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Let R be a ring having unit 1. Denote by Z (R) the center of R. Assume that the characteristic of R is not 2 and there is an
idempotent element 𝑒 ∈ R such that 𝑎R𝑒 = {0} ⇒ 𝑎 = 0 and 𝑎R (1 − 𝑒) = {0} ⇒ 𝑎 = 0. It is shown that, under some mild
conditions, a map 𝐿 : R → R is a multiplicative Lie triple derivation if and only if 𝐿 (𝑥) = 𝛿 (𝑥) + ℎ (𝑥) for all 𝑥 ∈ R, where
𝛿 :R → R is an additive derivation and ℎ :R → Z (R) is a map satisfying ℎ ([[𝑎, 𝑏] , 𝑐]) = 0 for all 𝑎, 𝑏, 𝑐 ∈R. As applications,
all Lie (triple) derivations on prime rings and von Neumann algebras are characterized, which generalize some known results.

1. Introduction

Let R be an associative ring with the center Z(R). For any
element 𝑎, 𝑏 ∈ R, we set [𝑎, 𝑏] = 𝑎𝑏 − 𝑏𝑎. Recall that a map
𝐿 : R → R is a multiplicative derivation or nonlinear
derivation if 𝐿(𝑎𝑏) = 𝐿(𝑎)𝑏 + 𝑎𝐿(𝑏), for all 𝑎, 𝑏 ∈ R,
is a multiplicative Lie derivation, if 𝐿([𝑎, 𝑏]) = [𝐿(𝑎), 𝑏] +

[𝑎, 𝐿(𝑏)], for all 𝑎, 𝑏 ∈ R, and is a multiplicative Lie triple
derivation, if 𝐿([[𝑎, 𝑏], 𝑐]) = [[𝐿(𝑎), 𝑏], 𝑐] + [[𝑎, 𝐿(𝑏)], 𝑐] +

[[𝑎, 𝑏], 𝐿(𝑐)], for all 𝑎, 𝑏, 𝑐 ∈ R. Particularly, if 𝐿 is additive
(linear), then above maps are, respectively, additive (linear)
derivations, additive (linear) Lie derivations, and additive
(linear) Lie triple derivations. We often omit “linear” for
“linear derivations.”

The structure of additive (linear) derivations and additive
(linear) Lie (triple) derivations on rings or algebras has been
studied by many authors. Bre ̌sar in [1] proved that every
additive Lie derivation on a prime ringR with characteristic
not 2 can be decomposed as 𝜏 + 𝜁, where 𝜏 is an additive
derivation fromR into its central closure and 𝜁 is an additive
map ofR into the extended centroidC sending commutators
to zero. Mathieu and Villena [2] showed that every linear
Lie derivation on a 𝐶∗-algebra is standard, that is, can be
decomposed as the form 𝜏 + ℎ, where 𝜏 is a derivation and ℎ
is a central valued linear map vanishing at each commutator.
In [3] Qi and Hou proved that the same is true for additive

Lie derivations of nest algebras on Banach spaces. Miers [4]
showed that every linear Lie triple derivation on M, a von
Neumann algebra with no central summands of type 𝐼

1
, is of

the form 𝜏+ℎ, where 𝜏 is a derivation and ℎ is a central valued
linear map vanishing at every Lie triple products [[𝐴, 𝐵], 𝐶].
Recently, Wang and Lu [5] described the structure of linear
Lie triple derivations on J-subspace lattice algebras. For
other results, see [6–10] and the references therein.

For the study of multiplicative derivations and multi-
plicative Lie (triple) derivations, Daif [11] initially proved
that each multiplicative derivation on a 2-torsion free prime
ring containing a nontrivial idempotent is additive. Yu and
Zhang [12] showed that every multiplicative Lie derivation
on triangular algebras is the sum of an additive derivation
and a map into its center sending commutators to zero,
and, later, Ji et al. [13] generalized this result to the case
of multiplicative Lie triple derivations. Assume that N is
a nontrivial nest on a Banach space 𝑋 over the complex
field which contains a nontrivial complemented element, and
AlgN is the associated nest algebra. Li and Fang in [14]
obtained the same result as the above for multiplicative Lie
triple derivations on AlgN.

The purpose of the present paper is to consider the
problem of characterizing nonlinear Lie triple derivations on
general rings.
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LetR be a ring having unit 1 and an idempotent element
𝑒, and let Z(R) denote the center of R. Assume that the
characteristic of R is not 2 and satisfies that 𝑎R𝑒 = {0} ⇒
𝑎 = 0 and 𝑎R(1 − 𝑒) = {0} ⇒ 𝑎 = 0. Let 𝐿 : R → R
be a multiplicative Lie triple derivation. We show that if 𝑒R𝑒
and (1 − 𝑒)R(1 − 𝑒) do not contain nonzero central ideals,
then 𝐿(𝑎 + 𝑏) = 𝐿(𝑎) + 𝐿(𝑏) + 𝜆

𝑎,𝑏
, for all 𝑎, 𝑏 ∈ R, where

𝜆
𝑎,𝑏

∈ Z(R) is a central element depending on 𝑎 and 𝑏
(Theorem 1); furthermore, ifR also satisfies that, for 𝑎 ∈ R,
[𝑒𝑎𝑒, 𝑒R𝑒] ⊆ Z(𝑒R𝑒) ⇒ 𝑒𝑎𝑒 ∈ Z(𝑒R𝑒), and [(1 − 𝑒)𝑎(1 −
𝑒), (1 − 𝑒)R(1 − 𝑒)] ⊆Z((1 − 𝑒)R(1 − 𝑒)) ⇒ (1 − 𝑒)𝑎(1 − 𝑒) ∈

Z((1 − 𝑒)R(1 − 𝑒)), then 𝐿(𝑎) = 𝛿(𝑎) + ℎ(𝑎), for all 𝑎 ∈ R,
where 𝛿 : R → R is an additive derivation and ℎ : R →

Z(R) is a map satisfying ℎ([[𝑎, 𝑏], 𝑐]) = 0, for all 𝑎, 𝑏, 𝑐 ∈
R (Theorem 2). As applications, some characterizations of
multiplicative (additive) Lie (triple) derivations on prime
rings and von Neumann algebras are obtained, respectively
(Corollaries 3–7).

2. Main Results and Corollaries

The following are our main results in this paper.

Theorem 1. LetR be a ring having unit 1 and an idempotent
element 𝑒. Assume that the characteristic ofR is not 2 andR

satisfies the following two conditions:

(i) 𝑎R𝑒 = {0} ⇒ 𝑎 = 0 and 𝑎R(1 − 𝑒) = {0} ⇒ 𝑎 = 0;
(ii) 𝑒R𝑒 and (1−𝑒)R(1−𝑒) do not contain nonzero central

ideals.

Assume that 𝐿 : R → R is a multiplicative Lie triple
derivation.Then 𝐿(𝑎+𝑏) = 𝐿(𝑎)+𝐿(𝑏)+𝜆

𝑎,𝑏
, for all 𝑎, 𝑏 ∈R,

where 𝜆
𝑎,𝑏
∈Z(R) is a central element depending on 𝑎 and 𝑏.

Moreover, if the ring R in Theorem 1 also satisfies that,
for 𝑎 ∈ R, [𝑒𝑎𝑒, 𝑒R𝑒] ⊆ Z(𝑒R𝑒) ⇒ 𝑒𝑎𝑒 ∈ Z(𝑒R𝑒), and
[(1 − 𝑒)𝑎(1 − 𝑒), (1 − 𝑒)R(1 − 𝑒)] ⊆ Z((1 − 𝑒)R(1 − 𝑒)) ⇒
(1−𝑒)𝑎(1−𝑒) ∈Z((1−𝑒)R(1−𝑒)), then 𝐿 has more concrete
form.

Theorem 2. LetR be a ring having unit 1 and an idempotent
element 𝑒. Assume that the characteristic ofR is not 2 andR
satisfies the following two conditions:

(i) 𝑎R𝑒 = {0} ⇒ 𝑎 = 0 and 𝑎R(1 − 𝑒) = {0} ⇒ 𝑎 = 0;
(ii) 𝑒R𝑒 and (1−𝑒)R(1−𝑒) do not contain nonzero central

ideals;
(iii) for 𝑎 ∈ R, [𝑒𝑎𝑒, 𝑒R𝑒] ⊆ Z(𝑒R𝑒) ⇒ 𝑒𝑎𝑒 ∈ Z(𝑒R𝑒),

and [(1−𝑒)𝑎(1−𝑒), (1−𝑒)R(1−𝑒)] ⊆Z((1−𝑒)R(1−
𝑒)) ⇒ (1 − 𝑒)𝑎(1 − 𝑒) ∈Z((1 − 𝑒)R(1 − 𝑒)).

Then a map 𝐿 : R → R is a multiplicative Lie triple
derivation if and only if 𝐿(𝑎) = 𝛿(𝑎)+ℎ(𝑎), for all 𝑎 ∈R, where
𝛿 :R → R is an additive derivation and ℎ :R → Z(R) is
a map satisfying ℎ([[𝑎, 𝑏], 𝑐]) = 0, for all 𝑎, 𝑏, 𝑐 ∈R.

Recall that a ringR is prime if, for any 𝑎, 𝑏 ∈ R, 𝑎R𝑏 =
{0} implies 𝑎 = 0 or 𝑏 = 0.

ApplyingTheorem 2 to prime rings, we have the following
result.

Corollary 3. Let R be a prime ring having unit 1 and a
nontrivial idempotent, and let 𝐿 : R → R be a map. If
the characteristic of R is not 2 and 𝑒R𝑒, (1 − 𝑒)R(1 − 𝑒)
are noncommutative, then the following two statements are
equivalent.

(1) 𝐿 is a multiplicative Lie triple derivation.
(2) There exist an additive derivation 𝛿 : R → R and

a map ℎ : R → Z(R) satisfying ℎ([[𝑎, 𝑏], 𝑐]) = 0
for all 𝑎, 𝑏, 𝑐 ∈ R such that 𝐿(𝑥) = 𝛿(𝑥) + ℎ(𝑥) for all
𝑥 ∈R.

Proof. Let 𝑒 ∈R be a nontrivial idempotent. It is obvious that
R satisfies the condition (i) in Theorem 2.

Claim. IfU is a central ideal of a noncommutative prime ring
R󸀠, thenU = {0}.

