
Research Article
A Novel Optimization Method for Nonconvex Quadratically
Constrained Quadratic Programs

Hongwei Jiao,1 Yong-Qiang Chen,2 and Wei-Xin Cheng2

1 School of Mathematical Science, Henan Institute of Science and Technology, Xinxiang 453003, China
2 College of Mathematics and Information Science, Henan Normal University, Xinxiang 453007, China

Correspondence should be addressed to Hongwei Jiao; jhwxd2014@126.com and Wei-Xin Cheng; chengweixin2014@126.com

Received 21 February 2014; Revised 26 March 2014; Accepted 26 March 2014; Published 27 April 2014

Academic Editor: Yisheng Song

Copyright © 2014 Hongwei Jiao et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper presents a novel optimization method for effectively solving nonconvex quadratically constrained quadratic programs
(NQCQP) problem. By applying a novel parametric linearizing approach, the initial NQCQP problem and its subproblems can
be transformed into a sequence of parametric linear programs relaxation problems. To enhance the computational efficiency of
the presented algorithm, a cutting down approach is combined in the branch and bound algorithm. By computing a series of
parametric linear programs problems, the presented algorithm converges to the global optimum point of the NQCQP problem. At
last, numerical experiments demonstrate the performance and computational superiority of the presented algorithm.

1. Introduction

The nonconvex quadratically constrained quadratic pro-
grams problems have attracted the attention of practitioners
and researchers for 30 years. During the past 10 years, curios-
ity in these problems has been especially intense. In part,
this is because the NQCQP problems have a large number
of practical applications, for example, pooling problems in
petrochemistry [1], modularization of product subassemblies
[2], chance-constrained optimization problems, production
planning or portfolio optimization [3–5], the fuel mixture
problem encountered in oil industry [6], and also place-
ment and layout problems appeared in integrated circuit
design (see [7, 8]). In addition, many nonlinear optimization
problems can be transformed into the form, for example,
special classes of structured stochastic games [9] can be
interpreted as quadratic programs problems, the packing
problem contained in the unit square can be formulated as
concave quadratic constraints quadratic programs problem,
{0, 1} variable in 0-1 programming may be also represented
by concave quadratic constraints, and minmax location
problems [4] also lead to quadratic programs problems with
quadratic constraints. Another cause for the strong attention
in the NQCQP problems is that, from a research point of

view, the class of problems put forward significant theoretical
and computational defiance. This is mainly because these
problems are global optimization problem; that is, they are
well known to generally own multiple local optimum points
that are not globally optimum point. Therefore, it is very
essential to put forward a good global optimization method
for solving the NQCQP problems.

In this paper, we will investigate the following NQCQP
problems:

min 𝐺
0
(𝑥) = 𝑥

𝑇
𝐴
0
𝑥 + (𝑑

0
)
𝑇

𝑥

s.t. 𝐺
𝑖 (𝑥) = 𝑥

𝑇
𝐴
𝑖
𝑥 + (𝑑

𝑖
)
𝑇

𝑥 ≤ 𝑏
𝑖
,

𝑖 = 1, . . . , 𝑚,

𝑥 ∈ 𝑋
0
= {𝑥 ∈ 𝑅

𝑛
: 𝑙
0
≤ 𝑥 ≤ 𝑢

0
} ,

(NQCQP)

where𝐴𝑖 = (𝑎𝑖
𝑗𝑘
)
𝑛×𝑛

∈ 𝑅
𝑛×𝑛

(𝑖 = 0, 1, . . . , 𝑚) are all symmetric
matrices, 𝑑0, 𝑑𝑖 ∈ 𝑅

𝑛, 𝑏
𝑖
∈ 𝑅, 𝑖 = 1, . . . , 𝑚, and 𝑙

0
=

(𝑙
0

1
, . . . , 𝑙

0

𝑛
)
𝑇, 𝑢0 = (𝑢0

1
, . . . , 𝑢

0

𝑛
)
𝑇.

In last several decades, some algorithms have been
exploited for globally solving the special case or general
case of the NQCQP problems. For example, based on a
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novel reformulation-linearization/convexification approach,
Sherali and Tuncbilek [10] proposed a global optimization
algorithm for linearly constrained nonconvex quadratic pro-
grams problems. Based on outer approximation and branch
and bound scheme by solving linear programs subproblems,
Al-Khayyal et al. [7] presented an algorithm for computing
the approximate global optimal solutions of the NQCQP
problems. Based on Lagrangian underestimation method
to compute lower bounds and utilize the Interval Newton
method to facilitate the convergence of algorithm in the
neighborhood of the global optimum point, Van Voorhis [11]
developed a branch and bound algorithm for globally solving
the NQCQP problems. By partitioning the feasible region
into the Cartesian product of two-dimensional triangles and
rectangles and by utilizing the convex and concave envelopes
of bilinear functions over triangles and rectangles, a sim-
plicial branch and bound algorithm [12] was presented for
solving globally theNQCQPproblems. Based on semidefinite
relaxations and finite KKT-branching method, Burer and
Vandenbussche [13] presented a finite branch and bound
algorithm for globally solving the NQCQP problems. In
[14], Zheng et al. presented a decomposition-approximation
method for constructing convex relaxations of the NQCQP
problems, which can be used to offer a tighter lower bound
for solving the problems (NQCQP). Using duality bounds
approach,Thoai [15] presented a branch andbound algorithm
for solving the NQCQP problems. Based on linear relaxation
approximation technique and linearity-based range deleting
tactics, Gao et al. [16] presented a rectangle branch and reduce
method for the linearly constrained quadratic programs
problems; by utilizing linearizing technique and quadratic
constraint-based range compressing technique, Gao et al. [17]
presented a branch and reduce approach for globally solving
the NQCQP problems. By utilizing the special structure of
quadratic function and linearization technique, Shen et al.
[18] and Shen and Liu [19] proposed two effective global opti-
mization algorithms for computing the NQCQP problems.
By making use of linear relaxation approximation technique,
Qu et al. [20] and Jiao and Chen [21] proposed two deter-
ministic algorithms for calculating the NQCQP problems.
Except for the above reviewed references, several algorithms
for solving generalized geometric programming problem
presented in [22–30] can be also used to solve the NQCQP
problems. For an excellent review of recent advances in global
optimization, the reader is referred to Floudas and Gounaris
[31].

In this paper, by combing a parametric linearizing
approach with a cutting down approach, we will present a
novel global optimization method for solving the NQCQP
problems.Themain characteristics of the presented approach
are expounded as follows. Firstly, a novel linear relaxation
approximation technique, that is, a parametric linearizing
approach, is constructed for inconsistently transforming
the NQCQP problems into a sequence of parametric lin-
ear programs relaxation problems, and by subsequently
subdividing the initial hyperrectangle the optimal point
of parametric linear programs relaxation problems can
infinitely approach the global optimum point of the prob-
lem (NQCQP). Secondly, the proposed parametric linear

programs relaxation problems are putted into a branch and
bound framework without adding any new variables and
constraint functions and which can be easily calculated by
any effective linear programs algorithm procedure. Thirdly,
a cutting down approach is exploited to eliminate a large
part of the currently investigated subhyperrectangle which
does not contain the global optimum point of the prob-
lem (NQCQP). Combing the parametric linear programs
relaxation problem with the cutting down approach in a
branch and bound procedure, a new optimization method is
displayed for globally solving the NQCQP problems. At last,
numerical results indicate that the proposed method can be
employed to obtain the global optimum point of the problem
(NQCQP).

The remainder of this paper is composed as follows.
The next section describes a novel parametric linearizing
approach and the parametric linear programs relaxation
of the problem (NQCQP) is constructed. In Section 3 a
cutting down approach is presented. Section 4 combines the
cutting down approach within a branch and bound scheme;
an optimization algorithm and its global convergence are
described. In Section 5 some test examples and their results
are reported to demonstrate the feasibility and superiority of
the presented algorithm. At last, some concluding remarks
are described.

2. Parametric Linear Relaxation

The principal composition in the configuration of a branch
and bound algorithm for globally solving the problem
(NQCQP) is the computation of lower bounds of the problem
(NQCQP) and its divided subproblems.The lower bounds of
the global minimum values of the problem (NQCQP) and its
divided subproblems can be calculated by solving a series of
parametric linear programs relaxation problem (PLPRP). In
order to construct the PLPRP, the proposed approach is to
replace each quadratic function 𝐺

𝑖
(𝑥) by a parametric linear

function.
Let 𝑋 = (𝑋

𝑗
)
𝑛×1

⊆ 𝑋
0 with 𝑋

𝑗
= [𝑙
𝑗
, 𝑢
𝑗
] (𝑗 = 1, . . . , 𝑛).

