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ON THE COSET RING AND STRONG DITKIN SETS

BERT M. SCHREIBER

We present a complete description of the closed sets in
the coset ring «^(G) of an abelian topological group G. Using
this result we show that every such set in a separable, metri-
zable, locally compact, abelian group Γ is a strong Ditkin set
in the sense of Wik, yielding the converse of a theorem of
Rosenthal and thus completing the characterization of the
strong Ditkin sets with void interior for certain choices of Γ.
These two results were first obtained by J. E. Gilbert. Our
development of the former rests on the following theorem,
which seems to be of independent interest: If φ:G~> G* is a
homomorphism and Ae&(G), then <p(A)e&(G*).

The computations found here are simple, and we hope that our
presentation will prove to be more conceptual than those of [2] and
[3]. In particular, we show that the characterization of strong Ditkin
sets is a direct consequence of earlier results on such sets and the
description of closed sets in the coset ring. The results in this paper
were obtained independently of the work of Dr. Gilbert.

1* The coset ring*

1.1 The coset ring of an abelian group G, denoted by ^?(G), is
the smallest Boolean algebra of subsets of G containing the cosets of
all subgroups of G. It is easy to see (see [8, pp. 81-82]) that every

has the form

(l) s=\j(κ>\vκή

where the Kj are (possibly void) cosets of subgroups of G, and the
group which is a translate of K* is a subgroup of infinite index of
the group which is a translate of Ki, i = 1, , n(j), j = 1, , N.

1.2 We shall need the following restatement of a lemma of Paul
Cohen.

LEMMA. ([1, pp. 223-224]) Let Se^(G) and let J ^ he the
smallest Boolean algebra of subsets of G containing S and all of its
translates. Then J^f contains a finite collection 3ίΓ of cosets such
that the Boolean algebra generated by S>Γ contains S.

THEOREM 1.3. Let G and G* be abelian groups and φ: G
homomorphism. If Se &(G), then <p(S) e

805



806 BERT M. SCHREIBER

Proof. Since φ preserves unions and translations we need only
consider, by 1.1, sets of the form S = G0\L^=i^ί> where GQ is a sub-
group of G and the K{ are cosets in Go of subgroups of Go. Write
φ I Go = ψ o π, where π: Go —* G0/(G0 Π H) is the natural map, H = ker φ,
and ψ is an isomorphism of G0/(G0 Π H) into G*. We shall show that
π(S)e^(GQ/(GQΓ)H));it then follows that φ(S) = ψ(π(S)) e £P(G*).
Thus if Kίy ---,Kn are cosets in G, H is a subgroup of G, and
π:G—>G/H is the natural map, then we must show that

or equivalently that its complement

{£ 6 G/iJ: π-^ί) c Xx U U Kn} e

We prove by induction that

( 2 ) S = {x e G: x + Ha K, u U Kn) e

For such a set S, let Kά be a coset of the group G3, j = 1, •••, w.
In case w = 1, either S = 0 G ^ ( f f ) or some coset of H is contained
in JSLΊ In the latter case ZΊ is a union of cosets of H, and hence

Assume the induction has been carried out to some n and

S = {x e G: x + Ha K, u U i^w+1}

If S Φ 0 we may translate it and thus assume that HaKγ\J U Kn+ί

Let jffy = HΓ\Kjfj = 1, . . . , n + 1. Since a? + jff - U?iί (» + #;)>
ίceG, we see that

S - "n {x: x + H3 a Kx u U ίΓn+1} .
3=1

And

{x: * + Hj c ^ U U Kn+ι} = {%: x + -ff. c ϋΓ3 } \j{x:x + H, c U ^<}

= Gj U {*: x + fly c U ,̂-} ,

which is in &(G) by the induction hypothesis. Hence Se&(G), and
the induction is complete.

Now for S a nonvoid set of the form (2), S is a union of cosets
of H, and so is every member of the Boolean algebra suf generated
by S and all of its translates. By 1.2 sf contains a finite collection
JίΓ of cosets such that the Boolean algebra & generated by 3ίΓ con-
tains S. π clearly induces a Boolean algebra homomorphism on
hence on ^ , so π(S) e &(G/H). Since

π(S) = {ζe G/H: π^(ζ) c ^ U U Ϊ J ,
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the theorem is proved.

