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l Introduction, An algebra 21 of continuous functions on a com-
pact Hausdorff space C will be understood to be a set of complex-valued
functions on C which is closed under the operations of addition, multi-
plication, and multiplication by complex numbers. The algebra 91 is
called separating if to any two distinct points of C there exists a func-
tion in 31 which takes distinct values at the given points. The norm
||/11 of a continuous function / on a compact space is defined to be the
maximum absolute value of the function. The algebra SI is thus a
normed algebra. 21 is called a Banach algebra if it is complete with
respect to its norm, i.e., if the limit of every uniformly convergent
sequence of elements of 21 is in 2ΐ.

An important theorem of Silov (see [5], p. 80) asserts that if 21 is
a separating algebra of continuous functions on a compact Hausdorff
space C then there is a smallest closed subset S of C having the prop-
erty that every function of 2ί attains its maximum absolute value at
some point of S. This set is called the Silov boundary of 21. A simple
example is obtained by taking C to be a compact subset of the complex
plane and 21 to be the set of all continuous functions on C which are
analytic at interior points; in this case the Silov boundary of 21 coincides
with the topological boundary of C.

Given a separating normed algebra 21 of continuous functions on a
compact space C, it seems natural to ask, in view of Silov's theorem,
whether there exists a smallest subset M (not necessarily closed) of C
having the property that every function in 21 attains its maximum ab-
solute value at some point of M. The answer in general is no. How-
ever, it will be shown (Theorem 1 below) that such a set M, called the
minimal boundary of 21, always exists if in addition it is assumed that
21 is a Banach algebra and that there is a countable basis for the open
sets of C, i.e., that C is metrizable. An example will be given to show
that the metrizability of C is necessary.

If the minimal boundary M exists, it is clear that the closure of M
is the Silov boundary. An example will be given to show that M need
not be closed, so that M in general is smaller than the Silov boundary.
This raises the question of the topological structure of M, which is an-
swered (Theorem 2) by showing that M is a ft, i.e., a countable inter-
section of open sets.
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The next portion of the paper concerns the representation of bounded
linear functionals on 21 by measures. It is an easy consequence of the
classical Hahn-Banach theorem and the Riesz representation theorem
that any bounded linear functional φ on SI of norm 1 can be represented
by a (complex-valued, Borel) measure μ of norm 1 on the Silov bounda-
ry S of 21, in the sense that φ(f) = \ fdμ for all / in 21. It is natural

is
to conjecture that μ can actually be taken to be a measure on the min-
imal boundary M of A. The author will devote a subsequent paper to
a proof of this result and a consideration of related questions. Karl de
Leeuw also has a proof of this result, based on work of Choquet [3]. In
the present paper we prove a special case, which is needed to prove the
general result and which will be sufficient for the applications considered
here. This special case, Theorem 3 below, states that for any point x
in C — M there exists a non-negative valued measure μ of norm 1 on
C - {x} such that f(x) = [fdμ for all / in 21.

The final section is concerned with problems of approximation in
one complex variable. Necessary and sufficient conditions are obtained
on a compact set C without interior of the complex plane that every
continuous function on C be uniformly approximable by rational func-
tions whose poles lie in the complement of C. Mergelyan [6] has ob-
tained sufficient conditions, of a different type, that the approximation
be possible.

A summary of the results of this paper was given in [1].

2* The minimal boundary*

DEFINITION 1. Let / be a continuous function on a compact space
C. Then S(f), the maximal set of f, consists of all points x in C such
that |/(x)l =

DEFINITION 2. Let 21 be a separating algebra of continuous func-
tion on a compact space C. A subset N of C is said to bound 21 if
N Π S(f) is non-void for all f in 21. If the class of subsets of C which
bound 21 contains a smallest set M, the set M will be called the minimal
boundary of 2ί.

THEOREM 1. Let % be a separating Banach algebra of continuous
functions on a compact metrizable Hausdorff space C. Then 21 has a
minimal boundary M and M equals the subset Mo of C consisting of all
x in C such that there exists f in 21 with S(f) — {x}

Proof. Let N be an arbitrary subset of C which bounds 2ί. For
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each x in M09 there exists / in 51 with S(f) = {x}. Thus {x}f]N =
S(f)ΠN is non-void. Hence xeN. Therefore MoaN.

