FAITHFUL*-REPRESENTATIONS OF NORMED ALGEBRAS

BERTRAM YOOD

1. Introduction. Let B be a complex Banach algebra with an involution $x \to x^*$ in which, for some k > 0, $||xx^*|| \ge k ||x|| ||x^*||$ for all x in B. Kaplansky [8, p. 403] explicitly made note of the conjecture that all such B are symmetric. An equivalent formulation is the conjecture that all such B are B^* -algebras in an equivalent norm. In 1947 an affirmative answer had already been provided by Arens [1] for the commutative case. We consider in § 2 the general (non-commutative) case. It is shown that the answer is affirmative if k exceeds the sole real root of the equation $4t^3 - 2t^2 + t - 1 = 0$. This root lies between .676 and .677. In any case these algebras are characterized spectrally as those Banach algebras with involution for which self-adjoint elements have real spectrum and there exists c > 0 such that $\rho(h) \ge c ||h||$, h self-adjoint (where $\rho(h)$ is the spectral radius of h).

A basic question concerning a given complex Banach algebra B with an involution is whether or not it has a faithful*-representation as operators on a Hilbert space. In § 3 we give a necessary and sufficient condition entirely in terms of algebraic and linear space notions in B. This is that $\rho(h)=0$ implies h=0 for h self-adjoint and that $R\cap (-R)=(0)$. Here R is the set of all self-adjoint elements linearly accessible [11, p. 448] from the set of all finite sums of elements of the form x^*x . This is related to a previous criterion of Kelley and Vaught [10] which however involves topological notions (in particular, the assumption that the involution is continuous).

If B is semi-simple with minimal one-sided ideals a simpler discussion of *-representations (§ 5) is possible even if B is incomplete. For example if B is primitive then B has a faithful*-representation if and only if $xx^*=0$ implies $x^*x=0$. The incomplete case has features not present in the Banach algebra case. In the former case, unlike the latter, a^* -representation may be discontinuous. A class of examples is provided in § 5.

2. Arens*-algebras. Let B be a complex normed algebra with an involution $x \to x^*$. An *involution* is a conjugate linear anti-automorphism of period two. Elements for which $x = x^*$ are called *self-adjoint* (s. a.) and the set of s. a. elements is denoted by H. Let \mathfrak{D} be a Hilbert space and

Received May 4, 1959. This research was supported by the National Science Foundation, research grant NSF G 5865, and by the United States Air Force through the Office of Scientific Research of the Air Research and Development Command under Contract No. SAR/AF - 49(636) - 153.

 $\mathfrak{C}(\mathfrak{D})$ be the algebra of all bounded linear operators on \mathfrak{D} . By a*-representation of B we mean a homomorphism $x \to T_x$ of B into some $\mathfrak{C}(\mathfrak{D})$ where T_{x^*} is the adjoint of T_x . A^* -representation which is one-to-one is called faithful.

We shall be mainly, but not exclusively, interested in the case where B is complete (a Banach algebra). In § 2 we shall assume throughout that B is a Banach algebra with an involution $x \to x^*$.

As in [5, p. 8] we set $x \circ y = x + y - xy$ and say that x is quasi-regular with quasi-inverse y if $x \circ y = y \circ x = 0$. The quasi-inverse of x is unique, if it exists, and is denoted by x'. As, for example, in [16, p. 617] we define the *spectrum* of x, sp(x), to be the set consisting of all complex numbers $\lambda \neq 0$ such that $\lambda^{-1}x$ is not quasi-regular, plus $\lambda = 0$ provided there does not exist a subalgebra of B with an identity element and containing x as an invertible element. (The treatment of zero as a spectral value plays no role below.) The *spectral radius* $\rho(x)$ if x is defined to be $\sup |\lambda|$ for $\lambda \in sp(x)$.

We say that B is an $Arens^*$ -algebra [1] if there exists k > 0 such that $||x^*x|| \ge k ||x|| ||x^*||$, $x \in B$. As usual, we say that B is a B^* -algebra if $||x^*x|| = ||x||^2$, $x \in B$.

2.1. LEMMA. Let B an Arens*-algebra with $||xx^*|| \ge k ||x|| ||x^*||$, $x \in B$. Then for each s. a. element h, $\rho(h) \ge k ||h||$ and sp(h) is real.

That the spectrum of a s. a. element h is real is shown in [1, p. 273]. By use of the inequality $||h^{2^n}|| \ge k ||h^{2^{n-1}}||^2$ as in [16, p. 626] it follows that $\rho(h) \ge k ||h||$. We shall show (Theorem 2.4) that the spectral conditions of Lemma 2.1 imply that B is an Arens*-algebra.

- 2.2. Lemma. Suppose that for each s. a. element h, $\rho(h) \ge c ||h||$ and sp(h) is real, where c > 0. Let h be s. a., $sp(h) \subset [-a, b]$ where $a \ge 0$, $b \ge 0$ and let r > 0. Then
 - (1) $||(-t^{-1}h)'|| < r \text{ if } t > (1-cr)b/cr \text{ and } t > (1+cr)a/cr$,
 - (2) $||(t^{-1}h)'|| < r \text{ if } t > (1 cr)a/cr \text{ and } t > (1 + cr)b/cr.$

Note that (2) follows from (1) as applied to the element-h. By [18, Theorem 3.4] the involution is continuous on B. Therefore h generates a closed*-subalgebra B_0 . Let \mathfrak{M} be the space of regular maximal ideals of B_0 . For t>a set $u=(-t^{-1}h)'$. By [8, Theorem 4.2], $u\in B_0$. It is readily seen that u is s. a. Since $-t^{-1}h+u+t^{-1}hu=0$ we have, for each $M\in \mathfrak{M}$, u(M)=h(M)/(t+h(M)). By, [8, p. 402] the spectrum of h is the same whether computed in B or in B_0 so that $-a \le h(M) \le b$. Since $\lambda/(t+\lambda)$ is an increasing function of λ we see that $-a/(t-a) \le u(M) \le b/(t+b)$. Now $\rho(u)=\sup |u(M)|$, $M\in \mathfrak{M}$. Therefore, since u is s.a.,

(2.1)
$$c || u || \le \rho(u) \le \max [a/(t-a), b/(t+b)].$$

From formula (2.1), ||u|| < r if a/(t-a) < cr and b/(t+b) < cr. This yields (1).

Note that, under the given hypotheses, $c \leq 1$.

2.3. Lemma. Let x and y be quasi-regular. Then x + y is quasi-regular if and only if x'y' is quasi-regular.

The formulas $x' \circ (x + y) \circ y' = x'y'$ and $x + y = x \circ (x'y') \circ y$ yield the desired result. Let r > 0. If ||x'|| < r and $||y'|| < r^{-1}$ it follows from Lemma 2.3 and [12, p. 66] that (x + y)' exists.

Consider the situation of Lemma 2.2 and let h_k be s. a., k = 1, 2 where $N = \max(\rho(h_1), \rho(h_2))$. By Lemma 2.2, $||(t^{-1}h_k))'|| < 1$ and $||(-t^{-1}h_k)'|| < 1$ if t > (1 + c)N/c. Then, by Lemma 2.3,

$$(2.2) sp(h_1 + h_2) \subset [-(1+c)N/c, (1+c)N/c].$$

Suppose next that $sp(h_k) \subset [0, \infty)$, k = 1, 2. Then $||(t^{-1}h_k)'|| < 1$ if t > (1+c)N/c and $||(-t^{-1}h_k)'|| < 1$ if t > (1-c)N/c. Then by Lemma 2.3,

(2.3)
$$sp(h_1 + h_2) \subset [-(1-c)N/c, (1+c)N/c]$$
.

2.4. Theorem. Suppose that for each s. a. element h, $\rho(h) \geq c \mid\mid h \mid\mid$ and sp(h) is real, where c>0. Then B is an Arens*-algebra with $||xx^*|| \geq k \mid\mid x \mid\mid \mid\mid x^* \mid\mid, x \in B$, where k can be chosen to be $c^5/(1+c)(1+2c^2)$.

