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We present a Korovkin type approximation theorem for a sequence of positive linear operators defined on the space of all real
valued continuous and periodic functions via A-statistical approximation, for the rate of the third order Ditzian-Totik modulus
of smoothness. Finally, we obtain an interleave between Riesz’s representation theory and Lebesgue-Stieltjes integral-i, for Riesz’s
functional supremum formula via statistical limit.

1. Introduction and Main Results

Some will accept the notes and definitions used in this
paper. The concept of 𝐴-statistical approximation for regular
summability matrix (see [1, 2]). Let 𝐴 = (𝑎

𝑛𝑘
), 𝑛, 𝑘 = 1, 2, . . .,

be an infinite summability matrix. For a given sequence 𝑥 =
(𝑥

𝑘
), the 𝐴-transform of 𝑥, denoted by 𝐴𝑥 = (𝐴𝑥)

𝑛
, is given

by (𝐴𝑥)
𝑛
= ∑

∞

𝑘=1
𝑎
𝑛𝑘
𝑥

𝑘
, provided that the series converges for

each 𝑛.𝐴 is said to be regular if lim
𝑛→∞

(𝐴𝑥)
𝑛
= 𝐿, whenever

lim𝑥 = 𝐿. Then lim
𝑛→∞

𝑎
𝑛𝑘

= 0, for all 𝑘 ∈ 𝑁. In [3],
Dzyubenko and Gilewicz have given the notion.

𝐴 is nonnegative regular summability matrix. Then 𝑥

is 𝐴-statistically convergent to 𝐿, if, for every ∈> 0,
lim

𝑛→∞
∑

𝑘:|𝑥𝑘−𝐿|≥∈
𝑎
𝑛𝑘
= 0.

We denote by C
2𝜋
(R) the space of all 2𝜋-periodic and

continuous functions on R. Endowed with the norm ‖ ⋅ ‖
2𝜋
,

this space is a Banach space, where ‖𝑓‖
2𝜋

= sup{|𝑓(𝑡)| :
𝑓 ∈ C

2𝜋
(R), 𝑡 ∈ R}. Now, recall that, in [4], the 𝑚th order

Ditzian-Totik modulus of smoothness in the uniform metric
is given by

𝜔
𝜙

𝑚
(𝑓, 𝛿, [𝑎, 𝑏]) = sup

0<ℎ≤𝛿


Δ

𝑚

ℎ𝜙(𝑥)
(𝑓, 𝑥, [𝑎, 𝑏])

[𝑎,𝑏]
, (1)

where

Δ
𝑚

ℎ
(𝑓, 𝑥, [𝑎, 𝑏])

=

{{{{{{

{{{{{{

{

𝑚

∑

𝑖=0

(
𝑚

𝑖
) (−1)

𝑚−𝑖

×𝑓(𝑥 −
𝑚ℎ

2
+ 𝑖ℎ) , if 𝑥 ± 𝑚ℎ

2
∈ [𝑎, 𝑏]

0, o.w

(2)

is the symmetric 𝑚th difference. We have to recall the
Korovkin type theorem.

Theorem 1 (see [2]). Let𝐴 = (𝐴
𝑛

)
𝑛≥1

be a sequence of infinite
nonnegative real matrices such that sup

𝑛,𝑘
∑

∞

𝑗=1
𝑎

𝑛

𝑘𝑗
< ∞ and

let {𝐿
𝑗
} be a sequence of positive linear operators mapping

C
2𝜋
(R) into C

2𝜋
(R). Then, for all 𝑓 ∈ C

2𝜋
(R), we have

lim
𝑘→∞

∑
∞

𝑗=1
𝑎

𝑛

𝑘𝑗
‖𝐿

𝑗
𝑓 − 𝑓‖

2𝜋

= 0 uniformly in 𝑛, if and only
if lim

𝑘→∞
∑

∞

𝑗=1
𝑎

𝑛

𝑘𝑗
‖𝐿

𝑗
𝑓

𝑖
− 𝑓

𝑖
‖
2𝜋

= 0 (𝑖 = 1, 2, 3), uniformly
in 𝑛, where 𝑓

1
(𝑡) = 1, 𝑓

2
(𝑡) = cos 𝑡, and 𝑓

3
(𝑡) = sin 𝑡, for all

𝑡 ∈R.

It is worth noting that the statistical analog of Theorem 1
has been studied by Radu [2], as follows.
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Theorem 2. Let 𝐴 = (𝐴
𝑛

)
𝑛∈𝑁

be a sequence of nonnegative
regular summability matrices and let {𝐿

𝑗
} be a sequence of

positive linear operators mapping C
2𝜋
(R) into C

2𝜋
(R). Then,

for all 𝑓 ∈ C
2𝜋
(R), we have 𝑠𝑡

𝐴
− lim

𝑗→∞
‖𝐿

𝑗
𝑓 − 𝑓‖

2𝜋

= 0,
uniformly in 𝑛, if and only if 𝑠𝑡

𝐴
− lim

𝑗→∞
‖𝐿

𝑗
𝑓

𝑖
− 𝑓

𝑖
‖
2𝜋

= 0

(𝑖 = 1, 2, 3), uniformly in 𝑛, where 𝑓
1
(𝑡) = 1, 𝑓

2
(𝑡) = cos 𝑡, and

𝑓
3
(𝑡) = sin 𝑡, for all 𝑡 ∈R.