To show that MQ is indeed the minimal boundary of 21, it remains
to prove that Mo bounds 31. It must therefore be shown that Mof]S(f)
is non-void for each / in SI. Let / be given. Let Γ be the class of
all subsets γ of C such that there exists fy in 31 with S(fy) — γ. By
Zorn's lemma, there is a subclass Γo of Γ which contains S(f), which
has the finite intersection property, and which has the property that no
larger subclass of Γ has the finite intersection property. Since C is
compact and since each 7 in Γo is closed, the set D — Πro7 is non-void
and closed. Since there is a countable basis for the open sets of C,
and since the family {C — γ: γ e Γo} of open sets covers C — D, there
exists a sequence {γw} from ΓQ such that {C — 7n] covers C — D, i.e.,
such that D = Γ\γn. Fix a point x0 of D. Define

fn = [ Λ ^ o ) ] - 1 / ^

Clearly S ( / J = yn and | | / J | = fn(xQ) = 1. Thus the series Σ»~=i2-n/»
converges uniformly on C to a function # in 21 with \\g\\ = gf(x0) = 1.
If x e C - 7fc, then \g(x)\ ^ Σ2- n | / , (a;) | < 1 since \fn(x)\ ^ 1 for all n
and |/ f c(flj)|<l. Therefore S(g)ayh. Thus Sto)cΓ|7 f c = fl. Assume
that S(g) contains more than one point. Since 21 separates points, there
exists h0 in 21 which is not constant on S(g). We may assume that the
maximum of \ho\ on S(g) is 1 and that h0 takes the value 1 at some
point of S(g). If we set h — h0 + hi, it follows that the maximum of
\h\ on S(g) is 2 and that this maximum is attained only where h0 takes
the value 1. Thus \h\ is not constant on S(g). Therefore the set

E = {a: xeS(g) and |/&(aθ| ^ |fe(τ/)| for all 2/ in

is a proper closed subset of S(g).
Let xλ be any point in E. Define the functions

and

Thus II(/0|i = ^o(^) = 1 and S(g0) = S(^). Also / ^ ) = 1, |ΛO(»)I ^ 1 if
xeS(g), and |feo(a0l < 1 if xeS(g) — E'. Let E" = ||feo||. For each posi-
tive integer n, let

Vn = {x: 1 + 2~n(K - 1) ^ |fco(a;)| ^ 1 + 2^+ 1(i^ - 1)} .

Clearly \JVn = {x: |feo(α?)| > 1}. Thus VnΠS(g) = y«nS(flf0) is void for
each w. Therefore 1^(^)1 < 1 f° r e a c h x i n ^n Since Fw is compact,
it follows that there exists a positive integer pn such that \gQ(x)\pn ^ 1/2
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for all x in Vn. Since l|go|| <̂  1, the series

K + 4(if - 1)Σ 2-flff»

converges uniformly on C to a function & in 2ί. We have

k{x,) = 1 + 4(ϋΓ - 1)Σ 2 - - 1 + 4(iί - 1) .

If £ e S(g) - JS7, then \hQ(x) \ < 1 and |flro(a?) | = 1, so that \k(x) | < 1 + 4(ϋΓ-l).
If xe C - \JVny then \hQ(x)\ ̂  1 and \go(x)\ ̂  1, so \k(x)\ ^ 1 + 4(ίΓ-l).
If α?6Fj, then |Λ0(a)| ^ 1 + 2-j+1(iΓ - 1), \go(x)\*n^l for all w, and
\gQ(x) \PJ ̂  1/2, so that I fc(aj) | ^ 1 + A(K- 1). Therefore k(xx) = 1+ 4(ίΓ-1) =
||fc||. Thus xτ e S(k) and S(fe) is disjoint from S(g)-E. Since x1eS(g)aD^
ΠFQT, and since S(k)eΓ, it follows from the maximality of Γo with
respect to the finite intersection property that S(k) e ΓQ. Therefore
S(g)cf)Γoyc:S(k). Since S(g) — E is non-void, this contradicts the fact
that S(g) — E is disjoint from S(k). Therefore the assumption that
S(g) contains more than one point is false. Thus S(g) consists of a
single point x0. It follows that xoeMo. Since S(g)aD — f\ΓojciS(f)f

it follows that xoe S(f)f]M0. Thus S(f)ΓiM0 is non-void, as was to be
proved.