Let x=u+iv where u and v are s. a. Then $x^*x=u^2+v^2+i(uv-vu)$, $xx^*=u^2+v^2+i(vu-uv)$ and $xx^*+x^*x=2u^2+2v^2$. We next compare $\rho(u^2)=[\rho(u)]^2$ and $\rho(v^2)$ with $\rho(xx^*)$. For this purpose we may suppose that $\rho(u)\geq \rho(v)$ for otherwise we can replace x by ix=-v+iu. If $\lambda\neq 0$ then $\lambda\in sp(xx^*)$ if and only if $\lambda\in sp(x^*x)$. Thus $\rho(xx^*)=\rho(x^*x)$. By (2.2), $sp(xx^*+x^*x)\subset [-(1+c)\rho(xx^*)/c, (1+c)\rho(xx^*)/c]$. Now $2u^2=xx^*+x^*x-2v^2$. Let r>0, t>0. By Lemma 2.2,

$$(2.4) \qquad || [t^{-1}(xx^* + x^*x)]' || < r, t > (1 + cr)(1 + c)\rho(xx^*)/c^2r .$$

Since $sp(-2v^2) \subset (-\infty, 0]$ and $\rho(2v^2)$, $\leq \rho(2u^2)$, by Lemma 2.2 we have, for t > 0,

(2.5)
$$|| [t^{-1}(-2v^2)]' || < r^{-1}, t > (r-c)\rho(2u^2)/c .$$

we select c < r < 2c. For such r, Lemma 2.3 and formulas (2.4) and (2.5) show that $[t^{-1}(2u^2)]'$ exists if $t > \max\{(1+cr)(1+c)\rho(xx^*)/c^2r, (r-c)\rho(2u^2)/c\}$. Now (r-c)/c < 1 and $sp(2u^2) \subset [0, \infty)$. Therefore, letting $r \rightarrow 2c$, we have

(2.6)
$$\rho(2u^2) \leq (1+2c^2)(1+c)\rho(xx^*)/(2c^3) .$$

On the other hand $||x|| \le ||u|| + ||v|| \le [\rho(u) + \rho(v)]/c \le 2\rho(u)/c$ and $||x^*|| \le 2\rho(u)/c$. Therefore, by (2.6),

$$(2.7) ||x|| ||x^*|| \le 4\rho(u^2)/c^2 \le (1+2c)(1+c)\rho(xx^*)/c^5.$$

But $\rho(xx^*) \leq ||xx^*||$. This together with (2.7) completes the proof.

- 2.5. COROLLARY. Under the hypotheses of Theorem 2.4, the norm of the involution as an operator on B does not exceed $(1+c)(1+2c^2)/c^5$.
- In (2.7) we may replace $||x|| ||x^*||$ by $||x^*||^2$ and $\rho(xx^*)$ by $||x|| ||x^*||$. This gives $||x^*|| \le (1+c)(1+2c^2) ||x||/c^5$.

We denote by P(N) the set of $x \in B$ such that $sp(x^*x) \subset [0, \infty)(sp(x^*x) \subset (-\infty, 0])$.

- 2.6. Lemma. For an Arens*-algebra B the following are equivalent.
- (a) B is a B^* -algebra in an equivalent norm.
- (b) N = (0).
- (c) P = B.

Suppose that N=(0). Let $y \in B$. Since the involution on B is continuous, the element y^*y generates a closed*-subalgebra B_0 . Let \mathfrak{M} be the space of regular maximal ideals of B_0 . By [1, p. 279] the commutative algebra B_0 is *-isomorphic to $C(\mathfrak{M})$. Also $sp(y^*y)$ is real. Hence there exist $u, v \in B_0$ such that $u(M) = \sup(y^*y(M), 0)$ and $v(M) = -\inf(y^*y(M), 0)$, $M \in \mathfrak{M}$. Then u and v are s. a., $y^*y = u - v$ and uv = 0. As in [14, p. 281], $(yv)^*(yv) = -v^3$ so that yv = 0 by hypothesis. Then v = 0 and $sp(y^*y) \subset [0, \infty)$.

A theorem of Gelfand and Neumark [13] asserts that if B is semi-simple, has a continuous involution, is symmetric (B=P) and has an identity then there exists a faithful*-representation $x\to T_x$ of B. This theorem is also valid when B has no identity [4, Theorem 2.16]. In our situation, B is semi-simple [18, Lemma 3.5] and the involution is continuous. Thus a faithful*-representation exists. This representation is bi-continuous by [18, Corollary 4.4].

That (a) implies (b) follows from the well-known fact that any B^* -algebra is symmetric [14, p. 207 and p. 281].

The equation $4t^3 - 2t^2 + t - 1 = 0$ has exactly one real root a. This root a lies between .676 and .677.

2.7. Theorem. Suppose that for each s. a. element h, $\rho(h) \ge c \parallel h \parallel$ and sp(h) is real, where c > 0. Then there is an equivalent norm for B in which B is a B*-algebra if c > a.

Suppose that $sp(x^*x)\subset (-\infty,0]$. By Lemma 2.6 it is sufficient to show that x=0. Suppose that $x\neq 0$. By Theorem 2.4 it is clear that $x^*x\neq 0$ and $\rho(x^*x)\neq 0$. Set x=u+iv where u and v are s. a. As in the proof of Theorem 2.4, $xx^*+x^*x=2u^2+2v^2$ and we may assume that $\rho(u)\geq \rho(v)$. Since $sp(u^2)\subset [0,\infty)$, $sp(v^2)\subset [0,\infty)$ formula 2.3 shows that $sp(2u^2+2v^2)\subset [-(1-c)\rho(2u^2)/c, (1+c)\rho(2u^2)/c]$. Let r>0, t>0. From Lemma 2.2,

 $||[-t^{-1}(2u^2+2v^2)]'|| < r ext{ if } t > (1-cr)(1+c)
ho(2u^2)/(c^2r) ext{ and } t > (1+cr)(1-c)
ho(2u^2)/(c^2r).$

We write $x^*x = 2u^2 + 2v^2 + (-xx^*)$. By Lemma 2.2, $||[-t^{-1}(-xx^*)]'|| < r^{-1}$ if t > 0 and $t > (r-c)\rho(x^*x)/c$ since $sp(-xx^*) \subset [0, \rho(x^*x)]$. By Lemma 2.3, $(-t^{-1}x^*x)'$ exists if $t > \max\{(1+cr)(1-c)\rho(2u^2)/c^2r, (1-cr)(1+c)\rho(2u^2)/c^2r, (r-c)\rho(x^*x)/c\}$. Since $sp(x^*x) \subset (-\infty, 0], \rho(x^*x)$ cannot exceed this maximum. Now select $r, 1 \le r < 2c$ which is possible since c > a. Then (r-c)/c < 1 and $(1+cr)(1-c) \ge (1-cr)(1+c)$. Therefore $\rho(x^*x) \le (1+cr)(1-c)\rho(2u^2)/c^2r$. Letting $r \to 2c$ we obtain

(2.8)
$$\rho(x^*x) \leq (1+2c^2)(1-c)\,\rho(2u^2)/2c^3.$$

Next we express $-2u^2 = 2v^2 + (-xx^* - x^*x)$. By formula (2.3), $sp(-xx^* - x^*x) \subset [-(1-c)\rho(x^*x)/c, (1+c)\rho(x^*x)/c]$. Recall that $\rho(2v^2) \le \rho(2u^2)$. Repeating the above reasoning we see that for r>0, t>0, $(-t^{-1}(-2u^2))'$ exists for $t>\max\{1-cr)(1+c)\rho(x^*x)/c^2r$, $(1+cr)(1-c)\rho(x^*x)/c^2r$, $(r-c)\rho(2u^2)/c\}$. But $sp(-2u^2) \subset (-\infty,0]$. Then by the argument above we obtain

(2.9)
$$\rho(2u^2) \le (1 + 2c^2)(1 - c)\rho(x^*x)/2c^3.$$

From formulas (2.8) and (2.9) we see that $(1+2c^2)(1-c) \ge 2c^3$ or $4c^3-2c^2+c-1 \le 0$. This gives $c \le a$ which is impossible by hypothesis.

Thus if c > a we have N=(0). We subsequently show (Corollary 2.11) that, in any case, N and P are closed in an Arens*-algebra B.

Following Rickart [16, p. 625] we say that B is an A^* -algebra if there exists in B an auxiliary normed-algebra norm |x| (B need not be complete it this norm) such that, for some c > 0, $|x^*x| \ge c |x|^2$. He raises the question of whether every A^* -algebra has a faithful*-representation.

2.8. COROLLARY. An A*-algebra B where $|x^*x| \ge c |x|^2$, $x \in B$, in the auxiliary norm has a faithful*-representation if c > a.