The following notations are used this paper (see [5, 6]).
Let 𝑛 be fixed and sufficiently large. If 𝑦

𝑖
∈ 𝐼

𝑗(𝑖)
and 1 ≤

𝑖 ≤ 𝑘, then it is convenient to denote

𝑦


𝑖
= 𝑥

𝑗(𝑖)+1
,

𝑦


𝑖
= 𝑥

𝑗(𝑖)−2
,

𝐼


𝑖
= [𝑦



𝑖
, 𝑦



𝑖
] = 𝐼

𝑗(𝑖)+1
∪ 𝐼

𝑗(𝑖)
∪ 𝐼

𝑗(𝑖)−1

= [𝑥
𝑗(𝑖)+1

, 𝑥
𝑗(𝑖)
] ∪ [𝑥

𝑗(𝑖)
, 𝑥

𝑗(𝑖)−1
] ∪ [𝑥

𝑗(𝑖)−1
, 𝑥

𝑗(𝑖)−2
] ,

𝜌
𝑖
= [

𝑦
𝑖
+ 𝑦



𝑖

2
,
𝑦

𝑖
+ 𝑦



𝑖

2
] , for 1 ≤ 𝑖 ≤ 𝑘,

5

3
ℎ

𝑗(𝑖)
=
5

3
(𝑥

𝑗(𝑖)−1
− 𝑥

𝑗(𝑖)
) < (𝑥

𝑗(𝑖)−2
− 𝑥

𝑗(𝑖)+1
) =


𝐼


𝑖



= 2
𝜌𝑖

 = (𝑦


𝑖
− 𝑦



𝑖
) = (𝑥

𝑗(𝑖)−2
− 𝑥

𝑗(𝑖)+1
) < 7,

ℎ
𝑗(𝑖)

= 7 (𝑥
𝑗(𝑖)−1

− 𝑥
𝑗(𝑖)
) , 1 ≤ 𝑖 ≤ 𝑘,

(3)

and therefore |𝐼
𝑖
| ∼ |𝜌

𝑖
| ∼ ℎ

𝑗(𝑖)
, for 𝑥 ∈ 𝐼

𝑖
. Recall that

sgn (𝑓 (𝑥)) = {
1; if 𝑥 ∈ [𝑎, 𝑏] ,
−1; if 𝑥 ∉ [𝑎, 𝑏] ,

(4)

is the sign of 𝑓 on [𝑎, 𝑏].
Now, let us introduce our theorems as follows.

Theorem 3. Let 𝐴 = (𝐴
𝑛

)
𝑛≥1

be a sequence of infinite
nonnegative real matrices such that sup

𝑛,𝑘
∑

∞

𝑗=1
𝑎

𝑛

𝑘𝑗
< ∞ and

let {𝐿
𝑗
} be a sequence of positive linear operators mapping

C
2𝜋
(R) into C

2𝜋
(R). Then, for all 𝑓 ∈ C

2𝜋
(R), we have

∞

∑

𝑗=1

𝑎
𝑛

𝑘𝑗


𝐿

𝑗
𝑓 − 𝑓

2𝜋
≤ 𝑐𝜔

𝜙

3
(𝑓,

𝜋

𝑛
, [−𝜋, 𝜋]) , (5)

uniformly in 𝑛, if and only if

∞

∑

𝑗=1

𝑎
𝑛

𝑘𝑗


𝐿

𝑗
𝑓

𝜁
− 𝑓

𝜁

2𝜋
≤ 𝑐𝜔

𝜙

3
(𝑓

𝜁
,
𝜋

𝑛
, [−𝜋, 𝜋]) , 𝜁 = 1, 2, 3,

(6)

uniformly in 𝑛, where 𝑓
1
(𝑡) = 1, 𝑓

2
(𝑡) = (𝑡−𝑦



𝑖
)/(𝑦



𝑖
−𝑦

𝑖
), and

𝑓
3
(𝑡) = (𝑡 − 𝑦



𝑖
)/(𝑦

𝑖
− 𝑦



𝑖
), for all 𝑡 ∈ R. And 𝑐 the constant

does not depend on 𝑗.