We now give an example to show that Theorem 1 fails if C is not
metrizable. Let I denote the unit interval [0,1] with the usual topology.
Let Γ be an uncountable set. Let C consist of all families x = {xΛ}aeΣt

with xΛe I for each α. Thus C is the Cartesian product of an uncountable
number of intervals, and is therefore compact. Let 21 consist of all
continuous functions f on C which have the property that there exists
a countable subset Δ of Γ such that f(x) — f{y) whenever x and y are
points in C such that xΛ — yΛ for all a in Δ. It is easy to see that 21
is a separating Banach algebra of continuous functions on C. By the
Stone-Weierstrass theorem it follows that 21 consists of all continuous
functions on C. Let Nλ = {x: xΛ — 0 except for a countable set of a}
and N2 = {x: xΛ — 1 except for a countable set of a}. It is easy to
see that Λ^ and N2 bound 21. Since iVΊ Π JV"2 is void, it follows that 2ί
does not have a minimal boundary.

For an example of a function algebra whose minimal boundary is

distinct from its Silov boundary, let C be the subset {z: \z\ = 1} of the

complex plane and let 2ί consist of all continuous functions f on C which

have the property that there exists a continuous function / on {z: \z\ ^ 1}

such that f(z) = f(z) for z in C, such that / is analytic on {z: \z\ < 1},

and such that /(I) = /(0). It is easy to see that 2ΐ is a separating

Banach algebra of continuous functions on C. It is also not difficult to

show that the Silov boundary of 21 is C, whereas the minimal boundary
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of SI is the set {z: \z\ = 1, z Φ 1} = C - {1}.

THEOREM 2. Let §1 be a separating Banach algebra of continuous
functions on a compact metrizable Hausdorff space C. For each positive
integer n, let Un consist of all points x in C such that there exists f
in 31 with ll/li ^ 1, \f(x)\ > 3/4, and \f(y)\ < 1/4 for all y in Dn(x),
where Dn(x) = {y: p(x, y) ^ n'1} and p is a metric on C. Then Un is
open and f\Un — M, where M is the minimal boundary of Si.

Proof. If / is any function in 21, it is clear that the set σn(f) =
{x:xeC, \f(x)\ > 3/4, \f(y)\ < 1/4 whenever y e Dn(x)} is open for each
n. Since Un is the union of the sets belonging to the class

{*»(/):/e 31, 11/11^1} ,

it follows that Un is open.
If xe M, by Theorem 1 there exists / in 2ΐ with S(f) = {x}. It is

clearly no restriction to assume that | | / | | = 1. Hence \f(x)\ = 1. Since
1/(2/) I < 1 when y is in the compact set Dn(x), it follows that there ex-
ists a positive integer pn such that \f(y)\pn < 1/4 when yeDn(x). Thus
xe(j,(/^). Therefore xe Un. Since this is true for each n, it follows
that xef)Un. Therefore M c f l ^ .

Now consider a fixed x in f\Un. We must prove that xeM. To
this end, we construct by induction a sequence {gn} of functions in 51
having the following properties:

( i ) ll0»+i-ff»II^2-Λ+1

(ii) llflϋl ^ 3 ( 1 - 2 — ' )
(iii) gn(x) = 3(1 - 2-»)
(iv) |flrn+1(2/) - flrn(y)| < 2"w- 1 if yeDn(x) .

We first construct grlβ Since x e Ulf there exists a function / in 21 such
that H/ll ^ 1 and xeσx{f). Let

Since |/(x) | > 3/4, we have | | ^ | | ^ 3/2 4/3 = 2 < 3(1 - 2"2), so that gx

satisfies (ii). Clearly gλ{x) = 3(1 — 2"1), so that g1 satisfies (iii). Hence
gλ satisfies all of the relevant conditions. Assume now that gu * ,gk

have been chosen to satisfy all of the relevant conditions. Since gk(x) =
3(l-2- f c), there exists an integer j>k such that \gk(y)\<S(l-2-k)+2'k-2

for p(x, y) < j - 1 , i.e., for y in C — Dj(x). Since # e Ujy there exists a
function / in Sϊ such that | | / | | ^ 1 and xeσ3{f). Define h =
3 2-fc-1[/(x)]"1/. Thus h(x) = 3 . 2"*-1. Since | | / | | ^ 1 and \f(x)\ > 3/4,
we see that p | | ^ 2~k+\ Since also \f(y)\ < 1/4 for y in D/α), we see
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that \h(y)\ < 2~fc~1 for y in D,(x). Let gκ+i = gκ + h. It follows im-
mediately that

(i) llflf»+i

that

(iv) \gk+1(y) - g*(y)I < 2-*-1 if y e £>,(»),

and that

(iii) gt+1(x) = gt(x) + h(x) = 3(1 - 2"*) + 3 2'^

= 3(1 - 2"*-1) .