For each 𝑖 = 0, 1, . . . , 𝑚, define 𝑥(𝜃
𝑖
) = 𝑙+𝜃

𝑖
(𝑢− 𝑙), where 𝜃

𝑖
∈

{0, 1}, 𝑙𝑇 = {𝑙
1
, 𝑙
2
, . . . , 𝑙
𝑛
}, 𝑢𝑇 = {𝑢

1
, 𝑢
2
, . . . , 𝑢

𝑛
}, 𝑥(0) = 𝑙, and

𝑥(1) = 𝑢. For convenience in expression, for all 𝑥 ∈ 𝑋 ⊆ 𝑋
0,

for each 𝑖 = 0, 1, . . . , 𝑚, some symbols are given as follows:

𝑍
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𝑍
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)

)

,

𝑓
𝑖
(𝑥) = 𝑥

𝑇
𝐴
𝑖
𝑥,

𝑍
𝑖
(𝜃
𝑖
) = 𝑍
𝑖
+ 𝜃
𝑖
(𝑍
𝑖
− 𝑍
𝑖
) ,

𝑍
𝑖
(1 − 𝜃

𝑖
) = 𝑍
𝑖
+ (1 − 𝜃

𝑖
) (𝑍
𝑖
− 𝑍
𝑖
) ,

𝑓
𝑙

𝑖
(𝑥,𝑋, 𝜃

𝑖
) = 𝑍
𝑖
(𝜃
𝑖
)
𝑇
𝑥 + 𝑥(𝜃

𝑖
)
𝑇
𝐴
𝑖
𝑥 (𝜃
𝑖
)

− 𝑍
𝑖
(𝜃
𝑖
)
𝑇
𝑥 (𝜃
𝑖
) ,

𝑓
𝑢

𝑖
(𝑥,𝑋, 𝜃

𝑖
) = 𝑍
𝑖
(1 − 𝜃

𝑖
)
𝑇
𝑥 + 𝑥(𝜃

𝑖
)
𝑇
𝐴
𝑖
𝑥 (𝜃
𝑖
)

− 𝑍
𝑖
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𝑖
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𝑇
𝑥 (𝜃
𝑖
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(1)

Obviously, we have

𝑍
𝑖
(0) = 𝑍

𝑖
, 𝑍

𝑖
(1) = 𝑍

𝑖
. (2)

Theorem 1. For any 𝑥 ∈ 𝑋 ⊆ 𝑋
0, for each 𝑖 = 0, 1, . . . , 𝑚,

consider the function 𝑓
𝑖
(𝑥), 𝑓

𝑙

𝑖
(𝑥, 𝑋, 𝜃

𝑖
) and 𝑓𝑢

𝑖
(𝑥, 𝑋, 𝜃

𝑖
); then

the following conclusions hold:

(i) 𝑓𝑙
𝑖
(𝑥, 𝑋, 𝜃

𝑖
) ≤ 𝑓
𝑖
(𝑥) ≤ 𝑓

𝑢

𝑖
(𝑥, 𝑋, 𝜃

𝑖
);

(ii) ‖𝑓𝑢
𝑖
(𝑥, 𝑋, 𝜃

𝑖
) − 𝑓

𝑖
(𝑥)‖ → 0 and ‖𝑓

𝑖
(𝑥) −

𝑓
𝑙

𝑖
(𝑥, 𝑋, 𝜃

𝑖
)‖ → 0 as ‖𝑢 − 𝑙‖ → 0.

Proof. (i) The gradient function of the function 𝑓
𝑖
(𝑥) =

𝑥
𝑇
𝐴
𝑖
𝑥, 𝑖 = 0, 1, . . . , 𝑚, can be expressed as follows:

𝜕𝑓
𝑖 (𝑥)

𝜕𝑥
= 2𝐴
𝑖
𝑥 = 2 ×

(
(
(
(
(
(

(

𝑛

∑
𝑘=1

𝑎
𝑖

1𝑘
𝑥
𝑘

𝑛

∑
𝑘=1

𝑎
𝑖

2𝑘
𝑥
𝑘

...
𝑛

∑
𝑘=1

𝑎
𝑖

𝑛𝑘
𝑥
𝑘

)
)
)
)
)
)

)

. (3)

Obviously, we have

𝑍
𝑖
≤
𝜕𝑓
𝑖 (𝑥)

𝜕𝑥
= 2𝐴
𝑖
𝑥 ≤ 𝑍

𝑖
. (4)

By the mean value theorem, for any 𝑥 ∈ 𝑋, there exists a
point 𝜉 = 𝛼𝑥 + (1 − 𝛼)𝑥(𝜃

𝑖
), where 𝛼 ∈ [0, 1], such that

𝑓
𝑖
(𝑥) = 𝑓

𝑖
(𝑥 (𝜃
𝑖
)) + (

𝜕𝑓
𝑖 (𝜉)

𝜕𝜉
)

𝑇

(𝑥 − 𝑥 (𝜃
𝑖
))

= 𝑥(𝜃
𝑖
)
𝑇
𝐴
𝑖
𝑥 (𝜃
𝑖
) + (

𝜕𝑓
𝑖
(𝜉)

𝜕𝜉
)

𝑇

(𝑥 − 𝑥 (𝜃
𝑖
)) .

(5)

If 𝜃𝑖 = 0 , then we have

𝜕𝑓
𝑖
(𝜉)

𝜕𝜉
≥ 𝑍
𝑖
= 𝑍
𝑖
(𝜃
𝑖
) ,

𝑥 − 𝑥 (𝜃
𝑖
) = 𝑥 − 𝑙 ≥ 0, for any 𝑥 ∈ 𝑋.

(6)

If 𝜃
𝑖
= 1, it follows that

𝜕𝑓
𝑖
(𝜉)

𝜕𝜉
≤ 𝑍
𝑖
= 𝑍
𝑖
(𝜃
𝑖
) ,

𝑥 − 𝑥 (𝜃
𝑖
) = 𝑥 − 𝑢 ≤ 0, for any 𝑥 ∈ 𝑋.

(7)

Therefore, we can get that

𝑓
𝑖
(𝑥) = 𝑥(𝜃

𝑖
)
𝑇
𝐴
𝑖
𝑥 (𝜃
𝑖
) + (

𝜕𝑓
𝑖
(𝜉)

𝜕𝜉
)

𝑇

(𝑥 − 𝑥 (𝜃
𝑖
))

≥ 𝑥(𝜃
𝑖
)
𝑇
𝐴
𝑖
𝑥 (𝜃
𝑖
) + 𝑍
𝑖
(𝜃
𝑖
)
𝑇
(𝑥 − 𝑥 (𝜃

𝑖
))

= 𝑓
𝑙

𝑖
(𝑥,𝑋, 𝜃

𝑖
) .

(8)

Analogously, if 𝜃
𝑖
= 0, then it follows that

𝜕𝑓
𝑖
(𝜉)

𝜕𝜉
≤ 𝑍
𝑖
= 𝑍
𝑖
(1 − 𝜃

𝑖
) ,

𝑥 − 𝑥 (𝜃
𝑖
) = 𝑥 − 𝑙 ≥ 0, for any 𝑥 ∈ 𝑋.

(9)

If 𝜃
𝑖
= 1, the following inequalities hold:

𝜕𝑓
𝑖 (𝜉)

𝜕𝜉
≥ 𝑍
𝑖
= 𝑍
𝑖
(1 − 𝜃

𝑖
) ,

𝑥 − 𝑥 (𝜃
𝑖
) = 𝑥 − 𝑢 ≤ 0, for any 𝑥 ∈ 𝑋.

(10)

Hence, it follows as above that

𝑓
𝑖
(𝑥) = 𝑥(𝜃

𝑖
)
𝑇
𝐴
𝑖
𝑥 (𝜃
𝑖
) + (

𝜕𝑓
𝑖 (𝜉)

𝜕𝜉
)

𝑇

(𝑥 − 𝑥 (𝜃
𝑖
))

≤ 𝑥(𝜃
𝑖
)
𝑇
𝐴
𝑖
𝑥 (𝜃
𝑖
) + 𝑍
𝑖
(1 − 𝜃

𝑖
)
𝑇
(𝑥 − 𝑥 (𝜃

𝑖
))

= 𝑓
𝑢

𝑖
(𝑥,𝑋, 𝜃

𝑖
) .