Theorem 4. Let 𝐴 = (𝐴
𝑛

)
𝑛∈𝑁

be a sequence of nonnegative
regular summability matrices and let {𝐿

𝑗
} be a sequence of

positive linear operators mapping C
2𝜋
(R) into C

2𝜋
(R). Then,

if there exists 𝑓 ∈ C
2𝜋
(R), we have

𝑠𝑡
𝐴
− lim

𝑛


𝐿

𝑗
𝑓 −𝑓

2𝜋
≥ 𝑐 (𝑗) 𝜔

𝜙

3
(𝑓,

𝜋

𝑛
, [−𝜋, 𝜋]) , (7)

uniformly in 𝑛, if and only if

𝑠𝑡
𝐴
− lim

𝑛


𝐿

𝑗
𝑓

𝜁
− 𝑓

𝜁

2𝜋
≥ 𝑐 (𝑗) 𝜔

𝜙

3
(𝑓

𝜁
,
𝜋

𝑛
, [−𝜋, 𝜋])

𝜁 = 1, 2, 3,

(8)

uniformly in 𝑛, where 𝑓
1
(𝑡) = 1, 𝑓

2
(𝑡) = (𝑡−𝑦



𝑖
)/(𝑦



𝑖
−𝑦

𝑖
), and

𝑓
3
(𝑡) = (𝑡 − 𝑦



𝑖
)/(𝑦

𝑖
− 𝑦



𝑖
), for all 𝑡 ∈R.

2. Proofs of Theorems 3 and 4

Proof of Theorem 3. Since 𝑓
𝜁
(𝜁 = 1, 2, 3) belong to C

2𝜋
(R),

implications (5) ⇒ (6) are obvious. Now, assume that (6)
holds. Let 𝑓 ∈ C

2𝜋
(R), and, 𝐼 be a closed subinterval of

length 2𝜋 ofR. And let 𝐿
𝑗
be defined by

𝐿
𝑗
(𝑥) =

𝑥
𝑛
− 𝑦

𝑖

𝑦


𝑖
− 𝑦



𝑖

(
𝑥 − 𝑦



𝑖

𝑦


𝑖
− 𝑦𝑖

𝐿
𝑗
(𝑦



𝑖
) −

𝑥 − 𝑦


𝑖

𝑦
𝑖
− 𝑦



𝑖

𝐿
𝑗
(𝑦



𝑖
)) ,

𝑦
𝑖
∈ [

𝑦
𝑖
+ 𝑦



𝑖

2
,
𝑦

𝑖
+ 𝑦



𝑖

2
] for 𝑖 = 1, 2, 3,

(9)

and also where 𝐿
𝑗
(𝑦



𝑖
) and 𝐿

𝑗
(𝑦



𝑖
) are chosen so that

𝐿
𝑗
(𝑦



𝑖
) =

{{

{{

{

C

𝜔
𝜙

3
(𝑓, 𝑛−1) sgn (𝑓 (𝑦

𝑖
))

; if 𝑓 (𝑦


𝑖
)

≤ 𝑐𝜔

𝜙

3
(𝑓, 𝑛

−1

) ,

𝑓 (𝑦


𝑖
) ; o.w,

𝐿
𝑗
(𝑦



𝑖
) =

{{

{{

{

C

𝜔
𝜙

3
(𝑓, 𝑛−1) sgn (𝑓 (𝑦

𝑖
))

; if 𝑓 (𝑦


𝑖
)

≤ 𝑐𝜔

𝜙

3
(𝑓, 𝑛

−1

) ,

𝑓 (𝑦


𝑖
) ; o.w.

(10)
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In [5] Kopotun, we have |𝑓(𝑥) − 𝐿(𝑓; 𝑥)| ≤ 𝑐𝜔
𝜙

3
(𝑓, 𝑛

−1

) and
𝑥 ∈ 𝐼, where

𝐿 (𝑓; 𝑥) = 𝐿 (𝑓; 𝑥 | 𝑦
𝑖
, 𝑦



𝑖
, 𝑦



𝑖
)

=
𝑥

𝑛
− 𝑦

𝑖

𝑦


𝑖
− 𝑦



𝑖

(
𝑥 − 𝑦



𝑖

𝑦


𝑖
− 𝑦

𝑖

𝐿
𝑗
(𝑦



𝑖
) −

𝑥 − 𝑦


𝑖

𝑦
𝑖
− 𝑦



𝑖

𝐿
𝑗
(𝑦



𝑖
))

(11)

is the Lagrange polynomial of degree ≤ 2, which interpolates
𝑓 at 𝑦

𝑖
, 𝑦

𝑖
, and 𝑦

𝑖
. Inequality (11) is an analog of Whitney’s

inequality for Ditzian-Totik moduli. Using (11) and the above
presentations of 𝐿

𝑗
and 𝐿(𝑓; 𝑥), we write, for 𝑥 ∈ 𝐼,


𝐿

𝑗
(𝑓; 𝑥) − 𝑓 (𝑥)



≤

𝐿

𝑗
(𝑓; 𝑥) − 𝐿 (𝑓; 𝑥)


+
𝐿 (𝑓; 𝑥) − 𝑓 (𝑥)



≤



(𝑥
𝑛
− 𝑦

𝑖
) (𝑥 − 𝑦



𝑖
)

(𝑦


𝑖
− 𝑦



𝑖
) (𝑦



𝑖
− 𝑦

𝑖
)




𝐿

𝑗
(𝑦



𝑖
) −𝑓 (𝑦



𝑖
)


+



(𝑥
𝑛
− 𝑦

𝑖
) (𝑥 − 𝑦



𝑖
)

(𝑦


𝑖
− 𝑦



𝑖
) (𝑦



𝑖
− 𝑦

𝑖
)



×

𝐿

𝑗
(𝑦



𝑖
) − 𝑓 (𝑦



𝑖
)

+
𝐿 (𝑓; 𝑥) − 𝑓 (𝑥)

 .

