
INVOLUTIONS ON BANACH ALGEBRAS

PAUL CIVIN AND BERTRAM YOOD

l Introduction* We present here a systematic study of involutions
(conjugate linear anti-automorphisms of period two) on a complex Banach
algebra B. Particular attention is given to two types of involutions
which make frequent appearance in the literature on Banach algebras-
symmetric involutions (xx* has non-negative spectrum for all x) and
proper involutions (xx* — 0 implies x — 0) where x -> x* is the involution.

In these introductory remarks we confine ourselves to B semi-simple.
We show first that there exist such B, commutative and not commuta-
tive, possessing no involutions. If B is not commutative and possesses
a continuous (symmetric) involution then B has non-denumerably many
distinct (symmetric) involutions. This is false for B commutative. Any
continuous symmetric involution is proper. The converse is not true
but is shown to hold for B an annihilator algebra in the sense of [1].
Any two continuous symmetric involutions which permute must be the
same. This is false for proper involutions. The conclusion is valid for
proper involutions for B simple with a non-zero socle.

For £>* and ίf*-algebras we can say more, for example, any JB*-
algebra or iϊ*-algebra which is not commutative possesses symmetric in-
volutions of arbitrarily large norm.

2. General theory* Throughout this paper we are concerned with
complex Banach algebras. By an involution on a Banach algebra, we
mean a conjugate linear anti-automorphism of period two. By a real
involution we mean a real linear anti-automorphism of period two.

We turn our attention first to the theory of real linear involutions
on a commutative Banach algebra B.

2.1 DEFINITION. Let * be a real involution on the commutative
Banach algebra B. Let 9DΪ be the space of maximal regular ideals of B
Let, for l e i

(1) σ(M) = {f*\feM} .

From algebra we see that σ(M) e 9JΪ and that σ is a one-to-one
mapping of 9Ji onto 9Jί which is of period two.

2.2. THEOREM. The mapping σ is a homeomorphism of 3JΪ onto
3Jί. For each M e 9Ji either
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f*(σM) = f(M) for all f e B, or

f*(σM)=f(M)for all feB.

Proof. Let j be an identity for B modulo M, jx — x e M for all
x e B. Then j*x — x e σ(M) for all xeB. Consequently j(M) = 1 and
j*(σ(M)) = l. Next observe that (ijf + j e M, and (f/)*2 + j * e <x(M).
Thus (ij)*(σ(M)) = ± i.

Suppose that f(M)=a + hi, with a and b real. Then since i(Λf) = L
f-aj- bij e M, and /* - aj* - &(#)* e σ(Af). Thus

/*(σ(M)) = aj*(σ(M)) + b(ij)*(σ(M)) = f(M) or fjM) ,

w h e r e t h e c h o i c e i s i n d e p e n d e n t o f t h e p a r t i c u l a r f e B t h a t i s e m -
p l o y e d . L e t

S, = {Mem\f*(M) =f(σ(M)), all feB},

S2 = {M e mf*(M) = f(σ(M)), all fe B} .

The sets Sλ and S2 are disjoint and their union is 2JΪ.

Let Q, = {Me 5K|(i/)*(M) - i/*(M), all fe B} ,

Q2 = {Me m\(if)*(M) = -if*(M), all fe B} .

The sets Q1 and Q2 are disjoint. If M e Slt then (i/)*(M) = if(σ(M)) =
if*(M), so S1(zQι. Likewise S2cQ2» so S,, = Qn,n = 1, 2. Now

& = Π {Me M\{{ifT - ί Π W = 0} .
fEB

Thus Qλ = Si is closed. Likewise ζ>2 = S2 is closed. Thus S1 and S2 are
open and closed.

Since σ'1 = σ, it is sufficient if we show that σ is continuous. Let
MQQS^ Consider a basic neighborhood 17 of

i7= {Me 5K||Λ(M) - fk(σ(M0))\ < e, ε > 0, fc =

Let

For Me F,/?(M0) - Λ W ) and ΛWM)) = /*(M). Since F is open
and σ(V)aU, σ is continuous on Sl9 Similarly σ is continuous on S2.

It might be noted that σ(Sό) = Sjf j = 1, 2. For let M e S^ then
/(M) = f*(σ(M)) for all /. Thus f*(σσ(M)) = f{σM) for all /, so

S1, that is σiS^aS,. But then S^σiSJ so S2 = σ^.

2.3. COROLLARY. Let B be a commutative semi-simple Banach
algebra with a connected space of maximal regular ideals sJJi. Then
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every real involution is either complex linear or conjugate linear.

Proof. The connectedness of 9)ί forces either Sλ = φ or S2 = ψ.

2.4 COROLLARY. Let B be a semi-simple commutative Banach
algebra. Then B admits an involution if and only if there is a homeo-
morphism σ of period two of the maximal regular ideal space 3ft onto
itself such that for each x e B, there is a y e B such that x(σ(M)) =

~y(M) for each M e Wl.

Proof. The only if statement is immediate from Theorem 2.2.
Suppose that the given condition is satisfied. By semi-simplicity the y
associated with a given x is unique. The definition of x* = y, is easily
seen to yield an involution.

2.5 THEOREM. Let B be a commutative regular semi-simple Banach
algebra with space of maximal regular ideals 9ft. A real involution
* on B is proper (xx* — 0 implies x — 0) if and only if the correspond-
ing homeomorphism σ of 2ft is the identity.

Proof. For the notion of a regular Banach algebra see [9, p. 82].
Suppose * is proper and σ is not the identity. Take Mo e 2ft with
σ(M0) Φ Mo. Let U be a neighborhood of Mo such that σ(M0) φ U.

Then Mΰ $ σ(U). Let V= U Π 93ΐ -~σ(U). Then V f] σ(V) is empty.
Since σ(V) is an open set containing σ(M0), by regularity there exists
xeB such that x(σ(M0)) = 1 and x(M) = 0, M $ σ(V). For any Me 2ft,

xx*(M) = x(M)x(σ(M)) or xx*(M) = x(M)x(σ(M)). Clearly xx*(M) = 0.
As B is semi-simple xx* = 0, x φ 0 and * is not proper. The converse
is trivial.

Thus for such B the only possible proper conjugate linear involution
is conjugation.

The question naturally arises whether an algebra may have no in-
volution or whether it may have a finite number of involutions. In the
examples which follow we show that both possibilities may occur in the
commutative case. We also exhibit a not commutative algebra which
has no involution. However we show in Theorem 2.20 that for a semi-
simple Banach algebra which is not commutative if one involution ex-
ists, there must be an uncountable number of distinct involutions.

Let D denote the compact set in the plane which consists of a two
cell together with certain arcs and simple closed curves as indicated in
Fig. 1.
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D

Fig. 1.