If yeD}(x), then

\g*M\ < \gM\ + \Kv)\
< HflfJI + 2- t-1 ^ 3(1 - 2-*-1) + 2-*-1

= 3 - 2"* < 3(1 - 2-fc-2) .

If y e C - Dj(a ), then

lflr*+i(i/)l ^ \oM\ + \Hv)\ £ 3(1 - 2-η + 2-*-s + ||fc||

^ 3(1 - 2-*) + 2-fc-2 + 2- s + 1 = 3(1 - 2-ϊ-2) .

It follows that

(ϋ) | | f i f t + 1 | | g 3 ( l - 2 - ' : - 2 ) .

Thus gk+1 has the relevant properties. We have thus constructed the
sequence {gn}. By condition (i), the sequence {gn} converges uniformly
on C to a function g in St. By (ii), | |g | | ^ 3. By (iii), flf(a?) = 3. If
yeDn(x), then

HflTnll + Σ lflr*+i(2/) - ^(l/)l < 3(1 - 2""-1) + Σ 2 " f c - 1 < 3 .

Thus S(g) = {^}. Therefore x e f , as was to be proved.

COROLLARY. // §1 is α separating Banach algebra of continuous
functions on a compact metrizable Hausdorff space C, then the minimal
boundary M of Sί is a countable intersection of open sets.

3. Representation by measures•

We now prove the fundamental result of this paper.

THEOREM 3. Let Sί be a separating Banach algebra of continuous
functions on a compact metrizable Hausdorff space C. Let 31 contain
the function 1, Let x be a point of C — M, where M is the minimal
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boundary of 21. Then there exists a non-negative Borel measure 7 of

norm 1 on C — {x} such that f(x) — \fdy for all f in 21.

Proof. We assume that a metric p on C is given. For each posi-
tive integer n, let

Dn = {y:ye C, p(x, y) ^ n~x} .

Let δ and c be real numbers such that 0 < 6 < 1/4 < 3/4 < c < 1. For
each positive integer n and each positive integer m, let hnm be a con-
tinuous function on C such that Jtwm(2/) = δ1/m for y e Dn, hnm(y) = c1/m

for yeC - D2n, and δ1/m <: /&nm0/) ^ c1/m for all 2/. Such a function exists
because the closures of the sets Dn and C — D2n are disjoint. There
are two cases to consider. Either there exists (Case 1) for each positive
integer n a positive integer m and a function / in 2ΐ such that
|/(α) I > (3/4)1/m and \f(y) | ^ hnm(y) for all y in C, or (Case 2) there ex-
ists a positive integer n such that for all positive integers m and for
all / in 2t either \f(x) \ < (3/4)1/OT or \f(y)\>hnm(y) for some y in C.
We shall show that Case 1 is impossible and that Case 2 implies the
theorem to be proved.

Assume now that Case 1 obtains. Let the positive integer n be
given, and choose / in 21 and a positive integer m such that \f(x) |>(3/4)1/m

and \f{y) \ £ hnm(y) for all y.
Write g = fm. Since \f(y) \ <: hnm(y) ^ c1/m for all y, we have

\g(y)\ ^ c for all y. Thus | |g | | ^ c < 1. Since |/(aθ| > (3/4)1/m we have
|flf(α;)| > 3/4. Since \f(y)\ g hnn(y) = δ1/m for y in Z)n, we have \g(y)\ ^
δ < 1/4 for t/ in Dw. It follows that x e Un, where Un is the set defined
in Theorem 2. Since this is true for each n, we have xef]Un = M,
by Theorem 2. This contradicts the hypothesis of Theorem 3. There-
fore Case 1 is impossible.

