
THE ABSOLUTE CONTINUITY OF TOEPLITZ'S MATRICES

MARVIN ROSENBLUM

1. Introduction. Suppose W is a real L2(— π, π) function that is
bounded below but not equivalent to a constant function. The Toeplitz
matrix associated with W is To = [Wj-k], j , k = 0,1, 2, ,
where

(1.1) wn = - I - ( TΓ(0)β-*»* # , n = 0, ± 1, ± 2, . .

The hermitian matrix To gives rise to a semi-bounded transformation
Tx on complex sequential Hubert space l2, and thus the Friedrichs ex-
tension T of Tx is a self-adjoint operator. Γ = Γ(W(φ)) is the Toeplitz
operator associated with W.

In [5], [6] Hartman and Wintner show that the case in which W
is not semi-bounded (which we prudently avoid here) presents special
difficulty. However for semi-bounded W they prove that

(i) the spectrum of T fills the interval
[ess inf W, ess sup W],
and

(ii) T has no point spectrum.
Thus the spectral measure ([4], p. 58) E(-) of T is such that (E(>)F, F>
is a nonatomic Borel measure for each F e ί\ If ζE( )F, F> is AC
(absolutely continuous with respect to Lebesgue measure) for each F e ί\
then we say that T is AC.

Our investigation continues work of C. R. Putnam [11]. He proves
that T is AC in each of the following cases:

(i) W(φ) = 2 cos nφ, n = 1, 2, . .

(ii) W(φ) = 2 sin nφ, n = 1, 2, .

(iii) Let αjfc = f̂c-j for fe — j ^ 1 and ajlc = 0 otherwise.

Further suppose that the {wj are real, that Ao = [αJfc] is bounded, and
that 0 is not an eigenvalue of the Hankel matrix [wJ+k+1], j , &=0,1, 2, .

For case (i) Putnam gives a more complete spectral analysis. He
applies the perturbation theory propounded in [13] to prove the follow-
ing result:

1.2 T(2 cos nφ) is unitarily equivalent to 2Tn(iT(2cosφ)). Here
Tn is the nth degree Tchebichef polynomial, n = 1, 2, •••.
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In §§ 2 and 3 we prove that every Toeplitz operator is AC. The
method of proof first involves deriving a generating function formula
for the resolvent of T. This formula appears in the work [2] of Calderon,
Spitzer, and Widom. However, we shall offer a different derivation,
one that points out an interesting connection between T and the Szegδ
kernel function. Next we shall apply a result from the Aronszajn-
Donoghue [1] theory of exponential representations of analytic functions,
and consequently deduce that T is absolutely continuous. We conclude
with § 4 where 1.2 is generalized. We elaborate on Putnam's method.
By severely restricting W we are able to employ Kato's generalization
[7], [8] of [13] to exhibit a multiplication operator MAC on an L2 space
such that T is unitarily equivalent to MAC.

2* T and the Szegό kernel function* We first set down some
notation. We shall ambiguously employ "F" to denote

(a) the element {/Jo°° of /2;

(b) the element F(eίφ) of L\— π, π) that has the Fourier series

Σϊ=o/»e<nφ; and
(c) the holomorphic function F(u) = Σ ^ o / X , \u\ < 1.

Let < , > be the I2 inner product and suppose * is the symbol of
complex conjugation, used so F*(eiφ) ~ Σin=of%eίnφ and [F(eiφ)]* ~ Σ«=o
fte-inφ. Then

( 2.1) <F, G> =

We suppose that u, v are complex numbers such that u\ < 1, \v\ < 1,
and define U= {un}~ e ί\ V = {vn}? e L\ Note that U(eiφ) = (1 - ue^Y1

and V*(e1*) = (1 - ^*e ίφ)~1.
Select λ so that 1 + λ ^ ess inf W. Let /2λ be the inner product

space formd of elements F e I2 such that

[F, F] = J u f* | ^ ( ^ ) | 2 ( M Φ ) - λ) <Zφ < co .

Since

it follows that /2λ is a (complete) Hubert space. Define the linear
functional Lυ on /2λ by LΌ(F) = <F, F*> . Lΰ is bounded since

\Lυ(F)\* ^ <F, F > < F * , F*> ^ [F, F] <F*, F*> .

Hence by the Frechet-Riesz representation theorem ([12], p. 61) there
exists a unique element KΌ e /2>λ such that [F, Kυ] = Lυ(F). Thus

2.2 JF(v) - <F, F*> - [ί
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- J - \" F{e»)[K.{e»)nW{φ) - X) dφ

for all v, \v\ < 1.

It follows from 2.2 that KΌ(u) = <KV, t/*> is the Szego kernel
function associated with the Hubert space of holomorphic functions F
such that [F, F] is finite. From ([3], p. 51);

2.3 Kυ(u) = (1 - uv+mv)]* g(u),

where

2.4 ί/(w) = exp - — [* log (W(φ) - λ)(β** + u)(e<* - tc)"1 dφ .

We next turn our attention to the Toeplitz matrix TQ. We define
the transformation 7\ to be the restriction of To to the subset ^ of
/2 consisting of elements F that have only a finite number of non-zero
components. Then if F e 3tλJ and δ is the Kronecker symbol,

2.5 <(Γ - λ)F, F> - Σ ( ^ . j - λδ,,,)//* = [F, F] .