Say σ is a periodic homeomorphism of period two of D onto D. Let 0
be the open two cell, and B the boundary of 0. Then σ(0) = 0, and
σ{B) = B. Now any periodic mapping of a simple closed curve has [17,
p 264] either all fixed points, just two fixed points or has no fixed
points. By considering the order of the point of D ~ B, together with
σ(B) = B, one sees that a is pointwise fixed on D ~ B. Thus for the
disc 0 U B, σ(0 U B) = 0 U B and σ(x) = x for x e B. It then follows from
a result of Kerekjarto [8], that σ is pointwise fixed on 0. Thus D
admits no homeomorphism of period at most two other than the identity
mapping.

2.6 EXAMPLE. With D as above, C(D), is a commutative semi-
simple Banach algebra admitting exactly one involution. This follows
from Theorem 2.2, since σ(M) = M is forced for each M e 3Jί.

2.7 LEMMA. Let B be a semi-simple Banach algebra whose ele-
ments' are complex valued continuous functions. Further suppose that
the functions 1 and z are in B and that the maximal ideal space m
is a set in the complex plane. Let E be compact set in the complex
plane intersecting m in a point. Let A denote the algebra consisting
of all continuous extensions of the elements of B to SΰlyjE. Then the
maximal ideal space of A is ΊSl\jE.

Proof. Let Bo be the subalgebra of A consisting of those elements
which are constant on E. Let A be the subalgebra of A consisting of
the functions vanishing on 2R. Since WlΠE is a point, one clearly has
A = JBoφA0. Let μ be a non-zero multiplicative linear functional on
A, and let {p} =mnE. .

In the decomposition i = ΰ D φ Λ w e have Ul = u0 + 0, where uγ is
the unit for A and u0 is the unit for Bo. Thus the restriction of μ to
Bo is not zero. Also since WlnE is a point, Ao consists of all contin-
uous functions vanishing at p. Hence there is a point t,eE such that
for any geA0, μ(g) = g(t0), whether μ restricted to An is zero or not.
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Let we A, so w—f+g, f e Bo, geA0. By the remarks above
there is a point z0 in 33Ϊ, independent of /, and toeE such that μ(f) =
f(z0) and μ(g) = ^(t0). Hence μ{w) = μ(/) + MfiO = /(*<>) + flf(*o) =
w(30) + w(£0) — w(p). If one applies this formula to w = z2 and makes
use of the multiplicative property of μ, one obtains

0 = p2 + zoto - zo;p - top = (p - zo)(p - t0) .

Thus z0 — p, or t0 = p. In the first case μ(w) = w(t0); in the second
μ(w) = w(z0). So all the nontrivial multiplicative linear functionals are
given by the points of ΊflljE.

2.8 EXAMPLE. There exists a semi-simple commutative Banach al-
gebra which admits no involution.

Let D be as in Figure 1. Let A be the collection of functions an-
alytic in the interior of the cell 0 and continuous on D. Since D can
be obtained from the closed two cell by adjoining successively three
compact sets having one point contact with the set already available,
Lemma 2.7 applies and the maximal ideal space of A is D. Clearly A
is semi-simple. Since D admits no periodic homeomorphism of period
at most two other than the identity, by Theorem 2.2 any involution
must satisfy f'{M) — f(M). However because of the analyticity in the
open cell, the latter functions are not in the algebra. Thus no involu-
tion can exist.

2.9 LEMMA. Let A be a commutative Banach algebra with identity
et and no involution. Let B be a Banach algebra with identity e2 where
B is not commutative. Suppose further that 0 and β2 are the only
idempotents in the center of B. Then the direct sum 4 φ β of these
two algebras has no involution.

Proof. Suppose that A@B has an involution'. Let e[ = u + v,
ueA, veB. Since e[ is an idempotent, so are u and v. Since ex is in
the center of A φ ΰ so is e;. Then v is in the center of B and thus
v = 0 or v = e2. If v = 0 we have for x e A, xf — e[x' eA so that
A' — A. This is impossible as A has no involution. Therefore v — e2.
Now e[ + e\ = ex + e2 as eλ + e2 is the identity for A φ β . Then e[ =
ex — ueA. For ye B, yf — y'e\e A. Therefore ' defines an anti-isomor-
phism of B into A. Since A is commutative so is B. This is a con-
tradiction.

2.10 EXAMPLE. Let A be the semi-simple commutative algebra
described in Example 2.8 with no involution. Let B be the Banach
algebra of algebra of all 2 x 2 matrices over the complex field. Then
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A φ B is a semi-simple Banach algebra which is not commutative and
has no involution.

We now turn to the theory of involutions on Banach algebras
without the hypothesis of commutativity, or with a hypothesis that the
algebra be not commutative. It is convenient to consider certain special
classes of involutions.

2.11 DEFINITIONS. Let * be an involution on a Banach algebra B
Let xeB, and let sp(x) denote the spectrum of x. Let p(x) denote the
spectral radius of x,

p(x) — sup {|λ||λe sp(x)} .

The spectrum and spectral radius of an element x relative to a sub-
algebra Bo of B are denote by sp(x\Bΰ) and p(x\B0) respectively. An
element x e B is called self-adjoint if x = x* and H is used for the set
of self adjoint elements in B. An element x is called skew if x* — ~ x
and K is used for the set of skew elements in B. One has B = H@K.
Call* symmetric if sp(xx*)a[0, oo) for all xeB. Call* Hermitian-real f

if sp(x) is real for all x e H. Call * regular if p(x) — 0 and x e H imply
x — 0. As in Theorem 2.5, we call * proper if xx* = 0 implies x — 0.

As shown by Kaplansky [5, p. 402], if * is symmetric then * is
Hermitian-real.

2.12 THEOREM. // * is Hermitian-real and regular then * is
proper.

Proof. Suppose xx* = 0. Now (x*x)2 = 0, so that p(x*x) = 0 and
x*x = 0. Let x = h + k, h e H, k e K. Then

0 = xx* = h2 ~ k2 - hk + kh = x*x = h? - k* + hk - kh .

Therefore hk = kh and fe2 = k2. Note that sp(Λ2)c[0, oo) and, as sp(k)
is pure-imaginary sp(k2) c (— oo 9 0]. Thus sp(/ι2) = (0). Then h2 — 0. But
then p(h) — 0 and h = 0. Similarly /c = 0, and thus α? = 0.

2.13. LEMMA. Let B be a Banach algebra with an involution
# - > # * . Tfcen αn /̂ maximal commutative *-subalgebra Bo is closed.