We are therefore justified in assuming that Case 2 obtains. Thus
there exists a positive integer n, henceforth fixed, such that for all
positive integers m and a l l / i n 21 either \f{x)\ ^ (3/4)1/m or \f(y)\>hnm(y)
for some y in C. Consider now a positive integer m. For each / in 21
either \f(x) \ ̂  (3/4)1/w or \\fh'1\\>l9 where h = hnm. Thus |/(a?)| ^
(3/4)1/;/ι whenever / e 2ί and \\fh-λ\\ ^ 1 . Let 33 be the Banach space of
all continuous functions on C, under the uniform norm, and let S30 be
the subspace {fh~u. f e 21} of 33. Define the linear functional ψ on 330

by defining φ{fh~λ)=f(x) for each / in St. Since |/(a?) | ^ (3/4)1/w if
/ e 2 ί and H/Zr1!! ^ 1, it follows that | M I ^ (3/4)1/m. By the Hahn-
Banach theorem, there exists an extension φ0 of φ which is a linear
functional on S3 with ||<po[l <g (3/4)1/m. By the Riesz representation theo-
rem, there exists a measure vm on C such that | |vm | | ^ (3/4)1/m and

φo(f) = \fdvm for all continuous functions / on C. Thus
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fix) =

for all / in 21. If we define the measure μm by

μjβ) = \ h->dvm

for all Borel subsets S of C, it follows that f(x) = [fdμm for all / i

5ί. In particular, 1 = \dμm. Thus \\μm\\ ^ 1. Let the measure v°m, the

restriction of vm to the set D2n, be defined by v°m(S) — vm(S Π D2n) for
each Borel set S. Let vλ

mj the restriction of vm to C — £)2W, be defined
similarly. Thus

' 3 \1/m

in

Similarly, let μ°m be the restriction of μm to D2ny and let μx

m be the re-
striction of μm to C — D2n. Thus

+ H A H = 1 1 ^ 1 1 ^ 1 .

Since {h{y)Yι = cιlm for all y in C - D2n and since μ]n{S) == f Λ " 1 ^ ,

for all Borel sets S, we see that μι

m = c~1 / m^, so that c 1 / m | | /4 | | = Ibmil-
Since l ^ ^ ) ! " 1 ^ δ"1 / m for all y, and therefore for all y in D2n, we see
similarly that 61 / m | |/4| | ^ II^ll Thus

b^\\μ°m\\ + AII ^ ||i4ll + 11*411 ̂  ( j

Combined with the inequality

this gives

Thus

IIμlII ^ [ ( " I ) ' - ft

+ II A l l ^ 6-1 / w ιil<ll + ft-Since

there exists a subsequence {μwj of {μm} which converges in the weak
star topology for measures on C to a measure μ on C with | |μ | | ^ 1.
Also,
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= lim \^fdμm. = f(x)

for each / in 21.
Since C — D2n is open and since

11/411 ^

for each m, we have

where μ1 is the restriction of μ to C — D2a. Now

l imΓf—y-
Λ-»O LV 4 /

= Un A _ in&Ίpwc - Inb]-1 = inΆ'^lHcb'1)]'1 < 1 .

Thus, if μ2 denotes the restriction of μ to the set [x}f we have \\μ2\\ ^
11//111 < 1. Thus there exists a constant a with | α | < 1 such that

\fdμ2 — af(x) for all continuous functions / o n C. Let //3 be the restric-

tion of μ to C - {a?}, so that /J2 + //3 = /i and ||/*2 | | + ||//3 | | =\\μ\\^l.

Thus

for all / in it . Therefore (1 - a)f(x) =[fdμ3 for all / in ?t. Since

1-Ili" 2 l l = l - | α | , and since le% we have l - | α | ^ | l - α | =

II^31| ^ 1 — | α | . Thus a is positive. Define γ = (1 — a)~1μ,.

Thus

for all / in St. Also, | M | ^ (1 - α)" 1 ! !/^!! ^ 1. Since 1 6 St we have

1 — \dγ. Therefore γ is a non-negative valued measure. This completes

the proof of the theorem.