Observe that $|x^*||x| \ge c |x|^2$ so that $|x^*| \le c^{-1} |x|$, $x \in B$. Thus the involution on B is continuous in the topology provided by the norm |x|. Let B_0 be the completion of B in the norm |x|. We extend the function |x| from B to B_0 by continuity. Likewise the involution $x \to x^*$ can be extended by continuity to provide a continuous involution $y \to y^*$ on B_0 . We then have $|y^*y| \ge c |y|^2$, $y \in B_0$. As in [16, p. 626] we obtain $\rho(h) \ge c |h|$ for h s. a. in B_0 where $\rho(h)$ is the spectral radius computed for h as an element of the Banach algebra B_0 , $\rho(h) = \lim_{n \to \infty} |h^n|^{1/n}$. Also $|y^*y| \ge c^2 |y^*| |y|$, $y \in B_0$, so that B_0 is an Arens*-algebra. Hence, by Lemma 2.1, the spectrum of each s. a. element of B_0 is real. By Theorem 2.7, B_0 is a B^* -algebra in an equivalent norm. Therefore B has the desired faithful*-representation.

We have no information on the truth or falsity of Theorem 2.7 for $c \leq a$.

To prove Theorem 2.7 without restriction on the size of c one can assume without loss of generality that B has an identity. For suppose that B has no identity, $||x^*x|| \ge k ||x^*|| ||x||, x \in B$. Adjoin an identity e to B to form the algebra B_1 with the norm defined in B_1 by the rule

$$||\lambda e + x|| = \sup_{\substack{||y||=1\\y\in B}} ||\lambda y + xy||.$$

Then B_1 is a Banach algebra with the involution $(\lambda e + x)^* = \overline{\lambda} e + x^*[1, p. 275]$. By changing in minor ways arguments in [14, p. 207] we see that B_1 is an Arens*-algebra. There is a constant K such that $||x^*|| \le K ||x||$, $x \in B$. Choose 0 < r < 1. Given $\lambda e + x \in B_1$ there exists $y \in B$, ||y|| = 1, such that

$$r^{2} || \lambda e + x ||^{2} < || \lambda y + xy ||^{2} \le K || (\lambda y + xy)^{*} || || \lambda y + xy ||$$

$$\le K k^{-1} || y^{*} (\lambda e + x)^{*} (\lambda e + x)y ||$$

$$\le K^{2} k^{-1} || (\lambda e + x)^{*} (\lambda e + x) || .$$

Then

$$||(\lambda e + x)^*(\lambda e + x)|| \ge k K^{-2} ||\lambda e + x||^2 \ge (kK^{-2})^2 ||\lambda e + x|| ||(\lambda e + x)^*||.$$

We use this fact later.

Some results on spectral theory in Arens*-algebras were obtained by Newburgh [15]. In a B^* -algebra $\rho(x)$ is a continuous function on the set H of s.a. elements since $\rho(h) = ||h||, h \in H$. This property holds for all Arens*-algebras.

2.9. Theorem. In any Arens*-algebra, $\rho(x)$ is a continuous function on H.

We assume that $\rho(h) \ge c \mid\mid h \mid\mid$ and sp(h) is real, $h \in H$. We shall use the following principle [12, p. 67]. If y' exists and $\mid\mid z \mid\mid < (1 + \mid\mid y'\mid\mid)^{-1}$ then (y + z)' exists.

Let $h \in H$, $h \neq 0$. Select $t > \rho(h)$ and set $u = (t^{-1}h)'$. We proceed as in the proof of Lemma 2.2. Let B_0 be the closed*-subalgebra generated by h and let \mathfrak{M} be its space of regular maximal ideals. Then $u \in B_0$. Since $t^{-1}h \circ u = 0$ we obtain, for each $M \in \mathfrak{M}$, u(M) = h(M)/(h(M)-t). Since $\lambda/(\lambda - t)$ is a decreasing function of λ , sup |u(M)| can be majorized by $\rho(h)/(t-\rho(h))$. Then $(1+||u||)^{-1} \geq (1+c^{-1}\rho(u))^{-1} \geq c(t-\rho(h))/(ct+(1-c)\rho(h)) = a(t)$, say.

Therefore $t^{-1}h + t^{-1}h_1$ is quasi-regular if $||t^{-1}h_1|| < a(t)$ or if

$$(2.10) \hspace{1cm} ct^{_2}-c[\rho(h)+||\ h_{_1}||]t-(1-c)\rho(h)\,||\ h_{_1}||>0\,\,.$$

We apply this to $h_1 \in H$, $||h_1|| < \rho(h)$. The larger zero d of the left hand side of (2.10) is given by

$$(2.11) 2d = \rho(h) + ||h_1|| + [(\rho(h) - ||h_1||)^2 + 4c^{-1}\rho(h) ||h_1||]^{1/2}.$$

The radical term of (2.11) is majorized by $\rho(h) - ||h_1|| + 2(c^{-1}\rho(h)||h_1||)^{1/2}$. Hence $d \leq \rho(h) + (c^{-1}\rho(h)||h_1||)^{1/2}$. Thus $t \notin sp(h+h_1)$ if $t > \rho(h) + (c^{-1}\rho(h)||h_1||)^{1/2}$. Likewise $t \notin sp(-h-h_1)$ under the same condition. This shows that

$$\rho(h+h_1) \leq \rho(h) + (c^{-1}\rho(h) || h_1 ||)^{1/2}.$$

provided $h_1 \in H$ and $||h_1|| < \rho(h)$.

Note that $\rho(h+h_1) \ge c \mid\mid h+h_1 \mid\mid \ge c \mid\mid h\mid\mid -\mid\mid h_1 \mid\mid) \ge c(\rho(h)-\mid\mid h_1 \mid\mid)$. Therefore if $\mid\mid h_1 \mid\mid < c(\rho(h)-\mid\mid h_1 \mid\mid)$ or equivalently if $\mid\mid h_1 \mid\mid < c\rho(h)/(1+c)$ we have $\mid\mid h_1 \mid\mid < \rho(h+h_1)$. We may then apply the above analysis to the pair of s. a. elements $(h+h_1)$, $-h_1$, to obtain (if $\mid\mid h_1 \mid\mid < c\rho(h)/(1+c)$)

(2.13)
$$\rho(h) \leq \rho(h_1 + h_2) + (c^{-1}\rho(h + h_1) || h_1 ||^{1/2}.$$

From (2.12), $\rho(h+h_1) \leq [c^{-1/2}+1]\rho(h)$. Inserting this estimate in the radical term of (2.13) we obtain

$$(2.14) \rho(h) \leq \rho(h+h_1) + (c^{-1}+c^{-3/2})^{1/2}(\rho(h) || h_1 ||)^{1/2}$$

Combining (2.12) and (2.14) we obtain

$$|\rho(h+h_1)-\rho(h)| \leq [(c^{-1}+c^{-3/2})\rho(h)||h_1||]^{1/2}$$

provided $||h_1|| < c\rho(h)/(1+c)$.

This show that $\rho(x)$ is continuous on H at x=h. Clearly we have continuity on H at x=0.

For x s.a. in an Arens*-algebra let [a(x), b(x)] be the smallest closed interval containing sp(x).

2.10. COROLLARY. For an Arens*-algebra B, a(x) and b(x) are continuous functions of x on H.

As remarks above indicate, there is no loss of generality in supposing that B has an identity e. Let h be s.a. Choose $\lambda>0$ such that $sp(\lambda e+h)\subset [1,\infty)$. Let $h_n\to h$, where each h_n is s.a., and choose $0<\varepsilon<1$. We have $\rho(\lambda e+h)=b(\lambda e+h)=\lambda+b(h)$. By the "spectral continuity theorem" (see e.g. [15, Theorem 1]) for all n sufficiently large $sp(\lambda e+h_n)\subset (1-\varepsilon,b(\lambda e+h)+\varepsilon)$. Also for all n sufficiently large $|\rho(\lambda e+h_n)-\rho(\lambda e+h)|<\varepsilon$ by Theorem 2.9. Since, for such n, $sp(\lambda e+h_n)\subset (0,\infty)$, then $\lambda+b(h_n)=\rho(\lambda e+h_n)\to \lambda+b(h)$. Therefore $b(h_n)\to b(h)$. A similar argument shows that $a(h_n)\to a(h)$.

2.11. Corollary. For an Arens*-algebra B, N and P are closed sets.

This follows directly from the continuity of the involution on B and Corollary 2.10. Likewise the set H^+ of all s.a. elements whose spectrum is non-negative is closed.