Proof. The point of the lemma is that the conclusion holds even
though x -> x* may be discontinuous. Let ze Bo. Since zx = xz, xeB
we have xz* = 2*$, as e Bo But if 2 = lim xn, xn e Bo, we have xnz* = «*»„
for all w and thus zz* — z*z. If 2; were not in Bo, then Bo could not be
a maximal commutative *-subalgebra.
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2.14. LEMMA. Let B be a Banach algebra and Bx be the algebra
obtained by adjoining an identity e to B. Let * be an involution on
B which is extended to an involution on B1 by defining (Xe + x)* =
Xe + x*. // * is symmetric or proper or Hermitian-real or regular
on B then it has the same property on Bγ.

Proof. Consider u = (Xe + x){Xe + #)* = |λ|2β + h where

h — Xx* + Xx + xx* 6 B .

Suppose * is proper on B. Then if u = 0, λ = 0, xx* = 0 and x = 0.
Suppose that * is symmetric on B. We must show that sp(u)a[0, oo).
Clearly h is self-ad joint. Let Bo be a maximal commutative *-subalgebra
of B containing h. By Lemma 2.13, Bo is closed. Let 2JΪ be the space
of regular maximal ideals of Bo. If ye Bo then sp(y\B) = sp(y\B0) (ex-
cept perhaps for the value zero). See [5, p. 402],

If BQ is a radical algebra then sp(h) = (0) so that

sp(u) = |λ | 2 + sp(h)(z[0, oo) .

Suppose that Bo is not a radical algebra. Let Mo e 5ϋl. There exists

ze Bo such that z(M0) φ 0. Note that z*(M) = ~z(M), Mem. Consider

w = z(\X\2e + h)z* = \\\2zz* + zhz*. Clearly w e Bo and

w = ^(λe + α?)(λe + α;)*2;* = (Xz + ^)(λ^ + «»)* = \X\2zz*

But w(MQ) = \z(M0)\2(\X\2 + h(M0)). As « ) ^ 0, h(M0)e [~\X\\ oo).
Since Mo is arbitrary in M, sp(h)(z[-~\X\\ oo). Therefore spin) =

Suppose that * is Hermitian-real on B. Let λe + a? be self-ad joint
in Blf xe B. Then λ is real and x is self-ad joint in B. Since sp(λβ + x) =
λ + sp(x), * is Hermitian real on Bx. Suppose that * is regular on B
and ^(λe + x) = 0, λ real and x e iϊ. Then if λ ^ 0 we see that or1

exists in B1 which is impossible. Thus p(x) = 0 and x = 0.

2.15 LEMMA. An involution * on tfee Banach algebra B is regular
if and only if every maximal commutative *-subalgebra is semi-simple.

Proof. Suppose that * is regular. Let f>0 be a maximal commuta-
tive *-subalgebra. By Lemma 2.13, Bo is closed. Let w be in the
radical R of BQ,w = h + k,heH,keK. Since * is an anti-automor-
phism of Bo, iί* = R. Then w* = fe - fe e J? so that A 6 JB, fc 6 Jί. Then
ρ(h\B0) = 0, so that jθ(Λ) = 0 and Λ, = 0. Likewise λ = 0.

Suppose, conversely, that the condition holds. Let he H, p(h) = 0.
There exists a maximal commutative *-subalgebra Bo containing h. Since
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Bo is a semi-simple Banach algebra by Lemma 2.13 and p(h\B0) = p(h),
it follows that h = 0.

2.16 THEOREM. Let B be a semi-simple Banach algebra with a
symmetric involution *. Then the following statements are equivalent.
(1) * is continuous (2) * is regular (3) there exists a faithful ^-repre-
sentation of B as operators on a Hilbert space.

Proof. In view of Lemma 2.14, there is no loss of generality in
assuming that B has an identity e. That (1) implies (3) has been shown
by Gelfand and Neumark [10]. (They assume |[β|| = 1 and |[α;*|| = INI
which is not necessary for this conclusion.) That (3) implies (1) follows
from a result of Rickart [13, Lemma 5.3]. It is clear that (3) implies (2).

It is then sufficient to show that (2) implies (3). Assume (2). Let
heH, \\h\\ < 1 and let Bo be a maximal commutative *-subalgebra con-
taining e and h. By Lemmas 2.12 and 2.14 Bo is a semi-simple Banach
algebra. Hence * is continuous on Bo (see [13, Corollary 6.3]). Then
the standard square root argument [10, p. 116] shows that there exists
yeH, y2 — e — h. Let / be a positive linear functional on B(f(yy*) ^ 0
for all yeB). As in [10, p. 117] we see that

(1) \f(x)\ ^ f(e)\\x\l xeH.

In contrast to the Gelfand-Neumark development we do not have the
right at this stage to assert that / is bounded since we did not assume
* to be continuous.

For any x,yeB the following inequality has been established by
Kaplansky, [7, p. 55], by an algebraic computation (n is any positive
integer).

(2) f(y*χ*χy) £ f(y*yy-2~nf[y*(χ*χYnyTn

Then from (1) and (2) we obtain

f(y*χ*χy) £f(v*vY-*-nlf(e)\\v*\\ \\v\\Tn\\(x*xY"\rn

Let n -> oo. Then

( 3 ) f(y*χ*χy) ^ f(y*v)p(χ*χ).

From (3) (with y — e) and the Bunjakowsky-Schwarz inequality or as in
[10, p. 117] we obtain \f(x)\2 ^ f(e)ρ(x*x), xeB.

Let If = {xeB\f(x*x) = 0}. Then $'f = B\IS is a pre-Hilbert space
if we define, for two cosets ξ and η, (ξ,η) = f{y*x), yzη> xeξ- Let
π be the natural homomorphism of B onto Bjlf. As in [10, p. 120] we
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associate with xoe B an operator AXQ on $&'f defined by AXQ(ξ) = π(xox).

By (3),

\\A4m2 =fl(χoχ)*(wy\ ί*f(χ*χ)p(χ?χo)

Thus IIAJDH2 ^ p(xϊxo)\\ξ\\2 so that AXQ is bounded. Hence AXQ may be
extended to TXQ, a bounded operator on the completion !ς>f of ξ>'/β The
mapping x -> Tx is a ^-representation of 5. By the arguments of [10],
there is a faithful ^-representation of B as operators on the direct sum
φ of all the ξ>/(/ running through the set F of all positive linear func-
tionals) if the reducing ideal {xeB\f(x*x) = 0, and / e ί I } = (0).

Let # e i ϊ , sp(αj)c(0, 00). Let J50 be a maximal commutative *-sub-
algebra of B containing e and x. For y e Bo, sp(y\B0) = sp(y\B) by [10,
p. 109]. As 5 0 is semi-simple by Lemma 2.15 it follows that there ex-
ists zeHf] Bo, z2 = x, sp(z)c(0, 00) (see [10, p. 159]). Let

P = { x e B l ^ e i ϊ and sp(x)a[0, 00)} .