Take any 𝑢 ∈ U. Since U ⊆ R󸀠 is central, we have 𝑢𝑎 =
𝑎𝑢 ∈ U for all 𝑎 ∈R󸀠. Thus, for any 𝑎, 𝑏 ∈R󸀠, one gets

𝑢 [𝑎, 𝑏] = 𝑢𝑎𝑏 − 𝑢𝑏𝑎 = 𝑢𝑎𝑏 − 𝑎 (𝑢𝑏)

= 𝑢𝑎𝑏 − (𝑎𝑢) 𝑏 = 𝑢𝑎𝑏 − (𝑢𝑎) 𝑏 = 0,
(1)

and so

𝑢𝑐 [𝑎, 𝑏] = 𝑢 [𝑐𝑎, 𝑏] − 𝑢 [𝑐, 𝑏] 𝑎 = 0 ∀𝑎, 𝑏, 𝑐 ∈R
󸀠

. (2)

SinceR󸀠 is noncommutative, there exist two elements 𝑎
0
, 𝑏
0
∈

R󸀠 such that [𝑎
0
, 𝑏
0
] ̸= 0. It follows from the primeness ofR󸀠

that 𝑢 = 0. The claim holds.
SinceR is prime, both 𝑒R𝑒 and (1−𝑒)R(1−𝑒) are prime.

Thus, by the above claim, the condition (ii) in Theorem 2 is
satisfied.

Now, for any fixed 𝑎 ∈ R, define two maps 𝛿
1
: 𝑒R𝑒 →

𝑒R𝑒 and 𝛿
2
: (1−𝑒)R(1−𝑒) → (1−𝑒)R(1−𝑒), respectively,

by

𝛿
1
(𝑒𝑥𝑒) = [𝑒𝑎𝑒, 𝑒𝑥𝑒] ,

𝛿
2
((1 − 𝑒) 𝑥 (1 − 𝑒)) = [(1 − 𝑒) 𝑎 (1 − 𝑒) , (1 − 𝑒) 𝑥 (1 − 𝑒)] ,

(3)

for all 𝑥 ∈ R. It is clear that both 𝛿
1
and 𝛿

2
are derivations.

Posner in [9, Theorem 2] proved that, if 𝑑 is a derivation of a
noncommutative primeR󸀠 such that, for all 𝑎 ∈R󸀠, 𝑎𝑑(𝑎) −
𝑑(𝑎)𝑎 is in the center of R󸀠, then 𝑑 is the zero derivation.
Thus, by [9,Theorem2], for 𝑎 ∈R, if 𝑒R𝑒 is noncommutative
and [𝑒𝑎𝑒, 𝑒R𝑒] ⊆Z(𝑒R𝑒), then [𝑒𝑎𝑒, 𝑒R𝑒] = 0; that is, 𝑒𝑎𝑒 ∈
Z(𝑒R𝑒). Similarly, if (1 − 𝑒)R(1 − 𝑒) is noncommutative and
[(1 − 𝑒)𝑎(1 − 𝑒), (1 − 𝑒)R(1 − 𝑒)] ⊆Z((1 − 𝑒)R(1 − 𝑒)), then
(1−𝑒)𝑎(1−𝑒) ∈Z((1−𝑒)R(1−𝑒)). Hence the condition (iii)
in Theorem 2 is also satisfied.

Now, byTheorem 2, the corollary is true.

Let B(𝐻) be the algebra of all bounded linear operators
acting on a complex Hilbert space 𝐻. Recall that a von
Neumann algebraM is a subalgebra of someB(𝐻) satisfying
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M󸀠󸀠 = {M󸀠}
󸀠

= M, where M󸀠 = {𝑇 : 𝑇 ∈ B(𝐻) and 𝑇𝐴 =

𝐴𝑇 ∀𝐴 ∈ M} ([15]). For 𝐴 ∈ M, the central carrier of 𝐴,
denoted by 𝐴, is the intersection of all central projections 𝑃
such that 𝑃𝐴 = 0. If 𝐴 is self-adjoint, then the core of 𝐴,
denoted by𝐴, is sup{𝑆 ∈Z(M) : 𝑆 = 𝑆∗, 𝑆 ≤ 𝐴}. Particularly,
if 𝐴 = 𝑃 is a projection, it is clear that 𝑃 is the largest central
projection ≤ 𝑃. A projection 𝑃 is core-free if 𝑃 = 0. It is easy
to see that 𝑃 = 0 if and only if 𝐼 − 𝑃 = 𝐼 ([16]).

Applying Theorem 2 to von Neumann algebras, we have
the following corollary.

Corollary 4. Let M be a von Neumann algebra without
central summands of type 𝐼

1
and 𝐿 : M → M a map. Then

the following statements are equivalent.

(1) 𝐿 is a multiplicative Lie triple derivation.
(2) There exist an additive derivation 𝛿 : M → M and

a map ℎ : M → Z(M) vanishing at each Lie triple
product [[𝐴, 𝐵], 𝐶] such that 𝐿(𝐴) = 𝛿(𝐴) + ℎ(𝐴), for
all 𝐴 ∈M.

Proof. Assume that M is a von Neumann algebra without
central summands of type 𝐼

1
. Then, by [16], there exists a

nonzero core-free projection 𝑃 ∈ M with 𝑃 = 𝐼. Fix such
𝑃 and note that 𝑃 = 𝐼 − 𝑃 = 𝐼. It follows from the definition
of the central carrier that both span{𝑇𝑃(𝑥) : 𝑇 ∈ M, 𝑥 ∈ 𝐻}

and span{𝑇(𝐼 − 𝑃)(𝑥) : 𝑇 ∈ M, 𝑥 ∈ 𝐻} are dense in 𝐻. So
𝐴M𝑃 = {0} ⇒ 𝐴 = 0 and 𝐴M(𝐼 − 𝑃) = {0} ⇒ 𝐴 = 0.

Bre ̌sar and Miers [17] proved that if 𝑍 ∈ Z(M) such
that 𝑍M ⊆ Z(M), then 𝑍 = 0. This implies that M has no
nonzero central ideals. Note that 𝑃M𝑃 and (𝐼 − 𝑃)M(𝐼 − 𝑃)

are also vonNeumann algebras without central summands of
type 𝐼

1
. So both 𝑃M𝑃 and (𝐼 − 𝑃)M(𝐼 − 𝑃) have no nonzero

central ideals.
Finally, for𝐴 ∈M, if [𝑃𝐴𝑃, 𝑃M𝑃] ⊆Z(𝑃M𝑃) and [(𝐼 −

𝑃)𝐴(𝐼 − 𝑃), (𝐼 − 𝑃)M(𝐼 − 𝑃)] ⊆ Z((𝐼 − 𝑃)M(𝐼 − 𝑃)), by
the Kleinecke-Shirokov theorem ([18]), both [𝑃𝐴𝑃, 𝑃𝑇𝑃] and
[(𝐼 − 𝑃)𝐴(𝐼 − 𝑃), (𝐼 − 𝑃)𝑇(𝐼 − 𝑃)] are central quasinilpotent
for all 𝑇 ∈ M. Hence [𝑃𝐴𝑃, 𝑃𝑇𝑃] = [(𝐼 − 𝑃)𝐴(𝐼 − 𝑃), (𝐼 −
𝑃)𝑇(I − 𝑃)] = 0 for all 𝑇 ∈ M; that is, 𝑃𝐴𝑃 ∈ Z(𝑃M𝑃) and
(𝐼 − 𝑃)𝐴(𝐼 − 𝑃) ∈Z((𝐼 − 𝑃)M(𝐼 − 𝑃)).

Thus, if M has no central summands of type 𝐼
1
, by what

the above stated, M satisfies the corresponding assump-
tions (i)–(iii) in Theorem 2. By Theorem 2, the corollary is
true.

Note that a multiplicative Lie derivation must be a
multiplicative Lie triple derivation. So the following corollary
is immediate.

Corollary 5. Let M be a von Neumann algebra without
central summands of type 𝐼

1
and 𝐿 : M → M a map. Then

the following statements are equivalent.

(1) 𝐿 is a multiplicative Lie derivation.
(2) There exist an additive derivation 𝛿 :M → M and a

map ℎ : M → Z(M) vanishing at each commutator
[𝐴, 𝐵] such that 𝐿(𝐴) = 𝛿(𝐴) + ℎ(𝐴), for all 𝐴 ∈M.

If 𝐿 in Corollaries 4 and 5 is additive, more can be said.
In fact, a complete characterization of additive Lie (triple)
derivations on any von Neumann algebras can be obtained,
which is a slight generalization of the corresponding result in
[4].

Corollary 6. Let M be a von Neumann algebra and 𝐿 :

M → M an additive map. Then the following statements are
equivalent.

(1) 𝐿 is a Lie triple derivation.
(2) There exist an additive derivation 𝛿 :M → M and an

additive map ℎ : M → Z(M) vanishing at each Lie
triple product [[𝐴, 𝐵], 𝐶] such that𝐿(𝐴) = 𝛿(𝐴)+ℎ(𝐴),
for all 𝐴 ∈M.

Proof. Clearly, one only needs to check (1)⇒(2). In the
following assume that 𝐿 is an additive Lie triple derivation.

Take the central projection𝑄 ∈M ⊆B(𝐻), so that, with
respect to the space decomposition 𝐻 = 𝑄𝐻 ⊕ (𝐼 − 𝑄)𝐻,
M =M

1
⊕M
2
, whereM

1
is of type 𝐼

1
andM

2
has no central

summands of type 𝐼
1
. Note that we may have 𝑄 = 0. Then

𝐿(𝐴) can be decomposed as

𝐿 (𝐴) = 𝑄𝐿 (𝐴) + (𝐼 − 𝑄) 𝐿 (𝑄𝐴) + (𝐼 − 𝑄) 𝐿 ((𝐼 − 𝑄)𝐴)

∀𝐴 ∈M.

(4)

Claim. 𝐿(Z(M)) ⊆Z(M).
For any 𝑍 ∈ Z(M) and any 𝐴, 𝐵 ∈ M, we have

0 = 𝐿(0) = 𝐿([[𝑍, 𝐴], 𝐵]) = [[𝐿(𝑍), 𝐴], 𝐵], and so
[𝐿(𝑍), 𝐴] ∈ Z(M) for all 𝐴 ∈ M. Hence [𝐿(𝑍), 𝐴] is central
quasinilpotent, which implies [𝐿(𝑍), 𝐴] = 0 for all 𝐴 ∈M. It
follows that 𝐿(𝑍) ∈Z(M). The claim holds.

Since 𝑄 is a central projection and 𝑄M is of type 𝐼
1
, we

have

𝑄M ⊆Z (M) . (5)

By the above claim, 𝐿(𝑄𝐴) ∈Z(M), for all 𝐴 ∈M, and so

(𝐼 − 𝑄) 𝐿 (𝑄𝐴) = 𝐿 (𝑄𝐴) − 𝑄𝐿 (𝑄𝐴) ∈Z (M) ∀𝐴 ∈M.

(6)

Define a map Ψ :M
2
→ M

2
by

Ψ (𝐵) = 𝐿 (0 ⊕ 𝐵) |
(𝐼−𝑄)𝐻

= 𝐿 ((𝐼 − 𝑄) (0 ⊕ 𝐵)) |
(𝐼−𝑄)𝐻

∀𝐵 ∈M
2
.