- 3. Faithful*-representations. Let B be a Banach algebra with an involution $x \to x^*$. Our aim here is to give necessary and sufficient conditions for B to possess a faithful*-representation. Our criterion (Theorem 3.4) is in terms of algebraic and linear space properties of B. A criterion of Kelley and Vaught [10] is largely topological in nature. To discuss this we first prove a simple lemma. We adopt the following notation. Let R_0 be the collection of all finite sums of elements of B of the form x^*x . Let $R = \{x \in H \mid \text{there exists } y \in R_0 \text{ such that } ty + (1-t)x \in R_0, 0 < t \leq 1\}$. In the notation of Klee [11, p. 448], $R = \lim_{} R_0$ (computed in the real linear space H, the union in H of R_0 and the points of H linearly accessible from R_0). Let P be the closure in B of R_0 . If B has an identity e and the involution is continuous then H is closed, e is an interior point of R_0 [10] and R = P [11, p. 448]. If B has no identity or if the involution is not assumed continuous we see no relation, in general, between R and P other than $R \subset P$.
- 3.1. Lemma. Suppose that B has a continuous involution $x \to x^*$ and an identity e. Then there is an equivalent Banach algebra norm $||x||_1$ where $||x^*||_1 = ||x||_1$, $x \in B$, and $||e||_1 = 1$.

We first introduce an equivalent norm $||x||_0$ in which $||x^*||_0 = ||x||_0$, $x \in B$, by setting $||x||_0 = \max{(||x||, ||x^*||)}$. Let $L_x(R_x)$ be the operator on B defined by left (right) multiplication by x; $L_x(y) = xy$ and $R_x(y) = yx$. Let $||L_x||$ be the norm of L_x as an operator on B where the norm $||y||_0$ is used for B. $||R_x||$ is defined in the same way. We set $||x||_1 = \max{(||L_x||, ||R_x||)}$. Then $||x+y||_1 \le ||x||_1 + ||y||_1$ and $||xy||_1 \le ||x||_1 ||y||_1$. Clearly $||x||_1 \le ||x||_0$. Moreover $||L_x|| \ge ||x||_0/||e||_0$ and the norms $||x||_0$ and $||x||_1$ are equivalent. Trivially $||e||_1 = 1$. Also

$$||\ L_{x^*}||=\sup_{||y||_0=1}\!||\ x^*y\ ||_0=\sup_{||y||_0=1}\!||\ y^*x\ ||_0=||\ R_x\ ||\ .$$

Then $||x^*||_1 = \max(||L_{x^*}||, ||R_{x^*}||) = \max(||L_x||, ||R_x||) = ||x||_1$.

In view of Lemma 3.1 the result [10, p. 51] of Kelley and Vaught in question may be expressed as follows.

3.2. Theorem. Let B be a Banach algebra with an identity and an involution $x \to x^*$. Then B has a faithful*-representation if and only if* is continuous and $P \cap (-P) = (0)$.

As it stands this criterion breaks down if B has no identity. For let B = C([0,1]) with the usual involution $x \to x^*$ and norm. Let B_0 be the algebra obtained from B by keeping the norm and involution but defining all products to be zero. Then* is still continuous and $P \cap (-P) = (0)$. But B_0 has no faithful*-representation, for otherwise B_0 would be semi-simple [16, p. 626].

As in [4] we call the involution $x \rightarrow x^*$ in B regular if, for h s.a., $\rho(h) = 0$ implies h = 0. By [4, Lemma 2.15]. * is regular if and only if every

maximal commutative *-subalgebra of B is semi-simple. Also every maximal commutative*-subalgebra of B is closed [4, Lemma 2.13].

By a positive linear functional f on B we mean a linear functional such that $f(x^*x) \ge 0$, $x \in B$. The functional f is not assumed to be continuous. If B has an identity then [13, p. 115], f(h) is real for h s.a. and $f(x^*) = \overline{f(x^*)}$. Trivial examples show this to be false, in general. However, from the positivity of f, $f(x^*y)$ and $f(y^*x)$ are complex conjugates which is the fact really needed for the introduction of the inner product in Theorem 3.4.

- 3.3 Lemma. Let the involution on B be regular. Then
- (1) a positive linear f satisfies the inequalities

(3.1)
$$f(y^*hy) \leq f(y^*y) || h ||, y \in B, h \in H,$$

$$(3.2) f(y^*x^*xy) \le f(y^*y) || x^*x ||, x, y \in B,$$

(2) if B has an identity e, any $h \in H$, $||e-h|| \le 1$ has a s.a. square root and, moreover, any positive linear functional is continuous on H.

Suppose first that B has an identity e, $||e-h|| \le 1$, h s.a. In the course of the proof of [4, Theorem 2.16] it was shown that h has a s.a. square root. Next do not assume that B has an identity. Let B_1 be the Banach algebra obtained by adjoining an identity e to B. Consider the power series $(1-t)^{1/2}=1-t/2-t^2/8\cdots$. Let $h\in B$, h s.a. and $||h||\le 1$. Then the expansion $-h/2-h^2/8-\cdots$ converges to an element $z\in B$. Let B_0 be a maximal abelian*-subalgebra of B containing h. As noted above, B_0 is a semi-simple Banach algebra. The involution is continuous on B_0 ([16, Corollary 6.3]). Therefore z is s.a. Also $(e+z)^2=e-h$. Let $y\in B$ and set k=y+zy. Then $k^*k=(y^*+y^*z)(y+zy)=y^*(e+z)^2y=y^*y-y^*hy$. For any positive linear functional f on B, $f(k^*k) \ge 0$ which yields (3.1). Formula (3.2) is a special case.

Suppose that B has an identity e. If we set y = e in (3.1) we obtain $|f(h)| \le f(e) ||h||$ which shows that f is continuous on H.

3.4. Theorem. B has a faithful*-representation if and only if* is regular and $R \cap (-R) = (0)$.

Suppose that B has a faithful*-representation $x \to T_x$ as operators on a Hilbert space $\mathfrak D$. Let h be s.a. and $\rho(h)=0$. Then $\rho(T_h)=0$. As T_h is a s.a. operator on a Hilbert space, $T_h=0$ and therefore h=0. Thus the involution is regular. Let $x \in R \cap (-R)$ and let f be a positive linear functional on B. Then clearly $f(y) \geq 0$, $y \in R_0$. From the definition of R there exists $y \in R_0$ such that $tf(y) + (1-t)f(x) \geq 0$, $0 < t \leq 1$. It follows that $f(x) \geq 0$ and hence f(x) = 0. Let $\xi \in \mathfrak D$ and set $f(x) = (T_x \xi, \xi)$. Then $(T_x \xi, \xi) = 0$ for all $\xi \in \mathfrak D$. Since T_x is a s.a. operator we see that $T_x=0$ and x=0.

Suppose now that* is regular and $R \cap (-R) = (0)$. We show first that the regularity of the involution makes available a general representation procedure of Gelfand and Neumark [13].

Let f be a positive linear functional on B. Let $I_f = \{x | f(x^*x) = 0\}$. I_f is a left ideal of B. Let π be the natural homomorphism of B onto B/I_f . Since $f(x^*y) = f(y^*x)$, $\mathfrak{H}_f' = B/I_f$ is a pre-Hilbert space if we define $(\pi(x), \pi(y)) = f(y^*x)$. As in [13, p. 120] we associate with $y \in B$ an operator A_y^f on \mathfrak{H}_f' defined by $A_y^f[\pi(x)] = \pi(yx)$. Formula (3.2) yields

$$||A_y^f[\pi(x)]||^2 = f(x^*y^*yx) \le ||y^*y|| ||\pi(x)||^2.$$

Thus A_y^f is a bounded operator with norm not exceeding $||y^*y||^{1/2}$. It may then be extended to T_y^f , a bounded operator on the completion \mathfrak{H}_f of \mathfrak{H}_f . The mapping $x \to T_x^f$ is a *-representation of B with kernel $\{y \in B \mid yx \in I_f, for all \ x \in B\} = K$. Note that $K^* = K$.

Now take the direct sum $\mathfrak D$ of the Hilbert spaces $\mathfrak D^f$ as f ranges over all positive linear functionals on B ([13, p. 95]). Since $||T_y^f|| \le ||y^*y||^{1/2}$ by (3.3) and this estimate is independent of f, the direct sum ([13, p. 113]) $x \to T_x$ of the representations $x \to T_x^f$ yields a*-representation of B as bounded operators on $\mathfrak D$ with kernel $\{y \in B \mid yx \in \cap I_f, \text{ for all } x \in B\}$. If B has an identity, the kernel is the reducing ideal of B ([13, p. 130]), namely $\cap I_f$.

Suppose first that B has an identity e. The set R_0 has the property that $x, y \in R_0$, λ , $\mu \ge 0$ imply $\lambda x + \mu y \in R_0$. By Lemma 3.3, $R_0 \supset \{x \in H \mid ||e - x|| \le 1\}$. Thus e is an interior point of R_0 . By the theory of convex sets in normed linear spaces, R is the closure in H of R_0 and R is a closed cone in H ([11, p. 448]).