The arguments of [10, p. 160] now show that P is a cone in H. Let
#=:e—u, ueH, \\u\\<l. As noted above there exists weH, w2—e—u.
Also sp(x) = sp(w2)a[0, 00). Hence β e i n t ( P n H). Everything is now
arranged for the validity of the reasoning of [10, p. 161] to show that
the reducing ideal of B coincides with the radical of B.

2.17 COROLLARY. Any symmetric continuous involutions on a
semi-simple Banach algebra is proper.

Proof. This is immediate from Theorems 2.16 and 2.12. The con-
verse of Corollary 2.17 is false. Let B be the algebra of all complex-
valued functions analytic in \z\ < 1 and continuous in \z\ <£ 1. Define
an involution * on B by /*(«) = /(I). Then * is proper but not sym-
metric.

2.18 LEMMA. Let r and * be two involutions on a Banach algebra
B. Then '*' is an involution on B which is symmetric or proper or
Hermitian-real or regular if and only if * has the corresponding prop-
erty.

Proof. Set # = '*'. It is readily verified that * is an involution.
Note that * = '*'. Therefore it is sufficient to show that * inherits any
of the stated properties from *.

Let x = y*'. Then xx% = (yy*)f. If xx* = 0 and * is proper then
VV* — 0, y — 0 and x = 0. Also sp(xx*) = sp{yy*). Thus if * is sym-
metric so is #. Suppose * is Hermitian-real. Let x = xK Then xr — x'*
so that sp(xr) is real. Therefore sp(x) is real. If * is regular, x = x*
and ρ(x) = 0 hold, then /o(a?') = 0, x' = 0 and a; = 0.
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2.19 LEMMA. Let B be a Banach algebra with an identity and an
involution *. IfyeH and y1 exists then the mapping ' defined by x' —
y~λx%y is an involution. If y = u2, ue H then ' can be expressed as

— *** where * is an involution.

Proof. Since (y1)* = (y*)"1 it is easy to check that ' is an involu-
tion on B. Let y = u\ ue H. Define * by the rule 2* = u-χz*u. Then
aj#*# = %- !Λ = u~2x*u2 = x\ x 6 B. Clearly if * is continuous so is '.

For B with an identity and an involution *, let

P + = {xeH\sp(x)a(0, 00)} .

It is known [11, p. 27)] that if * is continuous then each xeP+ can be
written in the form x = u2 where ue P + .

2.20 THEOREM. Let B be a Banach algebra which is not commutative
and which has a continuous involution *. Then B has non-denumerably
many distinct involutions. If * is symmetric (Hermitian-real), these
involutions may be chosen to be symmetric (Hermitian-real).

Proof. Let Bλ be the algebra obtained by adjoining an identity e
to B; extend * to Bγ by (λe + x)% — Xe + cc*. Consider any two involu-
tions on B1 of the form xf = yiλx%yλ1 x* — y'^x%y^ where y^1 exists,
ykeH, fc = 1, 2. Note that B' = B, B* = B and that ' = # if ' agrees
with # on JB. Therefore the first statement follows if we show that there
are non-denumerably many involutions on Bx of the form'. Let Q be
the set of invertible elements of H.

Let Z be the center of Bλ. We show first that ' = # if and only if
(Z n H)y1 = (ZΠ H)y2. Suppose ' = K Then y2y7'x = xy2yϊ\ x e B or
2/2I/Γ1 e ̂ . Then y2y:1y1=y1y2y:1, whence yτ1y2=y2yϊ1. Hence 7/^r1 eZ{\H.
Now . Z n i ϊ is a real subalgebra of H. Thus (Z Π H)y2cz(Z f] H)yx.
Hence (Z n fl")2/i = {Z [) H)y2. Assume this relation. Since β e Z Π H",
y2y-,xe Z C\H. Then clearly ' = #. Since Z Π £Γ is closed and multiplic-
ation by yλ is a homeomorphism of J5L, (Z Π Jϊ)2/i is a closed real linear
manifold in H.

Suppose that there are at most a denumerable number of involu-
tions on Bλ of the form '. Then there are at most denumerable many
distinct closed linear manifolds in H of the form (Z Π H)y, yeQ. Denote
this collection by {En}. Now as e e Z Π H, each y e Q is contained in at
least one En, namely (ZnH)y. Thus Qa{jEn. Let S be the set of
real multiples of e and form, for each n, Rn = S + En. Rn is a closed
linear manifold in H. Let weH. For sufficiently large real λ, Xe + we Q
and therefore H= [jRn. Suppose some Rn = H, Rn = S + (Z n jff)2/
where j/eQ. Then (ZΠ H)y = fl". Since e e i ϊ , yr'eZ^H and thus
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yeZπH. As Z Π H is a subalgebra of H, H c Z and 2?x is commuta-
tive. Therefore Rn Φ H. By the Baire category theorem we have a
contradiction as H is of the second category.

Suppose * is symmetric (Hermitian-real). Consider only those in-
volutions ', where x' = yλx*y with yeP + . By Lemmas 2.18 and 2.19,
each ' is symmetric (Hermitian-real). If there were only a denumerable
many such involutions the first argument above would show that there
are only denumerably many closed linear manifolds of H of the form
(Zf]H)y; yeP + . Let {En} be that collection and form {Rn} as in the
earlier argument. We now have P + a\jEn. If weH, since * is Her-
mitian-real, Xe + weP + for sufficiently large real λ. Thus H= l)Rn-
The balance of the argument is exactly as given earlier.

The result is Theorem 2.20 in false if B is commutative, see
Example 2.6.

2.21 THEOREM. Let B be a Banach algebra with a continuous in-
volution * which is symmetric (Hermitian-real). If B is not commuta-
tive then there exists a continuous symmetric (Hermitian-real) involu-
tion ' such that '* Φ *'.

Proof. Adjoin an identity e to B forming B1 and extend * to Bx in
the usual way. It is enough to show by Lemmas 2.18 and 2.19 that
there exists yeP + , xr = y'^y, xe B, where '* φ *'. Suppose '* = *'
for all such y. A simple computation shows y2 e Z, (the center of Bλ)
for all yeP+. Since every ueP+ can be written as u = v2, veP + ,
then P + dZ. Let weH, \\e — w\\ < 1. Then w1 exists and w = h2

for some heH. Since sp(h) is real, weP+. Hence Z contains a ball
of H. Consequently, as Z is a linear space, Z (Ί H — H. This shows
that Bλ is commutative which is a contradiction.

This result is false if B is commutative. See Example 2.6. We
can improve Theorem 2.21 for B semi-simple.

2.22 THEOREM. Let B be a semi-simple Banach algebra with a
continuous symmetric involution *. Let f be any symmetric involution
on B such that '* = *'. Then ' — *. If B is not commutative there
exists non-denumerably many symmetric involutions which do not per-
mute with *.

Proof. We show first that ' = * if and only if x' = — x* implies
x = 0. Given any z e B consider y = z — z'*. Then y* — —y' so that
y = 0 and 2' = 2*.

