1. Then if 0<f <o and a>0 we have

az’ = (‘j) (&) < 4 (e2°) + x_p (‘j) e?

€ 04 o €

Putting &= («/2NB)** yields therefore
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az’ < (1/2N) 2%+ (2Na)** P, (10)

Note also that (10) holds trivially when §=0. Now applying (10) to each term of the
sum > a;2% we obtain at once

2*< D {1/2N) 2%+ (2Na,) =%},
whence by transposition there arises
2*<2 3 (2Na,)™.

The required conclusion follows immediately from Lemma 1.

The next four lemmas are general calculus inequalities, due basically to Sobolev
and Morrey. A simple proof of Lemmas 3 and 4 is given in reference [18), and
Lemma 5 can be obtained by quite similar methods. Although Lemma 6 is essentially
well-known, we include a proof for completeness.

Now let yp=y(x) be a measurable function on an open set D, and let p be a
real pumber, 1<p< co. The L, norm of y is defined by

1/p
||w||p.n=(fblw|”dw) , (<o), |9fle.0 =esssupy|yl.

For simplicity we shall write {|y|f, rather than ||y||, , when the domain D is apparent
from the context.

LemMma 3 (Morrey). Let y be a sirongly differentiable function on the unit ball || <1,
and suppose that ||y, ||. is finite for some a>n. Then w is (essentially) Holder contin-
‘uous, with '

(@) — p()| < Const. [z~ y[* " | p: la,

the constant depending only on « and n.
Lemma 4 (Sobolev). Let y be a strongly differentiable function with compact support

in B, and suppose that ||y, |, is finite for some aw<n. Set a*=on/(n—a). Then yp is
wm L, and

”W”oﬂ < Const. " ’/’r"w

where the constant depends only on « and n.

In the next lemma, we use ¢ to denote the distance from a point z to the hyper-

plane z;=...=2,;=0, 1<s<n, while ¢ is some fixed positive number.
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Lemma 5. Let v be a strongly differentiable function defined in the domain o> ¢ and
having compact support in E". Suppose that ||y.|. is finite for some a<n. Then y is
wm Ly and

Il er < Comst. || .||«

the constant depending only on o and n.

Levma 6. Let w be a strongly differentiable function defined in an open ball S of
radius h. Then if ps=|S|™" [sypda, we have

Iy~ pslly < Const. & p. I,
the constant depending only on n.

Proof. Let « and y be two points in S, and set p=|z—y|. Then, assuming that

p€CY, we have
2

") h
w(y) —plx) = fo (6w/@e’)de’<f ly.| do’

0

(setting |p.]=0 at points outside S). Multiplying both sides by dy=¢""'dodw and
integrating over S yields
2h)" , (2h)"
ISI'st~w(w)l<(—n~) le:lde do="—

f [yl @ " dy.
S

Then by the well.known convolution inequality of Young,

2h)" . n
51 D=l < Z2 el -l = Comst. ™ .

This completes the proof when p is continuously differentiable. The general case follows
by standard approximation arguments.

The final lemma is due to John and Nirenberg. Its use in connection with the
a priori estimation of solutions of differential equations already occurs in the paper

of Moser which we have discussed in the introduction.

LemmA 7. Let p be a summable function on the unit ball S,, and suppose that

[ lo-wlaz<is

for every open ball S<8, Then there exist constants A and u, depending only on =,
such that

f - f e ™dx <,u2. (11)
So S,
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The conclusion of the theorem of John and Nirenberg is actually that

f‘e“’l"‘wd dz< U
Sy

but (11) is an immediate consequence of this inequality.
We close the section by noting a useful derivation rule in the theory of strong
differentiation. Let G be a piecewise smooth function of the real variable u, — oo <
u < + co, with corners at the points I, ...,ly. Suppose also that G satisfies a uniform
Lipschitz condition. Then if u(z) is strongly differentiable in a domain D, the com-
posite function ((u(x)) is also strongly differentiable in D, and
G’ (u)u,, where wu=l,..., 1y,

Glu), = { (12)

0, where wu=1,,..., 1.
Formula (12) of course defines only a particular representative of G(u),, as is only
natural since strong derivatives are, technically, equivalence classes of measurable
functions. In particular, changing % and #, on a set of measure zero alters the re-
presentative but not the equivalence . class.

An interesting consequence of (12) is that the. strong derivative of a function u

is zero almost everywhere on any set where u is constant. Indeed set
G(u)=Max (0, u), H(u)=Min(0,u),
and note that w=0(u)+H(un), u,=Gu),+H®u),.

Evaluating the second relation on the set where u=0 yields the desired conclusion

for the case when the constant is zero. The general result follows at once.

1. Majorization of |u|

We shall show in this section that weak solutions of (5) are locally bounded.
This is of course obvious in case a>n by virtue of Lemma 3. The remaining cases
are considerably more difficult, and will be treated separately.

Let P be a fixed point in the basic domain Q, and let S(R) denote the open
ball of radius R centered at P. For simplicity we use the symbol |- ||, to denote
the L, norm of a funection over S(R).

TarorEM 1. Let u be a weak solution of equation (5) defined in some ball S(2R) = Q.

Suppose that oo <n and that conditions (6) and (7) hold. Then
17 — 642946 Acta mathematica. 111. Imprimé le 8 juin 1964
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lelleo,n < CB™™* ([l ]} 2 -+ ER™)
and e lle, 2 < CR7M ()| )| a2r + ER™),
where C and k are constants depending only on the structure of (5). In particular
C=Cla,m,¢e; a [|b]l, B |cll, B]|al),
k=(lell + B F DY+ B g ™,
the norms of the coefficients b through g being taken in the respective Lebesgue spaces (7).

Proof. We consider first the case when R=1, with the solution correspondingly
defined in the open ball S(2)cQ. Set

a=|u|+k =x€8(2),
where k= ([efl + [[fl)** "+ |g]|*. Then obviously
|A| <a|pl'+blal,
|B| <cl|pl"+dja]?, (13)
p-A=|pl*-dlal*,
with b=b+k'"%e, d=d+k'"*f+k *g. Moreover, the norms of 5 and d are bounded,
sl <lel+1, ldl<llaj+2.

The proof now rests on an appropriate choice of the test function in relation (9).

For fixed numbers ¢>1 and [ >k we define the functions

@? if k<a<l,
Fay=1{" | . _
gt ta—(@g-nH1 if I<a,
and G(u)=signu-{F(@) F' (@) — ¢ ¥}, —oo<u<oo,

where ¢ and § are related by ag=a+ f — 1. Evidently F is a continuously differentiable
function of the variable @, which is linear beyond the “cutoff” value I. Similarly &
is a piecewise smooth function of u, with corners at u= & (I—%). Now let n=1n(x)

be a non-negative smooth function with compact support in S(2), and put

$(@)=n*Gu), (u=u()).

Since @ is linear in u for |u|>1—k, it follows from the preceding section that ¢ has

strong derivatives in L,. Thus ¢ is admissible in (9).
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Now in the set where |u|+l—k% we have obviously
¢.=on* 15,0+ 9 G u,,

“1R(F)* it -k,
with @ [TBE" Ju| <
(Fy it |u|>1-k
Therefore, using (13) and the fact that |G|<F(F')*! one has
b A+ B¢ {[u.|* ~ d|a|"} —on™ " |70 {a]u " + bl a[*"}
~ |G| {efu.l* " + ] a7}
2| F' &l —aaln.F| - [nF'&|"" - ab|n. F|- |9 F'al*™ — onF |n F'a, [~
—d{qg ' B|nF al*+nF|pFal*}, (14)

valid wherever |u|=1—k.(1) The last inequality may be further simplified by setting
v=uv(x) = F(4). Since 4F' <qF we get

bo A+ B> o, |* — aa | 0] - o ]* Tt — ag* 1B n,0] - (o)<
—eno |t = (1 +B) ¢ Hd(mv)*. (15)
In the set where |u|=1—k we have ¢,=on* '9,G and w,=%,=0 (a.e.), so that (15)
holds also on this set. We may therefore integrate (15) over S(2), with the result

7|2 < aa ﬁ’?r”l | oLlF T da + gt fI; [9:0] ()~ ' dx

+ f en g tdx + 1+ 8)g* ! f d(nv)* dz. (16)

Here for simplicity we have written |- ||, rather than |- ||,z
The terms on the right-hand side of the preceding inequality can be estimated
by using Holder’s inequality together with Lemma 4. Thus

Jimeol -l o < Dol el

[ 1ol e < 1Bl ol e

<C|| e la [ (o) I3~
< C{llmzollz+ Iz ol e lI5"3

(1) The substitution |uz| = |1ZI| is obviously valid in the set where Iul +0. It also holds when
u =0, since u,=0 almost everywhere on this set.
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The letter C here denotes a constant (which usually changes from one line to the
next) depending only on the quantities listed in the statement of the theorem. Similarly

fcnv |nv-|*tdz= fc(nv)*3 ()¢ | o, [* d

<llellma-olmelielino e lnv:f
<Ollmollailinsolla lmoell + Nooe i3,

and fd(nv)“ de= fd(m;)‘ (nv)**dx
<N llni-o w12 ol
<O|lmollz{lnolz+ lme. Iz}
If the four previous estimates are inserted into the right-hand side of (16), and we set
z=lnwella/lnavllar = llnwlle/Nnzvlle,

the result may be written
<O @ A+ T 2 T) (L) T (L +20) 17)
Applying Lemma 2 and simplifying the result, one obtains (since 1+g<(x+1)gq)
2<Cq™(1+1),
or in terms of the original quantities
ol < Og** (mvlla+ limav - (18)
Another use of Lemma 4 yields finally
ol < Cg** (I molle + m2vle)- (19)

The preceding inequalities (18} and (19) are the basic estimates of the paper; they
will appear in one form or another in almost all of the following results.

