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The problem of state feedback optimal pole assignment is to design a feedback gain such that the closed-loop system has desired
eigenvalues and such that certain quadratic performance index is minimized. Optimal pole assignment controller can guarantee
both good dynamic response and well robustness properties of the closed-loop system. With the help of a class of linear matrix
equations, necessary and sufficient conditions for the existence of a solution to the optimal pole assignment problem are proposed
in this paper. By properly choosing the free parameters in the parametric solutions to this class of linear matrix equations, complete
solutions to the optimal pole assignment problem can be obtained. A numerical example is used to illustrate the effectiveness of
the proposed approach.

1. Introduction and Problem Formulation

The linear quadratic optimal control problem for linear
systems is to design a linear state feedback controller such
that a quadratic performance index function is minimized.
It is well known in the literature (see, e.g., [1]) that the linear
quadratic optimal controller possesses very good robustness
properties; for example, it has at least a 6 dB gain margin and
a 60
∘ phase margin for single input linear system [2]. On

the other hand, as a nonoptimal design approach, the pole
assignment approach can arbitrarily assign the poles of the
closed-loop system to any place so that a very satisfactory
transient performance of the closed-loop system can be
achieved. However, when the weighting matrices in the
performance index function are fixed in the linear quadratic
optimal control problem, the controller is unique and, thus,
the pole locations of the resulting optimal closed-loop system
are uniquely determined.As a result, the relationship between
the weighting matrices and the locations of the poles of the
resulting optimal closed-loop system is not clear. Hence, to
take advantages of both the linear quadratic optimal control
approach and the pole assignment approach, the so-called
problem of designing a feedback gain which shifts the poles

of a given linear system to some prescribed positions and
simultaneously minimizes a quadratic cost function has been
widely studied in the past several decades, especially in the
case of multi-input system (see [3–8] and the references
therein).

To make the problem clear, let us consider the following
linear system:

𝑥̇ = 𝐴𝑥 + 𝐵𝑢, (1)

where 𝐴 ∈ R𝑛×𝑛 and 𝐵 ∈ R𝑛×𝑚 are the system matrix
and inputmatrix, respectively. Let the quadratic performance
index function be given by

𝐽 =
1

2
∫

∞

0

[𝑥
𝑇

(𝑡) 𝑄𝑥 (𝑡) + 𝑢
𝑇

(𝑡) 𝑅𝑢 (𝑡)] 𝑑𝑡, (2)

where 𝑅 is a constant symmetric positive definite matrix and
𝑄 is a constant symmetric positive (or semipositive) definite
matrix.Thewell-known linear quadratic optimal control is to
design 𝑢 such that 𝐽 in (2) is minimized. The solution to this
problem can be summarized as follows.

Theorem 1. Assume that [𝐴, 𝐵] is controllable, 𝑅 > 0, 𝑄 ≥ 0

are given, and [𝐴 𝑄] is observable. Then the solution to the
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infinite-time linear quadratic optimal control problem is given
by

𝑢
∗

= 𝐾𝑥 = −𝑅
−1

𝐵
T
𝑃𝑥, (3)

where 𝑃 ∈ R𝑛×𝑛 is unique positive definite solution to the
following algebraic Riccati equation:

𝐴
T
𝑃 + 𝑃𝐴 − 𝑃𝐵𝑅

−1

𝐵
T
𝑃 + 𝑄 = 0. (4)

Moreover, the resulting optimal closed-loop system

𝑥̇ = (𝐴 − 𝐵𝑅
−1

𝐵
T
𝑃) 𝑥, 𝑥 (0) = 𝑥

0
, (5)

is such that the optimal performance value is given by

𝐽 =
1

2
𝑥
T
0

𝑃𝑥
0
. (6)

By the following theorem, we know that the closed-loop
system (5) is asymptotically stable.

Theorem 2 (see [1]). Assume that the conditions of Theorem 1
are satisfied. Then, the closed-loop system (5) consisting of
the linear system (1) and the linear state feedback (3) is
asymptotically stable; namely, all the eigenvalues of the closed-
loop system matrix 𝐴 − 𝐵𝑅

−1

𝐵
𝑇

𝑃 have negative real parts.