Suppose that £ ' = — # * . Thenxx' = —xx*. By symmetry, sp(tfx*) = (0).
By Theorem 2.16, owe* — 0. Since * is proper by Corollary 2.17, x = 0.
Therefore ' = *.
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If B is not commutative Theorem 2.20 guarantees the existence of
non-denumerably many symmetric involutions * each different from *. By
the above, ** Φ ** for each such #.

3. Involutions on special algebras. For J3*-algebras, H*-algebras
and semi-simple annihilator algebras we obtain more detailed properties
of involutions. We start with the B* and the H* cases.

Any involution ' on a Banach algebra B is a real-linear operator on
B. If ' is so considered we denote its norm as an operator by ||(Oil-

Consider a i?*-algebra B. The defining involution * is symmetric.
(See [11, p. 281].) Also the defining involution in an ίf*-algebra is
symmetric, [5, p. 404], (or see Theorem 3.8 below).

3.1. LEMMA. Let B be a B*-algebra and ' be any involution on B.

Then ||('*0ll = 11 (0112 where * is the defining involution for B.

Proof. C l e a r l y | | ( ' * ' ) | | ^ | | ( ' ) | | a . T a k e a n y xeB a n d s e t x = y * ' ,
y = x ' * . T h e n

llxINirOII ^ \\χχ'*'\\ = \\(vυ*)'\\ ^ p[(vv*)'H

From this we see t h a t | | ( ' * ' ) | | ^ ||(OII2

3.1. LEMMA. In a B*-abgebra B, an involution is an isometry if
and only if it permutes with the defining involution *.

Proof. Let the involution ' permute with *. Then '*' = * so that
by Lemma 3.2, | | ( ' ) | | = 1. Then \\x'\\ = \\x\\ for all xeB.

L e t ' be an isometric involution. Suppose first that B has an identity.
Since '* is a linear isometric isomorphism, by [3, Lemma 8] '* permutes
with *. From this it follows that '* = *'. Suppose that B has no
identity. Let Bί be the algebra obtained by adjoining an identity e to
B. For λβ + x, λ scalar and xeB define

||λβ + x\\ = sup \\Xy + xy\\

\\v\\ = ι
yeB

Then [11, p. 207], Bγ is a B*-algebra with (λβ + x)* = λβ + x*. We

can also extend ' to Bλ by (λβ + x)f = λβ + x'. Then ' is an involution on

Bx Also, since ' is an isometry on B,

||(λβ + a?)'[I = sup \\Xy + x'y\\ = sup \\Xy + yx\\

\\y\\ = i
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+ x*y\\ = | |λe + x\\

\\y\\ = i .

Thus ' is an isometry on Bx so that, by the above, '* = *'.

3.3. THEOREM. Let B be a B*-algebra or an H*-algebra which is
not commutative. Then B possesses symmetric involutions of arbitrarily
large norm.

Proof. Let B be a JB*-algebra. By Theorem 2.22, there exists a
symmetric involution ' which does not permute with *. Then by Lemma
3.2, H(')ll > 1. Set U± = '*' and for each k > 1 define Uk inductively by
Uk = (J7fc_1)(*)(i7fc_1). Each Uk is easily seen to be an involution. Also,
by Lemma 3.1, || Uk\\ = || Uk^\\2 for k> 1, whereas ||E7ill = ||(')lla > l
By Lemma 2.18, Uk is a symmetric involution.

Let B be an iί*-algebra E(B) be the 5*-algebra of all bounded
linear operators on B. The mapping L: x -> Lx of B into E(B) defined
by Lx(y) = xy, y e B is a faithful ^-representation of B. If ' is an in-
volution on B it induces an involution ' on L(B) by the rule (La)

f — Laf.
Denote the norm of this involution on L(B) by HIO III (and the norm of
' as an involution on B by ||(')ll as above). Since La¥:=(La),* || Lα*|| =
| |L α | [ . By [13, Corollary 5.5], B has the uniqueness or norm property.
Since \\x\\, = \\x'\\ defines a complete norm on J5([12, p. 1068], HOII =
k < CXD . Let S^Sj) be the ball in 5, center at the origin and radius
k(l). Then S^S^ Also, using the fact that * is an isometry on B,
we have

| |L f t, | | = sup ||α'cc|| ^ sup ||a'ic'| | ^ k sup ||a;a||
s

Therefore

( l )

In particular ' is a continuous involution on L(B). Let A be the closure
of L(B) in E(B). The mapping ' of L(B) onto L(B) may be extended to
an involution also denoted by ' of A onto A with the same norm and
furthermore A is a JB*-algebra.

Now by Theorem 2.22 we can select an involution ' on B which does
not permute with *• Then by Lemma 3.2 applied to * and Ό n i ,
IIIOIII > l Starting with ' and * we form the sequence {Uk} of involu-
tions on B as above. Each Uk is symmetric. Since | | |(ϊ7 f t) | | |-• oo,

^oo by (1).

The argument employed shows that if * is any isometric involution on
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an i/*-algebra B then #* = **. For by equation (1), ||(*)|| = 1 implies
|[|( ) | | | = 1 whence we may apply Lemma 3.2 to * and * on A. The con-
verse is false. Let B be the set of all couples (x, y) of complex num-
bers with multiplication and addition coordinate wise. Define an inner
product (α, β) for B when a = (x19 yj, β = (x2, y2) by (a, β) = x1x2+2y1y2

and an involution on B by (x, y)* = (x, y). This makes B an if*-algebra
in terms of the involution *. Define a new involution ' by (x, y)r —
(yf x). It is easy to see that '* = *' and that ' is not an isometry.

Then next result is an improvement in the 2?*-case of Theorem 2.22
inasmuch as ' may be a proper involution.

3.4. THEOREM. Let B be a B*-algebra and' any proper involution
on B such that '* — *' where * is the defining involution on B. Then

' = *.

Proof. As in the proof of Theorem 2.22, it is sufficient to show
that xr = — x* implies x = 0. Let x' = — cc*. Write a? = A- + &, heH,
keK. Then a' = h' + k' and x* = h -k. Also A'* = /**' = /*/ so A' e Jff.
Likewise kr e K. We have the decomposition

0 = x' + x* = (A + hf) + {k' - k)

so that hf — —h and kf = fc.
Consider the closed subalgebra ϋϊ generated by h. R is a commuta-

tive J3*-algebra. Since ' is an isometry on B (Lemma 3.2) and hr — —h
we see that R' = β. It follows from Theorem 2.5 that ' = * on R.
Thus h' ~h and A, = 0. By considering the closed subalgebra generated
by k and arguing in a like manner we see that k = 0. Therefore α? = 0.

Theorem 3.4 holds for iί*-algebras. We do not prove this here as
the fact is a consequence of Theorem 2.2 and Theorem 3.8.