To proceed with the proof of Theorem 1, let & and A’ be real numbers satis-
fying B’ <h<2. Let the function 7 be chosen so that =1 in S(A"), 0<n<1 in S(k),
and identically zero outside S(h). We can do this, moreover, in such a way that
Max |9,|=2(h—&’)"". Setting this function into (18) and (19) yields immediately

vz llan < Cg* (B — 1) ||| (20)
and o llasn < Cge (A — k'Y ||v]| 0o (21)



LOCAL BEHAVIOR OF SOLUTIONS OF QUASI-LINEAR EQUATIONS 259

We may let [—oo in inequality (21). Since »—> % one obtains by virtue of Lebesgue’s

monotone convergence theorem,
3 e < Cq™ (b= B) 7 || @ fln- (22)

Note that this is valid irrespective of the finiteness of either norm. Finally, (22) may
be simplified by setting

p=ag=a+f—1, x=o"/a=n/(n—a),
whence it becomes

||| p.ne < [O(p/ @) (h— b)Y 1P || & || .1 (23)

The required conclusion follows by iteration of this inequality. We set, for
»=0,1,2, ...,
py=2x"a,

and h,=1+27" h,= k,+1, whence (23) becomes
Walls, ,s,0y < CP K | il n,.
where K =2x**, Tteration yields
Nallo, ey < CF KE ]| < O| @] aces

since both series are convergent. Letting ¥ — oo, and observing that | %[ .1 <lim |[@[|,,.»,,
there results
%loo.1 < Ol @]l

Recalling that #=|u|+k then yields the .conclusion
" u"oo.l < C {“ (3 ",_2"" k}

This proves the first part of the theorem for the case R=1. The second part follows
immediately by setting ¢=1, A'=1, A=2 in (20).

To complete the proof it remains only to show that the general case R+1 can
be obtained from the special case R=1. This involves only a simple change of linear
dimension, however, which the reader may carry out for himself. Theorem 1 is there-
fore completely proved.

THEOREM 2. Let u be a weak solution of equation (5) defined in some open ball
S(2R) = Q. Suppose that «=mn and that conditions (6) and (8) hold. -Then
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l%llear < CR™ (|| %]ln.2 + kR)
and luellnz < CR7 (| w]ln.2r + kR),
where C and k are constants depending only on the structure of (5). In particular
C=C(n,&; a, B3], B*|lcfl, B*[|2])
and b= (B |le]l + Be || {2 + (B g )™

Proof. Although this follows the same pattern as the proof of Theorem 1, certain
alterations are necessary because the Sobolev inequalities must be applied in a slightly
different way. Up to and including inequality (16) there are, of course, no changes.
The various integrals in (16) are then estimated as follows, with & =n(1+¢/2n)"" and
g'=¢en+1)/2n,

JB1evl- o da < felln-s-o vl 0l

<C " ﬂzvnnl(lﬂ') " (m’)z"s-l

<C|lmavlla | ro)all2~
<O{llnz2llz+ lImzella 727"},

fcnvlnv,|” ldx = fc(nv)em(nv)l“’2 || da

—€/2

<lellma-o lmolg® lnolss® ol
<Ol 8= Hlmao 32 el + o -2,

and f d(nv)* da = fd(nv)”2 (nv)" " dx
<N lwn-o ol |7ollz <
<Ol llz* {llmew 3742+ ooz I~}
This leads exactly as in Theorem 1 to the inequality
7z lln < Cg*** (1w lln + [l 920 [l)-
Application of the Sobolev inequality with exponent & gives next, as in Theorem 1,
lollae.n < O (h =) || 0],

The rest of the proof is exactly the same as Theorem 1, except that now x =&*/n =2n/e.
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Remark. Both Theorems 1 and 2 remain true for the equation

div A(x, u, u;) = B(x, u, u,) + C(z, u),

where the functions 4 and B are the same as before, while C is subject only to the
simple restriction #C(x,u)>0. The only change which this requires in the proof is
to note that the integral of the left side of (15) is now equal to — [ $Cdx, and is

therefore non-positive. Then (16) holds as before, and the rest of the proof is identical.

2. Uniform estimates. A maximum principle

The estimate of Theorem 1 can be made uniform over the whole domain of
definition of the solution, provided that # is continuous in the neighborhood of the
boundary. More precisely we have the following result, whose statement will be re-
stricted for simplicity to the case a< .

THEOREM 3. Let u be a weak solution of (5) in a domain D<Q. Suppose u< M
on the boundary of D, in the sense that for every & >0 there exists a meighborhood of
the boundary in which w< M+ ¢&'. Assume also that a<n and that conditions (6) and
(7) hold.(Y) Then

max u < C(|D|™V*||@||,p+ k) + M, (i=Max (0,u— M), (24)
where C and k depend only on the structure of (5). In particular
C=Cla,n, &5 | DI el | DI ||dll)
and e (DI b+ DI g,
where the norms of the coefficients ¢ through g are taken in the respective Lebesgque

spaces (7).

Remark. The symbol max in (24) of course stands for essential supremum. This
agreement will be followed also in later theorems.

We should also mention that a result similar to Theorem 3 was obtained by
Stampacchia [23, 24] and Mazya [11] n the case of linear divergence structure equa

tions.

(}) The inequality |)4|< alp‘a'wl+b|ul“-] +e is in fact unnecessary, except that we must of
course require A (@, u, tz) € Lagjia—1)-
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Proof. We assume first that |D|=1, and define for z €D,
A=Max (M+e&,u)+k—M—¢.
Then obviously we have
IB|<c|pl=*+d|alt, p-A>|pl*—d|al, (25)

with ||d|| bounded as in the proof of Theorem 1. The proof now rests on an appro-
priate choice of the test function ¢. We consider two real functions F(@) and G(u),

the function F(a) being the same as in Theorem 1, while
G(u)=F(ﬂ)F’(ﬂ)a‘1—q“_lkﬁ, — o < U< 0O,

Evidently & is a piecewise smooth function of wu, with corners at u=M+¢" and
M +¢&' +(1—k). Moreover, G=0 for u<M+¢ and @ is linear for u>M+¢& +(I—k).

Thus it is clear that the function

$(x) =G(u), (w=wu(x)),
is admissible in (9).
For u>M+¢' and different from M+¢& +(1—k) we have ¢,=G'(u)u,, with

, [ BEY i u<M+e+(1-k),
h (F)* if u>M+¢&+(1—k).

Hence, setting v=1v(zx) = F(@), we obtain as in the proof of Theorem 1
$.- A+ B |v | —cvlv|* T~ (1+B) ¢* A, (26)

valid in the set indicated above. Qutside this range we have ¢, =0 and 4,=0 almost
everywhere, so that (26) in fact holds almost everywhere in D. Therefore, integrating

over D and using (9), we have
v |2 < fcv|v,|“‘1dx+ 1+p ¢! fd'v“ dz. (27

These terms on the right side can be estimated by using Holder’s inequality together
with Lemma 4.(!) Thus

(1) The function v has not compact support, of course, but » — k% does. Thus from Lemma 4
” v—k? "a: < Const. "(v - &%, ",,

and hence " v "aa < Const. " v, ",z Tk IDll/"‘ < Const. " v,",, + |DI‘1/" " v ”a(.
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fcv o ] da = fcv‘vl’elvr[“‘l dx

<llellma-o ol lollsee flo.flz

<Clllvllalocllz+ ol ozl

f dv da = f dv*v* dx

< || lnia-o lolle ) vlfare
<C{lollz v iz + o]z}

Inserting these estimates into (27), and setting z=||v.|./||v]l«, yields
SO+ 4 g* (2 0+ 1)),
whence by Lemma 2, < Cg*e,
that is fo:lle < Cg[v]|e- (28)
Applying Lemma 4 once more (see the preceding footnote) gives finally
lolles < g™ || 0]l (29)

We may now carry out the iteration process of Theorem 1, with the important
exception that there is mno necessity to reduce the radius at each step. The final

result is clearly
laf.<Cllal.. (30)

Recalling the definition of @ this is easily seen to imply

maxu<M+e +C(||afl.+ k).

To obtain the required conclusion' we let &—0, and then normalize back to the given
value of | D).

THEOREM 4. Let u satisfy the hypotheses of Theorem 3. Then there exists a con-
stant Dy, depending only on the structure of equation (5), such that if |D|<D, then
max % < M + Ck.

Proof. 1t is convenient to make use of the calculations already carried out during
the proof of Theorem 3. Retaining the assumption that | D] =1, we obtain respectively

from Hoélder’s inequality, Lemma 4 (footnote), and inequality (28) written for ¢=1,
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[| %]« <||%}|es < Const. || & || + & < C|| &]|. + % (31)

Now suppose that in the original definition of @ the constant % is replaced by 67'k
where @ is a (small) positive number to be determined later. Then in place of (31)

we obtain
all.<Cllall.+6"%. 31)

It will be important to assess the dependence of €' on the parameters ||¢||, ||2]|, and 6.
Assuming that | ¢|, ||d]|, and 6 are all <1, say, one easily finds that

C=Const. (]lc||+ || d]"=+ =),

where the Const. depends only on «,n, and ¢. Clearly if 6(<1) is chosen suitably
small, and if ||c||+||d]| <6, then we may take C'<}. Consequently we have from (31')

lall.<26 %

Substituting this into (30) yields finally |||, <Ck, that is to say, maxu <M+ Ck.
The proof is completed by observing that the values of | ¢||, ||| which actually arise
through normalization to unit volume are |D|""|¢c| and |D|""||d||, whence we may
take Dy=07" ([ + [l ).

Remarks. If c=d=0 in (6) then Dy=co and the maximum principle holds for
arbitrary bounded regions D.

Finally; we observe that these results also hold if the hypothesis <M on the
boundary is replaced by the assumption that u is the strong limit in W3(D) of con-
tinuous functions which are <M on the boundary of D. We leave the details to the

reader.

3. The Harnack inequality

The following theorem of Harnack type will be used to estimate the Hdlder con-
tinuity of solutions of (5), and will also be of importance in our later discussion of
the behavior of a solution near an isolated singularity. The main idea of the proof
is the same as in Moser’s celebrated paper, though the details are considerably more

delicate and involved.

THEOREM 5. Let u be a non-negative weak solution of equation (5) in some open
ball S(BR)=Q. Assume that a<n and that conditions (6) and (7) hold. Then

maxu<C(minu+k) in S(R),

where C and k are constants depending only on the structure of (5), as in Theorem 1.
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Proof. It is enough to prove the result for the case R=1, with the solution
correspondingly defined in an open ball S(3). By Theorem 1 the solution is bounded
on any compact subset of S(3). Thus if # is a non-negative smooth function with

compact support in S(3), then
dx)=n*a’, a=u+k+eé
is admissible in (9) for any real value of § and any & >0. It is our purpose to insert

this function into (9), and in this way to derive an estimate similar to (18). The

resulting calculations are slightly different in the ranges
f<l—a, l1-a<f<0, B>0,

while the values f=1—« and f=0 are singular. We take up these various cases

in order.