The feedback gain matrix 𝑅−1𝐵𝑇𝑃 of the quadratic opti-
mal controller can ensure that the closed-loop system has
very good robustness properties. Moreover, for single-input
linear systems, it has been proven that the closed-loop system
has a phase margin of 60 degrees and a magnitude margin of
[1/2,∞) at least. For general multiple-input systems, we can
easily prove the following result.

Theorem 3. The quadratic optimal controller (3) has at least
the magnitude margin [1/2,∞); namely, by multiplying an
arbitrary constant𝜆 (𝜆 ≥ 1/2) by the quadratic optimal control
state feedback gain 𝐾 = −𝑅

−1

𝐵
𝑇

𝑃, the resulting closed-loop
system remains asymptotically stable.

Proof. Weonly need to prove that, for any𝜆 ≥ 1/2, the closed-
loop system

𝑥̇ = (𝐴 + 𝜆𝐵𝐾) 𝑥 = (𝐴 − 𝜆𝐵𝑅
−1

𝐵
𝑇

𝑃) 𝑥 (7)

remains asymptotically stable. Choose a Lyapunov function
as𝑉 = 𝑥

𝑇

𝑃𝑥. The time-derivative of𝑉 along the trajectory of
closed-loop system (7) can be evaluated as

𝑉̇ = 𝑥̇
𝑇

𝑃𝑥 + 𝑥
𝑇

𝑃𝑥̇

= 𝑥
𝑇

(𝐴 − 𝜆𝐵𝑅
−1

𝐵
𝑇

𝑃)
𝑇

𝑃𝑥 + 𝑥
𝑇

𝑃 (𝐴 − 𝜆𝐵𝑅
−1

𝐵
𝑇

𝑃) 𝑥

= 𝑥
𝑇

(𝐴
𝑇

𝑃 + 𝑃𝐴 − 2𝜆𝑃𝐵𝑅
−1

𝐵
𝑇

𝑃) 𝑥

= 𝑥
𝑇

(−𝑄 + 𝑃𝐵𝑅
−1

𝐵
𝑇

𝑃 − 2𝜆𝑃𝐵𝑅
−1

𝐵
𝑇

𝑃) 𝑥

= 𝑥
𝑇

(−𝑄 + (1 − 2𝜆) 𝑃𝐵𝑅
−1

𝐵
𝑇

𝑃) 𝑥,

(8)

where 𝑄 is positive definite, and, thus, −𝑄 < 0. Notice that
𝑅 is positive definite; then, 𝑃𝐵𝑅−1𝐵𝑇𝑃 ≥ 0. Moreover, as
𝜆 ≥ 1/2, then (1 − 2𝜆)𝑃𝐵𝑅

−1

𝐵
𝑇

𝑃 ≤ 0. Therefore, 𝑉̇ < 0. By
the Lyapunov stability theorem, the closed-loop system (7) is
asymptotically stable. The proof is complete.

From the above theorem, we know that the quadratic
optimal controller has a good robustness property; namely,
after multiplying a factor 𝛾 ∈ [1/2,∞) by the feedback
gain, the resulting closed-loop system remains asymptotically
stable. Because of the common existence of parameters drift
and delay effect in engineering systems (see, e.g., [9–13]),
the feedback controllers designed by theoretical method
are often subject to parameter perturbations after a period
of running time. But if the perturbation satisfies certain
conditions, the linear quadratic optimal controller can still
guarantee the stability of the closed-loop system. So the linear
quadratic optimal controller is very efficient in engineering
applications. However, it is easy to prove by some counter-
examples that controllers designed by ordinary pole place-
ment technique have such good robustness properties.On the
other hand, the transient performance of a finite dimensional
linear system is completely determined by the locations of
the eigenvalues of the closed-loop system. However, the poles
of closed-loop system resulting from the quadratic optimal
controller are still not clear; that is, if the weighting matrices
𝑄 and 𝑅 are prescribed, the feedback gain matrix is uniquely
determined, while the locations of the poles of the closed-
loop systems can not be determined by specifying 𝑄 and 𝑅

in advance.
Therefore, if we can combine the linear quadratic optimal

control approach and the pole placement technique together
to design the feedback gain, then such gain can not only place
the poles of the closed-loop systems to the desired position,
but alsominimize certain quadratic performance index func-
tions. Then, such a feedback gain matrix has the advantages
of controller designed by both the pole placement approach
and the linear quadratic optimal approach. This approach
by combining the pole placement and the linear quadratic
optimal control is named as optimal pole assignment. To
make this problem clear, we state it as follows.