(11)

The conclusion (i) is followed.
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(ii) Consider ‖𝑓
𝑖
(𝑥) − 𝑓

𝑙

𝑖
(𝑥, 𝑋, 𝜃

𝑖
)‖, we have

󵄩󵄩󵄩󵄩󵄩
𝑓
𝑖 (𝑥) − 𝑓

𝑙

𝑖
(𝑥,𝑋, 𝜃

𝑖
)
󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩󵄩
𝑥
𝑇
𝐴
𝑖
𝑥 − [𝑍

𝑖
(𝜃
𝑖
)
𝑇
𝑥 + 𝑥(𝜃

𝑖
)
𝑇
𝐴
𝑖
𝑥 (𝜃
𝑖
) − 𝑍
𝑖
(𝜃
𝑖
)
𝑇
𝑥 (𝜃
𝑖
)]
󵄩󵄩󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

[𝑥(𝜃
𝑖
)
𝑇
𝐴
𝑖
𝑥 (𝜃
𝑖
) + (

𝜕𝑓
𝑖 (𝜉)

𝜕𝜉
)

𝑇

(𝑥 − 𝑥 (𝜃
𝑖
))]

− [𝑍
𝑖
(𝜃
𝑖
)
𝑇
𝑥 + 𝑥(𝜃

𝑖
)
𝑇
𝐴
𝑖
𝑥 (𝜃
𝑖
) − 𝑍
𝑖
(𝜃
𝑖
)
𝑇
𝑥 (𝜃
𝑖
)]

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(
𝜕𝑓
𝑖
(𝜉)

𝜕𝜉
)

𝑇

(𝑥 − 𝑥 (𝜃
𝑖
)) − [𝑍

𝑖
(𝜃
𝑖
)
𝑇
𝑥 − 𝑍

𝑖
(𝜃
𝑖
)
𝑇
𝑥 (𝜃
𝑖
)]

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(
𝜕𝑓
𝑖 (𝜉)

𝜕𝜉
− 𝑍
𝑖
(𝜃
𝑖
))

𝑇

(𝑥 − 𝑥 (𝜃
𝑖
))

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕𝑓
𝑖
(𝜉)

𝜕𝜉
− 𝑍
𝑖
(𝜃
𝑖
)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥 − 𝑥 (𝜃𝑖)
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝑍
𝑖
− 𝑍
𝑖

󵄩󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑥 − 𝑥 (𝜃𝑖)

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝑍
𝑖
− 𝑍
𝑖

󵄩󵄩󵄩󵄩󵄩 ‖
𝑢 − 𝑙‖ ,

(12)

where 𝜉 = 𝛼𝑥 + (1 − 𝛼)𝑥(𝜃
𝑖
) with 𝛼 ∈ [0, 1].

Since ‖𝑍
𝑖
− 𝑍
𝑖
‖‖𝑢 − 𝑙‖ → 0 as ‖𝑢 − 𝑙‖ → 0, thus we

can get that

󵄩󵄩󵄩󵄩󵄩
𝑓
𝑖
(𝑥) − 𝑓

𝑙

𝑖
(𝑥,𝑋, 𝜃

𝑖
)
󵄩󵄩󵄩󵄩󵄩
󳨀→ 0 as ‖𝑢 − 𝑙‖ 󳨀→ 0. (13)

Similarly, we can prove that

󵄩󵄩󵄩󵄩𝑓
𝑢

𝑖
(𝑥,𝑋, 𝜃

𝑖
) − 𝑓
𝑖
(𝑥)
󵄩󵄩󵄩󵄩 󳨀→ 0 as ‖𝑢 − 𝑙‖ 󳨀→ 0. (14)

The conclusion is complete.

By Theorem 1, for any 𝑥 ∈ 𝑋, for each 𝑖 = 0, 1, . . . , 𝑚, we
define

𝐺
𝐿

𝑖
(𝑥,𝑋, 𝜃

𝑖
) = 𝑍
𝑖
(𝜃
𝑖
)
𝑇
𝑥 + 𝑥(𝜃

𝑖
)
𝑇
𝐴
𝑖
𝑥 (𝜃
𝑖
)

− 𝑍
𝑖
(𝜃
𝑖
)
𝑇
𝑥 (𝜃
𝑖
) + (𝑑

𝑖
)
𝑇

𝑥,

𝐺
𝑈

𝑖
(𝑥,𝑋, 𝜃

𝑖
) = 𝑍
𝑖
(1 − 𝜃

𝑖
)
𝑇
𝑥 + 𝑥(𝜃

𝑖
)
𝑇
𝐴
𝑖
𝑥 (𝜃
𝑖
)

− 𝑍
𝑖
(1 − 𝜃

𝑖
)
𝑇
𝑥 (𝜃
𝑖
) + (𝑑

𝑖
)
𝑇

𝑥.

(15)

Theorem 2. For any 𝑥 ∈ 𝑋 ⊆ 𝑋
0, for each 𝑖 = 0, 1, . . . , 𝑚, the

following conclusions hold:

(i) 𝐺𝐿
𝑖
(𝑥, 𝑋, 𝜃

𝑖
) ≤ 𝐺
𝑖
(𝑥) ≤ 𝐺

𝑈

𝑖
(𝑥, 𝑋, 𝜃

𝑖
);

(ii) ‖𝐺𝑈
𝑖
(𝑥, 𝑋, 𝜃

𝑖
) − 𝐺

𝑖
(𝑥)‖ → 0 and ‖𝐺

𝑖
(𝑥) −

𝐺
𝐿

𝑖
(𝑥, 𝑋, 𝜃

𝑖
)‖ → 0 as ‖𝑢 − 𝑙‖ → 0.

Proof. (i) By the definitions of 𝐺
𝐿

𝑖
(𝑥, 𝑋, 𝜃

𝑖
), 𝐺
𝑖
(𝑥) and

𝐺
𝑈

𝑖
(𝑥, 𝑋, 𝜃

𝑖
) and the conclusion (i) of Theorem 1, we have

𝐺
𝐿

𝑖
(𝑥,𝑋, 𝜃

𝑖
)

= 𝑍
𝑖
(𝜃
𝑖
)
𝑇
𝑥 + 𝑥(𝜃

𝑖
)
𝑇
𝐴
𝑖
𝑥 (𝜃
𝑖
) − 𝑍
𝑖
(𝜃
𝑖
)
𝑇
𝑥 (𝜃
𝑖
) + (𝑑

𝑖
)
𝑇

𝑥

= 𝑓
𝑙

𝑖
(𝑥,𝑋, 𝜃

𝑖
) + (𝑑

𝑖
)
𝑇

𝑥

≤ 𝑓
𝑖 (𝑥) + (𝑑

𝑖
)
𝑇

𝑥

= 𝐺
𝑖 (𝑥)

≤ 𝑓
𝑢

𝑖
(𝑥,𝑋, 𝜃

𝑖
) + (𝑑

𝑖
)
𝑇

𝑥

= 𝑍
𝑖
(1 − 𝜃

𝑖
)
𝑇
𝑥 + 𝑥(𝜃

𝑖
)
𝑇
𝐴
𝑖
𝑥 (𝜃
𝑖
)

− 𝑍
𝑖
(1 − 𝜃

𝑖
)
𝑇
𝑥 (𝜃
𝑖
) + (𝑑

𝑖
)
𝑇

𝑥

= 𝐺
𝑈

𝑖
(𝑥,𝑋, 𝜃

𝑖
) .