(12)

Taking supremum over 𝑥 and = 1/(𝜔
𝜙

3
(𝑓, 𝑛

−1

) sgn(𝑓)), we
obtain


𝐿

𝑗
(𝑓; 𝑥) − 𝑓 (𝑥)

2𝜋

≤

𝐿

𝑗
(𝑓; 𝑥) − 𝐿 (𝑓; 𝑥)

2𝜋
+
𝐿 (𝑓; 𝑥) − 𝑓 (𝑥)

2𝜋

≤



(𝑥
𝑛
− 𝑦

𝑖
) (𝑥 − 𝑦



𝑖
)

(𝑦


𝑖
− 𝑦



𝑖
) (𝑦



𝑖
− 𝑦

𝑖
)




𝐿

𝑗
(𝑦



𝑖
) −𝑓 (𝑦



𝑖
)
2𝜋

+



(𝑥
𝑛
− 𝑦

𝑖
) (𝑥 − 𝑦



𝑖
)

(𝑦


𝑖
− 𝑦



𝑖
) (𝑦



𝑖
− 𝑦

𝑖
)




𝐿

𝑗
(𝑦



𝑖
) −𝑓 (𝑦



𝑖
)
2𝜋

+
𝐿 (𝑓; 𝑥) − 𝑓 (𝑥)

2𝜋

≤ 𝑐 (𝐾, 𝑦


𝑖
) + 𝑐 (𝐾, 𝑦



𝑖
) + 𝑐𝜔

𝜙

3
(𝑓, 𝑛

−1

, [−1, 1]) .

(13)

Suppose 𝐵 > 0, let us write sets as follows:

𝜗 ={𝑗 :

𝐿

𝑗
(1; 𝑥) − 1

2𝜋

+



𝐿
𝑗
(
𝑡 − 𝑦



𝑖

𝑦


𝑖
− 𝑦

𝑖

; 𝑥) −
𝑥 − 𝑦



𝑖

𝑦


𝑖
− 𝑦

𝑖

2𝜋

+



𝐿
𝑗
(
𝑡 − 𝑦



𝑖

𝑦
𝑖
− 𝑦



𝑖

; 𝑥) −
𝑥 − 𝑦



𝑖

𝑦
𝑖
− 𝑦



𝑖

2𝜋

≥ 𝐾𝐵} ,

𝜗
1
= {𝑗 :


𝐿

𝑗
(1; 𝑥) − 1

2𝜋
≥ 𝐾𝐵} ,

𝜗
2
={𝑗 :



𝐿
𝑗
(
𝑡 − 𝑦



𝑖

𝑦


𝑖
− 𝑦

𝑖

; 𝑥) −
𝑥 − 𝑦



𝑖

𝑦


𝑖
− 𝑦

𝑖

2𝜋

≥ 𝐾𝐵} ,

𝜗
3
={𝑗 :



𝐿
𝑗
(
𝑡 − 𝑦



𝑖

𝑦
𝑖
− 𝑦



𝑖

; 𝑥) −
𝑥 − 𝑦



𝑖

𝑦
𝑖
− 𝑦



𝑖

2𝜋

≥ 𝐾𝐵} .

(14)

Consequently, we get 𝜗 ⊂ 𝜗
1
∪ 𝜗

2
∪ 𝜗

3
and ∑

𝑗∈𝜗
𝑎

𝑛

𝑘𝑗
≥

∑
𝑗∈𝜗1

𝑎
𝑛

𝑘𝑗
≥ ∑

𝑗∈𝜗
2

𝑎
𝑛

𝑘𝑗
≥ ∑

𝑗∈𝜗
3

𝑎
𝑛

𝑘𝑗
implies

∞

∑

𝑗=1

𝑎
𝑛

𝑘𝑗


𝐿

𝑗
𝑓 − 𝑓

2𝜋
≤ 𝑐𝜔

𝜙

3
(𝑓,

𝜋

𝑛
, [−𝜋, 𝜋]) . (15)

Proof of Theorem 4. Since 𝑓
𝜁
(𝜁 = 1, 2, 3) belong to C

2𝜋
(R),

implications (8)⇒ (7) are obvious. Assume that the condition
(7) is satisfied. Let 𝑓 ∈ C

2𝜋
(R) and 𝐼 be a closed subinterval

of length 2𝜋 ofR; we have

𝑠𝑡
𝐴
− lim

𝑛


𝐿

𝑗
𝑓 − 𝑓

2𝜋
≥ 𝑐 (𝑗) 𝜔

𝜙

3
(𝑓,

𝜋

𝑛
, [−𝜋, 𝜋]) . (16)