Let f be a positive linear functional on B. By Lemma 3.2, f is continuous on H. Also $f(w) \ge 0$, $w \in R$. Let H' be the conjugate space of H and $G = \{g \in H' \mid g(w) \ge 0, w \in R\}$. It is easy to see ([10, p. 48]) that G, the dual cone of R, is the set of linear functionals on H which are the restrictions to H of positive linear functional on B. There is no loss generality in assuming that ||e|| = 1. Let $x \in H$. By [10, Lemma 1.3], dist $(-x, R) = \sup \{g(x) \mid g \in G, g(e) \le 1\}$.

We show that $R \cap (-R) = H \cap (\cap I_f)$. Let $y \in H$, $y \in \cap I_f$. For any fixed f, $T_y^f = 0$ and $(T_y^f \xi, \xi) = 0$, $\xi \in \mathfrak{H}_f$. Then $(\pi(yx), \pi(x)) = 0$ for all $x \in B$ in the notation used above. Therefore $f(x^*yx) = 0$, $x \in B$. Setting x = e we see that f(y) = 0. Then by the distance formula, $-y \in R$. Likewise $y \in R$. Suppose conversely that $y \in R \cap (-R)$. It is easy to see that for each $z \in B$, $z^*R_0z \subset R_0$. Therefore $z^*Rz \subset R$. Hence $z^*yz \in R \cap (-R)$, $z \in B$. From the distance formula, sup $\{f(z^*yz) \mid f \text{ positive}, f(e) \leq 1\} = 0 = \sup\{f(-z^*yz) \mid f \text{ positive}, f(e) \leq 1\}$. Hence $f(z^*yz) = 0$ for each positive linear functional. Then $(T_y^f\pi(z), \pi(z)) = 0$ for all z whence $T_y^f = 0$. Therefore $T_y = 0$ and $y \in H \cap (\cap I_f)$.

This proves the theorem in case B has an identity. Suppose that B has no identity. Let B_1 be the algebra obtained by adjoining an identity e to B. We extend the involution to B_1 by setting $(\lambda e + x)^* = \overline{\lambda e} + x^*$. The involution on B_1 is regular [4, Lemma 2.14]. Let R'_0 and R' be the sets R_0 and R respectively computed for the algebra B_1 . By the above it is sufficient to show that $R \cap (-R) = (0)$ implies $R' \cap (-R') = (0)$. Suppose that $R \cap (-R) = (0)$.

Let $x, y \in B$. Then $y^*(\lambda e + x)^*(\lambda e + x)y = (\lambda y + xy)^*(\lambda y + xy)$. This shows that $y^*R'_0y \subset R_0$ which implies $y^*R'y \subset R$. Note also that B is semisimple [18, Lemma 3.5] which implies that zB = (0), or Bz = (0), $z \in B$, can hold only for z = 0.

Suppose that $\lambda e + x \in R' \cap (-R')$ where $x \in B$ and λ is a scalar. We derive a contradiction from $\lambda \neq 0$. For every $y \in B$, $y^*(\lambda e + x)y \in R \cap (-R)$. Setting $u = -x/\lambda$ we have $y^*(e-u)y = 0$ or $y^*y = y^*uy$ for all $y \in B$. Then

(3.4)
$$h^2 = huh, h \text{ s.a.}$$

Let h_1 and h_2 be s.a. Then $(h_1 + h_2)^2 = (h_1 + h_2)u(h_1 + h_2)$. From (3.4) we obtain

$$(3.5) h_1h_2 + h_2h_1 = h_1uh_2 + h_2uh_1.$$

Also
$$(h_1 - ih_2)(h_1 + ih_2) = (h_1 - ih_2)u(h_1 + ih_2)$$
 From (3.4) we get

$$(3.6) h_2 h_1 - h_1 h_2 = h_2 u h_1 - h_1 u h_2$$

From (3.5) and (3.6) we see that $h_1h_2 = h_1uh_2$. Consequently for h_k s.a., k = 1, 2, 3, 4, we see that $(h_1 + ih_2)(h_3 + ih_4) = (h_1 + ih_2)u(h_3 + ih_4)$. In other words

$$(3.7) zw = zuw, z, w \in B.$$

From (3.7) (z-zu)w=0 for all $w \in B$ so that z=zu for each z. Hence u is a right identity for B. Likewise from z(w-uw)=0 for all $z \in B$ we see that u is an identity for B. But this is impossible since we are considering the case where B has no identity.

We now have $x \in R' \cap (-R')$. Then $y^*xy = 0$ for all $y \in B$. Therefore hxh = 0, h s.a. Also for h_k s.a., k = 1, 2, $(h_1 + h_2)x(h_1 + h_2) = 0$ so that $h_2xh_1 + h_1xh_2 = 0$. Also $(h_1 - ih_2)x(h_1 + ih_2) = 0$ so that $h_1xh_2 - h_2xh_1 = 0$. Therefore $h_1xh_2 = 0$. It follows that zxw = 0 for all $z, w \in B$. This implies that x = 0 and completes the proof.

4. Preliminary ring theory. Let R be a semi-simple ring with minimal one-sided ideals. For a subset A of R let $\mathfrak{L}(A) = \{x \in R \mid xA = (0)\}$ and $\mathfrak{R}(A) = \{x \in R \mid Ax = (0)\}$. Consider a two-sided I of R. If $x \in R(I)$, $y \in R$, $z \in I$ then $zy \in I$, z(yx) = 0 so that $\mathfrak{R}(I)$ is a two-sided ideal of R. Therefore $\mathfrak{R}(I)I$ is an ideal. But $[\mathfrak{R}(I)I]^2 = (0)$. Thus, by semi-simplicity, $\mathfrak{R}(I)I = (0)$

and $\Re(I) \subset \Re(I)$. Likewise we have $\Re(I) \subset \Re(I)$ and thus $\Re(I) = \Re(I)$. Let S be the socle [5, p. 64] of R. This is the algebraic sum of the minimal left (right) ideals of R. S is a two-sided ideal. Therefore $\Re(S) = \Re(S)$. This set we denote by S^{\perp} . Note that $S \cap S^{\perp} = \emptyset$.

We call an idempotent e of R a minimal idempotent if e R is a minimal right ideal.

- 4.1. LEMMA. (a) Let I be a left (right) ideal of R, $I \neq (0)$. Then I contains no minimal left (right) ideal of R if and only if $I \subset S^{\perp}$.
 - (b) R/S^{\perp} is semi-simple. If S_0 is the socle of R/S^{\perp} then $S_0^{\perp} = (0)$.

Let $I \neq (0)$ be a left ideal of R. Suppose that $I \subset S^{\perp}$. Then I cannot contain a minamal left ideal J of R for any such J would be contained in $S \cap S^{\perp}$. Next suppose that $I \not\subset S^{\perp}$. We must show that I contains a minimal left ideal of R. There exists a minimal idempotent e such that e $I \neq (0)$. Choose $u \in I$ such that $eu \neq 0$. By semi-simplicity and the minimality of eR, eR = euR. Thus there exists $z \in R$ such that euz = e. Since $(euz)^2 = e$, we have $j \neq 0$ where j = zeu. Note that $j^2 = j$. As $u \in I$ we have $Rj \subset I$. To see that Rj is the desired minimal ideal it is sufficient to see that jRj is a division ring [5, p. 65].

Note that $jz = zeuz = ze \neq 0$. Then Rze = Re so that there exists $v \in R$ where vze = e. Then vj = vzeu = eu and vjz = e.

We assert that $jx_1j = jx_2j$ if and only if $eux_1ze = eux_2ze$. For if $jx_1j = jx_2j$, multiply on the left by v and on the right by z and use the relations vj = eu and jz = ze. If $eux_1ze = eux_2ze$ multiply on the left by z and on the right by u and use zeu = j.

Therefore the mapping $\tau: \tau(jxj) = euxze$ is a well-defined one-to-one mapping of jRj into eRe. The mapping is onto. For let $ewe \in eRe$. Then $ewe = euzwvze = \tau(jzwvj)$. τ is clearly additive. But also $\tau[(jxj)(jyj)] = \tau(jxjyj) = euxjyze = (euxze)(euyze) = \tau(jxj)\tau(jyj)$. Therefore τ is a ring isomorphism of jRj onto eRe. Since eRe is a division ring so is jRj.

Let J be the radical of R/S^{\perp} and π be the natural homomorphism of R onto R/S^{\perp} . Suppose that $J \neq 0$. Then $\pi^{-1}(J) \supset S^{\perp}$ and $\pi^{-1}(J) \neq S^{\perp}$. By (a), $\pi^{-1}(J)$ contains a minimal idempotent e of R. We then have $\pi(e) \in J$, $\pi(e) \neq 0$. This is impossible since the radical of a ring contains no non-zero idempotents.

