COMPLETE MAPPINGS OF FINITE GROUPS

MaAarsaaLL HarLL anp L. J. PaigE

1. Introduction. A complete mapping of a group G is a biunique mapping
x — 0 (x) of G upon G such that x + ®(x) = 7(x) is a biunique mapping of G
upon G. The finite, non-abelian groups of even order are the only groups for
which the question of existence or non-existence of complete mappings is un+
answered, In a previous paper [4], some progress toward the solution of this
problem has been made. We shall show that a necessary condition for a finite
group of even order to have a complete mapping is that its Sylow 2-subgroup be
non-cyclic, and that this condition is also sufficient for solvable groups. We
shall also prove that all symmetric groups S,(n > 3) and alternating groups
A, possess complete mappings. In the light of these results the following con-

jecture is advanced:

CONJECTURE. A4 finite group G whose Sylow 2-subgroup is non-cyclic

possesses a complete mapping.

It is interesting to compare this conjecture with the results of Bruck [2, p.

1051.

2. Complete mappings for the symmetric and alternating groups. The follow-
ing theorem is a generalization of Theorem 4, [4] and will be necessary for

considerations of this and other sections.

THEOREM 1. Let G be a group, H a subgroup of finite index (G:H) =k
Let uy,uz,+++,u; be a set of elements of G that form both a right and left
system of representatives for the coset expansions of G by H. Let S and T be

permutations of the integers 1,2, +++,k such that

ui(uS(i)H)=u’T(i)H’ i=1,2’...,k.

1The restriction that the index be finite is unnecessary. However, P. Bateman [1]
has shown that all infinite groups possess complete mappings and so we have chosen
the present restriction for simplicity. In fact, the restriction that G be finite would
seem appropriate.
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Then, if there exists a complete mapping for the subgroup H, there exists a com-

plete mapping of G.

COROLLARY 1. Let G be a factorizable group; that is, G =4 - B, where
A and B are subgroups of G with An B =1. If complete mappings exist for A
and B, then there exists a complete mapping for G.

COROLLARY 2. If H is a normal subgroup of G, and both H and G/H pos-

sess complete mappings then G possesses a complete mapping.
Proof. By hypothesis,

(1) G=uH +usH +++ve+upH =Huy +Hug ++++ + Huy;

and thus the equation

(2) u(;)P =P" * uls(i),p] (i=1,2,.,k), p€H,

uniquely defines p* and u[ o(;) plas functions of p and i, Here, uls(;), p] = b for
some 1 <t < k. Moreover, p is uniquely defined by p* and i, for if

us(;)Py =P* “[s(i),p, > Us(i)P2 =P*"[s(i),p2] ’

then we would have

-1 -1
“Is(i), p, 1P = ¥[s(i), p,1P2 ~

Since the u’s form a system of representatives this would imply
“[s5(:), p, 1 = “[s(i), p, 1

and consequently p, =p,.

We have assumed that there exists a complete mapping for H; hence, there
is a biunique mapping ®; of H upon H such that the mapping 7,(p) =p « ©1(p)
is a biunique mapping of H upon H.

Let us define a mapping of G upon G in the following manner:

(3) ®(uip*)=u[s(i)’p]o®l(p),

where p, p¥, u[g(;), ] are defined by (2).
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In order to show that @ is biunique, assume that
©(u;p}) = @(u]'p;").
Then,

“[si), p,1° ®(p,) = “[s(j), p,1° 6:(p,);

and this can happen only when u[S(i),pl] =uls(j), Pz] implying @l(pl ) = @)l(p2 )

or p, =p,. Now,
“[s@), p, 17 “s(j), p, 17

and it would follow from (2) that { = j. If G is finite we may conclude immedi-
ately that ® is a biunique mapping of G upon G. If G is infinite, we note from
(2) that if p is kept fixed, then as i ranges over 1,2,...,k; ufg(;), p] FanBES
over all coset representatives. Thus for any element u; + p; we first find p
from p’=6.(p); and then holding p fixed we vary i to find the p* such that
Ug(y) * P =p* « us For this { and p* we have

O(u;p*) =u; + B (p)=uy+p”,

and every element of G is an image of some element of G under the mapping 6.

et us now show that @ is a complete mapping for G. Consider

n(uip*) = u;p* + O (u;p*) = up* us(:), p] * 6,(p) = U Ug(;)* P 6,(p).

First, if n(u;p}) = n(u;p¥), we have
(4) u; Ug () Py 0,(p,) = uj ug(j) * Py 0,(p,), or uppH = uT(].)H,

and this is impossible unless i = j. Consequently from (4),
p, ®1(p,) =p, 8:(p,)

and ©; being a complete mapping implies p, =p,. Again the finite case is
completed and if G is infinite we note that there is but one i such that wug ;)i =

up(;)H and the subsequent solution for p* is straightforward.