LEMMA 1.4. Let G be an abelian topological group, Go a dense
subgroup of G, and Kί9 ***,Kn cosets in Go. Let S — G0\U?=i &i Then
there is an open subgroup H of G such that S is a union of cosets
of H.

Proof. Let Σ denote the smallest (and necessarily finite) collection
of subgroups of G satisfying GoeΣ, G{eΣ where Ki is a coset of Giy

i = 1, , n, and Σ is closed under intersections. Choose K e Σ minimal
with respect to the property that K is open in G. Then there is a
(perhaps void) subset F of {1, , n) such that:

( i ) K = Go Π flier Gi,
(ii) ieF and Gi = Gά imply jeF.

Set H = K.
Let 3 be any coset of H; we must show that either S Π 3 — 0

or 3aS. Thus suppose yeHf)S. Then y + K is a dense subset
of 3 = y + H; and we shall show that

(y + K)\U Ki = (y + K)\U Li

is dense in 3, where L{ = K{ Pi (y + K), i = 1, , n. For ieF, K
is a subgroup of (?*; thus L{— 0 since y + K φ K^ If i&F then Li
is either void or a coset of iΓ Π G> By the choice of K and F(K f] Gi)"
is not open, so K πGi is nowhere dense in G. Thus U i ^ - ^ i is now-
here dense, whence

(V + K)\V Kt = (y + K)\\J ^

is dense in 3. We now have

3 = ϊ(y + 1O\U JKΓ,T c Γ(?0\U^T = S .

COROLLARY 1.5. Let G be an abelian, connected topological group
and S e &{G). If S is not dense in G then S is contained in some
finite union of cosets of proper closed subgroups of G.

Proof. Let S be written in the form (1). Either each Kg is a
coset of a proper closed subgroup of G, or else some KQ

k is dense in
G. In the latter case we may translate Sk — Xofc\U?=i} ^ a n ( i aPPΪy
1.4, concluding that Sk is a union of cosets of some open subgroup of
G. Since G is connected, we must have H = G; so Sk, and hence S,
is dense in G.
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EXAMPLE 1.6. ([6, pp. 22-24 and Appendix AO]) Let S be a
closed nonvoid set in &(G), where G = R, the additive group of real
numbers, or G = T, the circle group. Then S has one of the following
forms.

( i ) S is finite
(ii) S = G
(iii) G = R and there exist a finite number Z» , Z% of arithme-

tic progressions (i.e., Z^ = {nXi + ys\ neZ} for some 0 ̂  #< < x{) such
that S Δ ( ^ U U Zn) is finite.

Proof. Since every closed, proper subgroup of R [resp., T] is
cyclic [resp., finite], we need only apply 1.5 and an easy description
of &e(Z) (cf. [8, 3.1.6, p. 61]).

THEOREM 1.7. LetGbe an abelian topological group. If Se.
then S 6 &(G). If Se&(G) is closed, then S has the form (1) where
the Kj are closed (possibly void) cosets in G such that for each
j = 1, , N Ki is relatively open in Ki, i — 1, , n(j).

Proof. Let Se^(G) of the form S = G 0\U?=i^ where Go is a
subgroup of G and the K{ are cosets contained in Go. By 1.4 there is
a relatively open subgroup H of Go such that S is a union of cosets of
H. If π: Go —• G0/iϊ is the natural homomorphism, then by Theorem
1.3 π(S) e <^(G0/H), say

π(S) - ύ(Li\Xj L{
j = l \ i = \

the L{ being cosets in GQ/H. And τr(S) — ττ(S) since π is continuous
and Go/H is discrete. Thus

= u k w n u JΓW) L
i=iL i=i J

where each π~ι{Li) is open in Go.
If S is an arbitrary set in &(G), then S = S, U U SN, where

each SA is a translate of a set of the type just described. Thus S =
Si U l)SNe&(G) and has the desired form.

COROLLARY 1.8. Let G and S be as in 1.7, and suppose S is
compact. Then S is a finite union of compact cosets.

Proof. S has the form (1) as in 1.7; fix j and denote n(j) by n.
Let Ki be a nonvoid coset of the group Giy i — 1, , n, and let H =
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CΓI Π Ω Gn. Then iζf\U?=i %i *s a compact set which is a union of
relatively open cosets of H; this union must therefore be a finite one,
and the corollary follows.