(16)

Therefore, the conclusion (i) is followed.
(ii) By the expressions of 𝐺𝐿

𝑖
(𝑥, 𝑋, 𝜃

𝑖
), 𝐺
𝑖
(𝑥), 𝐺

𝑈

𝑖
(𝑥, 𝑋, 𝜃

𝑖
),

𝑓
𝑙

𝑖
(𝑥, 𝑋, 𝜃

𝑖
), 𝑓
𝑖
(𝑥), and 𝑓𝑢

𝑖
(𝑥, 𝑋, 𝜃

𝑖
), we can get that

󵄩󵄩󵄩󵄩󵄩
𝐺
𝑖 (𝑥) − 𝐺

𝐿

𝑖
(𝑥,𝑋, 𝜃

𝑖
)
󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩󵄩
[𝑥
𝑇
𝐴
𝑖
𝑥 + (𝑑

𝑖
)
𝑇

𝑥] − [𝑍
𝑖
(𝜃
𝑖
)
𝑇
𝑥 + 𝑥(𝜃

𝑖
)
𝑇
𝐴
𝑖
𝑥 (𝜃
𝑖
)

−𝑍
𝑖
(𝜃
𝑖
)
𝑇
𝑥 (𝜃
𝑖
) + (𝑑

𝑖
)
𝑇

𝑥]
󵄩󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩󵄩
𝑥
𝑇
𝐴
𝑖
𝑥 − [𝑍

𝑖
(𝜃
𝑖
)
𝑇
𝑥 + 𝑥(𝜃

𝑖
)
𝑇
𝐴
𝑖
𝑥 (𝜃
𝑖
) − 𝑍
𝑖
(𝜃
𝑖
)
𝑇
𝑥 (𝜃
𝑖
)]
󵄩󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
𝑓
𝑖 (𝑥) − 𝑓

𝑙

𝑖
(𝑥,𝑋, 𝜃

𝑖
)
󵄩󵄩󵄩󵄩󵄩
,

󵄩󵄩󵄩󵄩󵄩
𝐺
𝑈

𝑖
(𝑥,𝑋, 𝜃

𝑖
) − 𝐺
𝑖
(𝑥)
󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩󵄩
[𝑍
𝑖
(1 − 𝜃

𝑖
)
𝑇
𝑥 + 𝑥(𝜃

𝑖
)
𝑇
𝐴
𝑖
𝑥 (𝜃
𝑖
) − 𝑍
𝑖
(1 − 𝜃

𝑖
)
𝑇
𝑥 (𝜃
𝑖
)

+(𝑑
𝑖
)
𝑇

𝑥] − [𝑥
𝑇
𝐴
𝑖
𝑥 + (𝑑

𝑖
)
𝑇

𝑥]
󵄩󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩󵄩
[𝑍
𝑖
(1 − 𝜃

𝑖
)
𝑇
𝑥 + 𝑥(𝜃

𝑖
)
𝑇
𝐴
𝑖
𝑥 (𝜃
𝑖
)

−𝑍
𝑖
(1 − 𝜃

𝑖
)
𝑇
𝑥 (𝜃
𝑖
)] −𝑥
𝑇
𝐴
𝑖
𝑥
󵄩󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑓
𝑢

𝑖
(𝑥,𝑋, 𝜃

𝑖
) − 𝑓
𝑖
(𝑥)
󵄩󵄩󵄩󵄩 .

(17)
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By the proof of Theorem 1 (ii), we can get

󵄩󵄩󵄩󵄩󵄩
𝐺
𝑈

𝑖
(𝑥,𝑋, 𝜃

𝑖
) − 𝐺
𝑖
(𝑥)
󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑓
𝑢

𝑖
(𝑥,𝑋, 𝜃

𝑖
) − 𝑓
𝑖
(𝑥)
󵄩󵄩󵄩󵄩 󳨀→ 0 as ‖𝑢 − 𝑙‖ 󳨀→ 0,

󵄩󵄩󵄩󵄩󵄩
𝐺
𝑖 (𝑥) − 𝐺

𝐿

𝑖
(𝑥,𝑋, 𝜃

𝑖
)
󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
𝑓
𝑖
(𝑥) − 𝑓

𝑙

𝑖
(𝑥,𝑋, 𝜃

𝑖
)
󵄩󵄩󵄩󵄩󵄩
󳨀→ 0 as ‖𝑢 − 𝑙‖ 󳨀→ 0.

(18)

The conclusion is complete.

By Theorem 2, we can construct the underestimating
approximation parametric linear programs relaxation prob-
lem (PLPRP) of the problem (NQCQP) over subhyperrect-
angle𝑋 as follows:

min 𝐺
𝐿

0
(𝑥,𝑋, 𝜃

0
) ,

s.t. 𝐺
𝐿

𝑖
(𝑥,𝑋, 𝜃

𝑖
) ≤ 𝑏
𝑖
, 𝑖 = 1, . . . , 𝑚,

𝑥 ∈ 𝑋 = {𝑥 : 𝑙 ≤ 𝑥 ≤ 𝑢} ⊆ 𝑋
0
,

(PLPRP)

where

𝐺
𝐿

𝑖
(𝑥,𝑋, 𝜃

𝑖
) = 𝑍
𝑖
(𝜃
𝑖
)
𝑇
𝑥 + 𝑥(𝜃

𝑖
)
𝑇
𝐴
𝑖
𝑥 (𝜃
𝑖
)

− 𝑍
𝑖
(𝜃
𝑖
)
𝑇
𝑥 (𝜃
𝑖
) + (𝑑

𝑖
)
𝑇

𝑥.

(19)

Based on the above parametric linearizing approach,
every feasible point of the problem (NQCQP) is feasible to
the problem (PLPRP) over the subhyperrectangle𝑋, and the
objective function value of the problem (PLPRP) at each
feasible point is less than or equal to that of the problem
(NQCQP) over the subhyperrectangle 𝑋. Thus, the optimal
value of the problem (PLPRP) offers a valid lower bound
for the optimal value of the problem (NQCQP) over the
subhyperrectangle𝑋.

3. Cutting Down Approach

To enhance the computational speed of the investigated
algorithm, based on the above parametric linear relaxation
problem, a novel cutting down approach is described in the
following Theorem 3. At the 𝑘-th iteration of the proposed
algorithm, we will judge whether or not the subhyperrect-
angle 𝑋 contains a global optimum point of the problem
(NQCQP). The cutting down approach can be used to
reject a part of the subhyperrectangle 𝑋 or the whole 𝑋
without deleting any global optimum point of the problem
(NQCQP). For convenience, for any 𝑥 ∈ 𝑋 = (𝑋

𝑗
)
𝑛×1

with
𝑋
𝑗
= [𝑙
𝑗
, 𝑢
𝑗
] (𝑗 = 1, . . . , 𝑛), without loss of generality, we

express the 𝐺𝐿
𝑖
(𝑥, 𝑋, 𝜃

𝑖
) in the problem (PLPRP) over the

subhyperrectangle𝑋 as the following form:

𝐺
𝐿

𝑖
(𝑥,𝑋, 𝜃

𝑖
) =

𝑛

∑
𝑗=1

𝛾
𝑖𝑗
(𝜃
𝑖
) 𝑥
𝑗
+ 𝜂
𝑖
(𝜃
𝑖
) , 𝑖 = 0, 1, . . . , 𝑚.

(20)

Assume that UB
𝑘
is the currently known upper bound of

the proposed branch and bound algorithm, and for any fixed
𝜃
𝑖
, 𝑖 = 0, 1, . . . , 𝑚, let

PLRB
𝑖
(𝜃
𝑖
) =

𝑛

∑
𝑗=1

min {𝛾
𝑖𝑗
(𝜃
𝑖
) 𝑙
𝑗
, 𝛾
𝑖𝑗
(𝜃
𝑖
) 𝑢
𝑗
} + 𝜂
𝑖
(𝜃
𝑖
) ,

𝑖 = 0, 1, . . . , 𝑚,

𝛽
𝑝
(𝜃
0
) = UB

𝑘
− PLRB

0
(𝜃
0
) +min {𝛾

0𝑝
(𝜃
0
) 𝑙
𝑝
, 𝛾
0𝑝
(𝜃
0
) 𝑢
𝑝
} ,

𝑝 = 1, . . . , 𝑛,

𝜆
𝑖𝑝
(𝜃
𝑖
) = 𝑏
𝑖
− PLRB

𝑖
(𝜃
𝑖
) +min {𝛾

𝑖𝑝
(𝜃
𝑖
) 𝑙
𝑝
, 𝛾
𝑖𝑝
(𝜃
𝑖
) 𝑢
𝑝
} ,

𝑝 = 1, . . . , 𝑛, 𝑖 = 1, . . . , 𝑚.

