
ASYMPTOTIC LOWER BOUNDS FOR THE

FREQUENCIES OF CERTAIN POLYGONAL MEMBRANES

G E O R G E E. F O R S Y T H E

1. Background. Let the bounded, simply connected, open region R of the

{x9y) plane have the boundary curve C. If a uniform elastic membrane of unit

density is uniformly stretched upon C with unit tension across each unit length,

the square λ = λ{R) of the fundamental frequency satisfies the conditions

( subscripts denote differentiation )

Δw = uxx + Uyy = - λu in R ,

( l a )

λ = minimum ,

with the boundary condition

( l b ) i ί U , r ) = 0 o n C .

The solution u of problem (1) is unique up to a constant factor. It is known

[13, p. 24] that λ is the minimum over all piecewise smooth functions u satisfy-

ing ( lb) of the Rayleigh quotient

(2) pU)= if \Vu\2dxdy/[[u2dxdγ,
JJR / JJR

where \^u\2 = u2 + u2. In many practical methods for approximating λ one

essentially determines p{u) for functions u satisfying ( l b ) which are close to

a solution of the boundary value problem (1). See [9, p. 112; 6, p. 276; 11, and

12]• By (2) these approximations are known to be upper bounds for λ; they

can be made arbitrarily good with sufficient labor. It is obviously of equal

importance to obtain close lower bounds for λ; cf. [14].

The lower bounds for λ given by Polya and Szegδ [13] are ordinarily far
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from close. Those obtainable from p(u), ffR u2dxdy, and ffR \Δu\2 dxdy by

methods due to Temple [15], D. H. Weinstein [17], Wielandt [18], and Kato [8]

(for expositions see [3] and [16]) are arbitrarily good, but presuppose know-

ledge of a lower bound for the second eigenvalue λ2 of the problem (1) . The

same is true of Davis's proposals in [ 4 ] . It is possible, following Aronszajn

and Zeichner [ l ] , to get close lower bounds for λ by minimizing p{u) over a

class of functions u permitted some discontinuity in R (method of A. Weinstein);

the author has no knowledge of the practicability of the method.

A common method of approximating λ is to replace the boundary value prob-

lem (1) by a similar problem in finite differences. Divide the plane into squares

of side h by the network of lines % - μh3 y - vh (μ, v - 0, ± 1 , ± 2, ). The

points {μhyvh) are the nodes of the net. A half-square is an isosceles right

triangle whose vertices are three nodes of one square of the net. Assume that

(3) R is the union of a finite number of squares and half-squares.

Then every interior node of R has four neighboring nodes in R u C.

Define Δ/̂ , a finite-difference approximation to Δ, by the relation

{x, y) = v (x + h, y ) + v (x - h9 y ) + v(x,γ + h) + v (x, y - h) - 4>υ(x9 y ) .

Let λ/j be the least number satisfying the following difference equation for

a net function v defined on the nodes (x,y) of the net:

(4a) Δ/jf = - XfrV at the nodes in R ,

with the boundary condition

(4b) v = 0 at the nodes on C.

One can interpret λ/̂  as the square of the fundamental frequency of a network

of massless strings with uniform tension h9 fastened to C, and supporting a

particle of mass h2 at each node. That is, a certain lumping of the distributed

masses and tensions of problem (1) yields problem (4) .

It is easily verified for a rectangular region of commensurable sides π/p,

π/q9 and for h such that (3) holds, that one has u = v = sin px sin qγ9 and that

X,

λ (ph/2)2 + (qh/2)2

 P

2+q2 12

Hence λ/j < λ for all h, and one can use λ/j as a lower bound for λ. However,
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since λ is known exactly for rectangular regions, relation ( 5 ) contributes

nothing to its computation. For general regions /?, it was s ta ted [ 3 , p»405]

in 1949 that nothing could be said about the relation of λ/j to λ .

2. A new result. An asymptotic relation resembling ( 5 ) will now be es-

tablished for any convex polygonal region R satisfying ( 3 ) . Such regions are

polygons of at most eight s ides , having interior vertex angles of 45°, 90°, or

135°. The following theorem 1 will be proved in § 3 by use of the lemmas of § 4 :

THEOREM. Let R be a convex region which is a finite union of squares

and half-squares for all h under consideration. Let u solve problem ( 1 ) for R9

and let

Then, as h —> 0, one has

(6) — < 1 - — h2 + o(h2) ( λ — > 0 ) .
λ ~ 12

It is a consequence of the theorem that, for all sufficiently small h, say

for h £ h0, λfr is a lower bound for λ. The ordinary finite-difference method

thus complements any method based on Rayleigh quotients; and, since λ/j —> λ

as h—> 0, together two such methods can confine λ to an arbitrarily short

interval. In particular, Polya [11 and 12] devises modified finite-difference

approximations to problem (1) which furnish upper bounds to λ for all h. Hence

arbitrarily good two-sided bounds to λ can be found by finite-difference methods

alone.