EXAMPLE 1.9. Let G - Rp x T\ p and q nonnegative integers.
The structure of all closed subgroups of G is well known (e.g., see [4, Th.
9.11, pp. 92-94]), and this structure along with Theorem 1.7 allows
one to give a complete description of the closed sets in &(G) in the
manner of 1.6.

1.10. Another example of the structure developed in 1.7 is af-
forded by the additive groups of Jp1 the p-adic integers, and Ωp, the
p-adic number field, p a prime, (see [4, §10]). Recall that every closed
proper subgroup of Ωp is one of the open, compact, canonical subgroups
Λn, neZ, which are topologically isomorphic with Jp. Notice the
similarity of the following description and the case G = Z(p°°), where
the fact that every proper subgroup is finite implies that every set
in &(G) is finite or the complement of a finite set.

EXAMPLE. If S is a closed, nonvoid set in &(ΩP), then S has
one of the following forms:

( i ) S is finite.
( i i ) S = ΩP.

(iii) S is the union of a finite set and a finite collection of cosets
of some one Λn.

(iv) S is the union of a finite set and the complement of a finite
union of cosets of some one Δn.
In particular, every closed Se&(Ωp) is the union of a finite set and
an open and closed set.

Proof. Let Ωp Φ Se&(Ωp), and let S be infinite and written in
the form (1) as in 1.7. We may assume that each of the K( is infinite.
Let H = Πf=i Γ\i=o G{, each K{ being a coset of the open subgroup
G{ of Ωp. Then H = Λn for some neZ, and [G(: H] < oo unless i = 0
and Gi = Ωp. For any fixed j , if Gί Φ Ωp, then K>\\J^ Kί has the
form (iii). And if Gi = Ki = Ωp we have Ki\\J^] Kί satisfying (iv).
The result follows.

REMARK 1.11. In [5] we have shown that the examples given in
this section are the only locally compact ones whose coset rings have
the respectively indicated properties. More precisely:

THEOREM. ([5]) Let G be a locally compact abelίan group.
Every nontrivial, proper closed subgroup of G is
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( i ) finite
(i i) of finite index
(iii) compact
(iv) open
(v) discrete

if and only if G is, respectively,
( i ) T, Zip00) (for some prime p), or finite.
(ii) Z, Δp {some p), or finite.
(iii) Ωp> Z(p°°), or compact.
(iv) Δp, Ωp, or discrete.
( v ) T or R.

2. Strong Ditkin sets*

2.1. Let G be a locally compact, metrizable, separable, abelian
group (so that its character group Γ has these properties also), and
let E be a closed subset of Γ. Let

{feL1(G):f=0 on E)

(f denotes the Fourier transform of /) and

IQ(E) = {/ e Lι{G):f= 0 on a neighborhood of E) ,

and recall that E is said to be of spectral synthesis if [I0(E)]~ = I(E).
E is called a Ditkin set (C-set in [8]) if for every / e I(E) we can
find a sequence 0Ό~=i in I0(E) such that \\un*f — /||i—*0 as w—> oo.
Following [9], if the sequence (MW)ΪU may be chosen independently of
/, then E is called a strong Ditkin set. We follow notation in [8]
throughout this section.

LEMMA 2.2. ([7, Lemma 2.2 (b)]) Let E be a closed subset of
Γ. E is a strong Ditkin set if and only if there is a sequence
(/O~=i i n M{G) such that μn = 1 on a neighborhood of E, n — 1, 2, ,
and || μn*f JU —- 0 for all fel(E).

LEMMA 2.3. ([9, Th. 3]) Finite unions of strong Ditkin sets
are strong Ditkin sets.

LEMMA 2.4. ([7, Th. 2.3]) Every closed coset in Γ is a strong
Ditkin set.

LEMMA 2.5. Let A be a closed subgroup of Γ and Δ a relatively
open subgroup of A. There exists μ e M(G) such that μ = 0 on Δ and
μ = 1 on a neighborhood of A\Δ.
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Proof. Let K denote the annihilator of Δ in G, and π: Γ —• Γ/Δ
the natural homomorphism. Since A\Δ is discrete in Γ/Δ, we may
choose an open set U in Γ/Δ such that Uf) (Λ/Δ) = {0} and feLι(K)
such that /(0) = 1 and / = 0 off U. Setting μ = δQ - fdm^ e M(G)
(mκ being the chosen Haar measure on K), we have β(y) = 1 — f(π(Ύ)) =
0, yeΔ, and μ(τ) = 1 if ΎeZπ~1(U)f a neighborhood of

THEOREM 2.6. Every closed set in &(Γ) is a strong Ditkin set.