We turn to some results for algebras with minimal ideals.
We shall have occasion to extend (in our context) the following result

due to Rickart [14, p. 29].

3.5. THEOREM. (Rickart). Let R be a ring and x-+x* be a map-
ping of R onto R of period two with (xy)* = #*#* and xx* = 0 imply-
ing x = 0. Let I be a minimal right {left) ideal of R. Then there
exists a unique idempotent e, e = β*, such that I = eR(I = Re).

3.6. THEOREM. Let B be a Banach algebra. Let' and * be ttvo
proper involutions on B such that '* = *' and let I be a minimal right
ideal. Then there exists a unique idempotent e, e = β* = e' such that
I=eB.

Proof. By Theorem 3.5 there exists a unique idempotent e, e = e*



INVOLUTIONS ON BANACH ALGEBRAS 429

such that I = eB. We have to show e' = e. By the Gelfand-Mazur
theorem eBe consists of all scalar multiples of e. We may then write
ee'e — Xe, where λ is a scalar. Since '* = *', {ee'eγ = ee'e — Xe whence
X is real. Let a be real and set w = ae + ee'. Simple computations
give ww% — (a2 + 2αλ + X)e and ww' — (a2 + 2a + X)eer. Note also that
w = 0 implies (a + l)ee' — 0, as e' is an idempotent. Thus w = 0 implies
α = — 1, as ' is proper. Suppose λ < 1. The choice a = — 1 + (1 —λ)1/2

makes ww' = 0 and thus w = 0. Then α = — 1 which is impossible.
Hence λ ^ 1. Suppose λ > 1. The choice a = - λ + (λ2 - λ)1/2 makes
ww* = 0, w = 0. Then (λ — I)2 = λ2 — λ or λ — 1. This contradiction
shows that X ~ 1.

Therefore ββ'e = e. Then (β — ee')(e — eef)f = 0 so that e = ee\ Ap-
plying ' to this relation we have ef ~ eef and β = e\

3.7. THEOREM. Lei B be a semi-simple Banach algebra with a
Hermitian-real involution *. Lei I be a minimal right (left) ideal.
Then there exists a unique self-adjoint idempotent e such that I =

- Be).

Proof. We show first that for any idempotent j , jj* = 0 implies
j = 0. For j 1 — j * e K so that j" — i* has a quasi-inverse y,

3 - j * + V - (j ~ 3*)V = 0 .

If jj* — 0, left multiplication by j shows that j = 0.
Let I be a minimal right ideal. Then there exists an idempotent

j such that / = jB. Now # * φ 0 and ϋ * i = Xj for some scalar λ.
Then jj*jj* = λ^#* and, by taking * of both sides we see that λ is
real. As above there exists y, j — j * + y — (j — j*)# = 0. Multiplica-
tion on the left and right by j yields (1 — X)j + jj*yj = 0. If λ = 0
then i * ϋ * = 0 so that multiplication on the left by i* yields j*j = 0.
This is impossible. Then e = λ"Vy* is a self-ad joint idempotent gen-
erator for /. The uniqueness of e follows as in [14, p. 30].

For an algebra B and a subset S let L(S)(R(S)) denote the left
(right) annihilator of S in B. Following Bonsall and Goldie [1]. We
call a Banach algebra B an annihilator algebra if B has no absolute
left or right divisors of zero and if L(I) Φ (0) (R(I) Φ (0)) for each pro-
per closed right (left) ideal. By [4, p. 697] every ίf*-algebra is an an-
nihilator algebra.

3.8. THEOREM. Let B be a semi-simple annihilator algebra with
an involution *. Then the following are equivalent, (a) * is sym-
metric, (b) * is Hermitian-real and (c) * is proper.
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Proof. If * is symmetric then * is Hermitian-real by [5, p. 402].
Let (b) hold. Suppose that x*x = 0 for some x e B. If x Φ 0 then xB
is a proper right ideal which contains a minimal right ideal / b y [1, p.
158], For some idempotent β, e = e*, 1 = e£ by Theorem 3.7. There
exists yeB such that e = xy. Then e — e*e — y*x*xy = 0, which is
impossible. Therefore (b) implies (c).

Suppose that * is proper. If * is not symmetric there exists xe B
where — x*x has no quasi-inverse and / = { — x*xy — y\y e B] is a proper
regular right ideal of B. Now / is contained in some regular maximal
right ideal M. By hypothese L(M) is a non-zero left ideal and therefore,
by [1, p. 158] and Theorem 3.5, contains a self-adjoint idempotent e.
Then e( — x*xy — y) = 0 for all y. Also ( — ex*x — e)y = 0 for all y.
Therefore e = — e$*#e = — ex*(ex*y. The idempotent e can be chosen
as a generator of a minimal right ideal so that we can write exe — ae
where a is a scalar. Let a — a + bi where α, 6 are real and set c =
a + (α2 + 1)1/2. Then (ex* - ce)(ex* - ce)* = ( - l - 2 c α + c2)β = 0. Hence
e#* — ce, xβ = (ex)* = cβ and — e = ex*$e = c2β. Thus c2 = — 1 which
is a contradiction. Therefore * is symmetric.

3.9. EXAMPLE. Let B be the semi-simple Banach algebra whose
elements / are functions of two complex variables xi9 j = 1, 2, such that
each fe B is analytic for \xt\ < 1 and continuous for \xt\ ^ 1. Define

/ * by f*(xlf a;a) = / f e , x2) and / ' by and / ' by f'(xlf x2) - f(χif xλ). Then
it is easily verified that * and ' are proper involutions, that '* = *' but
'Φ*.

We call a Banach algebra simple if it is semi-simple and has no
proper closed two sided ideals. By the socle of a semi-simple algebra
A with minimal one sided ideals we mean the algebraic sum of its mini-
mal left (right) ideals. For properties of the socle see [2, Chapter 4].

Let Ij, j — 1, 2 be distinct minimal right ideals in a simple Banach
algebra B, Ij = eόB9 with e5 = e) Φ 0, j — 1, 2. A slight variation of the
argument used by Kaplansky in the case eλe2 = e2eλ = 0 [4, p. 693] shows
that ^5^2 is one-dimensional. (See also [11, p. 293].)

3.10. THEOREM. Let ' and * be two permuting proper involutions
on a simple Banach algebra with non-zero socle. Then ' = *.