(21)

And define 𝑌 = (𝑌
𝑗
)
𝑛×1
, 𝑌 = (𝑌

𝑗
)
𝑛×1
, 𝑌̃ = (𝑌̃

𝑗
)
𝑛×1

, and
𝑌̂ = (𝑌̂

𝑗
)
𝑛×1

, where

𝑌̃
𝑗
=

{{

{{

{

𝑋
𝑗
, 𝑗 ̸= 𝑝, 𝑗 = 1, . . . , 𝑛,

(
𝜆
𝑖𝑝
(𝜃
𝑖
)

𝛾
𝑖𝑝
(𝜃
𝑖
)
, 𝑢
𝑝
]⋂𝑋

𝑝
, 𝑗 = 𝑝;

𝑌̂
𝑗
=

{{

{{

{

𝑋
𝑗
, 𝑗 ̸= 𝑝, 𝑗 = 1, . . . , 𝑛,

[𝑙
𝑝
,
𝜆
𝑖𝑝
(𝜃
𝑖
)

𝛾
𝑖𝑝
(𝜃
𝑖
)
)⋂𝑋

𝑝
, 𝑗 = 𝑝;

𝑌
𝑗
=

{{

{{

{

𝑋
𝑗
, 𝑗 ̸= 𝑝, 𝑗 = 1, . . . , 𝑛,

(
𝛽
𝑝
(𝜃
0
)

𝛾
0𝑝
(𝜃
0
)
, 𝑢
𝑝
]⋂𝑋

𝑝
, 𝑗 = 𝑝;

𝑌
𝑗
=

{{

{{

{

𝑋
𝑗
, 𝑗 ̸= 𝑝, 𝑗 = 1, . . . , 𝑛,

[𝑙
𝑝
,
𝛽
𝑝
(𝜃
0
)

𝛾
0𝑝
(𝜃
0
)
)⋂𝑋

𝑝
, 𝑗 = 𝑝.

(22)

Theorem 3. For any subhyperrectangle 𝑋 ⊆ 𝑋
0, one has the

following results.

(i) If PLRB
0
(𝜃
0
) > UB

𝑘
, then the subhyperrectangle

𝑋 does not contain the global optimum point of the
problem (NQCQP).

(ii) If PLRB
0
(𝜃
0
) ≤ UB

𝑘
, then for any 𝑝 ∈ {1, 2, . . . , 𝑛},

if 𝛾
0𝑝
(𝜃
0
) > 0, then the subhyperrectangle 𝑌 =

(𝑌
𝑗
)
𝑛×1

does not contain the global optimum point
of the problem (NQCQP); if 𝛾

0𝑝
(𝜃
0
) < 0, then the

subhyperrectangle 𝑌 = (𝑌
𝑗
)
𝑛×1

does not contain the
global optimum point of the problem (NQCQP).

(iii) If there exists some 𝑖 ∈ {1, . . . , 𝑚} such that PLRB
𝑖
(𝜃
𝑖
) >

𝑏
𝑖
, then the subhyperrectangle 𝑋 does not contain the

global optimum point of the problem (NQCQP).
(iv) If PLRB

𝑖
(𝜃
𝑖
) ≤ 𝑏
𝑖
for all 𝑖 = 1, . . . , 𝑚, then for each 𝑝 ∈

{1, 2, . . . , 𝑛}, if 𝛾
𝑖𝑝
(𝜃
𝑖
) > 0, then the subhyperrectangle

𝑌̃ = (𝑌̃
𝑗
)
𝑛×1

does not contain the global optimum point
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of the problem (NQCQP); if 𝛾
𝑖𝑝
(𝜃
𝑖
) < 0, then the

subhyperrectangle 𝑌̂ = (𝑌̂
𝑗
)
𝑛×1

does not contain the
global optimum point of the problem (NQCQP).

Proof. (i) If PLRB
0
(𝜃
0
) > UB

𝑘
, then for all 𝑥 ∈ 𝑋, by the

Theorem 2 we have

𝐺
0 (𝑥) ≥ 𝐺

𝐿

0
(𝑥,𝑋, 𝜃

0
)

≥

𝑛

∑
𝑗=1

min {𝛾
0𝑗
(𝜃
0
) 𝑙
𝑗
, 𝛾
0𝑗
(𝜃
0
) 𝑢
𝑗
} + 𝜂
0
(𝜃
0
)

= PLRB
0
(𝜃
0
) > UB

𝑘
.

(23)

Hence, the 𝑋 does not contain the global optimum point of
the problem (NQCQP).

(ii) If PLRB
0
(𝜃
0
) ≤ UB

𝑘
, then for any 𝑝 ∈ {1, . . . , 𝑛}, if

𝛾
0𝑝
(𝜃
0
) > 0, for all 𝑥 ∈ 𝑌, we have 𝑥

𝑝
> 𝛽
𝑝
(𝜃
0
)/𝛾
0𝑝
(𝜃
0
); that

is, 𝛾
0𝑝
(𝜃
0
)𝑥
𝑝
> UB
𝑘
−PLRB

0
(𝜃
0
) +min{𝛾

0𝑝
(𝜃
0
)𝑙
𝑝
, 𝛾
0𝑝
(𝜃
0
)𝑢
𝑝
}.

Thus, we have

𝐺
𝐿

0
(𝑥, 𝑌, 𝜃

0
)

=

𝑛

∑
𝑗=1,𝑗 ̸= 𝑝

𝛾
0𝑗
(𝜃
0
) 𝑥
𝑗
+ 𝛾
0𝑝
(𝜃
0
) 𝑥
𝑝
+ 𝜂
0
(𝜃
0
)

≥

𝑛

∑
𝑗=1,𝑗 ̸= 𝑝

min {𝛾
0𝑗
(𝜃
0
) 𝑙
𝑗
, 𝛾
0𝑗
(𝜃
0
) 𝑢
𝑗
} + 𝜂
0
(𝜃
0
) + 𝛾
0𝑝
(𝜃
0
) 𝑥
𝑝

>

𝑛

∑
𝑗=1,𝑗 ̸= 𝑝

min {𝛾
0𝑗
(𝜃
0
) 𝑙
𝑗
, 𝛾
0𝑗
(𝜃
0
) 𝑢
𝑗
} + 𝜂
0
(𝜃
0
)

+ UB
𝑘
− PLRB

0
(𝜃
0
) +min {𝛾

0𝑝
(𝜃
0
) 𝑙
𝑝
, 𝛾
0𝑝
(𝜃
0
) 𝑢
𝑝
}

= PLRB
0
(𝜃
0
) + UB

𝑘
− PLRB

0
(𝜃
0
)

= UB
𝑘
.

(24)

Therefore, by the above inequality andTheorem 2, we get that

𝐺
0
(𝑥) ≥ 𝐺

𝐿

0
(𝑥, 𝑌, 𝜃

0
) > UB

𝑘
. (25)

Hence, the rectangle 𝑌 does not contain the global optimum
point of the problem (NQCQP).

Similarly, if 𝛾
0𝑝
(𝜃
0
) < 0, we can prove that the subhyper-

rectangle 𝑌 does not contain the global optimum point of the
problem (NQCQP).

Using similar proving method as the above, we can draw
the conclusions (iii) and (iv).

By Theorem 3, by making use of the above cutting down
approach to reject a part of the investigated subhyperrectan-
gle which does not contain the global minimum point of the
problem (NQCQP), thus we can enhance the computational
speed of the proposed branch and bound algorithm.

4. Algorithm and Its Convergence

In this section, based on the former parametric linear pro-
grams relaxation problem, we present a novel optimization
method for globally solving the problem (NQCQP).There are
three fundamental compositions in the presented method:
a branching approach, an updating upper bounds approach,
and an updating lower bounds approach.

Thebranching approach iteratively subdivides the investi-
gated hyperrectangle𝑋𝑘 into two subhyperrectangles, which
produces a more refined partition for computing the global
optimum point of the problem (NQCQP). In this paper we
select a simple partitioning approach, which is enough to
guarantee the global convergence of the presented branch and
bound algorithm. For any selected subhyperrectangle 𝑋𝑘 =
[𝑙
𝑘
, 𝑢
𝑘
] ⊆ 𝑋

0, the selected partitioning approach is described
as follows.

(a) Let 𝜂 = arg max{𝑢𝑘
𝑖
− 𝑙
𝑘

𝑖
: 𝑖 = 1, . . . , 𝑛}.