COROLLARY. Let Sΐ 6e a separating Banach algebra containing the
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unit function of continuous functions on the compact metrizable Haus-
dorff space C. Let 3l0 consist of all functions on C which are real
parts of functions in 31, and let 3ΐ be the uniform closure of Sft0. Let
MQ consist of all points x in C such that there exists f in 3ΐ with
l/(#) I > \f(v) I for all y φ x in C. Then Mo equals the minimal boun-
dary M of SI.

Proof. If x e l , there exists g in C such that 1 g(x)| > |g(y)\ for
all y Φ x in C. It is no loss of generality to assume that g(x) = 1. If
we let / be the real part of g, then f e 9i0c9i and \f(x)\ = \g(x)\ >
10(2/) I ^ 1/(2/)I f° r all V Φ %. Hence xeM0.

If x is not in M, then there exists a real-valued measure γ on

M — {x} of norm 1 such that g(x) = Ucίγ for all gr in SI, by Theorem

3. Since γ is real-valued, it follows that f(x) = \fdj for all / in 9ΐ0.

Thus /(cc) = l/dγ for all / in 5R. If x where in MQ, there would exist

/ in 9ΐ with 1 =/(&) > |/(y)| for all y ^ x. Thus 1 = / ( l ) = [fdj <

wfdj < 1, since \f(y)\ < 1 for y Φ x and since | |γ | | = 1. This contra-

diction shows that x is not Mo. Hence M = Mo, as was to be proved.
DeLeeuw has found a proof of Theorem 3 which is somewhat simpler

than the one given here.

4, Applications, We now apply the results of the previous sections
to certain problems of approximation in one complex variable.

DEFINITION 3. Let C be a compact subset of the complex plane.
Then A (C) wiZZ consist of all continuous functions on C which are
analytic at interior points of C, and h^C) will consist of all continu-
ous functions on C which can be uniformly approximated arbitrarily
closely by rational functions whose poles lie in the complement of C.

It is clear that A ( C ) c Λ0(C)> and that A0(C) a n d AX(C) a r e sepa-
rating Banach algebras of continuous functions on C. Mergelyan [2] has
shown that A0(C) — AX(C) i*1 c a s e the complement of C consists of only
a finite number of components. No necessary and sufficient condition is
known that A^C) = A0(C) I n c a s e C has no interior, we shall obtain
in Theorem 5 below a necessary and sufficient condition that every con-
tinuous function on C be uniformly approximable by rational functions
with poles in — C.

THEOREM 4. Let C be a compact subset of the complex plane with
no interior and let M be the minimal boundary of A (C) Then either
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/{ (C) — /^ (C) or C ~ M has positive 2-dimensional Lebesgue measure.

Proof. Assume that hΊ(C) φ A0(C) We must show that C - M
has positive 2-dimensional Lebesgue measure. Now A0(C) * s the Banach
space of all continuous complex-valued functions on C, and A^C) is a
proper subspace, since A/C) =£ Ao(^) By the Hahn-Banach theorem,
there exists a continuous linear functional ψ Φ 0 on A0(C) which vanishes
on A (C) By the Riesz representation theorem, there exists a finite
complex-valued Borel measure μ on C which represents φ. Thus μ Φ 0

and [fdμ = 0 for all / in A^C). In particular, ί(s - ζ)~Ύdμ{ζ) = 0

whenever 2 is not in C, since the function (z — ζ)'1 is a rational func-
tion of ζ whose pole, z, is not in C. Since the function z'1 of 2 is in-
tegrable with respect to Lebesgue measure dxdy over any finite region
of the plane, and since μ is a finite measure on the compact set C, the
integral

Hz) = jo* -

will exist for almost all values of z, and the function h(z) so defined,
called the convolution of the measure μ and the function z~ι and writ-
ten h = z~1*μ, will be integrable with respect to Lebesgue measure over
any finite region of the plane. Since we have seen above that h(z) — 0
if z is not in C, it follows that h is integrable.