I. p>0. Here the calculation is essentially the same as that of Theorem 1, with
v="4? and ¢ and g related by ag=oa+f—1. In carrying out the details it is helpful
to note that @’ and @ here correspond to F(#) and Const. G(u) in Theorem 1. The
main difference is that there is no longer a cutoff value I, so that we must always
use the formulas of Theorem 1 corresponding to the range |u|<!—%. This means, in
particular, that the factor ¢~'f should be inserted in front of the first term on the
right sides of (14) and (15), and in front of the term on the left side of (16) and (17).
Thus we have finally

BE<CI@* M + (L +22 ) + g0 (2 + 2279+ (1 + B) ¢* & (1 +2779)), (32)
the notation being the same as in Theorem 1. Applying Lemma 2 then leads to
<O+ (1+0),
where we have used the fact that ¢>(x—1)/a. Thus
vz lle < O (1 + Bl [la + | 9w |- (33)
Choosing 7 as in Theorem 1 there results, in conclusion,
Iollans < O (B —2) 1+ 879 [0 ]lan, (0= (34)

II. 1-x<B<0. This goes as Case I, except that now ¢ '8 is negative and
inequalities (14) and (15) must run the opposite way. Otherwise there are no essential

changes, and we obtain finally
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Nollasn < Ch=B) Q=B lollan, (v =27, (35)
(the term ¢** can be omitted since 0<gq<1).

III. B<1—a. This goes exactly as Case I, except that ¢ is negative and absolute

values are necessary. The result is
lollenn < CR=R) A+ gl [0 ]lan, (v =2

(here one uses the fact that [8]|>a—1). Since the case $=0 is trivial there remains
only case

IV. B=1-—o. Substituting the functions
p=nra'"%, b= a(n/B)* s+ (1 o) (n/8) u
directly into relation (9), we obtain with the help of (13)
$er A+ $BS (L~ o) (n/ {|ucl*~ & ]}
+alna| /@) Haluo "+ Blal ) + ot @t o | [+ d @]
= (1= o) [u|* + aa || - oo + @by ope| + em o [*7 + ey,

where v=1v(zx)=log 4. Hence integrating over 8(3) there results
=1 el < mﬁﬂ,; el da ocfﬁ')y“_l e do+ fcn IoaF da acfdn“dx. (36)

Before estimating the integrals on the right-hand side, it is convenient to specialize
the function 7. Let S be an arbitrary open ball of radius % contained in 8(2). We
choose 7 so that #=1 in § and 0<gy<1 in S(3)¥S. This may be done, moreover,
in such a way that the support of 7 is contained in a concentric sphere about S of
radius (3/2)h, and so that Max|#n,|=3/k. Then by Holder’s inequality we have the
estimates

[l etz < oBr=21 o i,
[5r el < o,

Jonlmeateda < onr-ere o 7,

fdn’ dz < Ch"™,
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where conditions (7) have been used at each stage. Inserting the preceding inequalities
into (36) there follows
vl < LA™ || o |57 + 7).

Thus by Lemma 2 we have ||v;]l.s<Ch" % since =1 in S. Finally by Lemma 6
and a simple use of Hélder’s inequality we obtain

llv—wsll, < Ok |l v [}, < ORI+~ || ||, < Ch7,
that is f|v—vsldx<0|8|, (v=1og %). (37)
LA

This estimate, valid for any ball S contained in S(2), completes the discussion of
case IV.

This being accomplished, the required conclusion will now be obtained by an

iteration process somewhat similar to that of Theorem 1. For any real number p=0

we define :
1/p
d)(p,h)=(f Idl”dx) ,
S

(thus for p>1 we have ®(p,k)=||@|,. ). Now from (37) and Lemma 7 it follows that

f e""”dx-f e P dx <22 P,
82) @)

where p0=l/ C; the constant 'C is here the same as in (37), while A and u depend
only on the dimension. Since v=1log# this inequality may be rewritten simply

O(py, 2) <OCO(— py, 2). (38)

Next, putting p=ag=a+f~1 in (34) and (35), taking the gth root of each side,
and combining the results in a single inequality, we obtain

Oep, b)) <[C(h— 1) (L + B[ (1 + p)™T** O(p, b), (39)

where x=a*/a and p is any positive number other than «—1. We wish to iterate

this inequality, beginning with ®(p,,2) and setting generally
p=%"py »=012,...,

and h,=1+27" h,=h,.1. In order that (39) be applicable at each stage, the sucessive

iterates p, must avoid the point p=x—1. To accomplish this in a definite way we
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shall in fact choose a new initial value pg< po so that the point p =« —1 lies midway
between some two consecutive iterates of po. The value py being thus fixed, we ob-
serve that at all stages of the iteration process one has

a(e—1)
2n—o

1Bl =1p—(x-1)|>

The term (1+|8]™") in (39) can thus be absorbed into the general constant C.
Application of the iteration process just described then leads, as in the proof of

Theorem 1, to the inequality
max &< CD(po, 2). (40)

S)

It remains to examine the inequality of Case III. Again setting p = «g and taking
gth roots, this inequality becomes

Dp, 1) > [C(h— 1) (1 +|p|)*T” D(p, &),
where the sign is reversed since p and ¢ are now negative. Iterating as before, with
Pv=—3x"p, and h,=1+2"", h,=h,,;, there results without difficulty
D(pys1, hys1) 2 C7 D~ py. 2).
Letting v —co then establishes the inequality

min @ > 0~ ®(—p,, 2). (41)

sQ)

The proof is now easily completed. From (40), (38), and (41), and a simple ap-

plication of Hélder’s inequality, (1) we have

max @ < C®(pg, 2) < CD(py, 2) <CD(— py, 2) < C min 4.

S SO

Since #=wu-+k+¢ this implies in turn maxu <C(minu +k+¢’). Letting &'—0 con-

cludes the demonstration.

THEOREM 6. Let u be a non-negative weak solution of (5) in some open ball
S(BR)<=Q. Assume that a=n and that conditions (6) and (8) hold. Then

maxu<C(minu-+k) wm S(R),

where C and k are constants depending only on the structure of (5), as in Theorem 2.

(1) To obtain ®(p,, 2) < CD(p,y, 2). In particular we find
Dipy, 2) <| () [P+~ D(py, 2),

where the exponent can be assumed less than (x—1)/p, since surely one can choose p;>x_1po‘
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The proof may be omitted, since it is simply a modification of the preceding
argument, in exactly the same way as Theorem 2 was a modification of Theorem 1.

A Harnack inequality for the case «>n will be proved in Section 5.

4. Applications. Hilder continuity of solutions

The Harnack inequalities of the foregoing section can be extended without diffi-

culty so as to apply to arbitrary regions D. In particular, the following result holds.

TrEOREM 7. If w is a non-negative weak solution of (5) in a domain D, and if

D’ is any compact subset of D, then
maxu<C' {minwu+%) in D,

where C' depends only on the structure of equation (5) and on the domains D and D,
and &' = (|le]l + 1"+ | g]|"=.

The proof is standard, depending only on covering D’ with spheres and on a
simple chaining argument.

We turn now to a fundamental estimate of the Hélder continuity of solutions
of (5). It is enough to consider the case o <n, for when & >n the result is immediate
from Morrey’s lemma. Also, if a<mn, it will be supposed that e is in a more restric-

tive Lebesgue class than originally supposed, namely
e€ Ln/(z-l—e) s

(¢ should now be less than both 1 and x~—1). In this case the parameter k in Theo-
rems 5 and 6 has the form

ko= (B [le]| + Bl £+ (B[l g )™

We may now prove

TEEOREM 8. Let u be a weak solution of (5) in a domain D<Q, Then u is
(essentially) Holder continuous in D. Moreover, if |u|<L in D and if D' is any com-

pact subset of D, then
|u(@) ~uy) | <HE + L) |z —y[', =yeD,

where 2 =2(a,n, & a, bl el |2]]), ani H depends only on the structure of (5) and on
the geometry of D and D',
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Proof. It will first be shown that u is Holder continuous at any fixed point P
in :D. The general result will then follow easily.

Thus let P.be a point of D, and let R be chosen so that the ball S(R) has
compact closure in D. By a suitable change of variables we may suppose R=1. The

expressions
M(r)= max %, p(r)=minu
s

are then well defined for 0 <r<1, and it follows that both functions

4=M—-u and u=u—u

are non-negative in S(r). Obviously @ satisfies the differential equation

div Az, @, 4;) = B(x, %, &)

with ;(z, %@, D)= A(x, M — @, — Pp) and a similar formula for B. These quantities clearly
obey the inequalities
|A|<a|pl* ' +B|a[* " +é, ete.,

where b=2%b, 6=e+2*bL*"!, etc. Thus we may apply Theorem 5 (or Theorem 6) to
@ in the open ball S(r), with the result

M-y =maxa<C(mina+k)=0M-M +k), 0<r<l, (42)

S(ri3) S(rid)
where M’ =M'(r)=M(r/3), u’ = u'(r) = u(r/3). In this inequality the constant C depends

on the variables listed in the theorem, while

= (llell + I 7DV + ¢ gl
In the same way, we have

M —pu=maxu<C(minu+k)=Cu' —p+k). (43)

S(r/3) S(ri3)
Adding (42) and (43) and transposing terms then gives

2Ck

c+1 44

C+1(M_ Mo

Now k<k,r*® where k,=([|é]| +||7[)"**+ (lg])"*. Thus setting

C—-1 __ 2Ck,
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and denoting the oscillation M —u of # in S(r) by w(r), we may write (44) in the
form
w(r/3) <#{w(r)+ 7%}, O0<r<l.

Sinee (r) is an increasing function, it is clear that for any number s>3 one
has also
o(r/s) <Hw(r) +7r"}, 0<r<l.

Tteration of this relation from r=1 to successively smaller radii yields
(") <P {o(1) +T[1+ @)+ ...+ (97571}, (45)
valid for »=1,2,3,.... Now choose s according to the relation

Vs =2, (s=4).
whence from (45) follows
o(s™") <¥{w(l) + 21} (46)

For any fixed g, 0<g<s™', let » be chosen such that s '<p<s”. Then by
virtue of (46),
o(g) <o(s™*) < ¥ {w(1) + 27}. (47)

Now one easily checks that w(l)+2r<C(L+k). In addition, if y is defined by the
relation 277 =149, then we have ¥ =s* where A=¢gy/a(y + 1) >0. Therefore (47) implies

CU(Q) < O(L + Ic) @"’ 0 < 2—(y+1)a/e’
or when R+1, w(o) <O(L+Ek) (o/RY, o<2 wtDeep, 8)

This proves that u is essentially Holder continuous at P.