Now, given 𝐾(𝑗) > 0, choose 𝐵 > 0, where 𝐵 =

sup{|𝑓(𝑥)| : 𝑥 ∈ 𝐼} implied 𝐾 < 𝐵, and define the following
set:

𝜗 = {𝑗 :

𝐿

𝑗
(1; 𝑥) − 1

2𝜋

+



𝐿
𝑗
(
𝑡 − 𝑦



𝑖

𝑦


𝑖
− 𝑦

𝑖

; 𝑥) −
𝑥 − 𝑦



𝑖

𝑦


𝑖
− 𝑦

𝑖

2𝜋

+



𝐿
𝑗
(
𝑡 − 𝑦



𝑖

𝑦
𝑖
− 𝑦



𝑖

; 𝑥) −
𝑥 − 𝑦



𝑖

𝑦
𝑖
− 𝑦



𝑖

2𝜋

≥ 𝐾𝐵} .

(17)

Thus,

𝑠𝑡
𝐴
− lim

𝑛


𝐿

𝑗
𝑝

3
(𝑡) − 𝑝

3
(𝑥)

2𝜋

= 𝑠𝑡
𝐴
− lim

𝑛



𝐿
𝑗
(
𝑡 − 𝑦



𝑖

𝑦
𝑖
− 𝑦



𝑖

; 𝑥) −
𝑥 − 𝑦



𝑖

𝑦
𝑖
− 𝑦



𝑖

2𝜋

≥ (𝐾 − 𝐾
∘
) �̀�,

(18)

where 𝑝
3
(𝑥) = (𝑥 − 𝑦



𝑖
)/(𝑦

𝑖
− 𝑦



𝑖
)∈ C

2𝜋
(R) polynomial and

𝑥 ∈ R. Since 𝑥 is 𝐴-statistically convergent, we can easily
show that 𝜗 ⊃ 𝜗

1
⊃ 𝜗

2
⊃ 𝜗

3
implies ∑

𝑗∈𝜗
𝑎

𝑛

𝑘𝑗
≥ ∑

𝑗∈𝜗1
𝑎

𝑛

𝑘𝑗
≥

∑
𝑗∈𝜗
2

𝑎
𝑛

𝑘𝑗
≥ ∑

𝑗∈𝜗
3

𝑎
𝑛

𝑘𝑗
.

Now, let �̀� = 𝜔𝜙

3
(𝑓

𝜁
, 𝜋/𝑛, [−𝜋, 𝜋]), and using (7) implies

𝑠𝑡
𝐴
− lim

𝑛


𝐿

𝑗
𝑝

3
(𝑡) − 𝑝

3
(𝑥)

2𝜋
≥ 𝑐 (𝑗) 𝜔

𝜙

3
(𝑝

3
,
𝜋

𝑛
, [−𝜋, 𝜋]) .

(19)

This is a complete proof.
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3. Application to Functional Approximation

In this section we give some applications which satisfy our
theorems, but it’s not the classical Korovkin theorem. It
has been treated with the Weierstrass second approxima-
tion theorem via 𝐴-statistical convergence (see [6–8]). If
𝑓 ∈ C

2𝜋
(R), then there is a sequence of polynomials and

𝐴-statistically uniformly convergent to 𝑓 on [−𝜋, 𝜋] (not
uniformly convergent). Observe that Fejer operators may be
written in the form of

𝐹
𝑛
(𝑓; 𝑥) =

𝑎
∘

2
+

𝑛

∑

𝑘=1

𝑛 − 𝑘

𝑛
(𝑎

𝑘

𝑘𝑥 − 𝑦


𝑖

𝑦


𝑖
− 𝑦

𝑖

+ 𝑏
𝑘

𝑘𝑥 − 𝑦


𝑖

𝑦
𝑖
− 𝑦



𝑖

) . (20)

We now consider the linear operator 𝑇
𝑛
defined by

𝑇
𝑛
(𝑓; 𝑥) =

𝑎
∘

2
+

𝑛

∑

𝑘=1

𝜉
(𝑛)

𝑘
(𝑎

𝑘

𝑘𝑥 − 𝑦


𝑖

𝑦


𝑖
− 𝑦

𝑖

+ 𝑏
𝑘

𝑘𝑥 − 𝑦


𝑖

𝑦
𝑖
− 𝑦



𝑖

) , (21)

where {𝜉(𝑛)
𝑘
} (𝑛 = 1, 2, . . . ; 𝑘 = 1, 2, . . . , 𝑛) is a matrix of real

numbers and also 𝑎
𝑘
and 𝑏

𝑘
are Fourier coefficients. Now, let

𝐴 = (𝑎
𝑛𝑘
) be a nonnegative regular summability matrice.