Let S_0 be the socle of R/S^{\perp} and e be a minimal idempotent of R. Clearly $\pi(e) \neq 0$ and π is one-to-one on eRe. Then $\pi(e)\pi(R)\pi(e)$ is a division ring so that, since R/S^{\perp} is semi-simple, $\pi(e) \in S_0$. Let $\pi(x) \in S_0^{\perp}$. Then $\pi(ex) = 0$ so that $ex \in S^{\perp} \cap S = (0)$. Hence $x \in S^{\perp}$ and $\pi(x) = 0$.

The following result is due to Rickart [17, Lemma 2.1.]:

4.2. LEMMA. Let A be any ring. Let $x \to x^*$ be a mapping of A onto A such that $x^{**} = x$, $(xy)^* = y^*x^*$ and $xx^* = 0$ implies x = 0. Then any

minimal right (left) ideal I of A can be written in the form I=eA(I=Ae) where $e^2=e\neq 0$, $e^*=e$.

We improve this result by relaxing the conditions on $x \to x^*$ but at the expense of assuming the ring to be semi-simple.

- 4.3. Lemma. Let R be semi-simple with minimal one-sided ideals. Let $x \to x^*$ be a mapping of R onto R satisfying $x^{**} = x$ and $(xy)^* = y^*x^*$. Then the following statements are equivalent.
 - (1) Every minimal right ideal is generated by a s.a. idempotent.
 - (2) Every minimal left ideal is generated by a s.a. idempotent.
 - (3) $jj^* \neq 0$ for each minimal idempotent j of R.
 - (4) $xx^* = 0$ implies $x \in S^{\perp}$

We say that the idempotent e is s.a. if $e^* = e$. Note that $x \to x^*$ is one-to-one and $0^* = 0$. As a preliminary we show that j^* is a minimal idempotent if j^* is a minimal idempotent. The ideal I = jR is a minimal right ideal. Then $I^* = Rj^*$ is a left ideal $\neq (0)$. Suppose $I^* \supset K \neq (0)$, $I^* \neq K$ where K is a left ideal of R. By semi-simplicity there exists $x \in K$ such that $x^2 \neq 0$. Then $I^* \supset Rx \neq (0)$, $I^* \neq Rx$. This implies that $I \supset x^*R \neq (0)$, $I \neq x^*R$. This is impossible. Therefore I^* is a minimal left ideal and j^* is a minimal idempotent. It is clear from this argument that (1) and (2) imply each other.

Assume (1). Let j be a minimal idempotent, I = Rj a minimal left ideal. We can write I = Re where e is a s.a. idempotent. Then for some $v \in R$, vj = e. But $e = ee^* = vjj^*v$. Therefore $jj^* \neq 0$. Thus (1) implies (3).

Assume (3). Suppose that $xx^*=0$, $x\neq 0$. Let I=Rx. Then $I\neq (0)$. Suppose that I contains a minimal left ideal Rj of R where j is a minimal idempotent. We can write j=yx, $y\in R$. Then $0\neq jj^*=yxx^*y^*=0$. This shows that I contains no minimal left ideal of R. By Lemma 4.1, $I\subset S^\perp$. Then for any minimal idempotent e, 0=e(ex) and $x\in S^\perp$. Thus (3) implies (4).

Assume (4). If j is a minimal idempotent and $jj^* = 0$ then $j \in S^{\perp}$. But $j \in S$ and $S \cap S^{\perp} = (0)$. This shows that (4) implies (3).

Assume (3). Let j be a minimal idempotent, I=jR. Since $jj^*\neq 0$, $jj^*R=I$. There exists $u\in R$, $jj^*u=j$. As noted above j^* is a minimal idempotent. By (3), $0\neq j^*j$. Then $0\neq (u^*jj^*)(jj^*u)=u^*(jj^*)^2u$. Therefore $(jj^*)^2\neq 0$. Set $h=jj^*$. Since I is minimal, I=hI. As in the proof of [17, Lemma 2.1] there exists $u\in I$ such that h=hu. Set $e=uu^*$. As in that proof, e is a s.a. idempotent and it remains only to check that $e\neq 0$ to obtain (2) from (3). If e=0 then $0=uu^*=huu^*h=h^2$ which is impossible.

5. Normed algebras with minimal ideals. We are concerned here with*-representations of semi-simple normed algebras B with an involution

where B has minimal one-sided ideals. B may be incomplete.

- 5.1. Lemma. Let B be a complex semi-simple normed algebra with minimal one-sided ideals. Let e_1 , e_2 be minimal idempotents of B. Then the following statements are equivalent.
 - (1) $e_1Be_2 \neq (0)$.
 - (2) $e_2Be_1 \neq (0)$,
 - (3) e_1Be_2 is one-dimensional.
 - (4) e_2Be_1 is one-dimensional.

Suppose (1). There exists $u \in B$, $e_1ue_2 \neq 0$. Since $e_1ue_2B = e_1B$, there exists $v \in B$ where $e_1ue_2v = e_1$. Then $e_2ve_1 \neq 0$ and (1) implies (2). Let $E = \{\lambda e_2ve_1 \mid \lambda \text{ complex}\}$. Clearly $e_2Be_1 \supset E$. Let $e_2xe_1 \in e_2Be_1$. Then $e_2xe_1 = e_2x(e_1ue_2ve_1) = (e_2xe_1ue_2)e_2ve_2$, a scalar multiple of e_2 by the Gelfand-Mazur Theorem. Thus (1) implies (4). The remainder of the argument is trivial.

For the remainder of § 5, B denotes a semi-simple complex normed algebra with an involution and with minimal one-sided ideals.

- 5.2. Theorem. The following statements concerning B are equivalent.
 - (1) Every minimal one-sided ideal is generated by a s.a. idempotent.
 - (2) There exists a^* -representation with kernel S^{\perp} .
 - (3) There exists a*representation with kernel contained in S^{\perp} .
 - (4) $j-j^*$ is quasi-regular for every minimal idempotent j.
 - (5) $jBj^* \neq (0)$ for every minimal idempotent j and $xx^* = 0$ implies $x^*x \in S^{\perp}$, $x \in B$.

Suppose that (1) holds. Let Q be the set of all s.a. minimal idempotents of B and let $j \in Q$. By the Gelfand-Mazur Theorem, $jBj = \{\lambda j \mid \lambda \text{ complex}\}$. Suppose $jx^*xj = \lambda j$. Taking adjoints, $\lambda = \overline{\lambda}$ so λ is real. We show that $jx^*xj = -j$ is impossible. For suppose $jx^*xj = -j$. Now $jxj = \alpha j$ for some scalar $\alpha = a + bi$, where a, b are real. Set $c = a + (a^2 + 1)^{1/2}$. By the use of $jx^*xj = -j$ one obtains $(jx^* - cj)(jx^* - cj)^* = 0$. From Lemma 4.3 we have $jx^* - cj = 0$. Then $(a - bi)j = jx^*j = cj$. It follows that c = a and b = 0. This is impossible.

For $j \in Q$ we define the functional $f_j(x)$ on B by the rule $f_j(x)j = jxj$. By the above, $f_j(x^*x) \ge 0$, $x \in B$, $x \in B$ and $f_j(x^*) = f_j(x)$. The functional f_j is a positive linear functional on B and is continuous on B.

The following inequality of Kaplansky [9, p. 55] is then available.

(5.1)
$$f_1(y^*x^*xy) \le \nu(x^*x)f_1(y^*y), x, y \in B,$$

where $\nu(x^*x) = \lim ||(x^*x)^n||^{1/n}$. Let $I_j = \{x \mid f_j(x^*x) = 0\}$. Let π be the natural homomorphism of B onto B/I_j . The definition $(\pi(x), \pi(y)) = f_j(y^*x)$ makes B/I_j a pre-Hilbert space. Let \mathfrak{H}_j be its completion. See the discussion of the Gelfand-Neumark procedure in § 3. To each $y \in B$ we correspond

the operator A_y^j defined by $A_y^j[\pi(x)] = \pi(yx)$. Then

$$||A_y^j[\pi(x)]||^2 = f_j(x^*y^*yx) \le \nu(y^*y) ||\pi(x)||^2$$

by (5.1). Thus A_y^j can be extended to a bounded linear operator T_y^j on \mathfrak{D}_j , and the mapping $y \to T_y^j$ is a*-representation of B.