It is a trivial, though not entirely simple, task to show that we can redefine »
on a set of measure zero so that the resulting function is Holder continuous at every
point of D. Leaving aside this demonstration, the first part of the theorem is there-
fore proved. The second part follows easily from the estimate (48), using a simple
chaining argument (choose R=Min(1,£), where & is the distance from D’ to the
boundary of D).

5. The Harnack inequality for a>n

In the foregoing sections we have considered the majorization and continuity of
solutions when a<n. The situation for «># is somewhat different, since by Morrey’s

lemma solutions are necessarily bounded and Holder continuous on compact subsets
18 — 642946 Acta mathematica. 111. Imprimé le 9 juin 1964
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of their domain of definition. For this reason we may confine our discussion solely
to the Harnack inequality.

We retain the basic structure (6), and assume further that
b,e€Ly,1y; c€L,; d,f,g€L,. (49)
Then the following result holds.

THEOREM 9. Let u be a non-negative weak solution of (5) in some open ball
S(2R) <= Q. Assume that «>n and that conditions (6) and (49) hold. Then for any two
points x, y in S(R) we have

w(x) < {u(y) + k} exp {C(|z — y|/R)' "=}, (50)
where C=C(a,n; a, R“™||b||, R« ™=| |, B> ™| d])
and k= (RB® ™ |le|| + R*" || {Ih="P+ (R*" || g[)"",

the norms of the coefficients being taken in the respective Lebesgue spaces (49).

Proof. Suppose first that B=1. Let 5 be a smooth function with compact support
in 8(2), such that =1 in S(1), and 0<9n<1 in S(2)—8(1). Now set

¢(x) — nadl—a

in (9), where #=wu+k+¢'. Then, as in Case IV of the proof of Theorem 5, we find

(x—1) [|ne.lz< ocfa Iz« || dae + ochn"“l | 72| dz + fcn |, |* "t da + ocfdn“ dz.
Here v=logd, and b and d are defined as in Theorem 1. We may assume that
Max [5.]=2, hence by Holder’s inequality

el < CTL+ [l goe 1771
Application of Lemma 2 then yields (since y=1 in S(1))
o fle<C, (51)

the integral being taken over the unit ball S(1).
Since |||, is finite we conclude from Morrey’s lemma that v is Hélder continuous
in 8(1),
|o@) = o()| < Clz—y[7™



LOCAL BEHAVIOR OF SOLUTIONS OF QUASI-LINEAR EQUATIONS 273
But v=1log @, so that this implies
() < dfy) S, (@, y €8(L)).

Recalling the definition of 4, the required inequality now follows immediately. The
case R=+1 offers no additional difficulty, and the theorem is proved.

As an immediate consequence of Theorem 9 we have the result that

max u < C(min »+k);

this is, of course, considerably weaker than the actual inequality (50).

6. Generalizations

We begin by noting that certain equations which nominally do not fall into the
categories above can in fact be considered as special cases. In particular, in case

a<n let us suppose that (6) is replaced by
| A|<a(p|* !+ |u|* P +e),
| Bl<allpl=* +[ul* 25+ 1),
pA>|pl*—a(|u* +g),
where ¢=(n—a+ag)/n. If we now consider a fixed solution u, we can set
bx)=a|u|[* Vs cx)=a|u ', d@)=a|u|["O"

and it is easily verified (assuming that w,€L,, u € L,) that conditions (7) are in fact
satisfied. Thus the conclusions of Theorems 1, 3, 4, 7, and 8 remain valid, with the
exception that the coefficient ' now must depend on the W, norm of the solution.
A similar result holds when a>n, but it is not necessary to carry this out in detail.

A slightly different situation arises if we know a priori that u is bounded. Then
under genuinely weaker conditions it is.possible to carry through the arguments leading
to the Harnack inequality and the Holder continuity of solutions. Since a result of
this sort will not be required in the later sections of the paper, we shall not pause
to consider the situation in any detail. It may be remarked, however, that the argu-
ments of references [8], [9] are in general based on such an a priori estimate for the
magnitude of #, which partially explains the difference between their hypotheses
and ours.

In conclusion, there has been some interest in the situation when the ‘“‘inhomo-
geneous” terms e, f, g do not lie in the respective Lebesgue spaces (7). For this case

we have the following results, analogous to Theorems 1, 3, and 4.
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THEOREM 1. Let the hypotheses of Theorem 1 be satisfied, with the exception that

e€L,., fE€EL,, g€L,, where
1 (Lo _1 1_5)_1
a—1\r =n a\t n o

and ¢ is some number in the range af <o < oo, Then

l#llo.z < OR™ ™= (|| %]|e.22 + ER™),
where C and k depend only on the structure of equation (5).

Proof. This proceeds in the same way as Theorem 1, except that we take the
initial substitution in the form @=|u|. It is clear that certain terms involving e, f, g
must then be carried along in relations (14) through (23). In particular, to the right

side of (16) one must add the expression

th“‘lfeh}rvl . (mj)ﬂ/q«l dx-l-q“_lff('l]v)ﬂ/a df’a“*‘ﬂqa_lfg(nv)“(q_])/q dx.

These integrals can be estimated only if ¢<o/«*. For example, with this restriction

on ¢ one has

fe 7201 - (o)~ da < [l ]| o || vl [l 12
<O(lell7# = + [Imzvl2) + Const. || 2,
where the constant in front of |#v.[|% can be taken as small as we like. The re-

maining two integrals likewise have similar estimates. Thus, by following the steps

of Theorem 1, one obtains in place of (23)
Wl n < €O =B~ {Jlaflp,+ el + I AIF < + g [173,
valid for p=ag<o/x. The required conclusion now follows by a finite iteration of

this inequality.

THEOREM 3'. Let the hypotheses of Theorem 3 hold, with the exception that e, f, g
are assumed to be in the preceding Lebesgue classes. Then
lalle.o <€D (|| le.0 + | D),

where @=Max(0,u— M) and C and k are constants depending only on the structure

» of (5).
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This is proved by the argument of Theorem 3, beginning with the substitution

%@ =Max (0,4 — M —¢'). The details can be omitted, as also in the case of

TeHEOREM 4'. Let w satisfy the hypotheses of Theorem 3'. Then there exists a con-
constant D, depending only on the structure of equation (5), such that if |D|<D, then

l@lle.0 <€Dk,
where 4 =Max (0, u — M).
There are also similar results for the case o< «*, though the proofs are quite a
bit more delicate. Since this case is somewhat artificial (recall that « is always locally

in class L), the discussion may be omitted.

II. Removable singularities

The methods of Chapter I will here be used to prove two basic theorems con-
cerning the removable singularities of solutions of equation (5). We shall retain the
structure outlined in the opening discussion of Chapter I, with the exception that e
will be assumed in Lpy,-1-, rather than L, 1.

We may further confine the discussion to the case a<<n, for the alternate case
a>n can admit no removable singularity theorems of the ordinary sort. Indeed, con-
sider the equation

div (u|u,|*" %) =0
with «>n. It is easily checked that u=7r*""/@"D jg a bounded solution in the domain
0<r<1. On the other hand, the origin is definitely a non-removable singularity for
this solution, since if ¢ is a continuously differentiable function with compact support

in the unit open ball, then

_ a—1
J‘¢x'uz|uz|“72dx= - (Z‘;L) wn¢(0)s

and this need not vanish. That is, when a>n there can exist bounded solutions with
non-removable isolated singularities. The above example indicates in addition the type
of behavior one can expect at an isolated singularity when a<n, and will therefore

be useful in testing the sharpness of some of our later results.

7. Statement of results

In the following it is convenient to restrict consideration to continuous solutions of

(5), that is, weak solutions which have furthermore the property of being continuous
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functions. This involves no real loss of generality, of course, since by Theorem 8 any
weak solution can be made continuous by appropriately redefining it on a set of
measure Zzero.

We shall require also the notion of capacity. Let @ be a bounded set in E".
The s-capacity of @, 1<s< oo, is defined to be

inf f || d,

where the infimum is taken over all continuously differentiable functions ¢ which are
=1 on @ and have compact support in E* (if s>n, we require compact support in
some fixed sphere |z|< R,). When s=2 this definition reduces to the familiar one of

potential theory. We may now state our fundamental result.

THEOREM 10. Let @ be a compact set of s-capacity zero, where a<s<n, and let
D be a domain in Q. Suppose that w is a continuous solution of (5) in the set D—@Q,
and that for some >0 we have

u € Lyqrs, B=s(a—1)/(s—a). (52)

Then u can be defined on the set Q so that the resulting function is a continuous solu-
tion of (5) in all of D. The exponent 6 in (52) is best possible.

As a special case, if the a-capacity of @ is zero, then Q is a removable singularity
for any bounded solution of (5).

This theorem has several corollaries which further clarify its meaning, and relate
the size of the exceptional set to the classical concepts of potential theoretic capacity
and Hausdorff dimension. (Definitions of these concepts appear in references [1] and [26],
and in other places; they may be omitted here since the corollaries will not be used

in the sequel.)

CorOLLARY 1. Let Q be a compact manifold of Hausdorff dimension m, and let
D be a domain in Q. Suppose that m <n—a. Let u be a continuous solution of (5) in
D—Q, such that for some >0

w€Lparsy, O=@m—m)(x—1)/(n—m—a). (53)

Then u can be defined on the set @ so that the resulting function is a continuous solu-
tion of (5) in all of D.
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Proof. Let A, denote the Hausdorff p-measure of the manifold @. Then clearly
Amie=0 for any £>0. This implies (cf. [26]) that the s-capacity of @ is zero, where
s=n—m—e. On the other hand, by (53)

=s(cx-— 1)

L,,
%€ 6 —a)

(1+9),

provided ¢ is suitably small. It now follows from Theorem 10 that @ is removable.

COoROLLARY 2. Let Q be a compact manifold of potential theoretic A-capacity zero,
and let D be a domain in Q. Suppose also that 0<A<n— o or that A=n—o and o> 2.
Let u be a continuous solution of (5) in D—Q, such that for some >0

€ Lyass, O=(n—121)(x—1)/(n—21—a).