Problem 4. LetΛ = {𝜆
1
, 𝜆
2
, . . . , 𝜆

𝑛
} be a prescribed set, where

Re{𝜆
𝑖
} < 0 and 𝜆 ∈ Λ implies 𝜆 ∈ Λ. Find a state feedback

controller 𝑢 = 𝐾𝑥 such that

𝜆 (𝐴 + 𝐵𝐾) = Λ (9)

and the quadratic performance index (2) is minimized for
some 𝑄 > 0 and 𝑅 > 0.

This optimal pole assignment problem has been studied
in the literature formany years (see [14–19] and the references
therein). The existing solutions are basically to use the idea
of inverse optimal control method, which should be solved
in the frequency domain [15, 18, 19]. The alternative methods
in the time domain are generally based on optimization, for
example, the approach given in [16]. However, this method
cannot guarantee the exact position of the poles of the closed-
loop systems.
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In this paper, we present a new method for the opti-
mal pole assignment problem. The main idea is to use
the relationship between the algebraic Riccati equation and
the corresponding Hamiltonian matrix. Then, by choosing
appropriate free parameters in the parametric solutions of
a class of linear matrix equations, the resulting feedback
gain matrix can simultaneously minimize some quadratic
performance index and assign the poles of the closed-loop
systems to the desired locations. The advantages of the
proposed approach are summarized as follows.

(i) When the pole locations are prescribed, all the pos-
sible weighting matrixes 𝑄 in the quadratic per-
formance index functions can be solved in theory.
Without loss of generality, we have assumed that 𝑅 is
known as in all the other methods.

(ii) For a given 𝑄, the corresponding positive definite
solution 𝑃 to the algebraic Riccati equation can be
obtained.

(iii) Different from some other numerical methods, the
proposed method can even give analytical solution 𝑃
to the algebraic Riccati equation in some cases. Just
remember that it is well known that the analytical
solutions of the algebraic Riccati equations are gen-
erally not available.

2. Algebraic Riccati Equation and
Hamiltonian Matrix

Consider the following algebraic Riccati equation:

𝐴
𝑇

𝑃 + 𝑃𝐴 − 𝑃𝐵𝑅
−1

𝐵
𝑇

𝑃 + 𝑄 = 0, (10)

where 𝐴 ∈ R𝑛×𝑛 and 𝐵 ∈ R𝑛×𝑚 are given system parameter
matrix, 𝑅 ∈ R𝑚×𝑚 is positive definite, and 𝑄 ∈ R𝑛×𝑛 is
semipositive definite. Define a 2𝑛 × 2𝑛matrix as follows:

𝐻 = [
𝐴 −𝐵𝑅

−1

𝐵
𝑇

−𝑄 −𝐴
𝑇

] , (11)

which is called the Hamiltonian matrix of the algebraic
Riccati equation (10).

Assume that 𝜆
𝑖
, 𝑖 = 1, 2, . . . , 𝑛, are eigenvalues of

the Hamiltonian matrix 𝐻 and V
𝑖
are the corresponding

eigenvectors. Denote the corresponding Jordan canonical
form of𝐻 by 𝐽 and define the 2𝑛 × 𝑛matrix𝑋 as follows:

𝑋 = [V
1
V
2
. . . V
𝑛
] . (12)

Then, according to the above definitions, we get

𝐻𝑋 = 𝑋𝐽. (13)

Let matrixes𝑋
1
and𝑋

2
with dimensions 𝑛 × 𝑛 satisfy the

following partition:

𝑋 = [
𝑋
1

𝑋
2

] ; (14)

then, for the solution to the algebraic Riccati equation (10),
we have the following conclusion whose proof can be found
in [20].

Theorem 5. Let 𝑃 be the unique positive definite solution to
the algebraic Riccati equation (10). Then, 𝑃 can be expressed as
𝑃 = 𝑋

2
𝑋
−1

1

.

For the Hamiltonian matrix (11), we recall the following
conclusion.

Lemma 6 (see [20]). Eigenvalues of Hamiltonian matrix 𝐻

are symmetric with respect to the origin; namely, if 𝜆 is the
eigenvalue of 𝐻, then −𝜆, 𝜆∗, and −𝜆

∗ are all eigenvalues of
𝐻.