Assume that the following statements are satisfied:

(i) 𝑠𝑡
𝐴
− lim

𝑛
𝜉
(𝑛)

1
= 1;

(ii) (1/2) + ∑𝑛

𝑘=1
𝜉
(𝑛)

𝑘
(𝑡 − 𝑦



𝑖
)/(𝑦



𝑖
− 𝑦

𝑖
) ≥ 𝑐(𝑛)𝜔

𝜙

3
(𝑓, 𝜋/𝑛,

[−𝜋, 𝜋]). We get

𝑠𝑡
𝐴
− lim

𝑛

𝑇𝑛
(𝑓; 𝑥) − 𝑓 (𝑥)

2𝜋

≥ 𝑐 (𝑛) 𝜔
𝜙

3
(𝑓,

𝜋

𝑛
, [−𝜋, 𝜋]) , ∀𝑓 ∈ C

2𝜋
(R) ,

(22)

where {𝑇
𝑛
} is the sequence of linear operators given

by (21).

In [9], Sakaoğlu and Ünver proved the following theorem
by using 𝐿

𝑃
[𝑎, 𝑏; 𝑐, 𝑑] and denoted the space of all functions

𝑓 defined on [𝑎, 𝑏] × [𝑐, 𝑑], for which ∫𝑑

𝑐

∫
𝑏

𝑎

|𝑓(𝑥, 𝑦)|
𝑃

𝑑𝑥 𝑑𝑦 <

∞, 1 ≤ 𝑃 < ∞. In this case, the 𝐿
𝑃
norm of a function

𝑓 in 𝐿
𝑃
[𝑎, 𝑏; 𝑐, 𝑑], denoted by ‖𝑓‖

𝑃
, is given by ‖𝑓‖

𝑃
=

(∫
𝑑

𝑐

∫
𝑏

𝑎

|𝑓(𝑥, 𝑦)|
𝑃

𝑑𝑥 𝑑𝑦)

1/𝑃

.

Theorem 5 (see [9]). Let 𝐴 = (𝑎
𝑗𝑛
) be a nonnegative

regular summability matrix and let {𝑇
𝑛
} be an 𝐴-statistically

uniformly bounded sequence of positive linear operators from
𝐿

𝑃
[𝑎, 𝑏; 𝑐, 𝑑] into 𝐿

𝑃
[𝑎, 𝑏; 𝑐, 𝑑] and 1 ≤ 𝑃 < ∞. Then, for any

function𝑓 ∈ 𝐿
𝑃
[𝑎, 𝑏; 𝑐, 𝑑], 𝑠𝑡

𝐴
− lim

𝑛
‖𝑇

𝑛
(𝑓; 𝑥, 𝑦)−𝑓(𝑥, 𝑦)‖

𝑃
=

0 if and only if 𝑠𝑡
𝐴
− lim

𝑛
‖𝑇

𝑛
(𝑓

𝑖
; 𝑥, 𝑦) − 𝑓

𝑖
(𝑥, 𝑦)‖

𝑃
= 0, 𝑖 =

1, 2, 3, 4 where 𝑓
1
(𝑡, V) = 1, 𝑓

2
(𝑡, V) = 𝑡, 𝑓

3
(𝑡, V) = V, and

𝑓
4
(𝑡, V) = 𝑡2 + V2.

The theory of the Lebesgue integral can be developed in
several distinct ways (see [10, 11]). Only one of these methods
will be discussed here.

Now, let us introduce our definition as follows.

Definition 6 (Lebesgue-Stieltjes integral-𝑖). Let 𝑆 be measur-
able set, 𝑓 : 𝑆 → 𝑅 be a bounded function, and 𝑔

𝑖
: 𝑆 →

𝑅 be nondecreasing function for 𝑖 ∈ 𝐼. For P Lebesgue
partition of 𝑆, put LS(𝑓,P, 𝑔) = ∑

𝑛

𝑗=1
∏

𝑖∈𝐼
𝑚

𝑗
𝑔

𝑖
(𝜇(𝑆

𝑗
))

and LS(𝑓,P, 𝑔) = ∑
𝑛

𝑗=1
∏

𝑖∈𝐼
𝑀

𝑗
𝑔

𝑖
(𝜇(𝑆

𝑗
)) such that 𝜇 mea-

surable function of 𝑆; 𝑚
𝑗

= inf{𝑓(𝑥) : 𝑥 ∈ 𝑆
𝑗
},

𝑀
𝑗

= sup{𝑓(𝑥) : 𝑥 ∈ 𝑆
𝑗
}, and 𝑔 = 𝑔

1
, 𝑔

2
, . . ..

Also, 𝑔
𝑖
(𝑥

𝑗
) − 𝑔

𝑖
(𝑥

𝑗−1
) > 0, LS(𝑓,P, 𝑔) ≤ LS(𝑓,P, 𝑔),

∏
𝑖∈𝐼
∫
𝑖

𝑓d𝑔 = sup{LS(𝑓, 𝑔)}, and∏
𝑖∈𝐼
∫
𝑖

𝑓d𝑔 = inf{LS(𝑓, 𝑔)},
where LS(𝑓, 𝑔) = {LS(𝑓,P, 𝑔) : P part of set 𝑆} and
LS(𝑓, 𝑔) = {LS(𝑓,P, 𝑔) : P part of set 𝑆}. If ∏

𝑖∈𝐼
∫
𝑖

𝑓d𝑔 =

∏
𝑖∈𝐼
∫
𝑖

𝑓d𝑔, where d𝑔 = d𝑔
1
× d𝑔

2
× . . . × d𝑔

𝑛
. . .. Then 𝑓 is

integral ∫
𝑖

according to 𝑔
𝑖
for 𝑖 ∈ 𝐼.