Proof. As in the proof of Theorem 2.22, we must show that if
x* = —x* then x — 0. Take such an element x. Let / be any minimal
right ideal. By Theorem 3.6 there exists an idempotent e, I = eB,
e = e' — e*. Consider βxe = Xe where λ is a scalar. Then 0 — e(xf + x^)e —
2λe. Therefore λ = 0 and exe — 0. Let Iλ be any other minimal right
ideal, Iλ — exB, e\ — eγ = e[ = ef. We shall show that βxex = 0. Note
that* the socle of B is dense in B,
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Suppose that exe± Φ 0. Now since B is simple, eBex is one dimen-
sional. Let w be any non-zero element of eBeλ. Write exe1 = Xw9 XφO.
Then 0 = eλ{xf + x*)e = X(w' + w*). Thus w' + w* = 0. It follows that
ex(y' + y*)e = 0 for all y e B. In particular y — eλ shows eλe — 0 — eex.

Write x = h + k, heH, keK. As in the proof of Theorem 3.4,
h' — —h*, kf — k — — fc*. Since exeλ φ 0 then either eheλΦQ or ekeλΦθ.

Suppose that eke1 Φ 0.
Set u = ekeλ. Then u' = e^e. We have uv! = αβ, %'w = ^ i where

α: and β are non-zero scalars. Since uur is self-ad joint under ', a and
/3 are real. Clearly an — uu'u—βu. Then a—β. Suppose a—— 7 2<0.
Then (u + γe)(u + ye)' = 0 as ee1 = 0. This implies that w = — γβ which
is impossible. Set v = α~1/2t6. Then vvf — e and v'v = eλ. Consider the
matrix units ei3 for the algebra M2 of all 2 x 2 matrices over the com-
plex field. If we make e correspond with en, v with e12, v

f with e21 and
e1 with e22, we see that the subalgebra A generated by e19 v, vr and eλ is
a copy of M2. Also A' = A* — A. By Theorem 3.8, ' and * are sym-
metric on A so that ' = * on A by Theorem 2.22. But 0 φ ur = — %*.
Therefore efc^ = 0.

If efeβ! ^ 0 set u = efeβx, u* = e^e and proceed in the same way
using * as ' was employed above. Therefore exeτ = 0.

It follows that e$Q = 0 where Q is the socle of B. Consequently
exB = 0 and e$ = 0. Since e is an idempotent generator for an arbitrary
minimal right (or left) ideal, Qx = 0 and as = 0. This completes the
proof.

4 Real involutions on commutative Banach algebras. In this sec-
tion B will denote a commutative Banach algebra over the complex
field. The space of maximal regular ideals of B is denoted as earlier
by 9JΪ. With respect to a real involution ', we denote

{xeB\xf = x] by H, and {xeB\xf = -a?} by K.

The item that is not available for real involutions as it is for involutions
is that K = iH. Our object in this section is to relate the real involu-
tion structure in B to certain properties of 3Jϊ.

4.1. LEMMA. A commutative semi-simple Banach algebra is infinite
dimensional if and only 3Jί is infinite.

Proof. By [9, p. 59] there is no loss in assuming that B has an
identity. Suppose B is infinite dimensional. By a result of Kaplansky
[6, p. 379] there exists an element of B with infinite spectrum. Thus
9Ji is infinite.

Suppose We is infinite. By arguments of Silov [15, p. 37], there
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exists an element we B with infinite spectrum. Then B is infinite
dimensional for otherwise each element in B satisfies a polynomial equa-
tion and thus has finite spectrum.

4.2. THEOREM. Let B be an infinite dimensional commutative semi-
simple Banach algebra with a real involution '. Then H is infinite
dimensional.

Proof. Suppose H is finite dimensional. Now powers of elements
in H are also in H. Thus each x e H satisfies a polynomial equation
with real coefficients. Let f e B, f = h + k, h e H, k e K. Since
(f—hfeH, we see that f—h satisfies a real polynomial equation, as
does h. Standard arguments show that / also satisfies a polynomial
equation and hence has finite spectrum. Since / was arbitrary, the re-
sult of Kaplansky [6, p. 376] cited above implies B finite dimensional,
consequently H must be infinite dimensional.

4.3. COROLLARY. If B is a commutative Banach algebra with a
real involution ', and Wl is infinite, then H is infinite dimensional.

Proof. Consider B\R where R is the radical of B. Since R' = R,'
defines a new real involution on B\R, for if a — b e Rλ the ar — bf e R.
Let Ho be the set of self adjoint elements of B\R. By Theorem 4.2
Ho is infinite dimensional. If π is the natural mapping of B onto B\R,
we have πH = Ho. The inequality in one direction is immediate. On
the other hand suppose a + Re Ho, with a — h + k, he H, ke K. Then
α' + rλ = a + r2, with rt e R> and h — k + r1 — h + k + r2. Thus ke R
and h e a + R, so πh = a + R. Thus H is infinite dimensional.

4.4. LEMMA. Let A be a semi-simple algebra over the reals and I
a finite-dimensional two-sided ideal of A. Then A = 7φL(/) ivhere
L(I) = R(I) is a two-sided ideal.

Proof. I is semi-simple and finite-dimensional so / has an identity
e. Now L(I) = R(I) by algebra [1, p. 159].

Now clearly I — eA — Ae and e1 — e. By the Peirce decomposition

- e)

where (1 - e)A = R(I) = L{I) = A(l - e).

4.5. THEOREM. Let A be a semi-simple algebra over the reals.
Then there exists an automorphism on A with period two and K finite-
dimensional if and only if A possesses a finite-dimensional ideal I on
which there is an automorphism of period two.
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Proof. Suppose an automorphism of A of period two exists with K
finite-dimensional. Denote it by *. Let /i, •••,/„ be a basis for K.
Let 7 be the two sided ideal generated by K. We show that 7 is finite-
dimensional.

Let xeA, x = h + k, heH> keK. Let Σ ^ Λ = 2/e K. Clearly

hy e K. Then if k = Σ &*/*,

xy = hy + ky = hy + Σ & ^ / J Σ «</*

This shows that ## lies in the finite-dimensional subspace of A generated
by /i, , /„ a n d t h e /i/j, ί, j = 1, , w. Likewise τ/x lies in this sub-
space. Hence 7 is finite-dimensional. In fact, clearly 7 equals the linear
space generated by f19 •••,/„ and the ffj. Clearly 7* = 7.

Suppose conversely that A has a finite-dimensional ideal 7 and there
exists an automorphism x -> x' of period 2 on 7. By Lemma 4.4 we can
write A = 7X φ 7 where 7X is an ideal. Define for x — u + v, u e Ix ,v e I

X* = u + Vr .

Then x -> x* is an automorphism of period two. For this we need only
check {xy)* = x*y*. Note if x — u + v, y = r + s in the decomposition
that us 6 7j Π 7 = (0) and likewise 0 = vr — us' — v'r,

(xy)* — (ur + vs)* — ur + (vs)' = ur + vfsr, and

(£c*2/*) = (u + vf){r + sf) = ur + v's' .

Also Kd I, for if (u + v) = — (% + v)* = — u — vf then, since we have a
direct sum, w = —u, v — —v'. Thus u = 0 and KCLI.