3. Main Results

Our main result of this paper is stated as follows.

Theorem 7. Assume that (𝐴, 𝐵) is controllable.Then, Problem
4 is solvable if and only if there exist two matrices 𝑋

1
∈ R𝑛×𝑛

and 𝑋
2
∈ R𝑛×𝑛 such that the following inequality is satisfied:

𝐹
T
𝑋

T
2

𝑋
1
+ 𝑋

T
1

𝑋
2
𝐹 + 𝑋

T
2

𝐵𝑅
−1

𝐵
T
𝑋
2
< 0,

𝑋
T
1

𝑋
2
= 𝑋

T
2

𝑋
1
> 0,

(15)

where𝐹 is anymatrix such that𝜆(𝐹) = Λ and (𝑋
1
, 𝑋
2
) satisfies

the following linear matrix equation:

𝐴𝑋
1
− 𝑋
1
𝐹 = 𝐵𝑅

−1

𝐵
𝑇

𝑋
2
. (16)

Moreover, if (𝑋
1
, 𝑋
2
) is a feasible solution to the above

two conditions, then the weighting matrices in the quadratic
performance index (2) can be chosen as

𝑄 = −𝐴
T
𝑋
2
𝑋
−1

1

− 𝑋
2
𝐹𝑋
−1

1

,

𝑃 = 𝑋
2
𝑋
−1

1

.

(17)

Proof. Let

𝐻 = [
𝐴 −𝐵𝑅

−1

𝐵
𝑇

−𝑄 −𝐴
𝑇

] , (18)

whose set of arbitrary 𝑛 eigenvalues is denoted as Λ
1
and

the corresponding Jordan canonical form is denoted as 𝐽.
Then, there must exist an eigenvector matrix𝑋 such that the
following formula holds:

𝐻𝑋 = 𝑋𝐹. (19)

Let 𝑋 be partitioned according to (14). Then, the above
formula can be rewritten as

[
𝐴 −𝐵𝑅

−1

𝐵
𝑇

−𝑄 −𝐴
𝑇

] [
𝑋
1

𝑋
2

] = [
𝑋
1

𝑋
2

]𝐹. (20)

Based on the relationship of the Hamiltonian matrix and
the associated algebraic Riccati equation, we know that the
algebraic Riccati equation

𝐴
𝑇

𝑃 + 𝑃𝐴 − 𝑃𝐵𝑅
−1

𝐵
𝑇

𝑃 = −𝑄 (21)
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has a positive definite solution if and only if 𝑋
1
is invertible,

and, in this case, the solution can be expressed as

𝑃 = 𝑋
2
𝑋
−1

1

. (22)

Let us prove that the following formula holds:

𝜎 (𝐴 − 𝐵𝑅
−1

𝐵
𝑇

𝑃) = 𝜎 (𝐹) . (23)

By expanding (20), we obtain two equations as follows:

𝐴𝑋
1
− 𝐵𝑅
−1

𝐵
𝑇

𝑋
2
= 𝑋
1
𝐹,

−𝑄𝑋
1
− 𝐴
𝑇

𝑋
2
= 𝑋
2
𝐹.

(24)

As𝑋
1
is invertible,multiplying both sides of the first equation

of (24) by𝑋−1
1

on the right gives

𝐴𝑋
1
𝑋
−1

1

− 𝐵𝑅
−1

𝐵
𝑇

𝑋
2
𝑋
−1

1

= 𝑋
1
𝐹𝑋
−1

1

. (25)

By using (22), the above equation can be simplified as

𝐴 − 𝐵𝑅
−1

𝐵
𝑇

𝑃 = 𝑋
1
𝐹𝑋
−1

1

. (26)

Therefore, we have 𝜎(𝐴 − 𝐵𝑅
−1

𝐵
𝑇

𝑃) = 𝜎(𝐹); namely, (23) is
satisfied.