(7)

Then, for any 𝐴 = 𝐴
1
⊕ 𝐴
2
∈M =M

1
⊕M
2
, we have

𝐿 (𝐴) = 𝑄𝐿 (𝐴) + (𝐼 − 𝑄) 𝐿 (𝑄𝐴) + (0 ⊕ Ψ (𝐴
2
)) . (8)

It is easy to prove that Ψ is an additive Lie triple derivation
on M

2
. So, by Corollary 4, there exist an additive derivation

𝛿
2
: M
2
→ M

2
and an additive map ℎ

2
: M
2
→ Z(M

2
)

vanishing at each Lie triple product such that

Ψ (𝐵) = 𝛿
2
(𝐵) + ℎ

2
(𝐵) ∀𝐵 ∈M

2
. (9)
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Let 𝛿 = 0 ⊕ 𝛿
2
and ℎ(𝐴) = 𝑄𝐿(𝐴) + (𝐼 − 𝑄)𝐿(𝑄𝐴) +

(0 ⊕ ℎ
2
(𝐴|
(𝐼−𝑄)𝐻

)). By (4)–(9), one gets that 𝛿 is an additive
derivation on M and ℎ : M → Z(M) is an additive
map satisfying ℎ([[𝐴, 𝐵], 𝐶]) = 0 for all 𝐴, 𝐵, 𝐶 such that
𝐿(𝐴) = 𝛿(𝐴) + ℎ(𝐴) holds for all 𝐴 ∈ M. Hence (2) is true
and the proof is finished.

Particularly, for additive Lie derivations, we have the
following corollary.

Corollary 7. Let M be a von Neumann algebra and 𝐿 :

M → M an additive map. Then the following statements are
equivalent.

(1) 𝐿 is a Lie derivation.
(2) There exist an additive derivation 𝛿 : M → M and

an additive map ℎ : M → Z(M) vanishing at each
commutator such that 𝐿(𝐴) = 𝛿(𝐴) + ℎ(𝐴) for all 𝐴 ∈
M.

3. The Proof of Main Results

In this section, we will give proofs of our main results,
Theorems 1 and 2.

In the sequel, assume that R is a unital ring and
containing an idempotent 𝑒 satisfying 𝑎R𝑒 = {0} ⇒ 𝑎 = 0

and 𝑎R(1 − 𝑒) = {0} ⇒ 𝑎 = 0. It is clear that 𝑒 ̸= 0, 1.
Write 𝑒

1
= 𝑒 and 𝑒

2
= 1 − 𝑒. Then R can be written as

R =R
11
+R
12
+R
21
+R
22
, whereR

𝑖𝑗
= 𝑒
𝑖
R𝑒
𝑗
(𝑖, 𝑗 ∈ {1, 2}).

We first give several lemmas, which are needed to prove
the main results.

Lemma 8 (see [3, Lemma 3.1]). The center ofR is

Z (R) = {𝑧
11
+ 𝑧
22
: 𝑧
11
∈R
11
, 𝑧
22
∈R
22
,

𝑧
11
𝑎
12
= 𝑎
12
𝑧
22
,

𝑧
22
𝑎
21
= 𝑎
21
𝑧
11
∀𝑎
12
∈R
12
, 𝑎
21
∈R
21
} .

(10)

By Lemma 8, it is easily seen that if 𝑧
11
+ 𝑧
22
∈ Z(R),

then 𝑧
11
∈Z(R

11
) and 𝑧

22
∈Z(R

22
).

Lemma 9. Let 𝑎 ∈ R. If 𝑎𝑏
12
= 𝑏
12
𝑎 and 𝑎𝑏

21
= 𝑏
21
𝑎 hold for

all 𝑏
12
∈R
12
and all 𝑏

21
∈R
21
, then 𝑎 ∈Z(R).

Proof. Write 𝑎 = 𝑎
11
+ 𝑎
12
+ 𝑎
21
+ 𝑎
22
. Since 𝑎𝑏

12
= 𝑏
12
𝑎 for all

𝑏
12
∈R
12
, we have

𝑎
11
𝑏
12
+ 𝑎
21
𝑏
12
= 𝑏
12
𝑎
21
+ 𝑏
12
𝑎
22
. (11)

Multiplying 𝑒
1
and 𝑒
2
from the left and right in the equation,

one gets 𝑎
11
𝑏
12
= 𝑏
12
𝑎
22
. Multiplying 𝑒

2
from both sides in the

equation, one has 𝑎
21
𝑏
12
= 0; that is, 𝑎

21
𝑏𝑒
2
= 0 for all 𝑏 ∈R.

This implies 𝑎
21
= 0.

Similarly, from the relation 𝑎𝑏
21
= 𝑏
21
𝑎 for all 𝑏

21
∈ R
21
,

one can prove 𝑎
22
𝑏
21
= 𝑏
21
𝑎
11

and 𝑎
12
= 0. It follows from

Lemma 8 that 𝑎 = 𝑎
11
+ 𝑎
22
∈Z(R).

Lemma 10. Let 𝑎 ∈ R. If [[𝑎, 𝑡
𝑖𝑗
], 𝑒
𝑗
] = 0 holds for all 𝑡

𝑖𝑗
∈

R
𝑖𝑗
(1 ≤ 𝑖 ̸= 𝑗 ≤ 2), then 𝑒

1
𝑎𝑒
1
+ 𝑒
2
𝑎𝑒
2
∈Z(R).

Proof. For 1 ≤ 𝑖 ̸= 𝑗 ≤ 2, since [[𝑎, 𝑡
𝑖𝑗
], 𝑒
𝑗
] = 0, we have

𝑒
𝑖
𝑎𝑒
𝑖
𝑡
𝑖𝑗
= 𝑡
𝑖𝑗
𝑒
𝑗
𝑎𝑒
𝑗
for all 𝑡

𝑖𝑗
∈ R
𝑖𝑗
. It follows from Lemma 8

that 𝑒
1
𝑎𝑒
1
+ 𝑒
2
𝑎𝑒
2
∈Z(R).

Lemma 11. For 𝑎 ∈ R, if 𝑎 ∈ Z(R) ∩ R
𝑖𝑖
(𝑖 = 1, 2), then

𝑎 = 0.

Proof. For 𝑖 ∈ {1, 2}, assume that 𝑎 ∈ Z(R) ∩ R
𝑖𝑖
. So

𝑎𝑒
𝑖
𝑏𝑒
𝑗
= 𝑒
𝑖
𝑏𝑒
𝑗
𝑎 = 0 for all 𝑏 ∈ R, where 𝑗 ̸= 𝑖. It follows from

the assumption onR that 𝑎 = 𝑎𝑒
𝑖
= 0.

Lemma 12 (see [19, Lemma 4]). LetR󸀠 be a ring having unit
1 and an idempotent element 𝑒. Assume that R󸀠 satisfies that
𝑎R󸀠𝑒 = {0}, which implies that 𝑎 = 0. For 𝑎 ∈ R󸀠, if 𝑒𝑥𝑒𝑎𝑒 =
𝑒𝑎𝑒𝑥𝑒 for all 𝑥 ∈ R󸀠, then there exists an element 𝜆 ∈ Z(R󸀠)
such that 𝑒𝑎𝑒 = 𝜆𝑒.

Applying Lemma 12 to our ring R, we get that, for any
𝑎
𝑖𝑖
∈ R
𝑖𝑖
, if 𝑒
𝑖
𝑥𝑎
𝑖𝑖
= 𝑎
𝑖𝑖
𝑥𝑒
𝑖
holds for all 𝑥 ∈ R, then there

exists 𝜆
𝑖
∈Z(R) such that 𝑎

𝑖𝑖
= 𝜆
𝑖
𝑒
𝑖
, 𝑖 = 1, 2.

Now, we are in the position to give the proofs ofTheorems
1 and 2.

Proof of Theorem 1. We will prove the theorem by a series of
claims.

Claim 1. 𝐿(0) = 0.
By the definition of 𝐿, we have

𝐿 (0) = 𝐿 ([[0, 0] , 0]) = [[𝐿 (0) , 0] , 0]

+ [[0, 𝐿 (0)] , 0] + [[0, 0] , 𝐿 (0)] = 0.
(12)

Claim 2. 𝑒
1
𝐿(𝑒
𝑖
)𝑒
1
+ 𝑒
2
𝐿(𝑒
𝑖
)𝑒
2
∈Z(R), 𝑖 = 1, 2.

Let 1 ≤ 𝑖 ̸= 𝑗 ≤ 2. For any 𝑎
𝑖𝑗
∈R
𝑖𝑗
and 𝑒
𝑖
, we have

𝐿 (𝑎
𝑖𝑗
) = 𝐿 ([[𝑎

𝑖𝑗
, 𝑒
𝑖
] , 𝑒
𝑖
])

= [[𝐿 (𝑎
𝑖𝑗
) , 𝑒
𝑖
] , 𝑒
𝑖
] + [[𝑎

𝑖𝑗
, 𝐿 (𝑒
𝑖
)] , 𝑒
𝑖
]

+ [[𝑎
𝑖𝑗
, 𝑒
𝑖
] , 𝐿 (𝑒

𝑖
)]

= 𝐿 (𝑎
𝑖𝑗
) 𝑒
𝑖
− 2𝑒
𝑖
𝐿 (𝑎
𝑖𝑗
) 𝑒
𝑖
+ 𝑒
𝑖
𝐿 (𝑎
𝑖𝑗
) + 𝑎
𝑖𝑗
𝐿 (𝑒
𝑖
) 𝑒
𝑖

− 𝑎
𝑖𝑗
𝐿 (𝑒
𝑖
) + 𝑒
𝑖
𝐿 (𝑒
𝑖
) 𝑎
𝑖𝑗
− 𝑎
𝑖𝑗
𝐿 (𝑒
𝑖
) + 𝐿 (𝑒

𝑖
) 𝑎
𝑖𝑗
.

