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Let a(/= 0), b ∈ C, and n and k be two positive integers such that n ≥ 2. Let F be a family of zero-
free meromorphic functions defined in a domain D such that for each f ∈ F, f + a(f (k))

n − b has at
most nk zeros, ignoring multiplicity. Then F is normal in D.

1. Introduction and Main Results

LetD be a domain in C, and letF be a family of meromorphic functions defined in the domain
D. F is said to be normal in D, in the sense of Montel, if for every sequence {fn} ⊆ F contains
a subsequence {fnj} such that fnj converges spherically uniformly on compact subsets of D
(see [1, Definition 3.1.1]).

F is said to be normal at a point z0 ∈ D if there exists a neighborhood of z0 in which F
is normal. It is well known that F is normal in a domain D if and only if it is normal at each
of its points (see [1, Theorem 3.3.2]).

Let f be a meromorphic function in the complex plane. We use the standard nota-tions
and results of value distribution theory as presented in [2–4]. In particular, T(r, f) is Nevan-
linna’s characteristic function and S(r, f) denotes a function with the property S(r, f) =
o(T(r, f)) as r → ∞ (outside an exceptional set of finite linear measure).

In 1959, Hayman [5] proved the following well-known result.

Theorem A. Let f be a transcendental meromorphic function on the complex plane C, let a be a non-
zero finite complex number, and let n be a positive integer. If n ≥ 5, then f ′ + afn assumes each value
b ∈ C infinitely often.
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There are some examples constructed by Mues [6] which show that Theorem A is not
true when n = 3, 4. Corresponding to Theorem A, Ye [7, Theorem 2.1] proved the following
interesting result.

Theorem B. Let f be a transcendental meromorphic function. If a/= 0 is a finite complex number and
n ≥ 3 is an positive integer, then f + af ′n assumes all finite complex number infinitely often.

In [7, Theorem 2.2], Ye also obtained the following result, which may be considered as
a normal family analogue of Theorem B.

TheoremC. LetF be a family of meromorphic functions defined in a domainD, f /= b and f+af ′n /= b
for every f ∈ F, where n ≥ 2 is an integer and a/= 0, b are two finite complex numbers. Then, F is
normal.

Ye [7] asked whether Theorem B remains valid for n = 2. Recently, Fang and Zalcman
showed that Theorem B holds for n = 2. In [8], the condition in Theorem C that f /= b can
be relaxed to that all zeros of each function in F are of multiplicity at least 2. Actually. they
obtained the following results.

TheoremD. Let f be a transcendental meromorphic function. If a/= 0 is a finite complex number and
n ≥ 2 is an positive integer, then f + af ′n assumes all finite complex number infinitely often.

Theorem E. Let F be a family of meromorphic functions on the plane domain D, let n ≥ 2 be a posi-
tive integer, and let a/= 0, b be complex numbers. If, for each f ∈ F, all zeros of f are multiple and
f + af ′n /= b on D, then F is normal on D.

A natural problem arises: what can we say if f ′ in Theorems E is replaced by the kth
derivative f (k)? In [9], Xu et al. proved the following result.

Theorem F. Let a(/= 0), b ∈ C and n and k be two positive integers such that n ≥ k + 1. Let F be a
family of meromorphic functions defined on a domain D. If, for every function f ∈ F, f has only zeros
of multiplicity at least k + 1, and f + a(f (k))n /= b in D, then F is normal.

Xu et al. [9] askedwhether Theorem F remains valid for n = 2.We partially answer this
question. If f /= 0, we generalize Theorem F by allowing f + a(f (k))n − b to have zeros but res-
tricting their numbers.

Theorem 1.1. Let a(/= 0), b ∈ C, and n and k be two positive integers such that n ≥ 2. Let F be
a family of zero-free meromorphic functions defined in a domain D such that for each f ∈ F, f +
a(f (k))n − b has at most nk zeros, ignoring multiplicity. Then, F is normal in D.

Remark 1.2. Here, f /= 0 can be replaced by f /= c, where c is any finite complex numbers.

Example 1.3. Let D = {z : |z| < 1}. Let F = {fm}, where fm := emz. Then, fm + af ′
m = (1 +

am)emz /= 0 in D for every function f ∈ F. However, it is easily obtained that F is not normal
at the point z = 0.