For the second equation of (24), we multiply both sides
by the matrix𝑋𝑇

1

on the right hand side to give

𝑋
𝑇

1

𝑄𝑋
1
= −𝑋
𝑇

1

𝐴
𝑇

𝑋
2
− 𝑋
𝑇

1

𝑋
2
𝐹. (27)

For the first equation of (24), we obtain

𝐴𝑋
1
− 𝑋
1
𝐹 = 𝐵𝑅

−1

𝐵
𝑇

𝑋
2
. (28)

Substituting (28) into (27) and simplifying give

𝑋
𝑇

1

𝑄𝑋
1
= (−𝑋

1
𝐹 − 𝐵𝑅

−1

𝐵
𝑇

𝑋
2
)
𝑇

𝑋
2
− 𝑋
𝑇

1

𝑋
2
𝐹. (29)

Since𝑋
1
is nonsingular, we know that𝑄 is positive definite if

and only if𝑋𝑇
1

𝑄𝑋
1
is positive definite; namely,

𝐹
𝑇

𝑋
𝑇

2

𝑋
1
+ 𝑋
𝑇

1

𝑋
2
𝐹 + 𝑋

𝑇

2

𝐵𝑅
−1

𝐵
𝑇

𝑋
2
< 0, (30)

which is just the first condition in (15). On the other hand, 𝑃
is requested to be a symmetric positive-definite, which, based
on (22), is equivalent to

𝑃 = 𝑋
2
𝑋
−1

1

= 𝑋
−𝑇

1

𝑋
𝑇

2

> 0. (31)

Multiplying the left hand side and the right hand side of the
above equation by, respectively,𝑋𝑇

1

and𝑋
1
gives

𝑋
𝑇

1

𝑋
2
= 𝑋
𝑇

2

𝑋
1
> 0, (32)

which is just the second condition in (15). Moreover, the first
equation of (24) is exactly the one in (16). Since the above
process is reversible, the proof is complete.

From the above theorem, we know that, in order to solve
the optimal pole assignment problem, the key step is to solve
the linear matrix equation in the form of (16). If we set

𝑌 = 𝑅
−1

𝐵
𝑇

𝑋
2
, 𝑋 = 𝑋

1
, (33)

then the equation in (16) can be expressed as

𝐴𝑋 − 𝑋𝐹 = 𝐵𝑌, (34)

which is generally referred to as the generalized Sylvester
matrix equation and has many advanced applications in
control theory [21], for example, constrained control (see,
e.g., [22, 23]) and stabilization of time-delay systems (see,
e.g., [24, 25]). Regarding the solutions to the linear matrix
equation (34), we recall the following results from [26].

Theorem 8 (see [26]). Let (𝐴, 𝐵) be controllable and let
(𝑁(𝑠), 𝐷(𝑠)) ∈ R𝑛×𝑚 × R𝑚×𝑚 be a pair of right coprime
polynomial matrices such that

(𝑠𝐼
𝑛
− 𝐴)
−1

𝐵 = 𝑁 (𝑠)𝐷(𝑠)
−1

. (35)

Let (𝑁(𝑠), 𝐷(𝑠)) be expanded as

𝑁(𝑠) =

𝑝

∑

𝑖=0

𝑁
𝑖
𝑠
𝑖

, 𝐷 (𝑠) =

𝑝

∑

𝑖=0

𝐷
𝑖
𝑠
𝑖

, (36)

where 𝑁
𝑖
∈ R𝑛×𝑚, 𝐷

𝑖
∈ R𝑚×𝑚, 𝑖 = 1, 2, . . . , 𝑝, are constant

matrices. Then, the complete solutions to the linear matrix
equation (34) can be expressed as

𝑋 =

𝑝

∑

𝑖=0

𝑁
𝑖
𝑍𝐹
𝑖

,

𝑌 =

𝑝

∑

𝑖=0

𝐷
𝑖
𝑍𝐹
𝑖

,

(37)

where 𝑍 ∈ R𝑚×𝑚 is an arbitrary parameter matrix.

For (33), we let 𝑋
1
= 𝑋. Furthermore, in order to obtain

𝑋
2
, we need to solve the following linear matrix equation:

𝑌 = 𝑅
−1

𝐵
𝑇

𝑋
2
, (38)

where 𝑅 ∈ R𝑚×𝑚 and 𝐵 ∈ R𝑚×𝑚. As (𝑅−1𝐵𝑇)−1 does not exist
in general, even when 𝑅 is nonsingular, the solution to (38) is
not unique. In order to obtain all solutions, we introduce the
following lemma.