(13)

Multiplying by 𝑒
𝑖
and 𝑒

𝑗
from the left and the right in

the above equation, respectively, one gets 2𝑒
𝑖
𝐿(𝑒
𝑖
)𝑒
𝑖
𝑎
𝑖𝑗
=

2𝑎
𝑖𝑗
𝑒
𝑗
𝐿(𝑒
𝑖
)𝑒
𝑗
for all 𝑎

𝑖𝑗
∈R
𝑖𝑗
, which implies

𝑒
𝑖
𝐿 (𝑒
𝑖
) 𝑒
𝑖
𝑎
𝑖𝑗
= 𝑎
𝑖𝑗
𝑒
𝑗
𝐿 (𝑒
𝑖
) 𝑒
𝑗
∀𝑎
𝑖𝑗
∈R
𝑖𝑗
, (14)

since the characteristic ofR is not 2.
Similarly, for any 𝑎

𝑗𝑖
∈ R
𝑗𝑖
, by the relation 𝐿(𝑎

𝑗𝑖
) =

𝐿([[𝑎
𝑗𝑖
, 𝑒
𝑖
], 𝑒
𝑖
]), one can check that

𝑎
𝑗𝑖
𝑒
𝑖
𝐿 (𝑒
𝑖
) 𝑒
𝑖
= 𝑒
𝑗
𝐿 (𝑒
𝑖
) 𝑒
𝑗
𝑎
𝑗𝑖

∀𝑎
𝑗𝑖
∈R
𝑗𝑖
. (15)

Applying Lemma 8 to (14) and (15), one obtains 𝑒
𝑖
𝐿(𝑒
𝑖
)𝑒
𝑖
+

𝑒
𝑗
𝐿(𝑒
𝑖
)𝑒
𝑗
∈Z(R) for 1 ≤ 𝑖 ̸= 𝑗 ≤ 2. The claim holds.
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Now let 𝛿(𝑎) = 𝐿(𝑎) − [𝑎, 𝑒
1
𝐿(𝑒
1
)𝑒
2
− 𝑒
2
𝐿(𝑒
1
)𝑒
1
] for all

𝑎 ∈ R. Then 𝛿 : R → R is also a multiplicative Lie
triple derivation and satisfies 𝛿(𝑒

1
) ∈Z(R) as Claim 2.Thus,

without loss of generality, we may assume

𝐿 (𝑒
1
) ∈Z (R) . (16)

Claim 3. 𝐿(𝑒
2
) ∈Z(R).

By Claim 2, 𝑒
1
𝐿(𝑒
2
)𝑒
1
+ 𝑒
2
𝐿(𝑒
2
)𝑒
2
∈ Z(R). So we only

need to check 𝑒
1
𝐿(𝑒
2
)𝑒
2
= 𝑒
2
𝐿(𝑒
2
)𝑒
1
= 0. In fact, by (16), we

have

0 = 𝐿 ([[𝑒
2
, 𝑒
1
] , 𝑒
1
])

= [[𝐿 (𝑒
2
) , 𝑒
1
] , 𝑒
1
] + [[𝑒

2
, 𝐿 (𝑒
1
)] , 𝑒
1
] + [[𝑒

2
, 𝑒
1
] , 𝐿 (𝑒

1
)]

= [[𝐿 (𝑒
2
) , 𝑒
1
] , 𝑒
1
] = 𝑒
2
𝐿 (𝑒
2
) 𝑒
1
+ 𝑒
1
𝐿 (𝑒
2
) 𝑒
2
,

(17)

which implies 𝑒
1
𝐿(𝑒
2
)𝑒
2
= 𝑒
2
𝐿(𝑒
2
)𝑒
1
= 0. Hence 𝐿(𝑒

2
) =

𝑒
1
𝐿(𝑒
2
)𝑒
1
+ 𝑒
2
𝐿(𝑒
2
)𝑒
2
∈Z(R).

Claim 4. 𝐿(R
𝑖𝑗
) ⊆R

𝑖𝑗
, 1 ≤ 𝑖 ̸= 𝑗 ≤ 2.

Here, we only give the proof for 𝐿(R
12
) ⊆R

12
.The proof

for the other inclusion 𝐿(R
21
) ⊆R

21
is similar.

For any 𝑎
12
∈R
12
, by (16), (13) can be reduced to

𝐿 (𝑎
12
) = 𝐿 (𝑎

12
) 𝑒
1
− 2𝑒
1
𝐿 (𝑎
12
) 𝑒
1
+ 𝑒
1
𝐿 (𝑎
12
)

= 𝑒
1
𝐿 (𝑎
12
) 𝑒
2
+ 𝑒
2
𝐿 (𝑎
12
) 𝑒
1
.

(18)

Taking any 𝑏
12
∈R
12
and any 𝑐 ∈R, one obtains

0 = 𝐿 ([[𝑎
12
, 𝑏
12
] , 𝑐])

= [[𝐿 (𝑎
12
) , 𝑏
12
] , 𝑐] + [[𝑎

12
, 𝐿 (𝑏
12
)] , 𝑐]

+ [[𝑎
12
, 𝑏
12
] , 𝐿 (𝑐)]

= [[𝐿 (𝑎
12
) , 𝑏
12
] + [𝑎
12
, 𝐿 (𝑏
12
)] , 𝑐] ,

(19)

which implies [𝐿(𝑎
12
), 𝑏
12
] + [𝑎
12
, 𝐿(𝑏
12
)] ∈Z(R). Note that

[𝑎
12
, 𝐿 (𝑏
12
)] = [[𝑒

1
, 𝑎
12
] , 𝐿 (𝑏

12
)]

= 𝐿 ([[𝑒
1
, 𝑎
12
] , 𝑏
12
])

− [[𝐿 (𝑒
1
) , 𝑎
12
] , 𝑏
12
]

− [[𝑒
1
, 𝐿 (𝑎
12
)] , 𝑏
12
]

= − [[𝑒
1
, 𝐿 (𝑎
12
)] , 𝑏
12
] .

(20)

So, by (18), one achieves

[𝐿 (𝑎
12
) , 𝑏
12
] + [𝑎
12
, 𝐿 (𝑏
12
)]

= [𝑒
2
𝐿 (𝑎
12
) 𝑒
1
, 𝑏
12
] − [[𝑒

1
, 𝐿 (𝑎
12
)] , 𝑏
12
]

= 2 [𝑒
2
𝐿 (𝑎
12
) 𝑒
1
, 𝑏
12
] ∈Z (R) .

(21)

It follows from char R ̸= 2 that [𝑒
2
𝐿(𝑎
12
)𝑒
1
, 𝑏
12
] =

𝑒
2
𝐿(𝑎
12
)𝑒
1
𝑏
12
− 𝑏
12
𝑒
2
𝐿(𝑎
12
)𝑒
1
∈ Z(R) for all 𝑏

12
∈ R
12
.

By Lemma 8, one can get 𝑒
2
𝐿(𝑎
12
)𝑒
1
𝑏
12
∈ Z(R

22
) for all

𝑏
12
∈ R
12
. It is easily checked that 𝑒

2
𝐿(𝑎
12
)𝑒
1
R𝑒
2
is an ideal

ofR
22
. So, by the assumption (ii), 𝑒

2
𝐿(𝑎
12
)𝑒
1
R𝑒
2
= {0}, and

so 𝑒
2
𝐿(𝑎
12
)𝑒
1
= 0 by the condition (i). This and (18) imply

that 𝐿(𝑎
12
) = 𝑒
1
𝐿(𝑎
12
)𝑒
2
∈R
12
, as desired.

Claim 5. For any 𝑎
𝑖𝑗
∈ R
𝑖𝑗
, we have 𝐿(−𝑎

𝑖𝑗
) = −𝐿(𝑎

𝑖𝑗
), 1 ≤

𝑖 ̸= 𝑗 ≤ 2.
By (16) and Claims 3 and 4, it is clear that

𝐿 (−𝑎
𝑖𝑗
) = 𝐿 ([[𝑎

𝑖𝑗
, 𝑒
𝑖
] , 𝑒
𝑗
]) = [[𝐿 (𝑎

𝑖𝑗
) , 𝑒
𝑖
] , 𝑒
𝑗
] = −𝐿 (𝑎

𝑖𝑗
) .

(22)

Claim 6. For any 𝑎
𝑖𝑗
∈R
𝑖𝑗
, we have 𝐿(𝑒

𝑖
+𝑎
𝑖𝑗
)−𝐿(𝑎

𝑖𝑗
) ∈Z(R),

1 ≤ 𝑖 ̸= 𝑗 ≤ 2.
Let 1 ≤ 𝑖 ̸= 𝑗 ≤ 2 and 𝑎

𝑖𝑗
∈ R
𝑖𝑗
. For any 𝑏

𝑖𝑗
∈ R
𝑖𝑗
, by (16)

and Claims 3 and 4, one has

𝐿 (𝑏
𝑖𝑗
) = 𝐿 ([[𝑒

𝑖
+ 𝑎
𝑖𝑗
, 𝑏
𝑖𝑗
] , 𝑒
𝑗
])

= [[𝐿 (𝑒
𝑖
+ 𝑎
𝑖𝑗
) , 𝑏
𝑖𝑗
] , 𝑒
𝑗
] + 𝐿 (𝑏

𝑖𝑗
) ;

(23)

that is, [[𝐿(𝑒
𝑖
+ 𝑎
𝑖𝑗
), 𝑏
𝑖𝑗
], 𝑒
𝑗
] = 0. Note that [[𝐿(𝑎

𝑖𝑗
), 𝑏
𝑖𝑗
], 𝑒
𝑗
] = 0

by Claim 4. So

[[𝐿 (𝑒
𝑖
+ 𝑎
𝑖𝑗
) − 𝐿 (𝑎

𝑖𝑗
) , 𝑏
𝑖𝑗
] , 𝑒
𝑗
] = 0. (24)

Similarly, for any 𝑏
𝑗𝑖
∈ R

𝑗𝑖
, by the relations −𝐿(𝑏

𝑗𝑖
) =

𝐿(−𝑏
𝑗𝑖
) = 𝐿([[𝑒

𝑖
+ 𝑎
𝑖𝑗
, 𝑏
𝑗𝑖
], 𝑒
𝑖
]) and [[𝐿(𝑎

𝑖𝑗
), 𝑏
𝑗𝑖
], 𝑒
𝑖
] = 0, one

can check

[[𝐿 (𝑒
𝑖
+ 𝑎
𝑖𝑗
) − 𝐿 (𝑎

𝑖𝑗
) , 𝑏
𝑗𝑖
] , 𝑒
𝑖
] = 0. (25)

Combining (24) and (25) and by Lemma 10, we achieve

𝑒
1
(𝐿 (𝑒
𝑖
+ 𝑎
𝑖𝑗
) − 𝐿 (𝑎

𝑖𝑗
)) 𝑒
1

+ 𝑒
2
(𝐿 (𝑒
𝑖
+ 𝑎
𝑖𝑗
) − 𝐿 (𝑎

𝑖𝑗
)) 𝑒
2
∈Z (R) .

(26)

Thus, to complete the proof of the claim, we still need to check
𝑒
1
(𝐿(𝑒
𝑖
+𝑎
𝑖𝑗
)−𝐿(𝑎

𝑖𝑗
))𝑒
2
= 𝑒
2
(𝐿(𝑒
𝑖
+𝑎
𝑖𝑗
)−𝐿(𝑎

𝑖𝑗
))𝑒
1
= 0. In fact,

by (16), we have

𝐿 (𝑎
𝑖𝑗
) = 𝐿 ([[𝑒

𝑖
+ 𝑎
𝑖𝑗
, 𝑒
1
] , 𝑒
1
]) = [[𝐿 (𝑒

𝑖
+ 𝑎
𝑖𝑗
) , 𝑒
1
] , 𝑒
1
] ,

𝐿 (𝑎
𝑖𝑗
) = 𝐿 ([[𝑎

𝑖𝑗
, 𝑒
1
] , 𝑒
1
]) = [[𝐿 (𝑎

𝑖𝑗
) , 𝑒
1
] , 𝑒
1
] .