The constant a of the theorem is the best possible for a rectangle R of

sides π/p, π/q. For this region, we have a- ( p 4 + q4) ( p 2 + q )~ l, and (6)

is seen by (5) to be actually an equality up to terms o {h2 ).

Using heuristic reasoning, Milne [9, p. 238, (97.5)] finds an approximate

formula which, specialized to the fundamental eigenvalue and set in our notation,

says

(7) i i ^ i _ ^ ! + o ( A 2 ) (A-»0).
λ ~ 24

1 The author gratefully acknowledges many helpful conversations with his colleague
Dr. Wolfgang Wasow on the subject of this paper.
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For a rectangle of sides π/p9 π/q, the coefficient of -h2/l2 in (7) is (p2 + q2)/2.

Since

the coefficient of h2 in ( 7 ) is low for all rectangles with p φ- q, and exact for

squares. Hence (7) cannot ordinarily be expected to be exact in its h2 term.

The use of the theorem to bound λ is limited by our lack of knowledge of

h0. However, it is the author's conjecture that, for the regions R of the theorem,

λh < λ for all h.

The convexity of R is vital to the statement and proof of the theorem; in

fact, by the remark after Lemma 4, a = oo for nonconvex polygons. A heuristic

argument, supported by the numerical example of § 5, has in fact convinced the

author that, for nonconvex polygons, λfr > λ for all sufficiently small h.

The restriction of R and h to satisfy ( 3 ) is less essential, but is used in

two ways: ( i ) to be sure that no interior node has a neighboring node outside

R; ( i i ) to prove that Γ = 0 in Lemma 7. With an appropriate alteration of Δ/j

near C, and with a modification of Lemma 7, one can extend the present method

to obtain formulas of type ( 6 ) without assuming (3) —and even for convex

regions R bounded by piecewise analytic curves C. See [ 5 ] . Analogous results

can be expected in n dimensions.

3. Proof of the theorem. Let K be the class of functions u which vanish

on C, such that (uux)x and (uuy)γ are continuous in R u C. Applying Gauss's

divergence formula (27) with p - uuX9 q = uiiy, one finds that, for all u in K,

Green's formula is valid in the form

jj \Vu\2dxdy= -jj u/iudxdy.

Hence, for all u G K, p(u) in ( 2 ) can be rewritten with —ffR uΔudxdy in the

numerator.

Since, by Lemma 1, the function u which minimizes ( 2 ) and solves ( 1 )

belongs to K, and since any function in K is piecewise smooth, one may alter-

natively define λ as the minimum, over all functions in K, of the quotient

(u) = -fl uΔudxdγ/11 u2dxdγ.
JJR I JJR
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Analogously, without having to worry about function classes, one can show

that λh is the minimum, over all net functions v satisfying (4b), of the quotient

(8) Ph(v) = -h2 ΣΣ,

where the sums are extended over all nodes Nfr of the net inside R.

The key to proving the theorem is to se t the solution u of problem ( 1 ) into

the Rayleigh quotient ( 8 ) of problem ( 4 ) . It will be shown that

p A U ) 1
( 9 ) — = 1 ah2 + o(h2) ( Λ — > 0 ) .

λ 12

Since λh < _ P J , ( M ) , the theorem follows from ( 9 ) . Henceforth u will always

denote a solution of problem ( 1 ) .

The denominator of p^u) is a Riemann sum for JfR u2 dxdγ. Since u2 is

continuous and hence Riemann integrable over R9

(10) h 2 2 J L . u 2 = ]) u 2 d x d γ + o(l) ( h — > 0 ) .
R

(It can be shown that one can replace o ( l ) by o(h2) in ( 1 0 ) , but we shall

not need to do this.)

The nodes Nfr inside R are divided into two c l a s s e s :

Nf : those at a distance h from some 135° vertex of C
h

Nf': the other nodes of N^.

