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1. Introduction. Consider an irreducible time-homogeneous Markov chain

with discrete time. The recurrence-time moments of the states of such stochastic

processes are studied. We point out that if the recurrence time of one state has

its first k moments finite, then the recurrence times of all the other states have

their first k moments finite. We then specialize and investigate the recurrence-

time moments of random walks. The main result of the paper consists of exhibit-

ing random walks whose first k - 1 recurrence-time moments exist and whose

higher moments are infinite, for k = 1, 2, . A comparison theorem is derived

that permits the moment properties of recurrence times of a large class of random

walks to be determined.

2. Preliminary considerations. We begin with the following:

D E F I N I T I O N . By the index of the random var iab le X, denoted by I(X)9 we

s h a l l mean the la rges t integer k such tha t E(λ'.) < oo. If al l moments of X are

finite, we write I(X) = oo. Clear ly I(X) > 0. We sha l l cons ider only nonnegat ive

random v a r i a b l e s .

LEMMA I . 1 ( a ) // Xϊ9 ••• , Xn are independent random variables, then

( b ) If X has the geometric distribution

P(X = n) = p(l-p)n ι ( p > 0 ) ,

then I(X) = 03.

( c ) If N, Xχ> X21 ••• a r e independent random variables, N is

positive integer valued, Xl9 X2> ••• are identically distributed, and then

The proof of these simple facts is omitted.
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We adopt the terminology and notation for Markov chains used by Fel ler

[ 1, Chap. 15]• Let E l9 E2, ••• be a denumerable set of s t a t e s . We assume the

chain is irreducible; i .e., for every pair £ t , Ej there exis ts n(i, j) such that

transition from £/ to Ej in n(i9 j) s teps has positive probability. Let /?; be the

random number of s teps for first return to £ ; , and let R(j be the random number

of s teps for first passage from E^ to Ej, starting at £ j . It is well known [ l ]

that if, for any /, P(Rj < oo) = 1, then this holds true for all /, and we shal l

assume this to be the case; i .e., our process is assumed to be recurrent.

LEMMA 2. 2 ( a ) /(/?/) has a constant value, say I( C ) , for all i — 1, 2, .

( b ) For every pair i ^ j ,

I(Ri) = min{/(«i/), KRji)\.

This lemma is related to the well-known result that in a recurrent irreducible

time-homogeneous IVIarkov chain, if the expected time for first return to any

state is finite, then the same holds for all states. In the language of [ 1 , Chap.

15], if any state is null, then every state is null. The lemma extends this result

from first moment to arbitrary moments.

Examples of Markov chains of index k are to be found in a class of Markov

chains considered by Feller [ 1 ]. Let X(n) be the Markov chain, and let

p . = P{X(n) = £ / + 1 I * ( n - l ) = £ . !,

q . = 1 - p . = P \ X ( n ) = E ι I X ( n - l ) = E.

Then

,

We obviously obtain a Markov chain with E(Rk) < oo, E (Rk*1) = oc, where

i _> 1, if the pi are such that

Π Pi-flPi = - 7 — ( 0 < e < l ) ,
1 1 nk+ι+e

2 After obtaining this result we learned that it had been obtained earlier by K. L.
Chung and by R. N. Snow, in a more general form (unpublished). We omit the proof.
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where

3. Comparison theorem for random walks. We shall now specialize from

Markov chains to random walks. There is no loss of generality in taking the

states of the walk to be consecutive integers, and we shall let p. denote the

probability of transition from i to i + 1. To ensure irreducibility, we shall re-

quire 0 < pt < 1 for all interior states. To apply Lemma 2, we must have the

walk recurrent, so we shall assume that the boundaries, if any, are reflecting,

and that (if the walk is unbounded in one or both directions) the probability

of escape to infinity is 0. Denote the walk by W and its index by I{W).

THEOREM 1. ( a ) I{R^) has a constant value, say I , for all i > j , and

a constant value, say I , for all i < /.

( b ) Further, l(W) = min \ IL, IR 1.

Proof. We shall first show that /(/?,-+1# {) = 1(/?;, /-i )• Consider a walk

starting at ί and indefinitely prolonged. It is certain eventually to reach i - 1;

let M denote the number of times the walk is at i9 including the start, before

reaching i - 1; M has the distribution

and given M — m, the walk consis ts of m — 1 s teps from i to i + 1, m — 1 first

passages from i + 1 to i (denote these by R\\!χ t > ••• > ι + ~\i )> a n <^ a terminal

step from i to i - 1. Thus

Apply Lemma 1 ( b ) , ( c ) , ( a ) .