(27)

It follows that [[𝐿(𝑒
𝑖
+ 𝑎
𝑖𝑗
) − 𝐿(𝑎

𝑖𝑗
), 𝑒
1
], 𝑒
1
] = 0, which implies

𝑒
1
(𝐿(𝑒
𝑖
+ 𝑎
𝑖𝑗
) − 𝐿(𝑎

𝑖𝑗
))𝑒
2
= 𝑒
2
(𝐿(𝑒
𝑖
+ 𝑎
𝑖𝑗
) − 𝐿(𝑎

𝑖𝑗
))𝑒
1
= 0.

Claim 7. 𝐿 is additive onR
𝑖𝑗
, 1 ≤ 𝑖 ̸= 𝑗 ≤ 2.
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Take any 𝑎
𝑖𝑗
, 𝑏
𝑖𝑗
∈ R
𝑖𝑗
(1 ≤ 𝑖 ̸= 𝑗 ≤ 2). By (16) and Claims

3–6, one obtains

𝐿 (𝑎
𝑖𝑗
+ 𝑏
𝑖𝑗
) = 𝐿 ([[𝑒

𝑖
− 𝑎
𝑖𝑗
, 𝑒
𝑖
+ 𝑏
𝑖𝑗
] , 𝑒
𝑗
])

= [[𝐿 (𝑒
𝑖
− 𝑎
𝑖𝑗
) , 𝑒
𝑖
+ 𝑏
𝑖𝑗
] , 𝑒
𝑗
]

+ [[𝑒
𝑖
− 𝑎
𝑖𝑗
, 𝐿 (𝑒
𝑖
+ 𝑏
𝑖𝑗
)] , 𝑒
𝑗
]

= [[−𝐿 (𝑎
𝑖𝑗
) , 𝑒
𝑖
+ 𝑏
𝑖𝑗
] , 𝑒
𝑗
]

+ [[𝑒
𝑖
− 𝑎
𝑖𝑗
, 𝐿 (𝑏
𝑖𝑗
)] , 𝑒
𝑗
]

= 𝐿 (𝑎
𝑖𝑗
) + 𝐿 (𝑏

𝑖𝑗
) .

(28)

Claim 8. For 1 ≤ 𝑖 ̸= 𝑗 ≤ 2, we have 𝐿(R
𝑖𝑖
) ⊆ (R

𝑖𝑖
+ R
𝑗𝑗
),

𝐿(R
𝑖𝑖
+R
𝑖𝑖
) ⊆ (R

𝑖𝑖
+R
𝑗𝑗
), and 𝐿(R

𝑖𝑖
+R
𝑗𝑗
) ⊆ (R

𝑖𝑖
+R
𝑗𝑗
).

Let 1 ≤ 𝑖 ̸= 𝑗 ≤ 2. For any 𝑎
𝑖𝑖
, 𝑏
𝑖𝑖
∈ R
𝑖𝑖
and 𝑎
𝑗𝑗
∈ R
𝑗𝑗
, by

(16) and Claim 3, one has

0 = 𝐿 ([[𝑎
𝑖𝑖
+ 𝑎
𝑗𝑗
, 𝑒
𝑗
] , 𝑒
𝑗
]) = [[𝐿 (𝑎

𝑖𝑖
+ 𝑎
𝑗𝑗
) , 𝑒
𝑗
] , 𝑒
𝑗
] ,

0 = 𝐿 ([[𝑎
𝑖𝑖
, 𝑒
𝑗
] , 𝑒
𝑗
]) = [[𝐿 (𝑎

𝑖𝑖
) , 𝑒
𝑗
] , 𝑒
𝑗
] ,

0 = 𝐿 ([[𝑎
𝑖𝑖
+ 𝑏
𝑖𝑖
, 𝑒
𝑗
] , 𝑒
𝑗
]) = [[𝐿 (𝑎

𝑖𝑖
+ 𝑏
𝑖𝑖
) , 𝑒
𝑗
] , 𝑒
𝑗
] .

(29)

A simple calculation yields 𝑒
1
𝐿(𝑎
𝑖𝑖
+𝑎
𝑗𝑗
)𝑒
2
= 𝑒
2
𝐿(𝑎
𝑖𝑖
+𝑎
𝑗𝑗
)𝑒
1
=

0, 𝑒
1
𝐿(𝑎
𝑖𝑖
)𝑒
2
= 𝑒
2
𝐿(𝑎
𝑖𝑖
)𝑒
1
= 0, and 𝑒

1
𝐿(𝑎
𝑖𝑖
+ 𝑏
𝑖𝑖
)𝑒
2
= 𝑒
2
𝐿(𝑎
𝑖𝑖
+

𝑏
𝑖𝑖
)𝑒
1
= 0. So the claim is true.

Claim 9. For any 𝑎
11
∈ R
11
and 𝑎
22
∈ R
22
, we have 𝐿(𝑎

11
+

𝑎
22
) − 𝐿(𝑎

11
) − 𝐿(𝑎

22
) ∈Z(R).

Take any 𝑎
11
∈R
11

and 𝑎
22
∈R
22
andwrite𝐿(𝑎

11
+𝑎
22
)−

𝐿(𝑎
11
) − 𝐿(𝑎

22
) = 𝑠
11
+ 𝑠
12
+ 𝑠
21
+ 𝑠
22
. Note that, by Claim 8,

one has 𝐿(𝑎
11
+ 𝑎
22
) − 𝐿(𝑎

11
) − 𝐿(𝑎

22
) = 𝑠
11
+ 𝑠
22
. So, to prove

the claim, one only needs to check 𝑠
11
+ 𝑠
22
∈Z(R).

To do this, taking any 𝑏
12
∈R
12
, by Claims 3–5 and 7, we

have

𝐿 ([𝑎
11
+ 𝑎
22
, 𝑏
12
]) = 𝐿 (𝑎

11
𝑏
12
− 𝑏
12
𝑎
22
)

= 𝐿 (𝑎
11
𝑏
12
) − 𝐿 (𝑏

12
𝑎
22
)

= 𝐿 ([[𝑎
11
, 𝑏
12
] , 𝑒
2
]) − 𝐿 ([[𝑏

12
, 𝑎
22
] , 𝑒
2
])

= [[𝐿 (𝑎
11
) , 𝑏
12
] , 𝑒
2
] + [[𝑎

11
, 𝐿 (𝑏
12
)] , 𝑒
2
]

− [[𝐿 (𝑏
12
) , 𝑎
22
] , 𝑒
2
]

− [[𝑏
12
, 𝐿 (𝑎
22
)] , 𝑒
2
]

= [[𝐿 (𝑎
11
) , 𝑏
12
] , 𝑒
2
] + [𝑎
11
, 𝐿 (𝑏
12
)]

+ [𝑎
22
, 𝐿 (𝑏
12
)] + [[𝐿 (𝑎

22
) , 𝑏
12
] , 𝑒
2
] ,

𝐿 ([𝑎
11
+ 𝑎
22
, 𝑏
12
]) = 𝐿 ([[𝑎

11
+ 𝑎
22
, 𝑏
12
] , 𝑒
2
])

= [[𝐿 (𝑎
11
+ 𝑎
22
) , 𝑏
12
] , 𝑒
2
]

+ [[𝑎
11
+ 𝑎
22
, 𝐿 (𝑏
12
)] , 𝑒
2
]

= [[𝐿 (𝑎
11
+ 𝑎
22
) , 𝑏
12
] , 𝑒
2
]

+ [𝑎
11
, 𝐿 (𝑏
12
)] + [𝑎

22
, 𝐿 (𝑏
12
)] .

(30)

Combining the above two equations yields

[[𝐿 (𝑎
11
+ 𝑎
22
) − 𝐿 (𝑎

11
) − 𝐿 (𝑎

22
) , 𝑏
12
] , 𝑒
2
] = 0

∀𝑏
12
∈R
12
.

(31)

Similar to the above discussion, one can also prove that

[[𝐿 (𝑎
11
+ 𝑎
22
) − 𝐿 (𝑎

11
) − 𝐿 (𝑎

22
) , 𝑏
21
] , 𝑒
1
] = 0

∀𝑏
21
∈R
21
.

(32)

Now, by Lemma 10, it follows that 𝑠
11
+ 𝑠
22
∈ Z(R), and the

claim holds.

Claim 10. For any 𝑎 ∈ R, any 𝑎
12
∈ R
12
, and any 𝑎

21
∈ R
21
,

we have

(i) 𝐿(𝑎 + 𝑎
12
) − 𝐿(𝑎) − 𝑒

1
(𝐿(𝑎 + 𝑎

12
) − 𝐿(𝑎))𝑒

2
∈Z(R);

(ii) 𝐿(𝑎 + 𝑎
21
) − 𝐿(𝑎) − 𝑒

2
(𝐿(𝑎 + 𝑎

21
) − 𝐿(𝑎))𝑒

1
∈Z(R).

For any 𝑎, 𝑐 ∈ R and any 𝑎
12
, 𝑏
12
∈ R
12
, since [[𝑎 +

𝑎
12
, 𝑏
12
], 𝑐] = [[𝑎, 𝑏

12
], 𝑐], by Claim 4, one can easily get

[[𝐿(𝑎 + 𝑎
12
), 𝑏
12
], 𝑐] = [[𝐿(𝑎), 𝑏

12
], 𝑐]; that is,

[[𝐿 (𝑎 + 𝑎
12
) − 𝐿 (𝑎) , 𝑏

12
] , 𝑐] = 0 ∀𝑐 ∈R. (33)

Write 𝑡 = 𝐿(𝑎 + 𝑎
12
) − 𝐿(𝑎) = 𝑡

11
+ 𝑡
12
+ 𝑡
21
+ 𝑡
22
. Then (33)

implies that

[𝑡, 𝑏
12
] = 𝑡
11
𝑏
12
+ 𝑡
21
𝑏
12
− 𝑏
12
𝑡
21
− 𝑏
12
𝑡
22
∈Z (R) . (34)

Letting 𝑐 = 𝑒
2
in (33), a simple calculation yields

𝑡
11
𝑏
12
= 𝑏
12
𝑡
22

∀𝑏
12
∈R
12
. (35)

So (34) is reduced to 𝑡
21
𝑏
12
− 𝑏
12
𝑡
21
∈ Z(R), which and

Lemma 8 imply that 𝑡
21
𝑏
12
∈Z(R

22
) holds for all 𝑏

12
∈R
12
.