Corollary 1 follows from the observation that the elements of 4 form a sys-
tem of coset representatives satisfying the hypothesis of the theorem.
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Corollary 2 is proved by noting that if
in G/H, then
ulug(nyH) = n(uH) = up(f -

We will use Theorem 1, to show that an earlier conjecture [4, p.115] con-

cerning complete mappings for the symmetric groups Sn(n > 3) was wrong.

THEOREM 2. There exist complete mappings for the symmetric group S, if
if n >.3.

COROLLARY. (See conjecture [4, p.115]). There exist Latin squares
orthogonal to the symmetric group S, for all n > 3.

Proof. The proof will be by induction and we note first that S; has no com-
plete mapping [3, p.420]. Thus we must exhibit a complete mapping for S,.
We may express S, = A4 « B, where

A =11, (123), (132)},
B =11, (12), (34), (12)(34), (1324), (1423), (14)(23), (13)(24) },

are subgroups of S; with AA B =1, Moreover, there exist complete mappings for

. A and B given by:
6(1) =1, 6(123) = (123), ©(132) = (132)
for 4; and
@(1) =1, 8(12) = (34), ©(34) = (1324), ©(12)(34) = (13)(24)
©(1324) = (14)(23), ©(1423) = (12)(34),
©(14)(23) = (12), ©(13)(24) = (14)(23),

for B. The fact that S; has a complete mapping now follows from the corollary
of Theorem 1.

Let us now assume that S;, has a complete mapping with n > 3. Then,
Sp41=S, + (L, n+1)S, +(2, n+1)S, + ¢+ +(n, n+1)S,,

=S, +5(L,n+1)+S, (2, n+1)++ee+S,(n, n+1).
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Clearly, two cosets (j, n+1)S, and (k, n +1)S, (j #%) being equal would
imply (j, &, n + 1) €S, and this is impossible.

Now note that
Gyn+D)G+Ln+1)S, =0, 7+, n+1)S, =(j+1,n+1)S,

ifl <j<n-1 Also, (n,n+1)(1,n+1)S, =(L, n+1)S,.

We now see that the coset representatives of S,+; by S, satisfy the con-
ditions of Theorem 1 under the obvious mapping S(1) =1, S(i)=i+1 for
2<i<nand S(n+1)=2 Hence, S,+; has a complete mapping and our in-

duction is complete.
The corollary follows from Theorem 7 of [4 1.

It should be pointed out that the coset representatives used for S,+, in the
argument above do not form a group and hence Theorem 1 is sufficiently stronger

than the corollary to be of decided interest.

THEOREM 3. There exists a complete mapping for the alternating group
A,, for all n.

Proof. Ay, Az, and A; (the cyclic group of order 3) possess complete

mappings. Hence assume that there exists a complete mapping for 4,,. Then,
Apsr=4p +(Lin,n+ D4, +(L,n+1,0)4, +(2,n+1)(1, n)4,
+ 3, n+1)(L, A, +v+(n=-1n+1)(1,n)4,

and the coset representatives are valid for either a right or left coset decom-

position for 4,4+, by 4,.

It is a simple, straightforward verification that the permutation S, given by
S(1)=1,8(2)=2,5(3)=3,S(i)=i+1(4 <i <n),S(n+1)=4

satisfies the conditions of our Theorem 1. Here we meet a slight difficulty if
n =3, but it is known [3, p.422] that there exists a complete mapping for

A4 and we may take n =4 as the basis for our induction,

3. Groups of order 2". Although it has been indicated in the literature [4]
that the results of this section are known, it seems desirable (and necessary

for completeness) to include the proofs of these results.

LEMMA 1. Let G be a non-abelian group of order 2" and possess a cyclic
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subgroup of order 2"*. Then a complete mapping exists for G.

Proof. Tt is known [5, p.120] that G is one of the following groups:

(I) Generalized Quaternion Group (n > 3), FELALIS [y L Azn-z, BAB'=A-1,

(IT) Dihedral Group (n 23)’ A2”'1=1, Bz=l, BAB = 4-1.
(II) (n ?_4)’/4271'1:1’ Bz=1, BAB-1=A1+2n-2.
(IV) (n 2_4), Azn-l 21’ 82'—‘1, BAB-1=A'1+2n-2.

In each case, the elements of the group are of the form

A4°BR(a =0,1,...,2" =1, B=0,1).
Let us define a mapping © as follows: (let m = 2"°%),
O(Ak) =A%k =0,1,000,m—-1;
O(ARY = Ak ™ Bk =mym+1,.er, 2m—1;
@Ak . B) = ATF D 0,1, m - 1

(4% . BY =A™ UB kom0, 2m =1,

Clearly, © is biunique and we will show that it is a complete mapping for
groups I and II. Thus,

Ak oak) = Ak Ak 4%, (=010 m -1,
Ak @(AR) = Ak AFMB AR ke m 4+ 1, e, 2m = 1.
ARB . @(A*B) = AFB A-UF*1) _ g2k* 1B h 0,1, .00, m = 1,

AR . @(AkB) = AkBAm-(k*)p _ g2k*1-mp2. b 1 e, 2m = 1.