Example 1.4. Let D = {z : |z| < 1}. Let F = {fm}, where fm := 1/mz. Then, fm + a(f ′
m)

2 =
(mz3 + 1)/m2z4 has 3 zeros in D for every function f ∈ F. However, it is easily obtained that
F is not normal at the point z = 0.
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Example 1.5. Let D = {z : |z| < 1}. Let F = {fm}, where fm := mz. It follows that fm + a(f ′
m)

2 =
mz + m2 has no zero in D for every function f ∈ F. However, it is easily obtained that F is
not normal at the point z = 0.

Examples 1.3 and 1.4 show that the conditions that n ≥ 2 and f + a(f (k))n − b have at
most nk distinct zeros in Theorem 1.1 are shape. Example 1.5 shows the condition that f /= 0
cannot be omitted.

2. Some Lemmas

To prove our results, we need some preliminary results.

Lemma 2.1 ([9], Lemma 2.2). Let n ≥ 2, k be positive integers, let a be a nonzero constant and let
P(z) be a polynomial. Then, the solution of the differential equation a(W (k)(z))n + W(z) = P(z)
must be polynomial.

Lemma 2.2. Let f be a nonzero transcendental meromorphic function. If a be a nonzero finite complex
number and let n ≥ 2 and k be two positive integers. Then, f + a(f (k))n assumes each value b ∈ C

infinitely often.

Proof. Set

F = f + a
(
f (k)
)n − b, (2.1)

φ =
F ′

F
=
f ′ + an

(
f (k))n−1f (k+1)

f + a
(
f (k)
)n − b , (2.2)

ψ = n
f (k+1)

f (k)
− F ′

F
=
nf (k+1)f − bnf (k) − f ′f (k)

f (k)
(
f + a

(
f (k)
)n − b) . (2.3)

We claim that φψ /≡ 0. If φ ≡ 0, then F ≡ 0. We can deduce that F ≡ c, where c is a finite
complex number. We conclude from (2.1) and Lemma 2.1 that, f must be a polynomial, which
is a contradiction.

If ψ ≡ 0, from (2.3), we can obtain

c
(
f (k)
)n

= f + a
(
f (k)
)n − b, (2.4)

where c is a finite complex number, that is,

(a − c)
(
f (k)
)n

+ f = b. (2.5)

If a − c = 0, we can get that f ≡ b, which is a contradiction.

If a − c /= 0, we conclude from (2.5) and Lemma 2.1 that f must be a polynomial,
which is a contradiction.
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By elementary Nevanlinna theory and (2.1), we have T(r, F) = O(T(r, f)). Thus, from
(2.2) and (2.3), we have

m
(
r, φ
)
= S
(
r, f
)
, m

(
r, ψ
)
= S
(
r, f
)
. (2.6)

It follows from (2.2), (2.3) and Nevanlinna’s First Fundamental Theorem that

N

(
r,

1
φ

)
� m

(
r, φ
)
+N

(
r, φ
) −m

(
r,

1
φ

)
+O(1)

� N
(
r, φ
)
+ S
(
r, f
)

� N
(
r, f
)
+N

(
r,

1
F

)
+ S
(
r, f
)
,

(2.7)

N

(
r,

1
ψ

)
� m

(
r, ψ
)
+N

(
r, ψ
) −m

(
r,

1
ψ

)
+O(1)

� N
(
r, ψ
)
+ S
(
r, f
)

� N

(
r,

1
f (k)

)
+N

(
r,

1
F

)
+ S
(
r, f
)
.

(2.8)

By (2.2) and (2.3), we get

φ
(
f − b) − f ′ = a

(
f (k)
)n
ψ. (2.9)

We have by (2.6)-(2.7)

T
(
r, φ
(
f − b) − f ′) = T

(
r,
(
f − b)

(
φ − f ′

f − b
))

� T
(
r, f − b) + T

(
r, φ − f ′

f − b
)
+ S
(
r, f
)

� m
(
r, f − b) +N(r, f − b) +m

(
r, φ − f ′

f − b
)
+N

(
r, φ − f ′

f − b
)
+ S
(
r, f
)

� m
(
r, f
)
+N

(
r, f
)
+m
(
r, φ
)
+m
(
r,

f ′

f − b
)
+N

(
r, φ − f ′

f − b
)
+ S
(
r, f
)

� T
(
r, f
)
+N

(
r, f
)
+N

(
r,

1
F

)
+ S
(
r, f
)
.