Then u can be defined on the set Q so that the resulting function is a continuous solu-
tion of (5) in all of D.

Proof. If 0<A<n—ca, then by [26], Theorem A, the s-capacity of @ is zero,
where s=n—A—¢. Thus @ is removable, as in Corollary 1. If A=n—« and a>2,
then A<n—2 and by [26], Theorem A, the «-capacity of @ is zero. Since u € L, in
the present case, we conclude once more from Theorem 10 that @ is removable.

Another slightly different version of Theorem 10 can be given if we replace the
Lebesgue class hypothesis on u by a strict growth property. For this purpose we
understand that a smooth manifold of co-dimension & is a compact set in E™ with
the property that there exists a C' diffeomorphism x—y of E™ onto itself such that
the image of the manifold lies in the hyperplane y,=...=y,=0.

THEOREM 11. Let Q be a smooth manifold of co-dimension s, where a <s<n, and
let D be a domain in Q. Suppose that u is a continuous solution of (5) in D— @, and
that for some 6>0 we have

O(E(a—s)/(a—l)w) 'Lf -S‘>Ot,
N {O(|log EY it s—a,

where & is the distance from Q. Then w can be defined on the manifold Q so that the

resulting function is a solution of (5) in the whole domain D. (1)

(1) If @ is a single point, and 7 denotes the distance to this point, the hypothesis of Theorem 11
becomes u=0(r(“_">/(“*1)+6) or 0(|log7‘|1“6). When o—2 this further reduces to u=O0(r>""*%) or
0(|log7‘|1_6), as might be expected. Earlier results of this type appear in [6] and [21].
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When s> o this theorem is a special case of Corollary 1 (if desired, the reader
may show directly that ¢ has s-capacity zero and so reduce the result directly to
Theorem 10). The case s=e«, on the other hand, requires its own separate proof.

The proof of Theorem 10 will be given in the next section. Following this we
prove the logarithmic case of Theorem 11. Finally, in Section 10 we prove a lemma
on capacity which was crucial at one stage in the demonstration of Theorem 10.

There is some interest in the existence of solutions with non-removable singu-
larities. In the following chapter we shall take up this question in some detail for
the special equation div A(x,u;)=0. Here we shall only remark that if a positive
solution of (5) has a non-removable isolated singularity at a point P, then the solution
necessarily tends to infinity at P. Indeed by Theorem 10 or 11 there must exist a
sequence of points z,. »=1,2, ..., tending to P, such that u(x,)—>co. We now wish
to apply the Harnack inequality (Theorem 7) in annular domains about P. For sim-
plicity of notation suppose P is the origin. Then by normalizing each sphere |2| =]
to radius 1 and applying Theorem 7 we obtain

fy= min u(x)-—>oo.

1z]=1z,

Finally by Theorem 4 one sees that (for sufficiently large »)
u(x)>Min (,uv; ﬂv+1)~0k; lxv+1|<|w|< lxr]

The required conclusion follows at once. It should be noted that this argument is

essentially the same as one in reference [6].

8. Proof of Theorem 10

It is enough to show that % can be made a continuous solution in the neigh-
borhood of any point of D. Thus let P be in D and let R be such that the ball
S(2R) is also in .D. By a suitable change of variables it may be supposed that B=1.
As in the proof of Theorem 1 we define

a=|u|+k =x€8(2)-Q,

where k=1+(|le]|+ [fI)"“ " +]lg]|V* We now introduce an appropriate test func-
tion ¢(x). Let  and 7 be non-negative smooth functions, 7 having compact support
in 8(2), and 7 vanishing in some negborhood of . Then since u is locally bounded

and has strong derivatives which are locally in L,, it is clear that the function

$(x) = (777)* sign w - {@’ — ¥’}
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is admissible in (9) for any $.>0. The resulting calculation (}) is essentially the same

as in Theorems 1 and 5, and gives the results
li7eelle < g1+ 87 (il + | Griev o), (54)

Imi7olles < Cqe (1 + B (o lla+ | (e ), (55)

where v=4? and ag=c-+p—1.
We now require a lemma, whose proof will be deferred until Section 10. In order
to formulate the lemma more simply we use the notation U(Q) to denote the class

of smooth functions 7j(x) which satisfy 0 <# <1 and vanish in some neighborhood of Q.

LeEmmA 8. Let Q be a compact set of s-capacity zero, 1 <s<mn. Then there exists
a sequence of functions ij
7]l —o0.

Now consider the term ||#,v||. which appears in both (54) and (55). We have,

@ contained in U(Q) such that 7”—1 almost everywhere, while

if s>e,

1-afs
l7e0ls= f |72 < | 7 ( f oo dx) :

Choosing 8 = f,= 6(« ~ 1) one finds that ags/(s — &) = («+ B — 1)8/(s — ) = 6(1 + 8), whence
using the hypothesis (52),

| 7. || < Const. || 7, |s- (56)

On the other hand, if s=« then §=co and by hypothesis € L, and [|7v|.<
Const. || 7, ||.. This being shown, let us replace 77 in (54) and (55) by the elements
7 given by Lemma 8. Then letting » — oo, we obtain from the dominated conver-

gence theorem
e lle < Cg™* ([ nolle+ 9 ), (57)

172 lles < Cq™ (o |+ | 2o ]l)s (58)

where the norms are taken over 8(2)— @, and the constant ¢ now depends also on
the value of 6.

If % is now chosen as in Theorem 1, inequality (58) may be written in the form
O(sepy, 1) <[C(po/ @) (h— 1) 1% O(py, b), (59)

where py=oa+B,—1=(x—1) (1+0), and O(p, k)= (J s o & dx)"”.

(1) For simplicity we suppose that a<n. The case a=n requires only trivial changes (cf.
Theorem 2).
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We wish to proceed as in Theorem 1, obtaining a corresponding inequality for
each p>p,. This requires a more delicate choice of the test function than previously.
For ¢=q,=p,/a and 1>k, we define

_ al if k<a<l,
F(u)= =117~ o, q q : -
¢ [q? Pu®+(q,— )19 if <4,
and G(u) = sign u - {F(@) F' (@) — qa—lkﬂ}’ — o <u< oo,

where ¢ and f are related by ag=o+g—1. Evidently F is a continuously differen-
tiable function of #, and G is a piecewise smooth function of u, with corners at

u= 1 (I—k). Moreover, these functions have the properties
F<(q/q,) 1% %a%, aF <qF,

-1 N if -k,
and o> {4_1/3(1" ), i ] <
@ B (F')* if |u|>1—k.

The first two of these inequalities are quite simple to establish. The third arises from
the calculations (1)
&' (w)=(F')*+ (a— 1) FF"(F')**

—(Fy+(@—1) (q_Tl) (Fy =g BF')"

if 4<1, and G (u)y=(F'yY+(a—1) FF"' (F')*?
-1
= (F)*+ (a—1) (‘Eq—) (F')* =qo " By (F')*

0

when @>1. We may now substitute

$(x) = ()" G(u), (u=u(x))
into (9). Since |G|<F(F')*"!, one finds exactly as in Theorem 1 that
o lles < Cg™* (70 e+ | Gy |,
where v=v(x)=F(d).
Since v <Const. @%, it is clear as in the earlier part of the proof that ||#,v|.<

Const. || 7, ||s. Thus replacing 7 by 7 and letting v —co, we obtain

Ilnolles < Cg* (lm2lle+ v l)-

() For the range %>! we use the relation g,<1, which is in turn equivalent to §,<1 and
hence to d< (e l)vl. But this last inequality can always be assumed without loss of generality.



LOCAL BEHAVIOR OF SOLUTIONS OF QUASI-LINEAR EQUATIONS 281

Here we may let [—oco. Since v—4? there results by Lebesgue’s theorem
8 llas < Cq** (| g |le + || 5% |J2)-
Finally, choosing # as in Theorem 1 (and as in the earlier part of the proof) yields
Doep, 1) <[C(h = B) " (p/ )" D(p, }), (60)

where p=uag>p, We emphasize that (60) is valid whether or not the integrals in-
volved are finite.

Now iterate the inequalities (59), (60) starting with p=p,. This clearly yields
the conclusion
lalle <2, (61)

where the left hand norm is over the set S(1)—@ and the right-hand norm is over
S(2) - Q. But |4y <| %|loa+s, 50 that the right side of (61) is finite. Thus we have
shown that % is uniformly bounded on the set S(1)— Q.

It remains to establish that % can be made a continuous solution of (5) in all
of §(1). Choosing # so that y=1 in S(1), we have from (57)

9zl 1 < Const. [| vz,
that is J‘dﬁ“‘l [ |*dx < Const.fﬁ“‘"“ dx < Const.

Since f,<1 and @ is bounded in S8(1)—@, this proves that u, is in L, on the set
S(1) — Q.

A set of capacity zero is also a set of measure zero (see the corollary in sec-
tion 10). We shall show that if u is arbitrarily set equal to zero on @ the resulting
function is strongly differentiable in S8(1). Indeed, for any smooth function ¢ with
compact support in S(1)— @, we have

J‘wﬁ, dr=— f¢u,dx.
Setting ¢ =7, where 5 has compact support in S(1), then yields
fu(nﬁ, + i) de = — fnﬁu, dx.

Thus replacing 7 by #* and letting v —oco, we obtain from the dominated conver-
gence theorem
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f’my, de= — J"'?"’z dz, (62)

the integrals being evaluated over the set S(1)— Q. If one arbitrarily sets v, =0 on @,
relation (62) becomes valid over all of S(1). But this is just the condition that « be
strongly differentiable in S(1), and the assertion is proved.

Finally, the functions A(z,wu,u.) and B(z,u,u,) are clearly in L., 1, and Lge
over S(1), and

f(¢;';4+¢3)dx=0

when ¢ has compact support in S(1)— Q. Again setting ¢=17ij, we easily obtain in

the limit as » — o,

f(’?z'A"r??B) dz =0,

valid whenever # has compact support in S(1). It follows that u, as defined over @,
is a weak solution of (5) in the ball §(1). Finally by Theorem 8 we can redefine
on a set of measure zero so that it is Hoélder continuous in S(1). Since this rede-
finition cannot effect the values of u on S(1)— @, where it is already continuous,
we see that by suitably assigning values to u on the set @, it becomes a continuous
solution of (5) in S§(1), that is, in a non-empty neighborhood of the point P. This
completes the main part of the proof. It remains only to show that the exponent
6=s(e—1)/(s—a) is best possible, and to prove Lemma 8.