Proof. First note that 2.5 holds, by translation, if A and Δ are
cosets in Γ. If Λ is a closed coset in Γ and 4, > 4» a r e relatively
open sub-cosets in Λ, let μt be the measure constructed in 2.5 for 4
and A, i = 1, , m. Let S = Λ\(jS=i 4» a n ( i s e t ^ = i"i* *Λ»
Then /? Ξ 0 on each J« and /e == 1 on a neighborhood of S. By 2.2
and 2.4 there exists a sequence (vj~=i in Λf(G) such that ϊ β = l on
a neighborhood of Λ and || vn*f Wί—>0 if feΙ(Λ). Let σn = vn*μ,
n = 1, 2, . Then σw = 1 on a neighborhood of S, n — 1, 2, , and
if feI(S), then μ*feI(A), so H ^ * / ! ! , - || v%*μ*f\\ι-+0. Thus fif
is a strong Ditkin set, and the theorem follows from 1.7 and 2.3.

2.7. If we combine [7, Th. 1.3] and 2.6 we obtain the following
theorem, which is [7, Th. 2.5] in case G = Γ = R.

THEOREM. Let Γ be Rn, Tn, or any compact metrizable group
such that the union of all of its finite subgroups is dense. Let E
be a closed, nowhere-dense subset of Γ. Then E is a strong Ditkin
set if and only if

REMARK 2.8. As noted in [7], the notion of strong Ditkin sets
may be extended to arbitrary locally compact abelian groups by re-
placing the sequence in 2.1 by a net (uδ)δeD which is uniformly bounded
in convolution operator norm on I(E), and the analogous results in [7]
remain valid. If we make the stronger assumption that supδeZ) \\us \\t < oo
we also obtain the analog of [7, Th. 1.3] for every G and Γ, without
any restriction on the set E. Since 2.6 also holds under this stronger
definition, we can obtain a theorem like 2.7 for arbitrary G and
Γ: I(E) has a norm-bounded approximate identity if and only if
Ee^(Γ).

We wish to express our appreciation to Professor Irving Glicksberg
for his kind encouragement and many helpful suggestions during the
preparation of our thesis. We are grateful to Dr. Gilbert for bring-
ing his work to our attention.



812 BERT M. SCHREIBER

R E F E R E N C E S

1. P. J. Cohen, On homomorphisms of group algebras, Amer. J. Math. 82 (I960),
191-212.
2. J. E. Gilbert, On projections of L°°(G) onto translation-invariant subspaces, Proc.
London Math. Soc. (3) 19 (1969), 69-88.
3. , On a strong form of spectral synthesis, Ark. Mat. 7 (1969), 571-575.
4. E. Hewitt and K. A. Ross, Abstract harmonic analysis I, Springer-Verlag, Berlin,
Gottingen and Heidelberg, 1963.
5. L. Robertson and B. M. Schreiber, The additive structure of integer groups and
p-adic number fields, Proc. Amer. Math. Soc. 19 (1968), 1453-1456.
6. H. P. Rosenthal, Projections onto translation-invariant subspaces of Lp(G), Mem.
Amer. Math. Soc, No. 63, Providence, R. I., 1966.
7. f On the existence of approximate identities in group algebras, Ark. Mat. 7
(1967), 185-191.
8. W. Rudin, Fourier analysis on groups, Interscience, New York, 1962.
9. I. Wik, A strong form of spectral synthesis, Ark. Mat. 6 (1965), 55-64.

Received April 1, 1969. This paper constitutes a section of the author's doctoral
dissertation submitted to the University of Washington in May, 1968, under the title,
Bounded iterates in Banach algebras. The material in §1 was presented to the American
Mathematical Society on January 24, 1968. This work was partially supported by
NSF Grants GP-7832 and GP-1876.

UNIVERSITY OF WASHINGTON

WAYNE STATE UNIVERSITY