(2.10)
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It follows from (2.6)–(2.10) that

nT
(
r, f (k)

)
� T
(
r, ψ
)
+ T
(
r, φ
(
f − b) − f ′) + S(r, f)

� m
(
r, ψ
)
+N

(
r, ψ
)
+ T
(
r, f
)
+N

(
r, f
)
+N

(
r,

1
F

)
+ S
(
r, f
)

� N

(
r,

1
f (k)

)
+N

(
r,

1
F

)
+m
(
r,

1
f

)
+N

(
r,

1
f

)
+N

(
r, f
)

+N
(
r,

1
F

)
+ S
(
r, f
)

� N

(
r,

1
f (k)

)
+ 2N

(
r,

1
F

)
+m

(
r,
f (k)

f

)
+m

(
r,

1
f (k)

)
+N

(
r,

1
f

)

+N
(
r, f
)
+ S
(
r, f
)

� T

(
r,

1
f (k)

)
+ 2N

(
r,

1
F

)
+N

(
r,

1
f

)
+N

(
r, f
)
+ S
(
r, f
)

� T
(
r, f (k)

)
+ 2N

(
r,

1
F

)
+N

(
r,

1
f

)
+N

(
r, f
)
+ S
(
r, f
)
.

(2.11)

So, we have

(n − 1)T
(
r, f (k)

)
� 2N

(
r,

1
F

)
+N

(
r,

1
f

)
+N

(
r, f
)
+ S
(
r, f
)
. (2.12)

We have

(n − 1)T
(
r, f (k)

)
≥ (n − 1)N

(
r, f (k)

)
≥ (n − 1)N

(
r, f
)
+ (n − 1)N

(
r, f
)
. (2.13)

Since f /= 0, if f + a(f (k))n assumes the value b only finitely often, we by (2.12) can get

N
(
r, f
)
= S
(
r, f
)
. (2.14)

Hence,

(n − 1)T
(
r, f (k)

)
� 2N

(
r,

1
F

)
+ S
(
r, f
)
. (2.15)

So f + a(f (k))n assumes each value b ∈ C infinitely often.
We complete the proof of Lemma 2.2.
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Using the method of Chang [10, Lemma 4], we obtain the following lemma.

Lemma 2.3. Let f be a nonconstant zero-free rational function, n ≥ 2, let k be two positive integers,
and a/= 0, b be two complex constants. Then, the function f +a(f (k))n − b has at least nk + 1 distinct
zeros in C.

Proof. Since f(z) is a nonconstant zero-free rational function, f(z) is not a polynomial, and
hence it has at least one finite pole. Thus, we can write

f(z) =
C1∏m

i=1(z + zi)
pi
, (2.16)

where C1 is a nonzero constant, m and pi are positive integers, the zi (when 1 ≤ i ≤ m) are
distinct complex numbers, and denote p =

∑m
i=1 pi.

By induction, we deduce from (2.16) that

f (k)(z) =
P(m−1)k∏m

i=1(z + zi)
pi+k

, (2.17)

where P(m−1)k is polynomial of degree (m − 1)k.
So the degree of numerator of the function f + a(f (k))n is equal to

∑m
i=1(n − 1)pi + nk.

By calculation, f + a(f (k))n − b has at least one zero in C. Thus, we can write

f + a
(
f (k)
)n − b =

C2
∏s

i=1(z + αi)
li

∏m
i=1(z + zi)

n(pi+k)
, (2.18)

where C2 is a nonzero constant, li are positive integers, αi (when 1 ≤ i ≤ s), and zi (when 1 ≤
i ≤ m) are distinct complex numbers. Thus, by (2.16), (2.17), and (2.18), we get

C1

m∏
i=1

(z + zi)(n−1)pi+nk + a
(
P(m−1)k

)n = b
m∏
i=1

(z + zi)n(pi+k) + C2

s∏
i=1

(z + αi)li . (2.19)