Since $||T_y^j|| \leq \nu (y^*y)^{1/2}$ and the estimate is independent of $j \in Q$ we can take the direct sum $\mathfrak P$ of the Hilbert spaces $\mathfrak P_j$, $j \in Q$ and the direct sum $x \to T_x$ of the representations $x \to T_x^j$. This gives a*-representation of B with kernel K where

$$K = \{x \in B \mid xy \in \bigcap_{j \in \mathcal{Q}} I_j, \text{ for all } y \in B\}$$
 .

We show that $K = S^{\perp}$.

It is clear that $S^*=S$ and therefore $(S^\perp)^*=S^\perp$. Using this and Lemma 4.3 we obtain the following chain of equivalences: $x\varepsilon \cap I_j \mapsto jx^*xj=0$, all $j\in Q\mapsto jx^*\in S^\perp$, all $j\in Q\mapsto jx^*=0$, all $j\in Q\mapsto x^*\in S^\perp\mapsto x\in S^\perp$. Therefore $\cap I_j=S^\perp$. Thus $K=\{x\mid xy\in S^\perp, \text{ all }y\in B\}$. If $x\in K$ then $xj\in S^\perp\cap S=(0)$ for all $j\in Q$ and $x\in S^\perp$. Clearly $S^\perp\subset K$. Therefore $K=S^\perp$. Hence (1) implies (2). Clearly (2) implies (3).

Assume (3) and let φ be a*-representation whose kernel $\subset S^{\perp}$. Let j be a minimal idempotent of B. Let A be the subalgebra of B generated by j and j^* . By the Gelfand-Mazur Theorem, $jj^*j=\lambda j$ for some scalar λ . Thus A is the linear space spanned by j, j^*, jj^* and j^*j . A is finite-dimensional and $A \subset S$. Since $S \cap S^{\perp} = (0)$, φ is one-to-one on A. Note that $A = A^*$. Let E be the B^* -algebra obtained by taking the closure in the operator algebra on the appropriate Hilbert space of $\varphi(B)$. Clearly $\varphi(A)$ is a closed*-subalgebra of E. The element $\varphi(j-j^*)$ is a skew element of E and therefore quasi-regular in E. By [8, Theorem 4.2] its quasi-inverse in E already lies in $\varphi(A)$. As φ is one-to-one on E, E has a quasi-inverse in E. Thus (3) implies (4).

Assume (4). Let j be a minimal idempotent of B. There exists $u \in B$ such that $j-j^*+u-(j-j^*)u=0$. If $jj^*=0$ then left multiplication by j gives j=0 which is impossible. Therefore $jj^*\neq 0$. By Lemma 4.3, we see that (4) implies (1). Clearly (1) implies (5) by Lemma 4.3. Assume (5). Let j be a minimal idempotent of B. If $j^*j=0$ then $0=x^*j^*jx=(jx)^*(jx)$. Also $jxx^*j^*\in S^\perp\cap S=(0)$ for all $x\in B$. Since $jBj^*\neq (0), jBj^*$ is one-dimensional by Lemma 5.1. Hence there exists $u\neq 0$ in B and a linear functional f(x) on B such that $jxj^*=f(x)u$. Then $f(xx^*)=0$ for all $x\in B$. Expanding $0=f[(x+y)(x+y)^*]=f[(x+iy)(x+iy)^*]$ we see that $f(xy^*)=0$ for all $x,y\in B$. Hence f vanishes on B^2 . Take any $z\in B$. We have f(jz)=0 or $jzj^*=0$. Thus $jBj^*=(0)$ which is impossible. Therefore $j^*j\neq 0$. By Lemma 4.3, (5) implies (1).

Algebras to which Theorem 5.2 can be applied most easily are those for

which $S^{\perp} = (0)$. Examples are semi-simple annihilator algebras studied by Bonsall and Goldie [3] and primitive algebras (Corollary 5.4).

5.3. Corollary. If B is an Arens*-algebra with non-zero socle then $N \subset S^{\perp}$.

Let $x_0 \in N$, $sp(x_0x_0^*) \subset (-\infty, 0]$. Then we can write $x_0x_0^* = -h^2$ where h is s.a. The ideal S^\perp is closed and self-adjoint. Let π be the natural homomorphism of B onto B/S^\perp . An involution can be defined in B/S^\perp by the rule $[\pi(x)]^* = \pi(x^*)$. Since B is semi-simple, B/S^\perp has non-zero socle. Let $\pi(x)$ be a minimal idempotent of B/S^\perp . Then $[\pi(x)]^* - \pi(x) = \pi(x^* - x)$ is quasi-regular in B/S^\perp since $x^* - x$ is quasi-regular in B. By Theorem 5.2 and Lemma 4.1, B/S^\perp has a faithful*-representation. Then, by Theorem 3.4, $\pi(x_0x_0^*) = 0 = \pi(h^2)$. Therefore $x_0x_0^* \in S^\perp$ and $(jx_0)(jx_0)^* = 0$ for each minimal idempotent j of B. Therefore $jx_0=0$ for all such j and $x_0 \in S^\perp$.

We call the involution $x \to x^*$ proper if $xx^*=0$ implies x=0. We call the involution quasi-proper if $xx^*=0$ implies $x^*x=0$. Not every involution is quasi-proper. For example let B be all 2×2 matrices with the involution defined by

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^* = \begin{pmatrix} \bar{a} & -\bar{c} \\ -\bar{b} & \bar{d} \end{pmatrix}.$$

To see that this is not quasi-proper choose x as

$$\begin{pmatrix} 1 & i \\ 0 & 0 \end{pmatrix}$$
.

Every proper involution is quasi-proper but the converse is false. Consider, for example B = C([0, 1]) and set $x^*(t) = \overline{x(1-t)}$.

- 5.4. COROLLARY. Let B be primitive with non-zero socle. Then the following statements are equivalent.
 - (1) The involution* is proper.
 - (2) The involution* is quasi-proper.
 - (3) There exists a faithful*-representation of B.

Suppose that $S^{\perp} \neq (0)$. Then by [5, p. 75], $S \subset S^{\perp}$. Since $S \cap S^{\perp} = (0)$ this is impossible. Therefore $S^{\perp} = (0)$. Assume (2). Let j be a minimal idempotent of B. Then $jBj^* \neq (0)$ (see the prooof of [16, Theorem 4.4]) and, consequently (5) of Theorem 5.2 is satisfied. Then by Theorem 5.2, (2) implies (3); the remainder of the proof is obvious.

The equivalence of (1) and (3) was noted by Rickart [17, Theorem 3.5]. By Lemma 4.3 and Theorem 5.2 this equivalence of (1) and (3) holds for any B for which $S^{\perp} = (0)$.

If B is complete the following statements hold. (1) Any*-representation of B is continuous [16, Theorem 6.2]. (2) If B has a faithful*-representation then the involution is continuous [16, Lemma 5.3]. We show that

both these statements can be false for B incomplete. Our discussion is based on work of Kakutani and Mackey [6, p. 56] (see also [7] for the complex case). Let \mathfrak{X} be an infinite-dimensional complex Hilbert space, $(x, x)^{1/2} = \|x\|$. Let $\|x\|$ be any other norm on \mathfrak{X} such that $\|x\|\| \le \|x\|$, $x \in \mathfrak{X}$. Let $\mathfrak{X}_1 = \{y \in \mathfrak{X} | (x, y) \text{ is continuous on } \mathfrak{X} \text{ in the norm } \|\|x\|\| \}$ and endow \mathfrak{X}_1 with the norm $\|\|x\|\|$. Then [6, p. 56] a linear functional f(x) on \mathfrak{X}_1 has the form f(x) = (x, y). Moreover \mathfrak{X}_1 is dense in \mathfrak{X} in both norms. If there exists c > 0 such that $\|x\| \le c \|\|x\|\|$, $x \in \mathfrak{X}_1$ then $\mathfrak{X} = \mathfrak{X}_1$ and \mathfrak{X}_1 is complete.

Let $\mathfrak{C}(\mathfrak{X}_1)$ be the normed algebra of all bounded linear operators on \mathfrak{X}_1 . As shown in [6, p. 56], $\mathfrak{C}(\mathfrak{X}_1)$ has an involution $T \to T^*$ where $(T(x), y) = (x, T^*(y)), x, y \in \mathfrak{X}_1$. In these terms we show the following.

- 5.5. Theorem. The following statements are equivalent.
- (1) \mathfrak{X}_1 is complete.
- (2) The involution in $\mathfrak{E}(\mathfrak{X}_1)$ is continuous.
- (3) The faithful*-representation of Theorem 5.2 for $\mathfrak{E}(\mathfrak{X}_1)$ is continuous.