Note that 𝑡
21
𝑒
1
R𝑒
2
is an ideal of R

22
. It follows from the

assumption (ii) that 𝑡
21
𝑒
1
R𝑒
2
= {0}, and so

𝑡
21
= 0. (36)

On the other hand, by using the equation [[𝑎 + 𝑎
12
, 𝑏
21
], 𝑒
2
] =

[[𝑎, 𝑏
21
], 𝑒
2
], one can also show

𝑡
22
𝑏
21
= 𝑏
21
𝑡
11

∀𝑏
21
∈R
21
, 𝑡
12
= 0. (37)

Combining (35)–(37) and Lemma 8, we get that (i) holds.
The proof of (ii) is similar and we omit it here.
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Claim 11. For any 𝑎
𝑖𝑗
∈R
𝑖𝑗
(1 ≤ 𝑖, 𝑗 ≤ 2), we have

(i) 𝐿(𝑎
12
) = 𝑒

1
𝐿(𝑎
11
+ 𝑎
12
+ 𝑎
22
)𝑒
2
and 𝑒
2
𝐿(𝑎
11
+ 𝑎
12
+

𝑎
22
)𝑒
1
= 0;

(ii) 𝐿(𝑎
21
) = 𝑒

2
𝐿(𝑎
11
+ 𝑎
21
+ 𝑎
22
)𝑒
1
and 𝑒
1
𝐿(𝑎
11
+ 𝑎
21
+

𝑎
22
)𝑒
2
= 0.

Here, we only give the proof of (i). The proof of (ii) is
similar.

For any 𝑎
𝑖𝑗
∈R
𝑖𝑗
(1 ≤ 𝑖, 𝑗 ≤ 2), by Claim 3, one gets

𝐿 (𝑎
12
) = 𝐿 ([[𝑎

11
+ 𝑎
12
+ 𝑎
22
, 𝑒
2
] , 𝑒
2
])

= [[𝐿 (𝑎
11
+ 𝑎
12
+ 𝑎
22
) , 𝑒
2
] , 𝑒
2
]

= 𝑒
1
𝐿 (𝑎
11
+ 𝑎
12
+ 𝑎
22
) 𝑒
2

+ 𝑒
2
𝐿 (𝑎
11
+ 𝑎
12
+ 𝑎
22
) 𝑒
1
,

(38)

which, together with Claim 4, implies 𝐿(𝑎
12
) = 𝑒
1
𝐿(𝑎
11
+𝑎
12
+

𝑎
22
)𝑒
2
and 𝑒
2
𝐿(𝑎
11
+ 𝑎
12
+ 𝑎
22
)𝑒
1
= 0, as desired.

Claim 12. For any 𝑎
𝑖𝑗
∈R
𝑖𝑗
(1 ≤ 𝑖, 𝑗 ≤ 2), we have

(i) 𝐿(𝑎
11
+ 𝑎
12
+ 𝑎
22
) − 𝐿(𝑎

11
) − 𝐿(𝑎

12
) − 𝐿(𝑎

22
) ∈Z(R);

(ii) 𝐿(𝑎
11
+ 𝑎
21
+ 𝑎
22
) − 𝐿(𝑎

11
) − 𝐿(𝑎

21
) − 𝐿(𝑎

22
) ∈Z(R).

Still, we only give the proof of (i).
Take any 𝑎

11
∈R
11
, 𝑎
12
∈R
12
, and 𝑎

22
∈R
22
. Firstly, by

Claims 8, 9, and 11, there exists some 𝑧 ∈Z(R) such that

𝐿 (𝑎
11
+ 𝑎
12
+ 𝑎
22
) − 𝐿 (𝑎

11
) − 𝐿 (𝑎

12
) − 𝐿 (𝑎

22
)

= 𝐿 (𝑎
11
+ 𝑎
12
+ 𝑎
22
) − 𝐿 (𝑎

11
+ 𝑎
22
) − 𝐿 (𝑎

12
) + 𝑧

= 𝑒
1
(𝐿 (𝑎
11
+ 𝑎
12
+ 𝑎
22
) − 𝐿 (𝑎

11
+ 𝑎
22
)) 𝑒
1

+ 𝑒
2
(𝐿 (𝑎
11
+ 𝑎
12
+ 𝑎
22
) − 𝐿 (𝑎

11
+ 𝑎
22
)) 𝑒
2
+ 𝑧.

(39)

Next, for any 𝑏
12
∈R
12
, by Claims 3 and 4, one has

𝐿 ([[𝑎
11
+ 𝑎
12
+ 𝑎
22
, 𝑏
12
] , 𝑒
2
])

= [[𝐿 (𝑎
11
+ 𝑎
12
+ 𝑎
22
) , 𝑏
12
] , 𝑒
2
]

+ [[𝑎
11
+ 𝑎
12
+ 𝑎
22
, 𝐿 (𝑏
12
)] , 𝑒
2
]

= [[𝐿 (𝑎
11
+ 𝑎
12
+ 𝑎
22
) , 𝑏
12
] , 𝑒
2
]

+ [[𝑎
11
+ 𝑎
22
, 𝐿 (𝑏
12
)] , 𝑒
2
] ,

𝐿 ([[𝑎
11
+ 𝑎
12
+ 𝑎
22
, 𝑏
12
] , 𝑒
2
])

= 𝐿 ([[𝑎
11
+ 𝑎
22
, 𝑏
12
] , 𝑒
2
])

= [[𝐿 (𝑎
11
+ 𝑎
22
) , 𝑏
12
] , 𝑒
2
]

+ [[𝑎
11
+ 𝑎
22
, 𝐿 (𝑏
12
)] , 𝑒
2
] .

(40)

Comparing the above equations, we get

[[𝐿 (𝑎
11
+ 𝑎
12
+ 𝑎
22
) − 𝐿 (𝑎

11
+ 𝑎
22
) , 𝑏
12
] , 𝑒
2
] = 0. (41)

Finally, for any 𝑏
21
∈R
21
, a similar argument to the above

achieves

[[𝐿 (𝑎
11
+ 𝑎
12
+ 𝑎
22
) − 𝐿 (𝑎

11
+ 𝑎
22
) , 𝑏
21
] , 𝑒
1
] = 0. (42)

Now, combining (39)–(42) and Lemma 10, the claim
holds.

Claim 13. For any 𝑎
𝑖𝑗
∈ R
𝑖𝑗
(1 ≤ 𝑖, 𝑗 ≤ 2), we have 𝐿(𝑎

11
+

𝑎
12
+ 𝑎
21
+ 𝑎
22
) − 𝐿(𝑎

11
) − 𝐿(𝑎

12
) − 𝐿(𝑎

21
) − 𝐿(𝑎

22
) ∈Z(R).

Take any 𝑎
𝑖𝑗
∈R
𝑖𝑗
(1 ≤ 𝑖, 𝑗 ≤ 2) and write

𝑡 = 𝐿 (𝑎
11
+ 𝑎
12
+ 𝑎
21
+ 𝑎
22
) − 𝐿 (𝑎

11
)

− 𝐿 (𝑎
12
) − 𝐿 (𝑎

21
) − 𝐿 (𝑎

22
) .

(43)

For any 𝑏
12
∈R
12
and any 𝑏

21
∈R
21
, by Claims 4, 10, and 12,

one has
[𝑡, 𝑏
12
] = [𝐿 (𝑎

11
+ 𝑎
12
+ 𝑎
21
+ 𝑎
22
)

−𝐿 (𝑎
11
) − 𝐿 (𝑎

21
) − 𝐿 (𝑎

22
) , 𝑏
12
]

= [𝐿 (𝑎
11
+ 𝑎
12
+ 𝑎
21
+ 𝑎
22
)

−𝐿 (𝑎
11
+ 𝑎
21
+ 𝑎
22
) , 𝑏
12
] = 0,

[𝑡, 𝑏
21
] = [𝐿 (𝑎

11
+ 𝑎
12
+ 𝑎
21
+ 𝑎
22
) − 𝐿 (𝑎

11
)

−𝐿 (𝑎
12
) − 𝐿 (𝑎

22
) , 𝑏
21
]

= [𝐿 (𝑎
11
+ 𝑎
12
+ 𝑎
21
+ 𝑎
22
)

−𝐿 (𝑎
11
+ 𝑎
12
+ 𝑎
22
) , 𝑏
21
] = 0.

(44)

Now the above two equations and Lemma 9 imply 𝑡 ∈Z(R).

Claim 14. For any 𝑎
𝑖𝑖
, 𝑏
𝑖𝑖
∈ R
𝑖𝑖
, we have 𝐿(𝑎

𝑖𝑖
+ 𝑏
𝑖𝑖
) − 𝐿(𝑎

𝑖𝑖
) −

𝐿(𝑏
𝑖𝑖
) ∈Z(R), 𝑖 = 1, 2.
Let 1 ≤ 𝑖 ̸= 𝑗 ≤ 2 and 𝑎

𝑖𝑖
, 𝑏
𝑖𝑖
∈ R
𝑖𝑖
be arbitrary. For any

𝑐
𝑖𝑗
∈R
𝑖𝑗
, by (16) and Claims 3 and 4, we have

𝐿 ([𝑎
𝑖𝑖
+ 𝑏
𝑖𝑖
, 𝑐
𝑖𝑗
]) = 𝐿 ([𝑎

𝑖𝑖
, 𝑐
𝑖𝑗
] + [𝑏
𝑖𝑖
, 𝑐
𝑖𝑗
])

= 𝐿 ([𝑎
𝑖𝑖
, 𝑐
𝑖𝑗
]) + 𝐿 ([𝑏

𝑖𝑖
, 𝑐
𝑖𝑗
])

= 𝐿 ([[𝑎
𝑖𝑖
, 𝑐
𝑖𝑗
] , 𝑒
𝑗
]) + 𝐿 ([[𝑏

𝑖𝑖
, 𝑐
𝑖𝑗
] , 𝑒
𝑗
])

= [[𝐿 (𝑎
𝑖𝑖
) , 𝑐
𝑖𝑗
] , 𝑒
𝑗
] + [[𝑎

𝑖𝑖
, 𝐿 (𝑐
𝑖𝑗
)] , 𝑒
𝑗
]

+ [[𝐿 (𝑏
𝑖𝑖
) , 𝑐
𝑖𝑗
] , 𝑒
𝑗
] + [[𝑏

𝑖𝑖
, 𝐿 (𝑐
𝑖𝑗
)] , 𝑒
𝑗
] ,

𝐿 ([𝑎
𝑖𝑖
+ 𝑏
𝑖𝑖
, 𝑐
𝑖𝑗
]) = 𝐿 ([[𝑎

𝑖𝑖
+ 𝑏
𝑖𝑖
, 𝑐
𝑖𝑗
] , 𝑒
𝑗
])

= [[𝐿 (𝑎
𝑖𝑖
+ 𝑏
𝑖𝑖
) , 𝑐
𝑖𝑗
] , 𝑒
𝑗
]

+ [[𝑎
𝑖𝑖
+ 𝑏
𝑖𝑖
, 𝐿 (𝑐
𝑖𝑗
)] , 𝑒
𝑗
] .