Case 1. If b = 0, it follows that
∑m

i=1[(n − 1)pi + nk] =
∑s

i=1 li and C1 = C2. Thus, it follows from

(2.19) that

m∏
i=1

(1 + zit)(n−1)pi+nk −
s∏
i=1

(1 + αit)li = t(n−1)p+nkQ(t), (2.20)

where Q(t) = (−a/C1)t(m−1)nk(P(m−1)k(1/t))
n is a polynomial. Then, Q(t) is a polynomial of

degree less than (m − 1)nk, and it follows that

∏m
i=1(1 + zit)

(n−1)pi+nk
∏s

i=1(1 + αit)
li

= 1 +
t(n−1)p+nkQ(t)
∏s

i=1(1 + αit)
li
= 1 +O

(
t(n−1)p+nk

)
(2.21)

as t → 0.
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Logarithmic differentiation of both sides of (2.21) shows that

m∑
i=1

(
(n − 1)pi + nk

)
zi

1 + zit
−

s∑
i=1

liαi
1 + αit

= O
(
t(n−1)p+nk−1

)
(2.22)

as t → 0.
Comparing the coefficient of (2.22) for tj , j = 0, 1, . . . , (n − 1)p + nk − 2, we have

m∑
i=1

(
(n − 1)pi + nk

)
z
j

i −
s∑
i=1

liα
j

i = 0 (2.23)

for j = 1, . . . , (n − 1)p + nk − 1.
Set zm+i = −αi when 1 ≤ i ≤ s. Noting that

∑m
i=1[(n − 1)pi + nk] =

∑s
i=1 li, then it follows

from (2.23) that the system of linear equations,

m+s∑
i=1

z
j

ixi = 0, (2.24)

where 0 ≤ j ≤ (n − 1)p + nk − 1, has a nonzero solution

(x1, . . . , xm, xm+1, . . . , xm+s) =
(
(n − 1)p1 + nk, . . . , (n − 1)pm + nk, l1, . . . , ls

)
. (2.25)

If (n− 1)p+nk ≥ m+ s, then the determinant det(zji )(m+s)×(m+s) of the coefficients of the
system of (2.24), where 0 ≤ j ≤ (n − 1)p + nk − 1, is equal to zero, by Cramer’s rule (see, e.g.,
[11]). However, the zi are distinct complex numbers when 1 ≤ i ≤ m+ s, and the determinant
is a Vandermonde determinant, so it cannot be 0 (see [11]), which is a contradiction.

Hence, we conclude that (n − 1)p + nk < m + s. Noting that n ≥ 2, it follows from this
and p =

∑m
i=1 pi ≥ m that s ≥ nk + 1.

Case 2. If b /= 0, set

b
m∏
i=1

(z + zi)n(pi+k) − C1

m∏
i=1

(z + zi)(n−1)pi+nk = b
m∏
i=1

(z + zi)(n−1)pi+nk
q∏
i=1

(
z + βi

)ti , (2.26)

where ti are positive integers. It follows that βi (when 1 ≤ i ≤ q) and zi (when 1 ≤ i ≤ m) are
distinct complex numbers, and

∑q

i=1 ti = p.
By (2.19), we have

b
m∏
i=1

(z + zi)(n−1)pi+nk
q∏
i=1

(
z + βi

)ti + C2

s∏
i=1

(z + αi)li = a
(
P(m−1)k

)n
. (2.27)
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It follows that

m∑
i=1

[
(n − 1)pi + nk

]
+

q∑
i=1

ti = np + nmk =
s∑
i=1

li, (2.28)

and C2 = −b. Thus, by (2.27),

m∏
i=1

(1 + zit)(n−1)pi+nk
q∏
i=1

(
1 + βit

)ti −
s∏
i=1

(1 + αit)li = tn(p+k)Q(t), (2.29)

where Q(t) = (a/b)t(m−1)nk(P(m−1)k(1/t))
n is a polynomial. Then, Q(t) is a polynomial of

degree less than (m − 1)nk, and it follows that

∏m
i=1(1 + zit)

(n−1)pi+nk∏q

i=1

(
1 + βit

)ti
∏s

i=1(1 + αit)
li

= 1 +
tn(p+k)Q(t)
∏s

i=1(1 + αit)
li
= O
(
tn(p+k)

)
(2.30)

as t → 0.
Thus, by taking logarithmic derivatives of both sides of (2.12), we get

m∑
i=1

(
(n − 1)pi + nk

)
zi

1 + zit
+

q∑
i=1

tiβi
1 + βit

−
s∑
i=1

liαi
1 + αit

= O
(
tn(p+k)−1

)
. (2.31)

We consider two cases.