Split the numerator of pΛu) accordingly:

(11) -h2Σ,Σ, u^u = - h2 ΣΣ, uAhu - h2 ΣΣ, UΔAB = SA '(B) + S A " ( U ) .
Nh N> Nh<-

To estimate Sf(u) note that, since there are at most eight 135° vertices,

the number of nodes in N^ is at most 8, for any h. At any node in N^ ,

h2\uAhu\ <
h

u - Hi
max | V u | 2 ,
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where the maximum of \Vu \ is taken for all points (x9y) within a distance 2 A

of some 135° vertex. Hence, by Lemma 2, as A —> 0 through values such that

(3) holds,

(12) | S £ U ) | < 32Λ2 max | V w | 2 = o{h2) ( A — > 0 ) .

Now, using the notation and assertion of Lemma 5, one obtains

(13) S£'{ll) = - h2 <L^2^ UΔU - 2-*2^ u(Uχχχχ + Uyyyy) .

I V " 1 2 JV,"
a h

S i n c e zx s a t i s f i e s ( l a ) ,

(14) -A 2 Σ Σ α Δ w = λ Λ 2 Σ Σ ^2 = λ A 2 Σ Σ ^ 2 + o ( A 2 ) (A
N"

the last step is correct because u(x9y) —> 0 as (x9γ) —> C.

Combining (13) and (14), one finds that, as A —> 0,

A 4

SΛ"U) = ΛA2 Σ Σ u2— Σ Σ u{uzxxx + u
Nh 1 2 N'h

( 1 5 )

A2 / /
= λA2 Σ Σ U2 - yy U(uχχχχ + Wyyyy )i/^0?y + O ( A 2 ) ,

"A 1 2 R

by Lemma 6. The integrals used in this proof exist, by Lemma 3. Using (11),

(12), (15), and Lemma 7, one finds that

(16) -A2 Σ Σ u

= λA 2 Σ Σ u 2 - — ] j ( u 2 + u 2 ) d x d y + o ( h 2 ) (A
Nh

 l Z R

Dividing (16) by the denominator of p^{u), one gets
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h ttκL ϊ y y
ph{u)=λ -v o(h2).

1 2 h2 Σ,Σ U2

H e n c e , by ( ] 0 ) ,

A2A R L yy
(17) p A («) = λ + o(h2) (Λ

1 2 f f « 2

If one divides (17) by λ, and notes from (2) that λ [fRu2dxdy = ffR | Vu \2dxdy,

it is seen that

PhU) h2 fίR^L+Uyy
— = 1 + o(h2) (h—>0).

λ 1 2 ffR\Vu\2dxdy

By the definition of a we have proved (9) and hence the theorem.

4. Some lemmas. Lemma 1, suggested to the author by Professor Max

Shiffman, is used to establish Lemmas 2 to 7, which were applied to prove the

theorem. In all the lemmas R is the convex union of squares and half-squares

of the network, while u = u (x9 γ ) is a function solving problem (1) in R.

LEMMA 1. The function u is an analytic function of x and γ in R u C,

except at the 135° vertices of C. Let r9 0 be local polar coordinates centered

at a 135° vertex Pk, with 0 < 0 < 3/7/4 in R. Then

(18) u = Ύk

r4/3 s i n ( 4 ( 9 / 3 )

where γ, is a constant, and where E^ir^θ), together with all its derivatives,

is bounded in a neighborhood of

Proof. By reflection one can continue u antisymmetrically across each

straight segment of C, and ( l a ) is satisfied by the extended u at all points

of R u C except the 135° vertices. The first sentence of the lemma then follows

from [2, p. 179].

For (ξ,η)eR, write t = ξ + iη. For each t, let w = / (zs t) be an analytic

function of the complex variable z = x + ίy which maps R into the unit circle

I w I < 1, with f (t, t) = 0. To study f near a vertex zk of C, one may assume
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that / (zfo ί ) = l . Let the interior vertex angle of C at z^ be 77/θĈ  (θί& = 4, 2, or

4/3). It is a property of the Schwarz-Christoffel transformation [10, p. 189] that

(19) f(z,t)=l+(Z-zk)
akgk(z,t),

where g^ is an analytic function of z regular at z^.

Let G {z, t) = G (x9 y; ξ, η) be Green's function for Δw in R. Now G (z, t) = -

(2π)~ι log \f(z,t)\; see [ 10, p. 181]. It then follows from (19) that, in the

notation of the lemma, when 0C& - 4/3,

(20) G(zyt) = γk(t)r4/3 sin (40/3 ) + r 7 / 3 Ek(ry θy t).

Moreover, y^U) and Ek(r9θ9t) are integrable over /?, since the only discon-

tinuity of G (z, t) is a logarithmic one at t - z.

The function u is representable by the integral [2, pp. 182-3]

JJ G(x$y;ξ9i(21) u(x,y)=λJJ G(x,y;ξ,η)u{ξ,η)dξdη.