Assume that the integrable function h vanishes almost everywhere,

so that the integral h(z) = 1(2 — ζ)~ιdμ(ζ) exists and vanishes for almost

all z. To obtain a contradiction from this assumption, we use the equa-

tion —— = πδ ([7] p. 49) from the theory of distributions. This means

oz z
that for any function g on the complex plane which vanishes in a neigh-
borhood of 00 and which has continuous partial derivatives of all
orders we have

(( ^i !) - πg(ξ)
x dy

for all values of ξ. If we write gλ(z) = -χ (-~— + i^—)9(z) and integrate

both sides of the above equation with respect to μ we obtain

= 0
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since h(z) vanishes almost everywhere. ΛThe use of Fubini's theorem is
justified since z — ξ, and therefore (z — ξ)-1, is measurable with respect
to the product of the measures gλ(z)dxdy and dμ(ξ) and since

is finite. Now every continuous function g0 on C can be uniformly ap-

proximated by such functions g, so that\go(ξ)dμ(ζ) = 0. By the unique-

ness part of the Riesz representation theorem, it follows that μ — 0.

This contradiction shows that there exists a set Γ of C of positive

Lebesgue measure such that the integral h(z) exists and does not vanish

for all z in Γ. We may clearly assume that at no point of Γ does μ

have point mass.

Let zQ be any point in Γ, so that h(zQ) = c exists and is not zero.
Let / be any function in Aj(C) s u c h that f(z0) = 0. Let {/„} be a
sequence of rational functions with poles in the complement of C con-
verging uniformly to / on C. Since fn(z0)~> f(z0) = 0 as n-> oo, we see
that {gn} converges uniformly to / on C, where gn = fn — fn(zQ). Thus
gn is a rational function with poles in — C which vanishes at z0, so that
there exists a rational function gr

n with poles in —C such that gn{z) =
g'n(z)(z — z0) for all z. Hence

= 0

for each n, since g'ne /\λ{C). Passing to the limit, we see that

= 0 .

Since this is true for all / in /\λ{C) with f(z0) — 0, it follows that for
an arbitrary / i n AjίC) we have

= 0 +/(«o)(-M«o)) = -cf(z0) .

If we let δ0 denote the measure of mass + 1 at the point z0, it follows
that

v = (z - z,Yλμ + cδ0

is a measure on C which annihilates A/C)- Now if zQ were in M, there
would exist / in AT(C) with f(z0) = 1 and |/(«)| < 1 for all z Φ z0 in C.

Since K{20}) = c ^ 0, it is clear that \fndv φ 0 if n is sufficiently large.
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This is a contradiction, since fne AL(C) This shows that z0 is not in
M. Since z0 was any point in Γ we have Γ c C — M. Since Γ has
positive measure, C — M has positive measure, as was to be proved.

To restate the theorem, if for every point z on C, with the possible
exception of a set of measure 0, there exists a continuous function / on
C with \f(z) I > \f(ξ) I for all ξ φ z in C which can be uniformly ap-
proximated by rational functions with poles in — C, then every continuous
function on C can be uniformly approximated by rational functions whose
poles lie in — C.

THEOREM 5. Let C be a compact subset of the complex plane without
interior. Let hQ(C) be the algebra of all continuous complex-valued
functions on C and let J\{(C) be those functions in Ad(C) which can be
uniformly approximated by rational functions with poles in —C, and
let M be the minimal boundary of A/C)- Let ΔQ(C) consist of all con-
tinuous real-valued functions on C, and let ΔJfi) consist of all continu-
ous real-valued functions on C which are uniformly approximate by
real parts of functions in h^C). Let Mo consist of all points z in C
such that there exists f in Δλ{C) with \f{z)\ > \f{ζ)\ for all ζ φ z in C.
Then M = MQ and the following statements are equivalent:

(i) Aι(C)=A0(C)
(ii) C — M has measure 0
(iii) M = C
(iv) Λ(C) - Δ0(C) .

Proof. The fact that M = Mo is a special case of the corollary to
Theorem 3. It is clear that (i) => (iii) ==> (ii). But (ii) =#> (i) by Theorem
4. Thus (i), (ii), and (iii) are equivalent. It is also clear that (i) => (iv).
But (iv) implies that MQ = C. Thus (iv) => (iii). This proves Theorem 5.

Theorem 5 thus gives results concerning approximation on a nowhere
dense subset of the complex plane by rational functions or by real parts
of rational functions, and shows that the two problems are related.
The results for approximation by the real parts of rational functions
are similar in outward appearance to results of Brelot [2] and Deny [4],
who consider approximation by functions harmonic in a neighborhood of
C, but there does not seem to be an essential connection, due to the
fact that a function harmonic in the neighborhood of C need not be the
real part of an analytic function, since the conjugate harmonic function
might be multiple-valued.
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