4.6. THEOREM. Let B be a commutative semi-simple Banach algebra.
Then the following are equivalent:

(1) There exists a real involution with K finite-dimensional.
(2) There exists a finite-dimensional ideal I of B.
(3) 3Jί has isolated points.

Proof. By the preceding theorem (1) implies (2). We show that
(2) implies (1). By Theorem 4.5, it is sufficient to show that 7 has a
real involution. But 7 is a semi-simple finite-dimensional commutative
Banach algebra with identity. Let sSRι be the space of maximal ideals
of I. But Lemma 4.1, 2)^ is finite. Then 7 is isomorphic to C{Sΰlλ) and
thus there is a natural involution on 7. Thus (2) implies (1).

We next show that (1) implies (3). For consider / e K. Since
/ 3 , / δ , are in K and K is finite dimensional, / satisfies a polynomial
equation with real coefficients. Thus f(M) takes on only a finite number
of values.

Let e19 '*-,en be generators for K. Let Λf0e3Jί where e^ilίό) Φ 0,
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We show MQ is an isolated point of TO. Let E = {Me 9JΪ|efc(M) =
ek(M0), k — 1, , n). It is sufficient to show that E = {MQ}. For sup-
pose this has been established. For each k let cktl, •• ,cfcw(fc) be the
d i s t i n c t v a l u e s o f ek(M), c k ι l = ek(M0). L e t e k = m a x \ c k t J — c k λ\j2 o r i f

φ) = 1 set εfc = |cfcιl|/2. Let 17= {Me 2Jt||efc(M) - ek(M0)\ < ε, fc =
1, •••,%} where ε = min εfc. This neighborhood contains only Mo.

Suppose E contains Mx Φ Mo. If g e K, g{Mx) — g(M0) since elf , en

generate K. Let he H. Then /z^ 6 if and heλ{MQ) — hex(M^. Since

ei(M0) = e^MJ Φ 0, h(M0) = ΛίMJ. Thus /(Mo) = /(Mx) for all / e B.
This is impossible.

Lastly we show that (3) implies (2). For consider Bx the algebra
with 1 adjoined to B. Since 3Jί has as isolated point Mo so does the
maximal ideal space 20̂  of Bx. Then by a result of Silov [16], B1 con-
tains the characteristic function φ of Mo. Since φ(B) — OyφeB. It is
easy to see that Φ generates a 1-dimensional ideal of B.

4.7. THEOREM. Let B be a complex commutative semi-simple Banach
algebra with an identity. Let x -» x* be a real involution. Then we
can write B — / i φ / 2 , with Ij an ideal such that If — Ijy j = 1, 2

complex linear on Iι and conjugate linear on I2.

Proof. In the notation of Theorem 2.2, 5Ui = iS luS 2, where S, , j = l, 2
are open and closed. By a theorem of Silov [16], there exist e^B,
j = 1, 2, such that ^(S,) = 1 while ex{S2) = e^SJ = 0.

Let J, = e.B. Clearly B = I, φ /2. Let α e /lβ For M e S2,

x*(M) =

But σ(M)eS2 by the remarks at the end of the proof of Theorem 2.2,
and thus x*(M) = 0. Then x* — exx*, for a?* 6 Ix and If = Ix. Likewise

It = Λ
For x e Λ,

x*(M) = 0 = ί»(M), I e S n

), M e S n

so clearly x -> x* is complex linear on J1#

For x e I2,

x*(M) = a?(Jlf) = 0, M €

¥ ) , M e S

Thus x -> x* is conjugate linear on I2.
We call an algebra A decomposable if A = Ix φ I2 with Ij ^ (0) an

ideal, j" = 1, 2. Otherwise we call A indecomposable.
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4.8. THEOREM. Let A be a semi-simple algebra over the complexes
with an identity e and suppose that A has a conjugate linear automor-
phism * of period two. A necessary and sufficient condition that A is
indecomposable is that (1) every real linear automorphism of period
two on A is either complex linear or conjugate linear and (2) every
central idempotent of A is self adjoint under every real linear auto-
morphism on A of period two.

Proof. Say A is decomposable, so A = Ix φ J2 wtih Ij an ideal,
j = 1, 2. Let e = e1 + e2 with eόe Ij, j = 1, 2. Then e3 is a central
idempotent so from (2) e' = eό for any real automorphism ' of period
two on A. Let x e Ij, where xr — x1 + x2 with xk e Ik, k — 1, 2. Thus
eft' = βjXj = Xj, and x) = xe5 — x since x e /j. Whence xf — xjf and
/J = Ij, j = 1, 2 for any '.

Let x = #! + flj2, Xj 6 Jj, j = 1, 2. Define #' = #! + x2*. Clearly ' has
period two and is a real automorphism on A. Also for λ complex,
(Xxtf — Xx[ while (Xx2)' = (λa?2)* = ^ ' Thus condition (1) is violated
and we have a contradiction.

Suppose now that A is indecomposable. The only central idempo-
tents of A are 0 and e. For if / is a central idempotent A =
/A φ (e — f)A is a decomposition of A. Clearly both 0 and e satisfy the
condition in (2). Let ' denote a real automorphism of period two on A.
From e + (ie)2 = 0, we have e + {{ie)J = 0. Let u = 2-\{ie)f - (ie)],
and v = 2~a[(?:e)' + (ie)]. Thus u and v are central. One easily verifies
that

a = _ β + (ie)(iβ) 3 = _
2 '

4 =

2 ' 2

β + (ie)f(ie) 4 = e - (ie)'(iβ)

Thus —u2 is a central idempotent so either — u2 = e or u2 — 0. If
—u2 = β, then v2 = 0. Since A is semi-simple and v is central (vA)2 =
(0) and v = 0. Likewise if t62 = 0, u = 0. Thus (ie)' = ± ΐe. Since e
is the unit for A, condition (1) is satisfied.

4.9. COROLLARY. Let B be a semi-simple complex commutative
Banach algebra with identity e, and suppose that B has a conjugate
linear automorphism of period 2. Necessary and sufficient conditions
that 3Jί be connected are that (1) any idempotent of B is self adjoint
under each real linear automorphism of period two, and (2) each real
linear automorphism of period two is complex linear or conjugate
linear.
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Proof. Say 2JΪ is connected. Then by the result of Silov [16], B is
indecomposable. Hence the two conditions above hold.

Suppose sDΐ is not connected. Then B is decomposable by Silov's
theorem. This contradicts the conditions of the Theorem 4.8.

Added in Proof. The use of Theorem 3.1 in a paper by R. Arens,
The maximal ideals of certain function algebras, Pacific. J. Math. 8
(1958), 641-648 permits a simpler figure than that of Fig. 1 to be em-
ployed in Example 2.8. The paper of Arens appeared after the present
paper had been accepted for publication.
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