Subcase 2.1 ({α1, . . . , αs} ∩ {β1, . . . , βq} = ∅). Applying the reasoning of Case 1 and noting that
p ≥ q, we deduce that s ≥ nk.

Subcase 2.2 ({α1, . . . , αs} ∩ {β1, . . . , βq}/= ∅). Without loss of generality, we may assume that
αq−i = βi, for (1 ≤ i ≤M). Denote

zi =

⎧
⎪⎪⎨
⎪⎪⎩

zi for 1 ≤ i ≤ m,
βi−m for m + 1 ≤ i ≤ m + q,
αM+i−m−q for m + q + 1 ≤ i ≤ m + q + s −M,

Ni =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(n − 1)pi + nk for 1 ≤ i ≤ m,
ti−m for m + 1 ≤ i ≤ m + s −M,

ti−m − li−m−s+M for m + s −M + 1 ≤ i ≤ m + q,
li−m−q+M for m + q + 1 ≤ i ≤ m + q + s −M.

(2.32)

The formula (2.31) can be rewritten:

m+q+s−M∑
i=1

Nizi
1 + zit

= O
(
tn(p+k)−1

)
. (2.33)
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Applying the reasoning of Case 1, and noting that p ≥ q, we deduce that s ≥ nk + 1.
This completes the proof of Lemma 2.3.

Lemma 2.4 ([10], Lemma 4). Let f be a nonconstant zero-free rational function, let a/= 0 be a
complex constant, and let k be a positive integer. Then f (k) − a has at least k + 1 distinct zeros in
C.

Lemma 2.5 (see [12], Lemma 2, Zalcman’s lemma). Let F be a family of functions meromorphic
on a domainD, all of whose zeros have multiplicity at least k. Suppose that there existsA � 1 such that
|f (k)(z)| � A whenever f(z) = 0. Then, if F is not normal at z0 ∈ D, there exist, for each 0 � α � k,

(a) points zn, zn → z0;

(b) functions fn ∈ F;
(c) positive numbers ρn → 0+;

such that ρ−αn fn(zn + ρnξ) = gn(ξ) → g(ξ) locally uniformly with respect to the spherical metric,
where g(ξ) is a nonconstant meromorphic function on C, all of whose zeros of g(ξ) are of multiplicity
at least k, such that g#(ξ) ≤ g#(0) = kA + 1.

Here, as usual, g#(ξ) = |g ′(ξ)|/(1 + |g(ξ)|2) is the spherical derivative.

3. Proof of Theorem

Suppose that F is not normal in D. Then, there exists at least one point z0 such that F is not
normal at the point z0 ∈ D. Without loss of generality, we assume that z0 = 0. We consider
two cases.

Case 1 (b = 0). By Zalcman’s lemma, there exist:

(a) points zn, zn → z0;

(b) functions fn ∈ F;
(c) positive numbers ρn → 0+;

such that

gj(ξ) = ρ
−nk/(n−1)
j fj

(
zj + ρjξ

) −→ g(ξ), (3.1)

spherically uniformly on compact subsets of C, where g(ξ) is a nonconstant meromorphic
function in C. Since fj /= 0, by Hurwitz’s theorem, it implies that g(ξ)/= 0.

On every compact subset of C which contains no poles of g, from (3.1), we get

gj(ξ) + a
(
gkj (ξ)

)n
= ρ−nk/(n−1)j

(
fj
(
zj + ρjξ

)
+ a
(
fkj
(
zj + ρjξ

))n) −→ g(ξ) + a
(
gk(ξ)

)n
,

(3.2)

also locally uniformly with respect to the spherical metric.
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We claim that g(ξ) + a(gk(ξ))n has at most nk distinct zeros.
Suppose that g(ξ) + a(gk(ξ))n has nk + 1 distinct zeros ξi, 1 ≤ i ≤ nk + 1, and choose

δ(> 0) small enough such that
⋂nk+1
i=1 D(ξi, δ) = ∅, where D(ξ0, δ) = {ξ | |ξ − ξi| < δ}.