(45)

It follows that

[[𝐿 (𝑎
𝑖𝑖
+ 𝑏
𝑖𝑖
) − 𝐿 (𝑎

𝑖𝑖
) − 𝐿 (𝑏

𝑖𝑖
) , 𝑐
𝑖𝑗
] , 𝑒
𝑗
] = 0

∀𝑐
𝑖𝑗
∈R
𝑖𝑗
.

(46)
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Similarly, one can check

[[𝐿 (𝑎
𝑖𝑖
+ 𝑏
𝑖𝑖
) − 𝐿 (𝑎

𝑖𝑖
) − 𝐿 (𝑏

𝑖𝑖
) , 𝑐
𝑗𝑖
] , 𝑒
𝑖
] = 0

∀𝑐
𝑗𝑖
∈R
𝑗𝑖
.

(47)

Now, together with Lemma 10 and Claim 8, (46)-(47)
imply that the claim holds.

Claim 15. 𝐿(𝑎 + 𝑏) − 𝐿(𝑎) − 𝐿(𝑏) ∈ Z(R) for all 𝑎, 𝑏 ∈ R.
Therefore, Theorem 1 holds.

In fact, by Claim 7 and Claims 13 and 14, it is easily seen
that the claim is true.

The proof of the theorem is complete.

Proof of Theorem 2. The “if ” part is clear. We will prove the
“only if ” part by several claims.

Claim 1. For any 𝑎
𝑖𝑖
∈ R
𝑖𝑖
, there exists a map 𝑓

𝑖
: R
𝑖𝑖
→

Z(R) such that 𝐿(𝑎
𝑖𝑖
) − 𝑓
𝑖
(𝑎
𝑖𝑖
) ∈R

𝑖𝑖
, 𝑖 = 1, 2.

We only give the proof for 𝑎
11
here. The proof for any 𝑎

22

is similar.
For any 𝑎

11
∈ R
11
, by Claim 8 in the proof of Theorem 1,

we have

𝐿 (𝑎
11
) = 𝑒
1
𝐿 (𝑎
11
) 𝑒
1
+ 𝑒
2
𝐿 (𝑎
11
) 𝑒
2
∈R
11
+R
22
. (48)

Now, taking any 𝑏
22
∈R
22
and any 𝑐 ∈R, one has

0 = 𝐿 ([[𝑎
11
, 𝑏
22
] , 𝑐])

= [[𝐿 (𝑎
11
) , 𝑏
22
] , 𝑐] + [[𝑎

11
, 𝐿 (𝑏
22
)] , 𝑐] ,

(49)

which implies [𝐿(𝑎
11
), 𝑏
22
] + [𝑎
11
, 𝐿(𝑏
22
)] ∈ Z(R). It follows

that [𝐿(𝑎
11
), 𝑏
22
] ∈ Z(R

22
). By the assumption (iii) in the

theorem, one obtains [𝐿(𝑎
11
), 𝑏
22
] = 0 for all 𝑏

22
∈ R
22
; that

is, 𝑒
2
𝐿(𝑎
11
)𝑒
2
𝑏𝑒
2
= 𝑒
2
𝑏𝑒
2
𝐿(𝑎
11
)𝑒
2
for all 𝑏 ∈R. It follows from

Lemma 12 that 𝑒
2
𝐿(𝑎
11
)𝑒
2
= 𝑓
1
(𝑎
11
)𝑒
2
for some 𝑓

1
(𝑎
11
) ∈

Z(R). Hence

𝐿 (𝑎
11
) = 𝑒
1
𝐿 (𝑎
11
) 𝑒
1
+ 𝑓
1
(𝑎
11
) 𝑒
2

= 𝑒
1
𝐿 (𝑎
11
) 𝑒
1
− 𝑓
1
(𝑎
11
) 𝑒
1

+ 𝑓
1
(𝑎
11
) ∈R

11
+Z (R) .

(50)

The claim holds.
Now define twomaps 𝛿 :R → R and 𝑓 :R → Z(R),

respectively, by

𝛿 (𝑎) = 𝐿 (𝑎
11
) + 𝐿 (𝑎

12
) + 𝐿 (𝑎

21
)

+ 𝐿 (𝑎
22
) − 𝑓
1
(𝑎
11
) − 𝑓
2
(𝑎
22
) ,

𝑓 (𝑎) = 𝐿 (𝑎) − 𝛿 (𝑎)

(51)

for all 𝑎 = 𝑎
11
+ 𝑎
12
+ 𝑎
21
+ 𝑎
22
∈ R. Then, by Claim 4 in the

proof of Theorem 1 and Claim 1, we have that

𝛿 (R
𝑖𝑗
) = 𝐿 (R

𝑖𝑗
) ⊆R

𝑖𝑗
, 𝛿 (R

𝑖𝑖
) ⊆R

𝑖𝑖
, 1 ≤ 𝑖 ̸= 𝑗 ≤ 2.

(52)

Moreover, 𝛿(𝑒
𝑖
) ∈Z(R) for 𝑖 = 1, 2.

Claim 2. 𝛿 is additive onR.

By Claim 7 in the proof ofTheorem 1, 𝛿 is additive onR
12

andR
21
.

Let 𝑖 ∈ {1, 2}. For any 𝑎
𝑖𝑖
, 𝑏
𝑖𝑖
∈ R
𝑖𝑖
, by Claim 14 in the

proof of Theorem 1, (52), and the definition of 𝛿, we have

𝛿 (𝑎
𝑖𝑖
+ 𝑏
𝑖𝑖
) − 𝛿 (𝑎

𝑖𝑖
) − 𝛿 (𝑏

𝑖𝑖
)

= 𝐿 (𝑎
𝑖𝑖
+ 𝑏
𝑖𝑖
) − 𝐿 (𝑎

𝑖𝑖
) − 𝐿 (𝑏

𝑖𝑖
) − 𝑓 (𝑎

𝑖𝑖
+ 𝑏
𝑖𝑖
)

+ 𝑓 (𝑎
𝑖𝑖
) + 𝑓 (𝑏

𝑖𝑖
) ∈Z (R) ∩R

𝑖𝑖
.

(53)

It follows from Lemma 11 that 𝛿(𝑎
𝑖𝑖
+ 𝑏
𝑖𝑖
) − 𝛿(𝑎

𝑖𝑖
) − 𝛿(𝑏

𝑖𝑖
) = 0;

that is, 𝛿 is additive onR
𝑖𝑖
, 𝑖 = 1, 2.

Now, for any 𝑎 = ∑2
𝑖,𝑗=1

𝑎
𝑖𝑗
, 𝑏 = ∑

2

𝑖,𝑗=1
𝑏
𝑖𝑗
∈R, by what the

above proved, one gets

𝛿 (𝑎 + 𝑏) = 𝛿(

2

∑
𝑖,𝑗

(𝑎
𝑖𝑗
+ 𝑏
𝑖𝑗
))

= 𝐿 (𝑎
11
+ 𝑏
11
) + 𝐿 (𝑎

12
+ 𝑏
12
)

+ 𝐿 (𝑎
21
+ 𝑏
21
) + 𝐿 (𝑎

22
+ 𝑏
22
)

− 𝑓
1
(𝑎
11
+ 𝑏
11
) − 𝑓
2
(𝑎
22
+ 𝑏
22
)

= 𝛿 (𝑎
11
+ 𝑏
11
) + 𝛿 (𝑎

12
+ 𝑏
12
)

+ 𝛿 (𝑎
21
+ 𝑏
21
) + 𝛿 (𝑎

22
+ 𝑏
22
)

=

2

∑
𝑖,𝑗=1

𝛿 (𝑎
𝑖𝑗
) +

2

∑
𝑖,𝑗=1

𝛿 (𝑏
𝑖𝑗
) = 𝛿 (𝑎) + 𝛿 (𝑏) .

(54)

Hence 𝛿 is additive onR.

Claim 3. 𝛿 is a derivation.
We will divide the proof of the claim into five steps.

Step 1. For any 𝑎
𝑖𝑖
∈ R
𝑖𝑖
and any 𝑏

𝑖𝑗
∈ R
𝑖𝑗
, we have 𝛿(𝑎

𝑖𝑖
𝑏
𝑖𝑗
) =

𝛿(𝑎
𝑖𝑖
)𝑏
𝑖𝑗
+ 𝑎
𝑖𝑖
𝛿(𝑏
𝑖𝑗
), 1 ≤ 𝑖 ̸= 𝑗 ≤ 2.

For any 𝑎
𝑖𝑖
∈ R
𝑖𝑖
and 𝑏
𝑖𝑗
∈ R
𝑖𝑗
(1 ≤ 𝑖 ̸= 𝑗 ≤ 2), by the

definition of 𝛿 and (33), one obtains

𝛿 (𝑎
𝑖𝑖
𝑏
𝑖𝑗
) = 𝐿 (𝑎

𝑖𝑖
𝑏
𝑖𝑗
) = 𝐿 ([[𝑎

𝑖𝑖
, 𝑏
𝑖𝑗
] , 𝑒
𝑗
])

= [[𝐿 (𝑎
𝑖𝑖
) , 𝑏
𝑖𝑗
] , 𝑒
𝑗
] + [[𝑎

𝑖𝑖
, 𝐿 (𝑏
𝑖𝑗
)] , 𝑒
𝑗
]

= [[𝛿 (𝑎
𝑖𝑖
) , 𝑏
𝑖𝑗
] , 𝑒
𝑗
] + [[𝑎

𝑖𝑖
, 𝛿 (𝑏
𝑖𝑗
)] , 𝑒
𝑗
]

= 𝛿 (𝑎
𝑖𝑖
) 𝑏
𝑖𝑗
+ 𝑎
𝑖𝑖
𝛿 (𝑏
𝑖𝑗
) .

(55)

By a similar argument to that of Step 1, one can show the
following.

Step 2. For any 𝑎
𝑖𝑗
∈R
𝑖𝑗
and any 𝑏

𝑗𝑗
∈R
𝑗𝑗
, we have 𝛿(𝑎

𝑖𝑗
𝑏
𝑗𝑗
) =

𝛿(𝑎
𝑖𝑗
)𝑏
𝑗𝑗
+ 𝑎
𝑖𝑗
𝛿(𝑏
𝑗𝑗
), 1 ≤ 𝑖 ̸= 𝑗 ≤ 2.