In order to show that 6 is the best possible exponent, consider the equation
div (u,|u,[*" %) =0,
and let ¢ be the hyperplane z, =... =2,=0. Clearly @ has s-capacity zero. Now one

checks easily that the function

Q(fx-S)/(a—l)’ x<8
U= (63)

log o, a=s,
is a solution, where o denotes the distance to Q. Moreover, if x<s then

u € Lo-e'
for any &' >0, while if a=s then
u €L,

for any o< co. Thus an exponent smaller than 6 in (52) would allow the solution (63)

into competition, and the conclusion of the theorem would become impossible.
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9. The logarithmic case of Theorem 11

By a smooth change of variables, leaving the form of inequalities (6) invariant,
it may be assumed that ¢ is contained in the set

z=...=2,=0, [z]|<3, (64)

and that D in turn includes the ball |x|<2. In fact, we may even suppose that @
is precisely (64), for this at most enlarges the singular set.

Now, retaining the notation of the preceding section, let us make the same sub-
stitution

$(x) = ()" sign u-{@’ -k}, (B>0),

in relation (9). Then we find, by separating out the terms involving 7,,

0™ B llnie < wa [ ol e 2o+ g [Blmeo]- oy
+ fcnv |niv* 1 de+ 1+ B)g* ! fd(nﬁv)“dx

+a f |722] - (@ | o + ¢ B (ggv)* V) d, (65)

where it is assumed that both # and 7 are less than or equal to one. Next, let o
denote the distance to @, and for fixed ¢ >0 choose

0 if p<o

mw:{l if o>o+h,

and linear in the interval o<g<o-+h. Now consider the effect of letting 2—0

while keeping o fixed. Since |,/=%"' it is clear from Lebesgue’s differentiation
theorem that, for almost all values of o,

f|ﬁzv| “(alno [+ ¢ B gv|*TY) dx——>§; via|gv 1+ b pv|* ) ds.
o=0

The limit process on the remaining terms of (65) is trivial, hence we have for almost
all values of o,

0Bl <o [ Ineo] Iy o ot [Blmen]- oy s
+ fcmz |po-|*tda+ (1 + B)g* ! fd(nv)"‘dx

+a fﬁ v(a| |t +q* 1B | pw]F ) ds,
=0
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the volume integrals being taken over the set where 9>o¢. The first four terms on
the right may be estimated as in Theorem 1 (we assume o <n for simplicity), with
the exception that Lemma 4 must be replaced by the slightly different Lemma 5.
Thus we obtain with the help of Lemma 2,

lmvslle<C@+B7)" g (o lle+ I mev]la) + CB~ gl (o)™, (66)
where I(U)sz o[ [*7* + 8| mo]* ") ds.
=0

Now by Hoélder’s inequality and Lemma 1

(@—1yjx

I(o) < (2 ﬁv“ds)m (f(hyv,l“ + 54"V pv|%) ds) ,

while by hypothesis

jgv“ds = §12°‘°ds <Co* ! |log o|*F- DA,

where C is some constant. Since s=a in the present case, one has by setting
B=P,=0(x—1) and & =4?%

§v“ds <C(o|log a|'~*)*1.

Furthermore, since s>1 it is easy to see that the terms [#v|l. and ||n,v]. in (66)
are uniformly bounded as ¢ —0. Let us set

J=J(o)= f lgoe|fde, W =W(x)=5"|y|"
>0

Then noting that J'(o)= — § |nv.|[*ds and using the preceding estimates, a straight-
forward calculation establishes that (66) may be written in the form

(J-K)¥* V< Cg|logo| (—J'+§‘Fd8), (67)

where K=c*¢""(||nolla+ | m:0l0)%

the norme in the preceding line being taken over the set where p>0, that is, over
the complement of @.

We assert that J<K for all ¢>0. Indeed, suppose to the contrary that at
some value ¢=0, we have J(o,)> K. Since J increases as ¢ decreases we have also
J>K in the interval 0<o<g, Thus setting H(c)=J(o)—~ K in (67) it may be re-

written
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1 CH' 0
o [log o[ < ~ e T H(o‘o)“’(“'l)§‘lfds’

valid for almost all values of ¢ in the interval 0 <o <o, Integration of both sides
from ¢ to o, yields

1 . ’ - 1 1 C
il A— £y < — — LI‘ .
8, (llOg Ul |10g O-OI ) (OC 1) O [H(O,o)ll(a:-l) H(o,)l/(a—l):l + H(o,o)a/(u—l) fa<g<ag dx

a/n 1-a/n
But J“F dx < (fl-)"’(“"l) dx) (flm) |fmien e dx) ,

and the right side is uniformly bounded as o >0, (recall that u=0 (|log o|'™%)). The
right hand side of (68) therefore remains bounded as o — 0, while the left-hand side

becomes infinite. This contradiction proves the assertion J<<K. Interpreting this in

(68)

terms of the original functions yields

170zl < Cg (| o |l + | 920 ]|,

where the norms are taken over the complement of @, and the constant C' depends
only on § and on the structure of equation (5). Finally, applying the Sobolev in-
equality (Lemma 5) we obtain

" nv ”oc* <Cg¢™* (” nv "a + " 771'””05)'

The preceding two inequalities are the analogues in the present case of (57) and (58)
in the foregoing section.

The remainder of the proof is exactly the same as before, except that the limit
process v —> oo must be replaced by the present -technique of differential equations.

Theorem 11 is thus completely proved.

10. Capacity

Here we shall prove Lemma 8, and also present some simple results about s-

capacity which will be useful in the sequel.

Proof of Lemma 8. For simplicity we shall consider only the the case s <n, the
remaining case s=n being treated by similar methods. Now according to hypothesis,
there exists a sequence of continuously differentiable functions y® with compact

support in E*,>1 on @, and such that
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f |9 de <1/v. (69)

The function 24 is >1 in some neighborhood of Q. Consider then the truncated

functions
0, where * <0,

PP =129", where 0<29p”<1,

1, where 2y®>1.

Evidently ¢ is strongly differentiable, equals one in some neighborhood of @, and

satisfies

f |¢;”>|de<23f|1p§”>18dx< 2°/v. (70)

Moreover, * has compact support in E". Therefore by Lemma 4 and (70),
| $* ][5« < Const. /».
Consequently ¢® converges to zero in measure, whence for some subsequence (still

denoted by $*“) we have

$” 0 almost everywhere. (71)

This being shown, it is easy to see that the sequence 7 =1—¢® fulfills the
conditions of the lemma, with the single exception that each #%® is only Lipschitz
continuous and not continuously differentiable. This defect can be removed by a
suitable mollification, or alternately one can easily justify the direct substitution of

7 for 7. This completes the proof.

COROLLARY. If Q is a compact set of s-capacity zero, 1 <s<mn, then |@|=0.

Proof. The function ¥ above is equal to one on @ for each value of ». On the

other hand, §® >0 almost everywhere. Hence obviously |Q|=0.

LemMaA 9. If y is any conltinuous strongly differentiable function with compact

support in E", and if p>1 on Q, then
fhp,]sdz?()aps Q.

Proof. If the result were not true we could construct a continuously differen-

tiable function ¢ with compact support in E", such that ¢ >1 on @ and ||¢.[[$ < Cap, @,
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which would be impossible. The construction involves first multiplying y by (1+¢’),
so that the resulting function is >(1+¢&') on @, and then forming a smooth integral

average. The details may be omitted.
Lemwma 10. For a ball S(R) of radius R we have

(n—oc

Wy

Cap, S(R) = «=1
walog (By/B)\™  (a=n).

a—1
) R (l<a<mn),

Proof. Suppose first that a<n, and set v=(x—n)/(«—1). The function

_r"—R;

h=h(r) E’—:—_{)’

where r=|xz| and R,>R, is then a solution of the differential equation

div (u, |u,|*%) =0, (72)

that is, the Euler equation of the variational problem [ |u,|*dz =Minimum. Evidently
h=0 when r=R; and h=1 when r=R. By standard comparison arguments in the
calculus of variations if follows that

lella>%:]l- (over R<r<R,),

where y is any continuously differentiable function >1 on S(R) and with compact
support in r <R, Therefore it is clear that

Cap. S(R) >Rlim |72

Similarly by setting w(x)=0 for r>R,, w(x)=h(r) for R<r<R, and y(z)=1 for
r<R, and using Lemma 9 we have .

Cap. S(R) <Rlim |z ll5.

The required conclusion follows immediately from the calculation
]l = con |7/ (B” — BE)|**.

The case a=n is handled in the same way, except that h(r)=log (r/R,)/log (R/R,).
This result indicates the close connection between w«-capacity and equation (72),

a connection well-known if a=2.

19— 642946 Acta mathematica. 111. Tmprimé lo 9 juin 1964
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11. A remark concerning the case a=1

The result of Theorem 10 can be generalized to apply to equation (5) even for

the case ¢=1, that is, when the functions 4 and B satisfy
| A| < Const., |B|</,

and p-A>|p|-dlu| -y

with d,f,g€L,q-,. Indeed we have the following

THEOREM 10°. Let Q be a compact set of 1-capacity zero, and let D be a domain
in Q. Suppose that u is a solution of (5) in the set D—Q, and that the functions A
and B satisfy the conditions above. Then, if

’MEL&

for some 0>0, we can define u on the set Q so that the resulting function is a solution
of (5) in all of D.

Proof. Let 8(2) be an open ball in D, and define
@=|u|+k, @ =DMin (),
where k=1+||g|l, and 7 is some large constant. We introduce the test function
¢ = (n7) signu-{& — ¥}, x€8(2)-Q,
as in the proof of Theorem 10. In the set where @<l we have

¢z A+ @B (i) |v,| — Const. (i) v — (Bd+ ) nije,

where we have put v=4f. Similarly, when @>1

¢, A+@B=> —Const. (5i), 1 — fqii
> (n7) |v,| — Const. (47).v— (Bd+f)yijv

since v=10? in this set. Hence as in the proof of Theorem 1 (or Theorem 10), we

may derive the relations
77 vl <O+ )Y (H nijolly + | mi)eoll,)

and ol <O+ B (""7’7”"1 + "(7777)1:””1)
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Now the term | #,v|| which appears in both preceding lines satisfies the inequality

| 701l <?||%|l,, Hence replacing 7 by #* and letting » — oo, we obtain
lgoell <+ gy (ol +n.oll) (73)

and lnolle <o+ dlnvlly+ .ol (74)

Here we may let [~ oo. Since v— @’ and v, — (@°),, it follows from the monotone
convergence theorem that (73) and (74) hold with v replaced by @’

Iteration of (74) beginning with §=¢ establishes that @ is bounded in S(1)— Q.
The rest of the proof is then the same as in Theorem 10. It should be remarked,
however, that since there is no analogue of Theorem 8 for the case a=1 the conii-
nuity of the solution remains an open problem; in special cases (e.g. the minimal
surface equation in two dimensions) one may, of course, be able to settle this question
by an independent investigation.