From (3.2), by Hurwitz’s theorem, there exist points ξji ∈ D(ξi, δ) (1 ≤ i ≤ nk + 1) such
that for sufficiently large j,

fj
(
zj + ρjξ

j

i

)
+ a
(
fkj

(
zj + ρjξ

j

i

))n
= 0, (3.3)

for 1 ≤ i ≤ nk + 1.
Since zj → 0 and ρj → 0+, we have zj + ρjξ

j

i ∈ D(0, σ) (σ is a positive constant) for
sufficiently large j, so fj(z) + a(fkj (z))

n has nk + 1 distinct zeros, which contradicts the fact

that fj(z) + a(fkj (z))
n has at most nk zero.

However, by Lemmas 2.2 and 2.3, there do not exist nonconstant meromorphic func-
tions that have the above properties. This contradiction shows that F is normal in D.

Case 2 (b /= 0). By Zalcman’s lemma, there exist:

(a) points zn, zn → z0;

(b) functions fn ∈ F;
(c) positive numbers ρn → 0+;

such that

gj(ξ) = ρ−kj fj
(
zj + ρjξ

) −→ g(ξ) (3.4)

spherically uniformly on compact subsets of C, where g(ξ) is a nonconstant meromorphic
function in C. Since fj /= 0, by Hurwitz’s theorem, it implies that g(ξ)/= 0.

On every compact subset of C which contains no poles of g, from (3.4), we get

ρkj gj(ξ) + a
(
gkj (ξ)

)n − b −→ a
(
gk(ξ)

)n − b (3.5)

also locally uniformly with respect to the spherical metric.
Noting that

ρkj gj(ξ) + a
(
gkj (ξ)

)n − b = fj
(
zj + ρjξ

)
+ a
(
fkj
(
zj + ρjξ

))n − b, (3.6)

we claim that a(gk(ξ))n − b has at most nk distinct zeros.
Suppose that g(ξ) + a(gk(ξ))n − b has nk + 1 distinct zeros ξi, 1 ≤ i ≤ nk + 1, and choose

δ(> 0) small enough such that
⋂nk+1
i=1 D(ξi, δ) = ∅, where D(ξ0, δ) = {ξ | |ξ − ξi| < δ}.

From (3.2), by Hurwitz’s theorem, there exist points ξji ∈ D(ξi, δ) (1 ≤ i ≤ nk + 1) such
that for sufficiently large j

fj
(
zj + ρjξ

j

i

)
+ a
(
fkj

(
zj + ρjξ

j

i

))n − b = 0, (3.7)

for 1 ≤ i ≤ nk + 1.
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Since zj → 0 and ρj → 0+, we have zj + ρjξ
j

i ∈ D(0, σ) (σ is a positive constant) for
sufficiently large j, so fj(z)+a(fkj (z))

n −b has nk+1 distinct zeros, which contradicts the fact

that fj(z) + a(fkj (z))
n − b has at most nk zero.

Denote c1, c2, . . . , cn by the different roots of ωn = b/a, then

a
(
gk(ξ)

)n − b = a
n∏
i=1

(
gk(ξ) − ci

)
. (3.8)

Subcase 2.1 (If g(ξ) is a rational function). By Lemma 2.4 and (3.8), we can deduce that

a(gk(ξ))n −b has at least nk+n distinct zeros. This contradicts the claim that a(gk(ξ))n −b has
at most nk distinct zeros.

Subcase 2.2 (If g(ξ) is a transcendental meromorphic function). By Nevanlinnas second main
theorem, we have

T
(
r, g(k)

)
≤ N

(
r, g(k)

)
+

n∑
i=1

N

(
r,

1
g(k) − ci

)
+ S
(
r, g(k)

)

= N
(
r, g(k)

)
+N

(
r,

1
a
(
g(k)
)n − b

)
+ S
(
r, g(k)

)

≤ 1
k + 1

N
(
r, g(k)

)
+ S
(
r, g(k)

)

≤ 1
k + 1

T
(
r, g(k)

)
+ S
(
r, g(k)

)
.

(3.9)

It follows that T(r, g(k)) ≤ S(r, g(k)), which is a contradiction. This contradiction shows
that F is normal in D.

Hence, Theorem 1.1 is proved.
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