(b) Let

𝑋
𝑘,1
=
{

{

{

𝑥 ∈ 𝑅
𝑛
| 𝑙
𝑘

𝑖
≤ 𝑥
𝑖
≤ 𝑢
𝑘

𝑖
, 𝑖 ̸= 𝜂, 𝑙

𝑘

𝜂
≤ 𝑥
𝜂
≤
𝑙
𝑘

𝜂
+ 𝑢
𝑘

𝜂

2

}

}

}

,

𝑋
𝑘,2
=
{

{

{

𝑥 ∈ 𝑅
𝑛
| 𝑙
𝑘

𝑖
≤ 𝑥
𝑖
≤ 𝑢
𝑘

𝑖
, 𝑖 ̸= 𝜂,

𝑙
𝑘

𝜂
+ 𝑢
𝑘

𝜂

2
≤ 𝑥
𝜂
≤ 𝑢
𝑘

𝜂

}

}

}

.

(26)

By making use of this branching approach, the selected
hyperrectangle𝑋𝑘 is subdivided into two subhyperrectangles
𝑋
𝑘,1 and𝑋𝑘,2.
The updating lower bounds approach needs to compute a

sequence of parametric linear programs relaxation problems
by using the simplex approach. The updating upper bounds
approaches need to calculate the objective function value
of the feasible point of the problem (NQCQP), where the
feasible point can be found by solving the parametric linear
programs relaxation problem and probing the feasibility
of the midpoint of the investigated subhyperrectangle 𝑋𝑘,
respectively.

4.1. Novel Optimization Algorithm. Let LB(𝑋𝑘) and 𝑥
𝑘
=

𝑥(𝑋
𝑘
) be the optimal value and the optimal solution of the

problem (PLPRP) over subhyperrectangle 𝑋𝑘, respectively.
Combining the former parametric linear programs relaxation
problem with the cutting down approach in a branch and
bound framework, a novel global optimization method for
the problem (NQCQP) is described as follows.

Algorithm Steps

Step 1 (initializing). Initialize the iteration counter 𝑘 := 0, the
collection of all active node Ω

0
= {𝑋
0
}, the feasible solution

set 𝐹 = 0, the convergence error 𝜖 > 0, and the upper bound
UB
0
= +∞.
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Solve the problem (PLPRP) over the hyperrectangle𝑋0 to
compute LB

0
:= LB(𝑋0) and 𝑥0 := 𝑥(𝑋0). For all 𝑖 = 1, . . . , 𝑚,

if 𝐺
𝑖
(𝑥
0
) ≤ 𝑏
𝑖
, then let 𝐹 = {𝑥0} and UB

0
= 𝐺
0
(𝑥
0
).

If UB
0
−LB
0
≤ 𝜖, then algorithm terminates with 𝑥0 as the

global optimum point of the problem (NQCQP). Otherwise,
go to Step 2.

Step 2 (partitioning hyperrectangle). Utilizing the proposed
branching approach, select a branching variable 𝑥

𝜂
to parti-

tion𝑋𝑘 into two new subhyperrectangles, and still let the new
collection of partitioned subhyperrectangles by𝑋𝑘.

Step 3 (cutting down region). For each subhyperrectangle
𝑋 ∈ 𝑋

𝑘, for any fixed parameter vector 𝜃 = (𝜃
0
, 𝜃
1
, . . . , 𝜃

𝑚
),

compute PLRB
𝑖
(𝜃
𝑖
) (𝑖 = 0, 1, . . . , 𝑚), 𝛽

𝑝
(𝜃
0
) (𝑝 = 1, . . . , 𝑛),

and 𝜆
𝑖𝑝
(𝜃
𝑖
) (𝑖 = 1, . . . , 𝑚, 𝑝 = 1, . . . , 𝑛).

For each 𝑖 ∈ {1, . . . , 𝑚}, if PLRB
𝑖
(𝜃
𝑖
) > 𝑏
𝑖
, let𝑋 = 0; else

if 𝛾
𝑖𝑝
(𝜃
𝑖
) > 0 and 𝜆

𝑖𝑝
(𝜃
𝑖
)/𝛾
𝑖𝑝
(𝜃
𝑖
) < 𝑢

𝑝
for some 𝑝 ∈

{1, . . . , 𝑛}, then let 𝑢
𝑝
= 𝜆
𝑖𝑝
(𝜃
𝑖
)/𝛾
𝑖𝑝
(𝜃
𝑖
).

else if 𝛾
𝑖𝑝
(𝜃
𝑖
) < 0 and 𝜆

𝑖𝑝
(𝜃
𝑖
)/𝛾
𝑖𝑝
(𝜃
𝑖
) > 𝑙
𝑝
for some

𝑝 ∈ {1, . . . , 𝑛}, then let 𝑙
𝑝
= 𝜆
𝑖𝑝
(𝜃
𝑖
)/𝛾
𝑖𝑝
(𝜃
𝑖
).

If PLRB
0
(𝜃
0
) > UB

𝑘
, then let𝑋 = 0; else

if 𝛾
0𝑝
(𝜃
0
) > 0 and 𝛽

𝑝
(𝜃
0
)/𝛾
0𝑝
(𝜃
0
) < 𝑢
𝑝
for some 𝑝 ∈

{1, . . . , 𝑛}, then let 𝑢
𝑝
= 𝛽
𝑝
(𝜃
0
)/𝛾
0𝑝
(𝜃
0
),

else if 𝛾
0𝑝
(𝜃
0
) < 0 and 𝛽

𝑝
(𝜃
0
)/𝛾
0𝑝
(𝜃
0
) > 𝑙
𝑝
for some

𝑝 ∈ {1, . . . , 𝑛}, then let 𝑙
𝑝
= 𝛽
𝑝
(𝜃
0
)/𝛾
0𝑝
(𝜃
0
).

At last, still let the remaining subhyperrectangle be𝑋, and
let the remaining partitioned set be𝑋𝑘.

Step 4 (feasibility fathoming). For each new subhyperrectan-
gle 𝑋 ∈ 𝑋

𝑘, compute the lower bounds LB(𝑋) and 𝑥(𝑋) by
solving the problem (PLPRP) over𝑋.

If LB(𝑋) > UB
𝑘
, set 𝑋𝑘 := 𝑋

𝑘

\ 𝑋; otherwise, if the
midpoint 𝑥mid of 𝑋 satisfies 𝐺

𝑖
(𝑥

mid
) ≤ 𝑏
𝑖
for all 𝑖 = 1, . . . , 𝑚,

then let 𝐹 := 𝐹 ∪ {𝑥
mid
}, and if 𝑥(𝑋) satisfies 𝐺

𝑖
(𝑥(𝑋)) ≤ 𝑏

𝑖

for all 𝑖 = 1, . . . , 𝑚, then let 𝐹 := 𝐹 ∪ {𝑥(𝑋)},

Step 5 (renewing bound). Renew the upper bound UB
𝑘
:=

min
𝑥∈𝐹
𝐺
0
(𝑥). If 𝐹 ̸= 0, the best known feasible solution is

denoted by 𝑥𝑘 := arg min
𝑥∈𝐹
𝐺
0
(𝑥). LetΘ

𝑘
:= (Θ
𝑘
\𝑋
𝑘
)∪𝑋
𝑘,

and renew the lower bound LB
𝑘
:= inf

𝑋∈Θ𝑘
LB(𝑋).

Step 6 (convergence fathoming). If UB
𝑘
− LB
𝑘
≤ 𝜖, then

algorithm stops, andwe get thatUB
𝑘
is the global 𝜖-minimum

value of the problem (NQCQP), and 𝑥
𝑘 is a global 𝜖-

optimum point. Otherwise, 𝑘 := 𝑘 + 1, and select a new
subhyperrectangle 𝑋𝑘 such that 𝑋𝑘 = arg min

𝑋∈Θ𝑘
LB(𝑋),

and return to Step 2.

4.2. Global Convergence of the Algorithm. The global conver-
gence of the presented algorithm is described as follows.

Theorem 4. If the proposed algorithm stops finitely at the 𝑘-
th iteration, then when the algorithm stops, 𝑥𝑘 is the global
optimum point of the problem (NQCQP); else it will bring
about an infinite sequence {𝑥𝑘} of iteration, such that any
accumulation point 𝑥∗ of the sequence {𝑥𝑘} will be the global
optimum point of the problem (NQCQP), and the sequence
{UB
𝑘
} is nonincreasing and the sequence {LB

𝑘
} is nondecreas-

ing; moreover they meet lim
𝑘→∞

UB
𝑘
= lim

𝑘→∞
LB
𝑘
=

V∗, where V∗ is the global minimum value of the problem
(NQCQP).