Now, we can provide our theorem as follows as a case
which is an illustrative application of approximation theory
in functional analysis using functional supremum to limit
convergence that acts as support and reinforcement of the
concept of Riesz’s representation.

Theorem 7. If a sequence 𝐺
𝑛
(𝑓) is positive linear functional

and bounded on 𝐶(𝑆), 𝑓 is bounded measurable function to 𝑆.
Then, there exists nondecreasing function to 𝑆 such that 𝑠𝑡

𝐴
−

lim
𝜇(𝑆)→0

(sup
𝑛
𝐺

𝑛
(𝑓) − 𝑓) = 0.

Proof. Assume that functional supremum 𝐺
𝑛
is as follows:

sup
𝑛

𝐺
𝑛
(𝑓) = sup

𝑛

∏

𝑖∈𝐼

∫
𝑖

𝑓d𝜑
𝑡,𝑛
, (23)

where 𝜑
𝑡,𝑛
(𝑥) = (1 − 𝑛(𝑥 − 𝑡))/(𝑦



𝑖
− 𝑦



𝑖
) converges to 𝑟 ∈ 𝑅;

that is, letP = {S
ℓ
}
𝑚

ℓ=0
be Lebesgue partition such that

sup {𝜇 (S
ℓ
) : ℓ = 0, . . . , 𝑚} <

1

2
𝛿 (𝜀) ,

1

2
< inf {𝜇 (S

ℓ
) : ℓ = 0, . . . , 𝑚} ,

𝜑
𝑖𝑡,𝑛
(𝜇 (S

ℓ
)) ≤ 𝐺 (𝜋

𝑡,𝑛
(𝜇 (S

ℓ
))) ≤ 𝜑

𝑖𝑡,𝑛
(𝜇 (S

ℓ
)) +

𝜀

𝑚

𝑓
 ,

(24)

where 𝜋
𝑡,𝑛
(𝑥) = 𝜑

𝑡,𝑛
(𝑥)(𝑦



𝑖
− 𝑦



𝑖
).

Since 𝐺 positive linear functional and bounded on 𝐶(𝑆),
then



𝐺 (𝑓) − 𝐺(𝑓 (𝑡
1
) 𝜋

𝑡1 ,𝑛
+

𝑚

∑

L=2

𝑓 (𝑡L) 𝜋𝑡L ,𝑛
(𝜇 (S

ℓ
)))



<
𝜀

𝑚

𝑓
 ,

(25)
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also, respect between sum LS(𝑓,P, 𝜑
𝑡,𝑛
) and Lebesgue-

Stieltjes integral-𝑖 are 2𝜀, we have



∏

𝑖∈𝐼

∫
𝑖

𝑓d𝜑
𝑡,𝑛
− 𝐺 (𝑓)



≤



∏

𝑖∈𝐼

∫
𝑖

𝑓d𝜑
𝑡,𝑛

−𝐺(𝑓 (𝑡
1
) 𝜋

𝑡1 ,𝑛
+

𝑚

∑

L=2

𝑓 (𝑡L) 𝜋𝑡L ,𝑛
(𝜇 (S

ℓ
)))



+



𝐺 (𝑓) − 𝐺(𝑓 (𝑡
1
) 𝜋

𝑡1 ,𝑛
+

𝑚

∑

L=2

𝑓 (𝑡L) 𝜋𝑡L ,𝑛
(𝜇 (S

ℓ
)))



<
̀𝜀

𝑚

(26)

as 𝑚 → ∞; hence 𝐺 satisfies Lebesgue-Stieltjes integral-𝑖 of
𝑓.

Now, since 𝐺
𝑛
(𝑓) is functional supremum and satisfies

Lebesgue-Stieltjes integral-𝑖, and us Definition 6, we have

sup
𝑛

𝐺
𝑛
(𝑓) − 𝑓

= sup
𝑛

∏

𝑖∈𝐼

∫
𝑖

𝑓d𝜑
𝑡,𝑛
− 𝑓

= sup
𝑛

(sup
𝑛

∑

𝑗=1

∏

𝑖∈𝐼

𝑚
𝑗
𝜑

𝑖𝑡,𝑛
(𝜇 (𝑆

𝑗
))) − 𝑓

= sup
𝑛

(sup
𝑛

∑

𝑗=1

∏

𝑖∈𝐼

inf
𝑗

𝑓 (𝑥) 𝜑
𝑖𝑡,𝑛
(𝜇 (𝑆

𝑗
))) − 𝑓

= sup
𝑛

(inf
𝑛

∑

𝑗=1

∏

𝑖∈𝐼

sup
𝑗

𝑓 (𝑥) 𝜑
𝑖𝑡,𝑛
(𝜇 (𝑆

𝑗
))) − 𝑓

= sup
𝑛

(inf
𝑛

∑

𝑗=1

sup
𝑗

𝑓 (𝑥)∏

𝑖∈𝐼

𝜑
𝑖𝑡,𝑛
(𝜇 (𝑆

𝑗
))) − 𝑓

= sup
𝑛

(inf
𝑛

∑

𝑗=1

sup
𝑗

𝑓 (𝑥)