Lemma 9 (see [27]). The matrix 𝐴
− is called a generalized

inverse matrix of 𝐴 if it satisfies 𝐴𝐴−𝐴 = 𝐴. If 𝐴 is a full row
rank matrix, then the general solutions to the matrix equation
𝐴𝑋 = 𝐵 can be expressed as

𝑋 = 𝐴
−

𝐵 + (𝐼 − 𝐴
−

𝐴)𝑈, (39)

where 𝑈 ∈ R𝑛×𝑛 is an arbitrary matrix.
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Since we can assume without loss of generality that 𝐵
is a full column rank, the condition of the above lemma is
satisfied. Thus, we get

𝑋
2
= (𝑅
−1

𝐵
𝑇

)
−

𝑌 + (𝐼 − (𝑅
−1

𝐵
𝑇

)
−

𝑅
−1

𝐵
𝑇

𝑈) , (40)

where 𝑈 ∈ R𝑛×𝑛 is an arbitrary matrix, and

(𝑅
−1

𝐵
𝑇

)
−

= (𝑅
−1

𝐵
𝑇

)
𝑇

((𝑅
−1

𝐵
𝑇

) (𝑅
−1

𝐵
𝑇

)
𝑇

)

−1

. (41)

4. A Numerical Example

We consider a linear time-invariant system characterized by
(1) in which 𝐴, 𝐵, and the real-valued Jordan canonical form
𝐹 associated with the desired eigenvalue set Λ = {−1, −1 ± 𝑖}

are given by

𝐴 = [

[

0 0 1

1 0 0

0 0 0

]

]

, 𝐵 = [

[

1 0

0 0

0 1

]

]

,

𝐹 = [

[

−1 0 0

0 −1 1

0 −1 −1

]

]

.

(42)

Solving the right coprime factorizations of (𝑠𝐼 − 𝐴)
−1

𝐵

satisfying (35) gives𝐷(𝑠) and𝑁(𝑠) as follows:

𝑁(𝑠) = [

[

𝑠 0

1 0

0 −1

]

]

, 𝐷 (𝑠) = [
𝑠
2

1

0 −𝑠
] . (43)

Then, all the solution to the linear matrix equation (16) can
be expressed by

𝑌 = [
𝑦
21
+ 𝑧
11

𝑦
22
+ 2𝑧
13

𝑦
23
− 2𝑧
12

𝑦
21

𝑦
22
+ 𝑦
23

−𝑦
22
+ 𝑦
23

] ,

𝑋 = [

[

𝑧
11

𝑧
12
+ 𝑧
13

−𝑧
12
+ 𝑧
13

−𝑧
11

−𝑧
12

−𝑧
13

𝑦
21

𝑦
22

𝑦
23

]

]

,

(44)

where the parametric matrix 𝑍,

𝑍 = [
𝑧
11

𝑧
12

𝑧
13

𝑦
21

𝑦
22

𝑦
23

] , (45)

can be chosen arbitrarily. Let 𝑋
1

= 𝑋. Thus, based on
Lemma 9 and (40), we can obtain

𝑋
2
= [

[

𝑦
21
+ 𝑧
11

𝑦
22
+ 2𝑧
13

𝑦
23
− 2𝑧
12

𝑢
21

𝑢
22

𝑢
23

𝑦
21

𝑦
22
+ 𝑦
23

−𝑦
22
+ 𝑦
23

]

]

, (46)

where 𝑢
𝑖𝑗
are arbitrary scalars. To ensure that 𝑃 is symmetric,

we solve the following equation:

𝑋
𝑇

1

𝑋
2
= 𝑋
𝑇

2

𝑋
1
, (47)

to get the following three equations:

𝑦
21
=
−𝑏 ± √𝑏2 − 4𝑎𝑐

2𝑎
, (𝑏

2

− 4𝑎𝑐 ≥ 0) ,

𝑦
22
= ( (𝑧

11
𝑢
22
− 𝑧
11
𝑧
13
− 𝑦
23
𝑦
21
+ 𝑧
12
𝑦
21

+𝑧
12
𝑧
11
+ 𝑧
13
𝑦
21
− 𝑧
12
𝑢
21
)

× (𝑧
11
)
−1

) ,

𝑦
23
= ( (𝑧

2

11

𝑧
13
+ 𝑧
12
𝑧
2

11

+ 𝑧
2

11

𝑢
23
+ 𝑦
21
𝑧
11
𝑢
22
+ 𝑧
12
𝑦
2

21

+𝑧
13
𝑦
2

21

− 𝑦
21
𝑧
12
𝑢
21
− 𝑧
13
𝑢
21
𝑧
11
)