Proof. (i) If the proposed algorithm stops finitely at the 𝑘-th
iteration, then when it stops, we get that UB

𝑘
= V∗ = LB

𝑘
.

Thus, by the characteristic of the proposed branch and bound
algorithm,we get the global optimumpoint𝑥𝑘 of the problem
(NQCQP). If the proposed algorithm is infinite, then it must
bring about an infinite subhyperrectangle sequence {𝑋𝑘},
since the used branching approach is exhaustive, we get that
the subhyperrectangle sequence {𝑋𝑘} converges to a point. By
the branch and bound characteristic of the algorithm we get
that the sequence {UB

𝑘
} is nonincreasing, and the sequence

{LB
𝑘
} is nondecreasing; therefore the sequence {UB

𝑘
− LB
𝑘
}

is a positive and nonincreasing sequence. From Theorem 2,
we know that the sequence {UB

𝑘
− LB
𝑘
}must be convergent

to zero. Also LB
𝑘
≤ V∗ ≤ UB

𝑘
for each 𝑘 indicate that

lim
𝑘→∞

UB
𝑘
= lim

𝑘→∞
LB
𝑘
= V∗. Since 𝑥𝑘 is always a

feasible solution of the problem (NQCQP) and the upper
bound UB

𝑘
= 𝐺
0
(𝑥
𝑘
), any cluster point 𝑥∗ of the sequence

{𝑥
𝑘
}must be feasible to the problem (NQCQP)with objective

function value V∗ = 𝐺
0
(𝑥
∗
). Therefore, the conclusion is

followed.

5. Numerical Experiments

To validate the performance and computational efficiency
of the presented optimization method, several common test
examples in literatures are put into effect on microcomputer,
the algorithmprogram is coded inC++, the simplex approach
is applied to solve a series of parametric linear programs
relaxation problems, and the termination tolerance error is
set to 𝜖 = 10

−6. These test examples are described and
their numerical results are listed as follows. In the following
Tables 1, 2, and 3, number of algorithm iteration and com-
putational time in seconds are denoted by “Iter” and “Time,”
respectively.

Example 1 (see [21, 32]). Consider

min −𝑥
2

1
+ 𝑥
1
+ 𝑥
2

2
− 2𝑥
2
+ 𝑥
1
𝑥
2

s.t. 𝑥
1
+ 𝑥
2
≤ 6,

− 2𝑥
2

1
+ 𝑥
2

2
+ 2𝑥
1
+ 𝑥
2
≤ −4,

1 ≤ 𝑥
1
, 𝑥
2
≤ 6.

(27)
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Table 1: Numerical results for Examples 1–3.

Example Refs. (𝜃
0
, . . . , 𝜃

𝑚
) Optimal solution Optimal value Iter Time (s)

1

our1 (0, 0, 0) (5.0, 1.0) −16.000000000 3 0.00190359
our2 (0, 0, 1) (5.0, 1.0) −16.000000000 2 0.000975264
our3 (0, 1, 1) (5.0, 1.0) −16.000000000 2 0.000958502
our4 (1, 1, 1) (5.0, 1.0) −16.000000000 3 0.00115294
our5 (1, 0, 0) (5.0, 1.0) −16.000000000 4 0.0013566
our6 (1, 0, 1) (5.0, 1.0) −16.000000000 3 0.00114037
our7 (1, 1, 0) (5.0, 1.0) −16.000000000 4 0.00142281
our8 (0, 1, 0) (5.0, 1.0) −16.000000000 3 0.00108701
[32] (5.0, 1.0) −16.0 20 0.175
[21] (5.0, 1.0) −16.0 5 0.00184588

2

our1 (0, 0) (2.0, 1.666666667) 6.777778018 32 0.00662822
our2 (0, 1) (2.0, 1.666666667) 6.777778233 32 0.00665057
our3 (1, 1) (2.0, 1.666666667) 6.777778517 33 0.00698972
our4 (1, 0) (2.0, 1.666666667) 6.777778743 32 0.00685227
[19] (2.0, 1.666666667) 6.777782016 40 0.032
[22] (2.00003, 1.66665) 6.7780 44 0.18

3

our1 (0, 0, 0) (0.5, 0.5) 0.500000000 25 0.0065648
our2 (0, 0, 1) (0.5, 0.5) 0.500000000 25 0.00733278
our3 (0, 1, 1) (0.5, 0.5) 0.500000600 26 0.00686791
our4 (1, 1, 1) (0.5, 0.5) 0.500000600 26 0.00691568
our5 (1, 0, 0) (0.5, 0.5) 0.500000000 25 0.00735261
our6 (1, 0, 1) (0.5, 0.5) 0.500000000 25 0.00736742
our7 (1, 1, 0) (0.5, 0.5) 0.500000600 26 0.00769232
our8 (0, 1, 0) (0.5, 0.5) 0.500000600 26 0.00921374
[19] (0.5, 0.5) 0.500004627 34 0.056
[21] (0.5, 0.5) 0.500000442 37 0.0192625
[22] (0.5, 0.5) 0.5 91 0.85

Example 2 (see [19, 21, 22]). Consider

min 𝑥
2

1
+ 𝑥
2

2

s.t. − 0.3𝑥
1
𝑥
2
≤ −1,

2 ≤ 𝑥
1
≤ 5, 1 ≤ 𝑥

2
≤ 3.

(28)

Example 3 (see [19, 21, 22]). Consider

min 𝑥
1

s.t. 4𝑥
2
− 4𝑥
2

1
≤ 1,

𝑥
1
+ 𝑥
2
≥ 1,

0.01 ≤ 𝑥
1
, 𝑥
2
≤ 15.

(29)

Example 4 (see [21, 23]). Consider

min 𝑥
1
𝑥
2
− 2𝑥
1
+ 𝑥
2
+ 1

s.t. 8𝑥
2

2
− 6𝑥
1
− 16𝑥

2
≤ −11,

− 𝑥
2

2
+ 3𝑥
1
+ 2𝑥
2
≤ 7,

1 ≤ 𝑥
1
≤ 2.5, 1 ≤ 𝑥

2
≤ 2.225.

(30)

Example 5 (see [17, 21]). Consider

min 6𝑥
2

1
+ 4𝑥
2

2
+ 5𝑥
1
𝑥
2

s.t. − 6𝑥
1
𝑥
2
≤ −48, 0 ≤ 𝑥

1
, 𝑥
2
≤ 10.

(31)

Example 6 (see [21, 25]). Consider

min −4𝑥
2
+ (𝑥
1
− 1)
2
+ 𝑥
2

2
− 10𝑥

2

3

min 6𝑥
2

1
+ 4𝑥
2

2
+ 5𝑥
1
𝑥
2

(𝑥
1
− 2)
2
+ 𝑥
2

2
+ 𝑥
2

3
≤ 2,

2 − √2 ≤ 𝑥
1
≤ √2, 0 ≤ 𝑥

2
, 𝑥
3
≤ √2.

(32)

Example 7 (see [33, 34]). Consider

min 𝑥
1
+ 𝑥
2
+ 𝑥
3

s.t. 833.33252𝑥
−1
𝑥
4
𝑥
−6
+ 100.0𝑥

−1

6

− 83333.333𝑥
−1

1
𝑥
−1

6
≤ 1,

1250.0𝑥
−1

2
𝑥
5
𝑥
−1

7
+ 1.0𝑥

4
𝑥
−1

7

− 1250.0𝑥
−1

2
𝑥
4
𝑥
−1

7
≤ 1,
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Table 2: Numerical results for Examples 4–6.