To complete the proof of ( a ), represent a walk from ί to /, i > /, a s the sum

and apply Lemma 1 ( a ) . As for ( b ) , this follows from Lemma 2 ( b ) .

It is clear that in a walk over finitely many s t a t e s , the index i s oo. (See

[ 1 , problem 8, p . 345].) Similarly, passages away from a reflecting boundary
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have moments of all orders. The interest attaches to passages away from an

unbounded side, and by virtue of Theorem 1 (b) we may consider the two sides

separately. We may therefore, without loss of generality, consider only passages

to the left in semi-infinite walks unbounded on the right, and we may take the

states to be nonnegative integers. We now approach the following general ques-

tion: given the sequence of transition probabilities p , p 2 , of such a walk,

to determine the index of first passages from right to left.

This question is somewhat analogous to the question of determining the

minimum integer k such that the series Σ A ^ is convergent. As in the conver-

gence of series, all that matters is the performance of 1 pi \ in the tail —any

finite number of terras may be changed or suppressed without altering the result.

We also have a "comparison" theorem.

THEOREM 2. Consider two random walks, W and V, with transition prob-

abilities \p\ and \ q \9 respectively. If pf. < q for every i = 1, 2, , then

κw)>nv).
Proof. We may assume that the walks begin at the same state. Refer both

walks to the same infinite process Xίf X2, ••• > where Xl9 X29 ••• are mutually

independent random variables, each uniformly distributed over ( 0 , 1 ) . If the

walk W is at state / for trial i9 it proceeds to the right if and only if X. < p ,

and similarly for walk V, which proceeds to the right if and only if X^ < q

Consider Xl9 X2<> ••• fixed at observed values xl9 x2, ••• . Observe that

W and V always differ by an even number and that this difference changes by

either 0 or 2 on each step. We shall show that walk W can never be to the right

walk V. If it were, there would have to be a first time on which this occurred,

and on the preceding time, say trial i, the walks would coincide, say at state /.

But p. < q, so that %i < p and %i > q. are contradictory.

As an application, we remark: if lim sup p̂  < 1/2, then the index is oo and

if lim inf pi > 1/2, when the walk is nonrecurrent. This fact follows from com-

parison with the classical walk with constant transition probability p.

The fact just cited indicates that the interest will lie in those sequences

{ p^ } for which lim sup pi _> 1/2 and lim inf p̂  <_ 1/2. We shall in the next

section investigate a class of walks in which lim pt = 1/2, and these will serve,

together with the comparison theorem, to handle a large class of problems.

4. A class of random walks. We now consider a class of random walks which

are related to the ordinary unbiased coin tossing. The random walk has as its

possible states the integers r, r + 1, r + 2, . Let
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p k = P \ X ( n ) = k + l } X ( n - l ) = k \ ,

l - P k = <Ik = P \ X ( n ) = k - l ] Λ ( n - 1 ) = A } ,

q^ n = P\ going from k to r for the first time in n steps j (k > r ) .

Then

The state r will be an absorbing barrier. This implies that

qΓfQ = 1, while q^n = 0 if n > 0.

We shall set <7 = 0 for all n a s a convenient convention. Note that

9A fo = 0 ί f

Define

rc=0

and observe that

G Γ . ι ( β ) - 0 , G Γ ( s ) = l .

Let

= r - 1 , r,

( A: = r, r + 1, . . . ) .

Note that r = 0 gives us the ordinary case of unbiased coin tossing.

The generating functions satisfy the following equations:

Gr(s) = prsGr+ί(s) + qrsGrml(s)

Let
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G{t,s) = Σ
k=r

G(t,s)~tΓ 1 sr\ ft ΓtG(t, s)-tr 1
tG (ί, s ) + tr + — / G(t, s)dt- / dt .

J 2 Uo Jo t2 J

We now differentiate with respect to t (0 < t < 1), use [ l - (s/2) (1/ί + ί ) ] Γ + l

as an integrating factor, and integrate the differential equation between the

limits t and σ = [1 - (1 - s 2 ) ι / 2 ] / s , where 0 < t < σ. We then obtain

Ίr+i

( 1 ) - - / i + M

Let cμ^ denote the cth factorial moment of the first passage time from k to r.

It is easily seen that the cμ^ (c fixed), if they are finite, cannot increase with

k more than exponentially. Therefore, if cμ^ < oo for some positive c and some

k > r, then

is convergent for sufficiently small ί. Therefore

exists for sufficiently small ί if and only if c/z^ < oo for some k > r ( and hence

for all k > r).