Step 3. For any 𝑎
𝑖𝑖
, 𝑏
𝑖𝑖
∈ R
𝑖𝑖
, we have 𝛿(𝑎

𝑖𝑖
𝑏
𝑖𝑖
) = 𝛿(𝑎

𝑖𝑖
)𝑏
𝑖𝑖
+

𝑎
𝑖𝑖
𝛿(𝑏
𝑖𝑖
), 𝑖 = 1, 2.
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Take any 𝑎
𝑖𝑖
, 𝑏
𝑖𝑖
∈R
𝑖𝑖
and any 𝑐

𝑖𝑗
∈R
𝑖𝑗
(1 ≤ 𝑖 ̸= 𝑗 ≤ 2). By

Step 1, one has

𝛿 (𝑎
𝑖𝑖
𝑏
𝑖𝑖
𝑐
𝑖𝑗
) = 𝛿 (𝑎

𝑖𝑖
) 𝑏
𝑖𝑖
𝑐
𝑖𝑗
+ 𝑎
𝑖𝑖
𝛿 (𝑏
𝑖𝑖
𝑐
𝑖𝑗
)

= 𝛿 (𝑎
𝑖𝑖
) 𝑏
𝑖𝑖
𝑐
𝑖𝑗
+ 𝑎
𝑖𝑖
𝛿 (𝑏
𝑖𝑖
) 𝑐
𝑖𝑗

+ 𝑎
𝑖𝑖
𝑏
𝑖𝑖
𝛿 (𝑐
𝑖𝑗
) ,

𝛿 (𝑎
𝑖𝑖
𝑏
𝑖𝑖
𝑐
𝑖𝑗
) = 𝛿 (𝑎

𝑖𝑖
𝑏
𝑖𝑖
) 𝑐
𝑖𝑗
+ 𝑎
𝑖𝑖
𝑏
𝑖𝑖
𝛿 (𝑐
𝑖𝑗
) .

(56)

The above two equations yield (𝛿(𝑎
𝑖𝑖
𝑏
𝑖𝑖
) − 𝛿(𝑎

𝑖𝑖
)𝑏
𝑖𝑖
−

𝑎
𝑖𝑖
𝛿(𝑏
𝑖𝑖
))𝑐
𝑖𝑗
= 0; that is, (𝛿(𝑎

𝑖𝑖
𝑏
𝑖𝑖
) − 𝛿(𝑎

𝑖𝑖
)𝑏
𝑖𝑖
− 𝑎
𝑖𝑖
𝛿(𝑏
𝑖𝑖
))𝑒
𝑖
𝑐𝑒
𝑗
= 0

for all 𝑐 ∈ R. Note that 𝛿(𝑎
𝑖𝑖
𝑏
𝑖𝑖
) − 𝛿(𝑎

𝑖𝑖
)𝑏
𝑖𝑖
− 𝑎
𝑖𝑖
𝛿(𝑏
𝑖𝑖
) ∈ R

𝑖𝑖
. It

follows that 𝛿(𝑎
𝑖𝑖
𝑏
𝑖𝑖
) − 𝛿(𝑎

𝑖𝑖
)𝑏
𝑖𝑖
− 𝑎
𝑖𝑖
𝛿(𝑏
𝑖𝑖
) = 0.

Step 4. For any 𝑎
𝑖𝑗
∈R
𝑖𝑗
and any 𝑏

𝑗𝑖
∈R
𝑗𝑖
, we have 𝛿(𝑎

𝑖𝑗
𝑏
𝑗𝑖
) =

𝛿(𝑎
𝑖𝑗
)𝑏
𝑗𝑖
+ 𝑎
𝑖𝑗
𝛿(𝑏
𝑗𝑖
), 1 ≤ 𝑖 ̸= 𝑗 ≤ 2.

For any 𝑎
𝑖𝑗
∈R
𝑖𝑗
and any 𝑏

𝑗𝑖
∈R
𝑗𝑖
(1 ≤ 𝑖 ̸= 𝑗 ≤ 2), noting

that 𝐿(𝑒
𝑗
) ∈ Z(R), by (52), Claim 2, and the definitions of 𝛿

and 𝑓, we have

𝛿 (𝑎
𝑖𝑗
𝑏
𝑗𝑖
) − 𝛿 (𝑏

𝑗𝑖
𝑎
𝑖𝑗
)

= 𝛿 (𝑎
𝑖𝑗
𝑏
𝑗𝑖
− 𝑏
𝑗𝑖
𝑎
𝑖𝑗
)

= 𝐿 (𝑎
𝑖𝑗
𝑏
𝑗𝑖
− 𝑏
𝑗𝑖
𝑎
𝑖𝑗
) − 𝑓 (𝑎

𝑖𝑗
𝑏
𝑗𝑖
− 𝑏
𝑗𝑖
𝑎
𝑖𝑗
)

= 𝐿 ([[𝑎
𝑖𝑗
, 𝑒
𝑗
] , 𝑏
𝑗𝑖
]) − 𝑓 (𝑎

𝑖𝑗
𝑏
𝑗𝑖
− 𝑏
𝑗𝑖
𝑎
𝑖𝑗
)

= [[𝐿 (𝑎
𝑖𝑗
) , 𝑒
𝑗
] , 𝑏
𝑗𝑖
] + [[𝑎

𝑖𝑗
, 𝑒
𝑗
] , 𝐿 (𝑏

𝑗𝑖
)]

− 𝑓 (𝑎
𝑖𝑗
𝑏
𝑗𝑖
− 𝑏
𝑗𝑖
𝑎
𝑖𝑗
)

= [𝛿 (𝑎
𝑖𝑗
) , 𝑏
𝑗𝑖
] + [𝑎

𝑖𝑗
, 𝛿 (𝑏
𝑗𝑖
)] − 𝑓 (𝑎

𝑖𝑗
𝑏
𝑗𝑖
− 𝑏
𝑗𝑖
𝑎
𝑖𝑗
)

= 𝛿 (𝑎
𝑖𝑗
) 𝑏
𝑗𝑖
+ 𝑎
𝑖𝑗
𝛿 (𝑏
𝑗𝑖
) − 𝑏
𝑗𝑖
𝛿 (𝑎
𝑖𝑗
)

− 𝛿 (𝑏
𝑗𝑖
) 𝑎
𝑖𝑗
− 𝑓 (𝑎

𝑖𝑗
𝑏
𝑗𝑖
− 𝑏
𝑗𝑖
𝑎
𝑖𝑗
) .

(57)

Multiplying 𝑒
𝑖
from both sides in the above equation, and

noting that (52), one obtains

𝛿 (𝑎
𝑖j𝑏𝑗𝑖) = 𝛿 (𝑎𝑖𝑗) 𝑏𝑗𝑖 + 𝑎𝑖𝑗𝛿 (𝑏𝑗𝑖) − 𝑓 (𝑎𝑖𝑗𝑏𝑗𝑖 − 𝑏𝑗𝑖𝑎𝑖𝑗) 𝑒𝑖. (58)

Define a set

U
𝑖
= {𝛿 (𝑎

𝑖𝑗
𝑏
𝑗𝑖
) − 𝛿 (𝑎

𝑖𝑗
) 𝑏
𝑗𝑖
− 𝑎
𝑖𝑗
𝛿 (𝑏
𝑗𝑖
) : 𝑎
𝑖𝑗
∈R
𝑖𝑗
,

𝑏
𝑗𝑖
∈R
𝑗𝑖
, 1 ≤ 𝑖 ̸= 𝑗 ≤ 2} .

(59)

It is easily seen thatU
𝑖
⊆ Z(R)𝑒

𝑖
= Z(R

𝑖𝑖
). Also note that,

for any 𝑐
𝑖𝑖
∈R
𝑖𝑖
,

𝑐
𝑖𝑖
(𝛿 (𝑎
𝑖𝑗
𝑏
𝑗𝑖
) − 𝛿 (𝑎

𝑖𝑗
) 𝑏
𝑗𝑖
− 𝑎
𝑖𝑗
𝛿 (𝑏
𝑗𝑖
))

= 𝑐
𝑖𝑖
𝛿 (𝑎
𝑖𝑗
𝑏
𝑗𝑖
) + 𝛿 (𝑐

𝑖𝑖
) 𝑎
𝑖𝑗
𝑏
𝑗𝑖
− 𝛿 (𝑐
𝑖𝑖
) 𝑎
𝑖𝑗
𝑏
𝑗𝑖

− 𝑐
𝑖𝑖
𝛿 (𝑎
𝑖𝑗
) 𝑏
𝑗𝑖
− 𝑐
𝑖𝑖
𝑎
𝑖𝑗
𝛿 (𝑏
𝑗𝑖
)

= 𝛿 (𝑐
𝑖𝑖
𝑎
𝑖𝑗
𝑏
𝑗𝑖
) − 𝛿 (𝑐

𝑖𝑖
𝑎
𝑖𝑗
) 𝑏
𝑗𝑖
− 𝑐
𝑖𝑖
𝑎
𝑖𝑗
𝛿 (𝑏
𝑗𝑖
) ∈ U

𝑖
.

(60)

Thus, U
𝑖
is a central ideal of R

𝑖𝑖
. It follows from the

assumption (ii) thatU
𝑖
= {0}. So 𝛿(𝑎

𝑖𝑗
𝑏
𝑗𝑖
) = 𝛿(𝑎

𝑖𝑗
)𝑏
𝑗𝑖
+𝑎
𝑖𝑗
𝛿(𝑏
𝑗𝑖
)

for all 𝑎
𝑖𝑗
∈R
𝑖𝑗
and 𝑏
𝑗𝑖
∈R
𝑗𝑖
, 1 ≤ 𝑖 ̸= 𝑗 ≤ 2.

Step 5. For any 𝑎, 𝑏 ∈ R, we have 𝛿(𝑎𝑏) = 𝛿(𝑎)𝑏 + 𝑎𝛿(𝑏); that
is, 𝛿 is a derivation.

By Claim 2 and Steps 1–4, it is easily checked that the step
is true.

Claim 4. 𝑓 satisfies 𝑓([[𝑎, 𝑏], 𝑐]) = 0 for all 𝑎, 𝑏, 𝑐 ∈R.
In fact, for any 𝑎, 𝑏, 𝑐 ∈ R, by the definition of 𝑓 and

Claim 3, we have

𝑓 ([[𝑎, 𝑏] , 𝑐]) = 𝐿 ([[𝑎, 𝑏] , 𝑐]) − 𝛿 ([[𝑎, 𝑏] , 𝑐])

= [[𝐿 (𝑎) , 𝑏] , 𝑐] + [[𝑎, 𝐿 (𝑏)] , 𝑐] + [[𝑎, 𝑏] , 𝐿 (𝑐)]

− [[𝛿 (𝑎) , 𝑏] , 𝑐] − [[𝑎, 𝛿 (𝑏)] , 𝑐]

− [[𝑎, 𝑏] , 𝛿 (𝑐)]

= [[𝑓 (𝑎) , 𝑏] , 𝑐]+[[𝑎, 𝑓 (𝑏)] , 𝑐]+ [[𝑎, 𝑏] , 𝑓 (𝑐)]

= 0.

(61)

The proof of the theorem is complete.
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