Example Refs. (𝜃
0
, . . . , 𝜃

𝑚
) Optimal solution Optimal value Iter Time (s)

4

our1 (0, 0, 0) (2.0, 1.0) −1.000000 0 0.00071504
our2 (0, 0, 1) (2.0, 1.0) −1.000000000 1 0.00165866
our3 (0, 1, 1) (2.0, 1.0) −1.000000000 2 0.00169589
our4 (1, 1, 1) (2.0, 1.0) −1.000000000 2 0.00156529
our5 (1, 0, 0) (2.0, 1.0) −1.000000000 2 0.00153087
our6 (1, 0, 1) (2.0, 1.0) −1.000000000 2 0.00159881
our7 (1, 1, 0) (2.0, 1.0) −1.000000000 2 0.00158519
our8 (0, 1, 0) (2.0, 1.0) −1.000000 0 0.00066607
[21] (2.0, 1.0) −0.999999410 21 0.00849446
[23] (2.0, 1.0) −1.0 24 0.0116923

5

our1 (0, 0) (2.555409888, 3.130613160) 118.383672050 49 0.0271463
our2 (0, 1) (2.555676683, 3.130286407) 118.383672115 51 0.0287108
our3 (1, 1) (2.555800904, 3.130134268) 118.383672231 61 0.0350215
our4 (1, 0) (2.555775920, 3.130164866) 118.383671937 55 0.030462
[17] (2.555779370, 3.130164640) 118.383756475 210 0.78
[21] (2.555745855, 3.130201688) 118.383671904 59 0.0385038

6

our1 (0, 0, 0) (1.0, 0.181818247, 0.983332154) −11.363635387 141 0.110562
our2 (0, 0, 1) (1.0, 0.181818217, 0.983332160) −11.363636364 240 0.198587
our3 (0, 1, 1) (1.0, 0.181818196, 0.983332163) −11.363635785 260 0.213692
our4 (1, 1, 1) (1.0, 0.181818133, 0.983332175) −11.363635682 229 0.18844
our5 (1, 0, 0) (1.0, 0.181783067, 0.983338664) −11.363635889 80 0.0669022
our6 (1, 0, 1) (1.0, 0.181818133, 0.983332175) −11.363635715 213 0.176459
our7 (1, 1, 0) (1.0, 0.181818301, 0.983332144) −11.363635516 149 0.131391
our8 (0, 1, 0) (1.0, 0.181818133, 0.983332175) −11.363636364 133 0.105004
[21] (1.0, 0.181818470, 0.983332113) −11.363636364 420 0.284541
[25] (0.998712, 0.196213, 0.979216) −10.35 1648 0.3438

Table 3: Numerical comparisons with Refs. [16, 21] for Example 9.

Refs. Number of variable 𝑛 = 5 𝑛 = 10 𝑛 = 20 𝑛 = 30

Ours Computational time (s) 0.0124692 0.215709 3.69194 27.4522
Iteration Number 12 31 86 204

Ref. [16] Computational time (s) 10.11 21.86 47.00 106.33
Iteration Number 141 283 651 965

Ref. [21] Computational time (s) 0.0181791 0.302157 6.01095 44.4965
Iteration Number 12 32 88 206

1250000.0𝑥
−1

3
𝑥
−1

8
+ 1.0𝑥

5
𝑥
−1

8

− 2500.0𝑥
−1

3
𝑥
5
𝑥
−1

8
≤ 1,

0.0025𝑥
4
+ 0.0025𝑥

6
≤ 1,

− 0.0025𝑥
4
+ 0.0025𝑥

5

+ 0.0025𝑥
7
≤ 1,

0.001𝑥
8
− 0.001𝑥

5
≤ 1,

(100, 1000, 1000, 10, 10, 10, 10, 10)

≤ (𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
, 𝑥
5
, 𝑥
6
, 𝑥
7
, 𝑥
8
) ,

(𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
, 𝑥
5
, 𝑥
6
, 𝑥
7
, 𝑥
8
)

≤ (10000, 10000, 10000, 1000,

1000, 1000, 1000, 1000) .

(33)

This problem is from the heat exchanger design problem;
solve this problem by the proposed method, with the given
convergence error 𝜖 = 10

−6 and parameter vector 𝜃
𝑖
= 0,

𝑖 = 0, 1, . . . , 6, and a global 𝜖-optimal solution

(𝑥
1
, . . . , 𝑥

8
)
𝑇
= (579.307, 1359.971, 5109.971, 182.018,

295.601, 217.982, 286.417, 395.6)

(34)
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is found after 18377 iterations with objective function value
7049.248020529, and computational time is 11.475 s.

Using the proposed approach in Floudas et al. [33],
a global optimal solution, under the given convergence
tolerance 𝜖 = 10−4,

(𝑥
1
, . . . , 𝑥

8
)
𝑇
= (579.31, 1359.97, 5109.97, 182.01,

295.60, 217.98, 286.42, 395.6)

(35)

is found with global optimal value 7049.25000.
Using the proposed approach in Lin and Tsai [34], under

the convergence tolerance 𝜖 = 10−6, a global optimal solution

(𝑥
1
, . . . , 𝑥

8
)
𝑇
= (578.973, 1359.573, 5110.701, 181.99,

295.572, 218.01, 286.418, 395.572)

(36)

is found with global optimization value 7049.24692.

Example 8 (see [24]). Consider

min 5.3578𝑥
2

3
+ 0.8357𝑥

1
𝑥
5
+ 37.2392𝑥

1

s.t. 0.00002584𝑥
3
𝑥
5
− 0.00006663𝑥

2
𝑥
5

− 0.0000734𝑥
1
𝑥
4
≤ 1,

0.000853007𝑥
2
𝑥
5
+ 0.00009395𝑥

1
𝑥
4

− 0.00033085𝑥
3
𝑥
5
≤ 1,

1330.3294𝑥
−1

2
𝑥
−1

5
− 0.42𝑥

1
𝑥
−1

5

− 0.30586𝑥
−1

2
𝑥
2

3
𝑥
−1

5
≤ 1,

0.00024186𝑥
2
𝑥
5
+ 0.00010159𝑥

1
𝑥
2

+ 0.00007379𝑥
2

3
≤ 1,

2275.1327𝑥
−1

3
𝑥
−1

5
− 0.2668𝑥

1
𝑥
−1

5

− 0.40584𝑥
4
𝑥
−1

5
≤ 1,

0.00029955𝑥
3
𝑥
5
+ 0.00007992𝑥

1
𝑥
3

+ 0.00012157𝑥
3
𝑥
4
≤ 1,

78.0 ≤ 𝑥
1
≤ 102.0, 33.0 ≤ 𝑥

2
≤ 45.0,

27.0 ≤ 𝑥
3
≤ 45.0,

27.0 ≤ 𝑥
4
≤ 45.0, 27.0 ≤ 𝑥

5
≤ 45.0.

(37)

This test problem has a relative high degree of difficulty,
and it contains both negative and positive terms. By using the
proposed algorithm in this paper, initializing the parameter
𝜃
𝑖
= 1, 𝑖 = 0, 1, . . . , 6, with the given convergence error 𝜖 =

10
−6, the global 𝜖-optimal solution

(𝑥
1
, 𝑥
2
, . . . , 𝑥

5
)
𝑇
= (78.0, 33.739811424, 30.594417922,

44.991210938, 35.288085938)

(38)

can be obtained after the 51 iterations.

But using the proposed algorithm in [24], with the given
convergence error 𝜖 = 10−6, the global 𝜖-optimal solution

(𝑥
1
, 𝑥
2
, . . . , 𝑥

5
)
𝑇
= (78.0, 32.99999946, 29.995510365,

44.999998630, 36.77517397)

(39)

can be obtained after the 523 iterations.

Example 9 (see [16, 21]). Consider

min −

𝑛

∑
𝑖=1

𝑥
2

𝑖

s.t.
𝑗

∑
𝑖=1

𝑥
𝑖
≤ 𝑗, 𝑗 ∈ {1, 2, . . . , 𝑛} ,

𝑥
𝑖
≥ 0, 𝑖 ∈ {1, 2, . . . , 𝑛} .

(40)

Using the proposed algorithm in this paper, initializing
the parameter 𝜃

𝑖
= 0, 𝑖 = 0, 1, . . . , 𝑛, the numerical results are

compared with those in [16, 21] and are illustrated in Table 3.
From the numerical results for Examples 1–9, our algo-

rithm is competitive.

6. Concluding Remarks

In this paper, a novel optimization method based on the
parametric linear programs relaxation problem is proposed
for globally solving the NQCQP problem. The parametric
linear programs relaxation problem is constructed by under-
estimating each quadratic function with a parametric linear
function. Bymaking use of the currently known upper bound
and the parametric linear programs relaxation of the problem
(NQCQP), a cutting down approach is constructed and
used to enhance the computational speed of the branch and
bound algorithm. The algorithm is convergent to the global
optimum point by subdividing the initial hyperrectangle and
solving sequences of parametric linear programs relaxation
problems. Numerical experimental results are reported to
demonstrate that the presented method can be employed to
effectively solve the problem (NQCQP).
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