As already noted (1) implies (2) and (3). Assume (2) and let M be the norm of the involution. By [2] any minimal idempotent of $\mathfrak{C}(\mathfrak{X}_1)$ is one-dimensional and the operator J defined by the rule J(x) = (x, u)u where (u, u) = 1 is a minimal idempotent. Since (J(x), y) = (x, u)(u, y) = (x, J(y)) we have $J = J^*$. The functional f defined by f(U)J = JUJ is a continuous positive linear functional on $\mathfrak{C}(\mathfrak{X}_1)$. For $z \in \mathfrak{X}_1$ define the operator W_z by the rule $W_z(x) = (x, u)z$. Then we can write the norm of W_z as $C \mid \mid \mid z \mid \mid$ where C is independent of z. A simple computation gives $JW_z^*W_zJ = (z, z)J$. By formula (5.1), where $|\mid U \mid \mid$ denotes the norm in $\mathfrak{C}(\mathfrak{X}_1)$,

$$||z||^2 = (z, z) \le \nu(W_z^* W_z) \le ||W_z^* W_z|| \le C^2 M |||z|||^2$$
.

This shows that \mathfrak{X}_1 is complete.

Assume (3) and let N be the norm of the faithful*-representation. Let $I_f = \{U \in \mathfrak{C}(\mathfrak{X}_1) \mid f(U^*U) = 0\}$, π be the natural homomorphism of $\mathfrak{C}(\mathfrak{X}_1)$ onto $\mathfrak{C}(\mathfrak{X}_1)/I_f$ and $(\xi, \eta)_f$ be the inner product for the pre-Hilbert space $\mathfrak{C}(\mathfrak{X}_1)/I_f$. Let $V \to T_V^f$ be the partial*-representation induced by f. Its norm cannot exceed N. Now $(\pi(J), \pi(J))_f = 1$ and

$$N^2 \mid\mid U \mid\mid^2 \ge \mid\mid T_U^f[\pi(J)] \mid\mid^2 = (UJ, UJ)_f = f(JU^*UJ) = f(U^*U)$$
.

Applying this formula to $U = W_z$ we obtain $N^2C^2 |||z||||^2 \ge (z, z)$ and again \mathfrak{X}_1 is complete.

A specific example is suggested in [6, p. 57]. Let $\mathfrak{X} = l^2$, $||| \{x_n\}||| = \sup |x_n|$. An easy computation gives $\mathfrak{X}_1 = l^2 \cap l^1$ in the sup norm. Here the involution and*-representation are therefore not continuous.

6. Involutions on $\mathfrak{C}(\mathfrak{H})$. Let \mathfrak{H} be a Hilbert space and $\mathfrak{C}(\mathfrak{H})$ the B^* -

algebra of all bounded linear operators on \mathfrak{F} . We determine in Theorem 6.2 all the involutions on $\mathfrak{F}(\mathfrak{F})$ for which there are faithful adjoint-preserving representations.

6.1. Lemma. Let* be any involution on $\mathfrak{C}(\mathfrak{D})$. Then there exists an invertible s.a. element U in $\mathfrak{C}(\mathfrak{D})$ such that $T^* = U^{-1}T^*U$ for all $T \in \mathfrak{C}(\mathfrak{D})$. Conversely any such mapping is an involution.

The mapping $T \to T^{\sharp *}$, $T \in \mathfrak{C}(\mathfrak{H})$, is an automorphism of $\mathfrak{C}(\mathfrak{H})$. Thus there exists $V \in \mathfrak{C}(\mathfrak{H})$ where $T^{\sharp *} = VTV^{-1}$, $T \in \mathfrak{C}(\mathfrak{H})$. Set $U = V^*$. Then $T^{\sharp} = U^{-1}T^*U$. Since $T^{\sharp *} = T$, $T = (U^{-1}T^*U)^{\sharp} = U^{-1}U^*T(U^*)^{-1}U$. Thus $U^{-1}U^*$ lies in the center of $\mathfrak{C}(\mathfrak{H})$. Consequently $U = \lambda U^*$ for some scalar λ . Since $U^*U = |\lambda|^2 U^*U$ we see that $|\lambda| = 1$. Set $\lambda = \exp{(i\theta)}$ and $W = \exp{(-i\theta/2)}U$. Then $W^* = W$ and $T^{\sharp} = W^{-1}T^*W$, $T \in \mathfrak{C}(\mathfrak{H})$. The remaining statement is easily verified.

6.2. THEOREM. An involution $T \to T^*$ on $\mathfrak{C}(\mathfrak{P})$ is proper if and only if it can be expressed in the form $T^* = U^{-1}T^*U$, $U \in \mathfrak{C}(\mathfrak{P})$ where U is s.a. and $sp(U) \subset (0, \infty)$.

If $T \to T^*$ is a proper involution then (see [7]) an inner product can be defined in $\mathfrak D$ in terms of which T^* is the adjoint of T. Hence the proper involutions are those for which there is an adjoint preserving faithful representation.

Let W be a one-dimensional operator, W(x)=(x,z)w with $w\neq 0, z\neq 0$. Then $W^*(x)=(x,w)z$. By Lemma 6.1 we can write $T^*=U^{-1}T^*U$, $T\in \mathfrak{C}(\S)$, where U is s.a. Then $0\neq W^*W=U^{-1}W^*UW$. Hence $0\neq W^*UW$. But $W^*UW(x)=(x,z)W^*U(w)=(x,z)(U(w),w)z$. Therefore $(U(w),w)\neq 0$ for an arbitrary non-zero $w\in \S$. Hence $(U(w),w)\neq 0$ for an arbitrary non-zero $w\in H$. Hence (U(w),w) has a constant sign and, by changing to -U if necessary, we may suppose that $(U,w),w)\geq 0, w\in \S$. Then we can write $U=V^2$ where V is s.a. in $\mathfrak{C}(\S)$.

Suppose conversely that $T^{\sharp}=V^{-2}T^*V^2$, $T\in \mathfrak{C}(\mathfrak{H})$ where V is s.a. Then $TT^{\sharp}=(TV^{-1})(TV^{-1})^*V^2$. Thus $TT^{\sharp}=0$ implies that $TV^{-1}=0$ and that T=0.

REFERENCES

- 1. R. Arens, Representations of *-algebras, Duke Math. J. 14 (1947), 269-282.
- 2. B. H. Arnold, Rings of operators on vector spaces, Ann. of Math. 45 (1944), 24-49.
- 3. F. F. Bonsall and A. W. Goldie, *Annihilator algebras*, Proc. London Math. Soc. **14** (1954), 154-167.
- 4. P. Civin and B. Yood, *Involutions on Banach algebras*, Pacific J. Math., **9** (1959), 415-436.
- 5. N. Jacobson, Structure of rings, Amer. Math. Soc. Colloq. Publ. vol. 37, Providence, 1956.
- 6. S. Kakutani and G. W. Mackey, Two characterizations of real Hilbert space, Ann. of Math. 45 (1944), 50-58.

- 7. S. Kakutani and G. W. Mackey, Ring and lattice characterization of complex Hilbert space, Bull. Amer. Math. Soc. **52** (1946), 727-733.
- 8. I. Kaplansky, Normed algebras, Duke Math. J. 16 (1949), 399-418.
- 9. ——, Topological algebra, Department of Mathematics, University of Chicago, 1952, mimeographed notes.
- 10. J. L. Kelley and R. L. Vaught, *The positive cone in Banach algebras*, Trans. Amer. Math. Soc. **74** (1953), 44-55.
- 11. V. L. Klee, Jr., Convex sets in linear spaces, Duke Math. J. 18 (1951), 443-466.
- 12. L. H. Loomis, An introduction to abstract harmonic analysis, D. Van Nostrand Co., New York, 1953.
- 13. M. A. Naimark, *Involutive Algebren*, Sowjetische Arbeiten zur Funktionalysis, Berlin (1954), 89-196.
- 14. M. A. Naimark, Normed rings, Moscow, 1956. (Russian).
- 15. J. D. Newburgh, The variation of spectra, Duke. Math. J. 18 (1951), 165-177.
- 16. C. E. Rickart, The uniqueness of norm problem in Banach algebras, Ann. of Math. 51 (1950), 615-628.
- 17. _____, Representations of certain Banach algebras on Hilbert space, Duke Math. J. 18 (1951), 27-39.
- 18. B. Yood, Topological properties of homomorphisms between Banach algebras, Amer. J. Math. **76** (1954), 155-167.

YALE UNIVERSITY AND UNIVERSITY OF OREGON