In conclusion, we note that Theorem 10’ is quite similar in both hypothesis and

conclusion to a well known removable singularity theorem due to Finn.

III. Isolated singularities

A detailed description of the behavior of solutions at an isolated singularity

seems to require some specialization of equation (5). We shall consider the equation
div A (2, 4, u;) =0, (x<n), (75)

which is, of course, sufficiently general to include the Euler equations of variational
problems with integrand independent of u. It will be assumed that the function

A (x, u, p) satisfies the conditions
|Al<a|p|**+blul~'+e, p-A=|pl*—d|u|*—y, (76)

where b,d, e and g are measurable functions defined in the basic domain £ and con-

tained in the respective Lebesgue classes
b€Lnw-1; €€Lnjy-1-6y5 d9€Lnyu—s; (77)

(when o«=mn we require further that b€ Lymn.-1-o).
In Section 12 we shall consider the general behavior of a solution at an isolated
non-removable singularity. The final sections of the paper establish the existence of

solutions with positive singularities under suitable additional conditions.
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12. Behavior of solutions at an isolated singularity

Under the assumptions (76, 77) noted above we have the following basic result.

THEOREM 12. Let u be a continuous solution of (75) in the set D — {0}, where D
is a domain in Q. Suppose that w>L, for some constant L. Then either u has a

removable singularity at 0, or else

r(ﬂl—l)/(l—l), ax<n,
uwn (78)

log1/r, a=mn,

in the neighborhood of the origin. (Here f~g means that C' <f/g<C" where C' and C"’

are positive constants.)

Proof. Let @ be a strongly differentiable function with compact support in D,
which is identically 1 in some neighborhood of the origin. We assert that

f@, - Adx=Const.= K, (79)

where the constant is independent of the particular choice of ©.

In order to see this, let ® and © be two functions satisfying the above condi-
tion (that is, with compact support in D and identically 1 in a neighborhood of 0).

Then ¢=0 —@ has compact support in D—{0}. Therefore

f@—@),-Adx:o,

or in other words, f 0, Adx= f@, - A dx.

This proves the assertion.

Now assume that the singularity at O is not removable. We must then prove that
# has the asymptotic behavior (78) at 0. Let R be chosen so that D contains the
ball =|z|<R. We may assume without loss of generality, moreover, that «<0 on
the circumference |z|=R. By the remark at the end of Section 7 it is clear that
w—>o0 as x—>0. Hence there exists some constant o,>0 such that u >0 for |z|<a,.
Let M=M(o) and u=u(s) be respectively the maximum and minimum of % on a

given circumference |z|=0<g, Furthermore, for o <|z|< R let us define the function
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0 if wu(x)<0,
v=ov(r,0)=qu(z) if O<ulr)<uy,

I if  wu(x)>u.

We may suppose the definition of v is extended to all of E" by setting v=0 for

|z|>R and v=yu for |x|<o. Then v is strongly differentiable in all space, has com-

pact support in D, and is identically equal to g in some neighborhood of the origin.
Now for fixed o <oy, and u=pu(oc), v=2(z,0), we have by (79)

uK= fv, A, u, u)de= | v, A(x, v, v,)de, (80)

since v=u and v,=wu, almost everywhere in the set where v,+0 (see the remarks at

the conclusion of Section 0). By inequality (76), moreover,
v, - A, v, v,)dx>f(]v,l“—dlvl“—g)dx. (81)

The second term on the right may be estimated by Hélder’s inequality and Lemma 4,
thus ()

f &[0l do < || l|nse || % < Const. || | I2- (82)

Now the radius R introduced at the beginning of the proof may be taken as small
as we please, and therefore it is clear that we may suppose Const. ||d|»,<}. Hence
by (81) and (82)

v, Az, v,v,)dx>%f|v,|°‘dx—0. (83)

Moreover, by Lemma 9 and Lemma 10, since v=py for |z|<g0,

n—o a1 n-a , a
f|v,|°‘dx> Wy (oc—l) " u (84)

(assuming «<n). Thus from (80), (83), and (84) follows

&-n, a<n,

¢
1% < Const, (‘uK+C){|Iog o', a=n

valid for ¢ <ag,.

() The calculation is given only for the case a <n. If o =n only slight changes are necessary.
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We assert that K>0. Indeed in the contrary case we obtain from (85)

(z—n)ax
E

a<mn,
4 < Const. {

|1—l/n

|log & , a=mn.

But then by the Harnack inequality, (Theorem 7), the value M = M(o) obeys the same
relation. Thus u=O0(r“ %) or O(|logr|'""") depending on whether a<n or a=mn.
Therefore by Theorem 11 the singularity at 0 is removable, which contradicts our
initial assumption. The assertion thus being established, it now follows from (85) and
Lemma 2 that
u<const.{ e asm, (86)
|log o], a=n.

The next step in the proof is to obtain a reverse inequality (cf. (92) below) for
the value M. To this end we introduce a new comparison function V=7V (x, o) ac-
cording to the formula

0 when |z|>R
Max (0,u2) when o,<|z|<R

V=1{u when o<|z|<o,
Min (M, ) when O<|z|<o
M when |z|=0.

Evidently V is continuous and strongly differentiable, has compact support in D, and
V=M in some neighborhood of the origin. Moreover, for fixed o<g, and 7=
(e—n)/(x—1), we set(l)

0 when |z|>o0,

" —a§

H=H(r,o)=1M when o <|z|<o0,

X

o’ — 0o

M when [z|<o.

Again H is strongly differentiable, has compact support in D, and H=M in a neigh-
borhood of the origin. Thus letting A denote the annulus ¢ <r < g, we have by (79),

MK=fHI-Adx<f {1
A&

using Young’s inequality. Now by (76)

H.|

21 |eA |°‘/<“-’>} dr, (87)
& o

(1) Cf. the preceding footnote.
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f | Al dz< O f (gl + 59D | 4 €D}
A A
= Cf {luz]*—2d|u|*— 29+ (2d+ 7= V)|u|*+ (2g + e/ )} du. (88)
A

The integral on the right side of (88) is only increased if it is extended over the set

of points in 0 <|z|<R where V=u. Denoting this set by A’ we have

f 2d + by |yt da < f @d+bD) |V |* da
N
< Const. ([|d[lnw+ |NFEZD) - V2

= Const. (Nalloa+ IolEER) - [ loclede,  (59)

since V,=u, almost everywhere in A’ and V,=0 almost everywhere in the comple-

ment of A’. Again supposing that R is suitably small, (89) implies

f (2d+b«'<«—l>)|u|«dx<f |, | ds
A A’

Substituting this into (88), and then using (76), yields

f |A|°‘/("‘"Ddx<0(l +f u,-Adx)=0(1 —I—fV,-Adx)=C(1+MK). (90)
A A’

Combining (87) and (90) there results
ME<(1/ae®) || H, )%+ Ce™P (1 + MK).
Thus choosing ¢ so that Ce”® D=1 we obtain
| MK < Const. || H,||z+1.

On the other hand, by the calculation of Lemma 10,

_ a-1
" HI ":=0)n (Z_—T) (0'7_0'{))1*0! Maz.

(6" — )" 1, a<n,

91
|1og (/)" a=n, “b

Therefore CM*>2{MK~—1) {

valid for 0 <o, It has already been noted that u— co as x—0. Hence there exists

some number ¢,,0< ¢, < 0,, such that for all o<a,,
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MK =2, (o/0)>2.

It follows from (81), therefore, that

a(“—n)/(a—l)’ ax<n,

M= Const.{ (92)

|log o], x=mn,
valid for all ¢<g,.

What has been shown, then, is (by (86)) that the minimum of u grows at most
at the rate r* ™® D while the maximum grows at least this fast. The required
asymptotic estimate then follows from the Harnack inequality. Indeed, by (86) and

Theorem 7 we have
M<LC (u+k) < Const. ¢* ™D (g<0),

while by (92) and Theorem 7
u=>M/C' —k > Const. ¢* ™ (g<q,)

(in applying Theorem 7 one first normalizes each sphere |z|=¢ to unit radius). Thus
(78) holds in a neighborhood of the origin, when a<mn. The result for a=n is ob-

tained in the same way, and Theorem 12 is completed.

13. Existence of solutions with isolated singularities

The very light hypotheses required for the proof of Theorem 12 do not seem
strong enough to prove the general existence of solutions having positive isolated
singularities. We shall therefore restrict consideration in this section to the equation

div A(x,u,) =0, (x<n), (93)

where the function 4 is independent of . In addition to the usual conditions on

A, we shall suppose that (93) also has the following four properties.

P1l. For all x€Q and all values of p and q

(p—9)-{A,p)~ Az,9)}>0,

with equality holding if and only if p=gq.

P2. For smooth boundaries and smooth (continuous) boundary data there exist smooth
(continuous) solutions of (93) taking on the given boundary data.

P3. The uniform limit of solutions of (93) is also a solution of (93), and
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P4. Let T' denote a spherical annulus in  with center at the origin. By P2
there exists a solution v of (93) in I', taking the constant values m, on the outer
circumference and m on the inner. Also by virtue of assumption P a weak maxi-.
mum principle holds for the difference of any two solutions. Consequently at any
point P in T' the values #(P) increase monotonically with m. Ads the final assump-
tion, we suppose that v(P) tends to infinity as m does.

We observe that PI is easily verified for linear elliptic equations, and also for
variational problems whose integrands are strictly convex in the variable p. More
generally if A4 is of class C" in p, then P1 follows from the condition that A4 i & &
be positive definite.

Assumption P2 is satisfied for a wide class of equations of the form (93), as
shown by the work of Morrey, Ladyzhenskaya and Uraltseva, Gilbarg, and Stampacchia.
It would be superfluous to elaborate on this, however, for on the one hand new
classes of equations for which P2 holds will certainly be discovered, while on the
other it seems that only in pathological circumstances will P2 generally fail.