× ([(
1 − 𝑛 (𝜇 (𝑆

1
) − 𝑡)

𝑦


𝑖
− 𝑦



𝑖

)

⋅(
1 − 𝑛 (𝜇 (𝑆

2
) − 𝑡)

𝑦


𝑖
− 𝑦



𝑖

) ⋅ ⋅ ⋅ ]) − 𝑓

= sup
𝑛

(inf (sup
1

𝑓 (𝑥)

× [(
1 − 𝑛 (𝜇 (𝑆

1
) − 𝑡)

𝑦


𝑖
− 𝑦



𝑖

)

⋅ (
1 − 𝑛 (𝜇 (𝑆

2
) − 𝑡)

𝑦


𝑖
− 𝑦



𝑖

) ⋅ ⋅ ⋅ ]

+ sup
2

𝑓 (𝑥) [(
1 − 𝑛 (𝜇 (𝑆

1
) − 𝑡)

𝑦


𝑖
− 𝑦



𝑖

)

⋅(
1 − 𝑛 (𝜇 (𝑆

2
) − 𝑡)

𝑦


𝑖
− 𝑦



𝑖

) ⋅ ⋅ ⋅ ]

+ ⋅ ⋅ ⋅ + sup
𝑛

𝑓 (𝑥)

× [(
1 − 𝑛 (𝜇 (𝑆

1
) − 𝑡)

𝑦


𝑖
− 𝑦



𝑖

)

⋅(
1 − 𝑛 (𝜇 (𝑆

2
) − 𝑡)

𝑦


𝑖
− 𝑦



𝑖

) ⋅ ⋅ ⋅ ])) − 𝑓.

(27)

Note that effect sum on measurable function 𝜇(𝑆
𝑗
) by using

Lebesgue partition

lim
𝜇(𝑆)→0

∏

𝑖∈𝐼

∫
𝑖

𝑓d𝜑
𝑡,𝑛
= 𝑓; (28)

let 𝑛 ∈ 𝑁, chooseK
𝑛
> 0, and define the following sets:

L = {𝜇 (𝑆) : (sup
𝑛

𝐺
𝑛
(𝑓) − 𝑓) ≥K

𝑛
} ,

L
1
= {𝜇 (𝑆) : (sup

𝑛

𝐺
𝑛
(𝑓

1
) − 𝑓

1
) ≥

K
𝑛

3
} ,

L
2
= {𝜇 (𝑆) : (sup

𝑛

𝐺
𝑛
(𝑓

2
) − 𝑓

2
) ≥

K
𝑛

3
} ,

L
3
= {𝜇 (𝑆) : (sup

𝑛

𝐺
𝑛
(𝑓

3
) − 𝑓

3
) ≥

K
𝑛

3
} ;

(29)

Then L ⊂ L
1
∪L

2
∪ L

3
, which gives

∑

𝜇(S)⊂L
𝑎

𝑛

𝑘𝑗
≤ ∑

𝜇(S)⊂L
1

𝑎
𝑛

𝑘𝑗
∪ ∑

𝜇(S)⊂L
2

𝑎
𝑛

𝑘𝑗
∪ ∑

𝜇(S)⊂L
3

𝑎
𝑛

𝑘𝑗
; (30)

we obtain that 𝑠𝑡
𝐴
− lim

𝜇(𝑆)→0
∑

𝜇(𝑆)⊂L 𝑎
𝑛

𝑘𝑗
= 0 implies 𝑠𝑡

𝐴
−

lim
𝜇(𝑆)→0

(sup
𝑛
𝐺

𝑛
(𝑓) − 𝑓) = 0.

Now, in this paper we have proved Riesz’s representation
theory with Lebesgue-Stieltjes integral-𝑖, by using Korovkin
type approximation which is one of the threads in the
development of Riesz’s theorem to support the definition of
Lebesgue integral, Rudin [10]. This integration toxicity ratio
for the world on behalf of the French Lebesgue, who came in
his thesis for a doctorate in 1902.
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[9] I. Sakaoğlu and M. Ünver, “Statistical approximation for multi-
variable integrable functions,”Miskolc Mathematical Notes, vol.
13, no. 2, pp. 485–491, 2012.

[10] W. Rudin, Principles of Mathematical Analysis, McGraw-Hill,
3rd edition, 1976.

[11] R. G. Bartle,The Elements of Real Analysis, John Wiley & Sons,
3rd edition, 1976.