It is now easily shown that the first r derivatives of the integral on the right

of (1 ) with respect to 5 are bounded in the closed interval (ί, 1), and hence

have finite limits as s —> 1~. The ( r + l ) s t derivative, however, contains a

term with the factor dσ/ds, which diverges as 5 —» 1~.

The same techniques can be used to prove the following result:
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THEOREM 3. If one has a one-sided random walk with

α > 0 ( A; = Oί, α + 1, •••) then τμk < oo if r - 1/2 < Ot < r + 1/2 and k > a,

while cμ^ = oo for c > r and k > OL.

We shall now consider walks with pn > 1/2. It is clear from Theorem 2 that

for such walks the index is 0. The interest now attaches to the question of

whether first passages are certain to occur.

LEMMA 3. 3 Consider a random walk over the states 0, 1, 2, Assume

Pjt 2l e for s o m e β > 0. The walk is recurrent if and only if the series

Λ = ι PιP2 •• P A

is divergent.

Proof. Consider first the finite walk over 0, 1, 2, , nf and let P^' de-

note the probability that the walk, starting at λ, reaches n before reaching 0.

Clearly

and

pin)

and hence

We may solve for P^n), P^n\ >- , P^ in terms of P[n), getting

, 2,

where bj = {qχq •• q )/{pί p2 p ) Now suppose Σ^° = 1 fc = oo Since
3We were informed by the referee that this lemma and the following theorem have

also been obtained by T. E. Harris.



134 J. L. HODGES, JR. AND M. ROSENBLATT

k=l

we must have P^n'—»0 as n—> oo We conclude that the walk is recurrent.

Conversely, suppose Σ/c = ι bk < oo. Then Σ ^ = 1 bk = bQ, where b is some

positive number. Using the fact that

p{n) _ , p(n)

we have

and therefore

Thus

rc-l

n-2

lim P t

( n ) = 1/6 > 0,

whence the walk is nonrecurrent.

As an illustration, consider a random walk over the nonnegative integers

with reflecting barrier 0 and

1 / 1 \
- ! + 1.
2 \ βk

( A - l , 2, . . . β > 1).

THEOREM 4. The walk is recurrent if and only if β >_ 2.

Proof. Let

P' = P \ walk never reaches 0, given that it starts at k \ (k ~ 1, 2, ) .

We have
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Rewriting, we have

Thus

f i S - 1 i 3 - l 2 ) 3 - 1 / j B - 1

M β 3
+ + + [

β+l β+l 2)3-4-1 \ j 8 + l

f

M

Recalling the preceding lemma, we see that the recurrence of the walk is equi-

valent to the divergence of

0 - 1 j 8 - l 2)3-1 β-l 2)8-1 3)3-1
1 + + . + . + . . . = / (β ) .

β + l )8+l 2)3+1 jS+1 2)8+1 3)3+1

easily see that

1 1
/ ( 2 ) = 1 + — + — + •• = oo,

o 5

so the walk is recurrent when β = 2. That it i s recurrent for β > 2 then follows

from the lemma. The ser ies f(β) ( 1 < β < 2 ) , may be shown to be convergent

as follows. For 1 < β < 2,

= i +
l £ - 1 / 2 - j 8 \ j 8 - l / 2-jB\ / 2-/3 \

+ Jl l L- +-L 1 l l [1 _ ) + . . .
β+l 2 β + l \ j 8 + l / 3)3+1 \ j 8 + l / \ 2)3+1/

1 1 / 2-j8\ 1 / 2 - β \ / 2-j8\

2 3 \ 3 / 4 \ 3 / \ 5 /

But

ϊ £ \ ( ϊ f ϊ \ ( 2 β \ i / 5 + . . . + 1/2Λ + 1)
2Λ+1

e[-(2-/3)/4]log (2A+1) = ( 2 f e + l ) " ( 2 " ' S ) / 4 .

Thus



136 J. L. HODGES, JR. AND M. ROSENBLATT

1 1 1 1 1
l + +

2 3 3(2-/3)/4 4 5(2-/3)/4

<oo.

The preceding class of examples of random walks together with the com-

parison theorem (Theorem 2) now permit us to determine the moment properties

of a large class of random walks. For example, the one-sided walks with

( n = 1, 2,

have the same moment index as the walk with pn - 1/2 if (X > 0, β > 1, while

if β < 1, Ct < 0 the index is infinity (all moments exist). For α > 0, the walk

will be certain to return iί β < 1, but not if β > 1.
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