Substituting (20) into (21) proves (18) and the lemma.

LEMMA 2. \Vu(x,y)\ —> 0 as (*, y ) — > a n y 135° vertex of C.

Proof. By ( 1 8 ) , \Vu\ = 0 ( r ι / 3 ) , as ( * , y ) _ » a n y 135° vertex of C.

LEMMA 3. The functions u2 , uxιιXXX9 uuXXXX9 u , UyUγγy, and uuyyyy are

Lebesgue-integrable in R.

Proof. By Lemma 1 these functions are continuous in R u C, except at the

135° vertices P^. At these vertices (18) implies that they are 0 ( r " 4 / 3 ) and are

hence integrable.

LEMMA 4. The Lebesgue integrals fc UyUyydx and fc uxuxxdy exist.

Proof. Analogous to that of Lemma 3.

REMARK. Lemmas 2, 3, and 4 are false for polygonal regions R which are

not convex, since in general the exponent in (18) is α^, where TΓ/OĈ  is the

interior angle at the vertex P^.

LEMMA 5. At each node (x9γ) in R of the network of section 1, one has



FREQUENCIES OF CERTAIN POLYGONAL MEMBRANES 475

(22)
 ±

where

(23)
xxxx xxxx

uyyyy = uyyyy {x> ? + θ " h ) ' ~

Proof. By Lemma 1, u ^ ^ is continuous in the open line segment from

(x - h, y) to (x + h9y) (though infinite at any 135° vertex). Since u is con-

tinuous in R u C, it follows from Taylor's formula [7, p. 357] that, if we fix y

and set φ {x ) = u (x, y ),

φ(x + h) + φ(x~h)~2φ(x)

= h2φ" (x)+ — h4[φ""(x + 0th) + θ""(x - θ2h)],
24

where 0 < 0, < 1 (i = 1, 2). By the continuity of φ'"\ the last bracket equals

2φ""{x + θ'h\ where-1 < θ* < 1.

A similar formula for 0 ( y ) = U(Λ;, y), when added to the above and divided

by A2, yields (22) and (23).

LEMMA 6. Define N£' as in § 3 . For each node (x, y) in N^'9 use the nota-

tion of (23 ). Then, as h '—>0 over values such that (3 ) holds, one has

( 2 4 ) h2ΣΣu(u^χχχ + uy' )=JJ u(uxxxx + uyyyy)dxdy + o{l) (h

Proof. For all (#, y) in the entire plane E2 define

U ( Uxxxx + Uyyyy ) , \l(x9y)^R\

0, elsewhere .

By the proof of Lemma 3 one sees that f (x,y) is 0{r"4/3) in the neighborhood

of each 135° vertex P^ of C, and continuous elsewhere. Divide the nodes (x, y) =

{μ]ι,vh) of N^'CR into four classes K^ (i = 1,2,3,4) according to the parity

of (μ,v). Fix any class K^\ For each vertex (%, y) in £**' let 5(%, y) be the

union of the four closed network squares of E2 which contain (x, y ) . The area
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of e a c h S ( x 9 y ) i s 4 A 2 ; o r d i n a r i l y c e r t a i n of t h e S ( x 9 y ) c o n t a i n p o i n t s n o t i n

R . D e f i n e

0, for (ξ,η) £ U S U , y ) .

Then ffr (&η) —> / (ζ, η ), as h — » 0 , for almost all (<f, η) in the plane. Using

the fact that no node of Λ'^' is adjacent to a 135° vertex of C, one can show that

for all i, uniformly in h, \f^ (ζ, η)\ < F(ξ,η), where F is an integrable func-

tion in E2

Each term of the sum ( 2 4 ) for which (x, y)<ΞK^ι'is equal to

Ll ( ξ, η )dξdη .

Uence, applying Lebesgue's convergence theorem, one sees that, as h —»0,

for each i,

JV."n K ( £ )

tl
(25)

Summing (25) over j = 1, 2, 3, 4 proves (24) and the lemma.

LEMMA 7. One has

(26) JJ u (a*%*x + w y r y y )flferfy = yy (u2

χχ + Myy )dxdy.

Proof. The following applications of Gauss's divergence theorem in the

form

(27) JJ (pχ+q )dxdy= J (pdy-qdx

can be justified by integrating over the region R* interior to a smooth convex

curve C* inside /?, and then letting C* —> C appropriately. The continuity of
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the integrals in the limit follows from Lemmas 1, 3, and 4.