Turning to assumption PJ, it is not hard to see that it holds for linear equa-
tions, and for equations admitting an a priori estimate of the continuity modulus of
the first derivative of solutions. P3 may also be established in case A(x,p) is con-
tinuous in all its variables, though this is more delicate and is stated merely for
the record.

Assumption P4 is of rather a different sort, and we shall therefore note here a
class of equations for which it is valid. In particular, suppose that A4 is of class C*
in  and p, at least for all suitably large values of p, and let

A=A(z,p), A=A(x,p)

be respectively the minimum and maximum eigenvalues of the quadratic form A; i & &
(by condition P1 it is clear that A1=>0). We now assume that the quantities

A/4 and |2 oA/ /ox|/A|p] (94)

are uniformly bounded for suitably large values of p.(*) Then P4 holds.
To -see this, suppose for definiteness that the annulus T" has outer radius 1 and

inner radius o, and consider the function

() This condition is satisfied by many of the equations studied in the recent literature (cf. [5],
(8], [9], [15], [25], etc.).
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Yo
k=1k(r)=(m—m,) %j% +m,, (y= Const.<0).

Then le ;4 (1‘, kx) = ()41,,‘ 51 Ek) ]C” -+ ()4,‘.1 - )41. X E{ fk) k’/f + Z 27)41

Sk + (n— l)Ak'/r—‘Z 3—’4'l,

3xk

where &=x/r and the primes denote differentiation with respect to r. Now let B be a
bound for the quantities (94) when p> N, say. We choose y according to the relation

1—y=nB.

Therefore |k, |= —k'= —yp(m—my) (6 —1)"1r*"! is greater than N for all m sufficiently

large. Consequently for large m,
div A(x, k) > — Ay(m—mg) (6" —1) ' 2-{(1 - y) —nB} =0.

Thus by virtue of the maximum principle one has v>k, where v is the solution
postulated in assumption P4. But k(P) — oo as m — co, hence so does v(P), completing
the demonstration.

This completes our discussion of assumptions PI through P4. We emphasize
that the restrictions placed on (93) by these conditions are not particularly heavy,

so that the following result holds in considerable generality.

TaEOREM 13. Suppose that equation (93) admits the properties P1 through P4
listed above. Let smooth (continuous) boundary data y=1w(x) be assigned on the sphere
|x| =1, it being assumed that |x|<1 is contained in Q.

Then there exists a one parameter, linearly ordered, family of solutions G=GQ(z) in
the domain 0 <|x|<1, taking on the given boundary values and satisfying

pemieb oy en,
G~ (95)

log 1/r, a=n,

in the neighborhood of the origin. The value of G may be assigned arbitrarily at a given
point P, subject only to the restriction G(P)>w(P), where w denotes the solution of (93)
in the ball |x| <1 which takes on the assigned boundary values.

Remark. By linearly ordered, we mean that if G, and G, are two different members
of the family, then either G, <G, or G,>G, in 0<|z|<1.



LOCAL BEHAVIOR OF SOLUTIONS OF QUASI-LINEAR EQUATIONS 297

Proof of Theorem 13. We shall first construct a solution G=G(z) in 0<|z|<1
taking on the assigned boundary data, and with a prescribed value ¥ > w(P) at some
fixed point P. It will then be shown that this solution satisfies (95), and finally
that it can be assumed to increase as X increases. By making the change of depend-
ent variables % =w+ const., with the constant suitably chosen, it may be supposed
without loss of generality that w>0. We assume this done, and then drop the bar on «.

Now let T'; denote the annulus o< |z|<1, and let v, n be the particular solution
of (93) in I'; which obeys the boundary conditions

v=y on |z|=1, v=w+m on |z|=0.

Obviously such a solution exists by assumption P2. We assert that m can be chosen

in such a way that
Vo, m(P) =% (96)

(it is assumed that ¢ is small enough for P to be contained in I';). Indeed, if m =0
then obviously v, »=w, while by the maximum principle the value v, (P) continu-
ously increases as m increases. By assumption P4 it is evident that v, »(P) tends to
infinity as m does. Hence there exists a first value m=m(s) such that (96) holds.
We shall henceforth write v, for the function v, meg;.

Now each function v, is a positive solution of (93) in the corresponding annulus
T,, and satisfies v,(P)=%. If we write §=|xp|, then by the Harnack inequality
(Theorem 7) we have for fixed C" and k'

V() <C'(X+%) on |x|=0,

so long as ¢<0/2. Let W be the solution of (93) in the annulus TI'p taking on the
boundary values

W=y on |z|=1, W=C'(X+k) on |z]=6.
Then according to the maximum principle

w<v,<W in T,

valid for all 0<6/2. We assert also that in each fixed annulus h<|x|<1—h the
functions v, are uniformly bounded and equicontinuous, provided that ¢ <h/4. Indeed
by the Harnack inequality it is not hard to see that v, must be uniformly bounded
in b/2<[x|<1, when ¢<h/4. But then by Theorem 8 these functions are equicon-

tinuous in h<|z|<1—~h, as asserted.



298 JAMES SERRIN

Now consider the family {v;} as ¢—>0. It is clear from what has already been

shown that there is a sequence of values o}, 0,, ... such that
v, () = limit, 0<|z|<1,

the convergence being uniform in any fixed annulus & <|z|<1—#, (Ascoli’s theorem).
We denote the limit by G(x). Clearly G(z) is a continuous function satisfying G(P)=7.

Moreover,
w<G<W in T.

It thus follows that @ is continuous in 0<|z|<1 and takes the assigned boundary
values on |z|=1, as required.

That G is a solution of (93) in 0<|z|<1 follows immediately from property P3.
It still must be shown that @ has the asymptotic behavior (95). By Theorem 12,
however, any solution which is bounded below must either satisfy (95) or have a
removable singularity at 0. It is therefore enough to show that G cannot have a
removable singularity. Thus suppose for contradiction that G could be defined at 0
so as to be a solution in the entire ball |x|<1. Then since G=y on |z|=1 we
would necessarily have G=w by the maximum principle. This is impossible, however,
since G(P)=x>w(P). Thus (95) is established.

It remains to show that the above construction leads to a one parameter linearly
ordered family of solutions. Let a dense denumerable set of values ¥ be chosen in
the interval (w(P), o). Then it is clear that, by a diagonal process, a fized sequence
Gy, Oy, ... can be used to define the functions G corresponding to every X in the set.
But in this case the functions v, corresponding to a particular value of X are less
than or equal to those belonging to a larger value of X (recall the unique definition
of each function v,). It follows that if X, and X, are two values in the set, with
Xy <X, then also G, <@, Having thus obtained a monotone family of solutions &
for the values of X in a dense set, it is now a simple matter to construct solutions
for the omitted values of ¥, by taking limits of those already constructed. We may
omit the details of this process, which depend of course on Theorem 8 and property
P3. This completes the proof of Theorem 13.

14. Linear equations

The results of the preceding sections can be sharpened somewhat in case (93) is
linear, that is, of the form
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2 (wta 2) =0, (97)
where Af2<a; & & <A and A and A are positive constants. We note that assump-
tions P1 through P4 are satisfied in the present case—P1I1 quite obviously, P2 on
the basis of the work of Ladyzhenskaya and Uraltseva, P3 in view of Theorem 1
and the weak compactness of L,, and finally P4 by virtue of linearity. This being
established, it follows that both Theorems 12 and 13 hold for equation (97), with
«=2.(1) In addition, we have the following supplementary results.

THEOREM 14. Let G be a particular solution of (97) in the set D— {0}, such that
G~ or G~log 1/r depending on whether n>2 or n=2. Then every non-negative
solution of (97) in D— {0} has the form

4= Const. G+ w,
where w is a solution of (97) in the entire domain D.

Remark. It follows that in the case of equation (97) the one parameter family
of solutions given by Theorem 13 is unique.

Theorem 14 is an exact analogue of Theorem 5 of reference [6], and is demonstrated
by the same method. Note that the proof in [6] is restricted to two dimensions
because the Harnack inequality used there was proved only for two variables; since
in the present case we have a Harnack inequality irrespective of dimension, it is clear

that the argument carries over intact.

TaEOREM 15. Let u be a continuous solution of (97) in the set D~ {0}, where D
is a domain in Q. Suppose that w=O0(r*") or u=0(log 1/r), depending on whether
n>2 or n=2. Then either u has a removable singularity at 0, or else (possibly after

multiplication by —1)

", n>2,
N{ (98)

logl/r, n=2,
in the neighborhood of the origin.
Proof. For a suitably large constant 4 we have

u+AG>0

in the neighborhood of the origin, where G is some particular solution satisfying

() As we have remarked in the introduction, these special results are due originally to Royden
and to Littman, Stampacchia, and Weinberger.
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G~r*" or G~log 1/r (such a function exists by Theorem 13). The function u + AG
is therefore a positive solution of (97) in some neighborhood of the origin. Conse-

2-n

quently by Theorem 12 we have w+ AG~r*"" or log 1/r, and the required conclusion
follows at once.

The above argument is essentially due to Gevrey, who proved a similar result
for linear equations of the form ayu,;+ bu,; +cu=0 with certain smoothness condi-

tions placed on the coefficients a;.

Remarks. For the Laplace equation the result of Theorem 15 can be considerably

improved. In fact in this case the hypothesis can be weakened to read

u=o(r'" ")

3

without affecting the conclusion. For the general class of equations under considera-
tion here, however, there is no immediately analogous result—that is, the order of
growth O(r*™") or O(log 1/r) is best possible in Theorem 15.

Indeed, consider equation (97) with
a;=0,;+(a—1)z;3;/7%, (99)
where a is a constant greater than one (cf. [6], p. 336). One easily verifies that
F<a;&8<al,
so that (99) is an allowable set of coefficients. We consider solutions of the form
u=H(z) [ (r), (100)

where H is a harmonic polynomial of degree m, and r=|z|. After a straightforward
calculation we find that (100) satisfies (97), (99) provided f=7*"""""° and @ and &
are related by

_m(m+n—2)

m, (O<s<m)

The solution (100) is therefore O(r®~""%), that is, there exist solutions of linear equa-

tions of the form (97) which are O(r* "~%) for any preassigned & >0 and yet are not ~r*",

Note. This work was partially supported by the United States Air Force Office
of Scientific Research under Grant No AF — AFOSR—62—101.
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