× (𝑧
2

11

+ 𝑦
2

21

)
−1

) ,

(48)

where 𝑎, 𝑏, and 𝑐 are, respectively, given by

𝑎 = 2𝑧
2

13

+ 𝑧
12
𝑢
23
+ 2𝑧
2

12

− 𝑧
13
𝑢
22
,

𝑏 = −𝑧
12
𝑧
11
𝑢
23
+ 𝑧
13
𝑧
11
𝑢
22
+ 𝑧
11
𝑢
23
𝑧
13
− 𝑧
2

12

𝑢
21

− 𝑧
2

13

𝑢
21
+ 𝑧
11
𝑢
22
𝑧
12
,

𝑐 = 𝑧
2

11

𝑧
13
𝑢
23
+ 𝑧
2

11

𝑢
2

23

+ 2𝑧
2

11

𝑧
2

13

+ 𝑧
12
𝑧
2

11

𝑢
22
+ 𝑧
2

11

𝑢
2

22

− 2𝑧
11
𝑢
23
𝑧
13
𝑢
21
− 2𝑧
2

11

𝑧
13
𝑢
22
+ 2𝑧
12
𝑧
2

11

𝑢
23

− 𝑧
2

12

𝑢
21
𝑧
11
+ 𝑧
2

12

𝑢
2

21

− 2𝑧
11
𝑢
22
𝑧
12
𝑢
21
+ 𝑧
2

13

𝑢
2

21

− 𝑧
2

13

𝑢
21
𝑧
11
+ 2𝑧
2

12

𝑧
2

11

.

(49)

These three equations in (48) show that the actual free
parameters that can be arbitrarily chosen are

𝑓 = [𝑧
11

𝑧
12

𝑧
13

𝑢
21

𝑢
22

𝑢
23
] . (50)

By searching on the interval [−2, 2]6, we can get 18 groups of
solutions if the step size is chosen as 1.0, one of which is given
by

𝑓 = [1 −1 −1 −1 −1 2] . (51)

By substituting the above parameters into (𝑋
1
, 𝑋
2
) and using

(17), a set of symmetric positive definite solutions to the
algebraic Riccati equation can be obtained as follows:

𝑃 =

[
[
[
[
[
[
[

[

9

5

8

5

3

5

8

5

11

5

1

5

3

5

1

5

6

5

]
]
]
]
]
]
]

]

> 0,

𝑄 =

[
[
[
[
[
[
[

[

2

5

4

5
−
1

5

4

5

13

5
−
2

5

−
1

5
−
2

5

3

5

]
]
]
]
]
]
]

]

> 0.

(52)
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Moreover, the corresponding state feedback matrix is given
by

𝐾 = −𝐵
𝑇

𝑃 = −
[
[
[

[

9

5

8

5

3

5

3

5

1

5

6

5

]
]
]

]

. (53)

A large number of numerical calculations show that there
are many solutions of 𝑃 and 𝑄 satisfying the conditions of
Theorem 7. This extra design freedom can also be optimized
to achieve some other control objectives, for example, to
minimize the norm of the feedback matrix 𝐾. To this end,
by searching on the interval [−4, 4]6 with the step size as 0.1,
a set of optimal solutions can be obtained as follows:

𝑄opt =
[

[

0.1024 0.2285 −0.2941

0.2285 2.401 −0.7456

−0.2941 −0.7456 0.8976

]

]

,

𝑃opt =
[

[

1.721 1.549 0.4880

1.549 2.456 0.03708

0.4880 0.03708 1.279

]

]

,

𝐾opt = [
1.721 1.549 0.4880

0.4880 0.03708 1.279
] .

(54)

5. Conclusions

This paper has considered the problem of designing optimal
feedback controllers for linear systems. Based onproperties of
the algebraic Riccati equation and the corresponding Hamil-
tonian matrix, the optimal pole assignment problem is trans-
formed into the problem of solving a kind of linear matrix
equations with nonlinear inequality constraints. By choosing
appropriate free parameters in the parametric solutions to
this class of matrix equations, the solutions to the original
optimal pole assignment problem can be obtained. Since the
resulting optimal feedback control law can guarantee both
good transient performance and robustness properties for the
closed-loop system, it is expected that the proposed approach
will find important applications in the engineering practice.
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