In the divergence theorem for p = uuxxx> q — uuyyy9 the line integral vanishes,

and one finds

JJ U(UXXXX + Uyyyy)dxdγ = ~ jj ( U %U χ χ χ + U yU y y y

A second application of the divergence theorem with p = uxuXX9 q = UyUγγ, com-

bined with (28), shows that

(29) JJ u(uxxxx + Uyyyy)dxdy = JJ {u2

χχ + u2 )dxdγ + Γ,
R R * *

where V - fc (uyUyydx — uxuxxdy).

By ( l a ) , uxx - - Uyy on C9 whence Γ = fc Uyy {uydx + uxdy). On the seg-

ments of C parallel to the axes, uxx = Uyy - 0, so that there the contribution

to Γ is zero.

Now the vector V^ = (uX9Uy) is perpendicular to C. On the segments of C

making a 45° or 135° angle with the %-axis, ( u p ^ ) is parallel to (uX9Uy),

whence (uy9ux) is perpendicular to C. Thus Uydx + uxdy = 0 when (dx$dy) is

tangent to C, so that the contribution to Γ from these 45° and 135° segments of

C is also zero.

Hence Γ = 0, and the lemma follows from (29).

5. Numerical example. Let 1^ be the six-sided, nonconvex, L-shaped region

whose closure is the union of the three unit squares

~ l < x < 0 , 0 < y < 1;

0 < # < 1, 0 < y < 1;

0 < Λ; < 1, - 1 < y < 0.

The fundamental frequencies λ/ι = λ/ ι (^ 1 ) and corresponding net functions v

were computed by B. F. Handy on the SWAC (National Bureau of Standards

Western Automatic Computer) for I/A = 3, 4, , 8. The computation used a

power method; for some initial net function v09 (h Δ/j +5l)mv0 was determined

for large positive integers m9 where / is the identity operator. On the basis of

Collatz's inclusion theorem [3, p. 289], the values in the accompanying table

are believed to have errors less than 5 x 10"6. Observe that λh(Rι) is less for

h = 1/8 than for h = 1/7.
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TABLE

λh(R2)

1/2

1/3

1/4

1/5

1/6

1/7

1/8

9.07180

9.52514

9.64143

9.67860

9.69083

9.69384

9.69316

12.00000

13.73700

14.37340

14.67081

14.83259

14.93003

14.99315

Since Rί is not convex, the theorem of § 2 does not apply, but a heuristic

argument suggests that λfr (R{) - λ(Rι) = 0 ( Λ 4 / 3 ). A least-squares fit to the

values of λ^iRγ) for 1/8 <_ h < 1/4 of a function of type

yielded the values

(30) α t = 9.63632, β χ = 2.40286, γχ = - 5.97212.

The maximum of | λ/j (Rί) - φ^h)] for the five values of h is .00013. Hence CLί

is a working estimate of λ(/?L).

The fact that β > 0 in (30) supports the author's conjecture that, for

nonconvex polygonal domains satisfying (3), λ/j > λ for all sufficiently small

h.

The table also gives Bandy's values for the second eigenvalues of Rί9 which

are the fundamental eigenvalues λ/j(/?2) of the trapezoidal halfdomain R2 of

Ri for which x > y. Since the theorem does apply to R2, a least-squares fit to

the values of Xh(^2 ) f°Γ 1/8 < h <^ 1/4 of a function of type

seemed appropriate, and yielded the values

α 2 = 15.19980, β2 = - 13.22219.

The maximum of | λ/j (R2 ) - φ (h) \ for the five values of h was .00010. Hence

CX2 is a working estimate of λ(R2)>

The value of β2 is negative, in agreement with (6), but the quantity
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- 12/32/cί2

 = 10.4387 is something like one-fifth larger than an estimate of the

corresponding quantity a{R2) of the theorem. One therefore suspects that a is

not the best possible constant in (6) for the region R2 .

In the table, note the relative closeness of the values of λn (R2 ) to the work-

ing estimate, CC2» of λ(/?2 )> e v e n for a coarse net. Thus the value 12 for λy2(R2 ),

which is obtained by pencil and paper from a simple quadratic equation, is

comparable to the lower bounds 12.1 and 5?72/4 obtained respectively by com-

parison with λ for the circular membrane of equal area [13, p. 8] and with λ for

the rectangular region 0 < x < 1; - 1 < y < 1. The value λ 1 / 3 (/? 2 ) = 13.737

requires getting the least eigenvalue of a 7th-order matrix, a relatively easy

procedure with a desk machine.

The monotonicity of λn(R2) supports the author's conjecture2 that, for the

R of the theorem, λn < λ for all h.

2See page 470.
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