We see that we have a complete mapping if B> =1 or B% = 4272,

A slight calculation in the evaluation of 4% . B®(AFB), will show that this
mapping is also a complete mapping for the group IV. It is necessary to use the
fact that n > 4.
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In order to obtain a complete mapping for group III, we define:

@(Ak)=/1k’l; for k=1,2,¢¢¢,m.
®(Ak)=A(k'1)+mB; fork=m+1,m+2,¢++,2m.
(A% . B) = A%*m, for k=0,1,+00,m~1,

©(4k . B) =4k .B; for k=mym+1,e0v,2m—1.

The verification that this mapping is a complete mapping for group III is straight-
forward and will be omitted.

This completes the proof of the lemma.
THEOREM 4. Every non-cyclic 2-group G has a complete mapping.

Proof. This theorem is known to be true for abelian groups [4]. We may use
induction to prove the theorem if G has a normal subgroup K such that K and

G/K are both non-cyclic Corollary 2, Theorem 1).

In view of Lemma 1, we assume that G is a non-abelian group of order 2"
and does not possess a cyclic subgroup of order 2""!; this implies n > 4. If .
G contains only one element of order 2, G would have to be the generalized
quaternion group [5, p.118] contrary to our assumption. Hence G contains an
element of order 2 in its center and another element of order 2. These elements

together generate a four group V.

If V is contained in two distinct maximal subgroups M; and M,, then M; n M, =
K D V is a normal subgroup of G such that both G/K and K are non-cyclic. In

this case the theorem would follow by induction.

We now suppose that V is contained in a unique maximal subgroup M;. G,
being non-cyclic, contains another maximal subgroup M, and if M, n M; is non-
cyclic our induction again applies. Taking M; n M, to be cyclic, we see that

22 and also

M, is a group of order 2" ! containing a cyclic subgroup of order
the four group V. Thus M, is of the type II, IIl or IV of Lemma 1 or possibly
an abelian group with 42™2=1, B2=1, BAB ' = 4. In all cases, My nM, = {4}
Now let C be any element of M, not in {4}, Then by the normality of {41,
C? = A", where r is even since otherwise C would be of order 2™ ! and G has no

cyclic subgroup of order 2" %, Also C-*4C = A* with u odd.

Now consider the group H ={A4? B}, which is non-cyclic since n > 4. Here,
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My =H+HA =H + AH, and

G=M1 +MlC=M1 +Cﬂll.

Thus,
G=H+HA +HC +HAC =H ¥ AH + CH + CAH,

where CAH = ACH since
A1CYAC =A% R,

We see that the elements 1, 4, C, AC are two-sided coset representatives for

Hin G.
Define

0(1)=1, 8(4)=C, 6(C)=4C, 8(4C) =4,
and compute:
1.6(1)H=1-H;
A.6(A)H = ACH,;
C-O(C)H=CACH=C?.C"AC =A" . A*H = AH since r is even, y odd;
AC +®(AC)H =ACAH =C + C"'ACH = CAYH = CAH = ACH .

Hence, with these representatives the hypotheses of Theorem 1 are satisfied

and G has a complete mapping.

4. Solvable Groups. The existence of complete mappings for solvable groups

is answered in the following theorems.

THEOREM 5. 4 finite group G whose Sylow 2-subgroup is cyclic does not

have a complete mapping.

Proof. Let a Sylow 2-subgroup S? of G be cyclic of order 2™. Then the
automorphisms of S? are a group of order 2™ !, Hence in G, S? is in the center
of its normalizer. By a theorem of Burnside [5, p.139], G has a normal sub-
group K (of odd order) with S? as its coset representatives. Since G/K = 5% is

cyclic, the derived group G’ is contained in K; and clearly,

I1 gE( Il s)(K“) (mod K).

geec s€S2?
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S% is cyclic of order 2™ and hence 11 _25=P where p is the unique element
S

of order 2 of S2. Thus, °T

n gsp(K”)sp (mod K);
g€G

and since G”C K, the Corollary of Theorem 1 [4, p.111] is violated and G does

not have a complete mapping,.

THEOREM 6. A finite solvable group G whose Sylow 2-subgroup is non-

cyclic has a complete mapping.

Proof. By a theorem of Philip Hall, a solvable group has a p-complement
for every prime p dividing its order. Thus, if S* is a Sylow 2-subgroup of G
and H is a 2 complement, G =H + S? and Hn S? =1. S? has a complete mapping
by Theorem 4 and H, being of odd order, has a complete mapping. By Corollary
1 of Theorem 1, G has a complete mapping,

As further evidence in support of our conjecture we have the following

special theorem.

THEOREM 7. Let G be a finite group whose Sylow 2-subgroup is not cyclic.
If G has (G:S?*) Sylow 2-subgroups and the intersection of any two Sylow 2-

subgroups is the identity, G possesses a complete mapping.

Proof. By a well known theorem of Frobenius, G is a factorable group;
that is, G =N « S%, where N is the normal subgroup consisting of all elements

of odd order. We now apply Corollary 1 of Theorem 1.
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