Since [F, F] ^ <F, F} we are in a situation to which the Friedrichs
extension theory is applicable ([12], p. 328-333). Upon applying this
theory we note that:

(a) There exists a unique self-adjoint operator T that is an ex-
tension of 2\ and whose domain £& is contained in /2 λ. &f is a inde-
pendent of the choice of λ + 1 ^ ess inf W. Notice that T is a quite
convenient self-adjoint extension of 7\ since it preserves the analytic
nicety 2.5 for all F e &rm

(b) (T — X)-1 is a bounded positive definite operator that maps I2

into /2λ, and furthermore

2.6 <F, G> = [F, (ϊ7 - λ)-1^] for all G e P a n d F e /2 λ .

THEOREM 1. Suppose λ + 1 ^ ess inf W. Then (T — X)'1 exists,
is bounded, and < ( Γ ~ λ)- χF*, £/*> = ^(w).

Proo/. Suppose F e /2 λ. Then by 2.1 and 2.2, <F, F*> = Σ^=o
/ ^ = F(v) - [F, iΓJ. But, by 2.6, <F, F*> = [F, (Γ - λ)- 1 ^*]. Thus
KΌ = (T- λ)- 1 ^*, and JBΓ )̂ = <KΌ, C7*> = <(Γ - λ)- 1 ^*, ί/*> , as as-
serted.

As commented before, Theorem 1 can be derived from results in
Calderon, Spitzer, and Widom's paper [2].

3. Exponential representation• We list some of the results of the
Aronszajn-Donoghue theory of exponential representations of holomorphic
functions in

THEOREM 2. Suppose R is a function holomorphic in the upper
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half plane and there having a non-negative imaginary part. Then:
( i ) ([1], p. 325). There exists a positive measure μ and real

numbers a! ^ 0 and β such that

3.1 R(X) = α'λ + β + Γ [(ί - λ)-1 - t(t2 + I)-1] dμ .
J-oo

a! β, μ are uniquely determined by R, and (t2 + I)"1 is integrable with
respect to μ. If \t\(t2 + I)"1 is integrable with respect to μ, then

3.2 R{X) = α'λ + β' + Γ (t - λ)-1 dμ, where

β' = β - [° t(t2 + I)"1 dμ
J-oo

(ϋ) ([1]> P 331). There exists a Lebesgue measurable function a
with 0 ^ a :g 1 and a reai number σ such that

3.3 Λ(λ) = exp σ exp ί" [(ί - λ)-1 - t(t2 + I)-1] a(t) dt
J —oo

a is determined by 3.3 modulo a set of Lebesgue measure zero.
(iii) ([1], p. 386). A sufficient condition for μ to be AC is that

for all real x

3.4 ω(x) = lim {ω(a, 6): a | x, b \ x} < 1,

, δ) = sup {a(d) — a(c) :a < c < d < b} .

We next reframe 2.3 in a form suitable for application of the
preceding theorem. Let χt be the characteristic function of {φ :
- π < φ ^ π]. Put

4ττ

so if

v = re1^, P(φ, v, v) = —— (1 — r2)(l — 2r cos (φ — ψ) + r2)"1

is the Poisson kernel. Let

σ(u, v) = - i j ^ log [1 + ( W W ] P(Φ, u, v) dφ ,

and a(t, u,v) = 1 χt(φ) P(φ, u, v) dφ . Notice that a( ,u, v) is of bound-
ed variation, with a(t, uy v) = 0 or 1 according to whether t < ess inf
W or t > ess sup W respectively. Also note that a( ,v, v) is monotone
increasing with 0 ^ a(t, v, v) ^ 1.

LEMMA 1. // $m λ ^ 0 or X < ess inf W", £&ew
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3.5 (1 - uv*) ({T - λ)- J F*, U*>

= exp σ(u, v) exp I [(ί — λ)"1 — t(t2 + I)"1] a(tf u, v) dt .

Proof. Temporarily assume that
(*) λ + 1 S ess inf W. By 2.3 and Theorem 1

(1 - uv*) <(Γ - λ)- 1 ^*, £/*> = exp - [π log (W(φ) - X)P(φ, w, v) dφ

= exp σ(u, v)exp - Γ log [(W(φ) - λ)((TF(φ))2 + 1)~1/2] P(φ, u, v) dφ

= exp cτ(u, i;) exp - Γ log [(t - λ)(ί2 + 1)~1/2] dt a{t, u, v).

We integrate by parts to obtain 3.5 under assumption (*). An analytic
continuation argument enables us to relax (*).

We now apply Theorem 2.

LEMMA 2. Suppose \v | < 1. Then <#(•) V*, F*> is AC.

Proof. Consider R(X) = (1 - |^|2)<(Γ - λ)- 1 ^*, F*> . This is a
holomorphic function of the type described in Theorem 2. 3.5 assures
us that it has the exponential representation 3.3 with a(t) = a(t, v, v).
We shall show that a satisfies 3.4 and from this it will follow that
μ(.) = <β{-)V*, F*> is AC. Now,

ω(a, b) = sup | j ^ [χd(φ) - χc(φ)] P(φ, v, v) dφ : a < c < d < b}

^ ^ π UΛΦ) ~ XatiΦ)] P(Φ, Vy V) dφ

since P(-,v,v) is positive. Thus

ω(x) ^ J ^ [χx+(φ) - χx_(φ)] P(φ, v, v) dφ = h(r, ψ), where t? =

Since P(φ, v,v) is the Poisson kernel, h is a non-negative harmonic
function in | v \ < 1. IF is not equivalent to a constant, so fc is not a
constant function. Thus by the maximum principle, h(r, ψ) < 1 if r < 1.
We invoke 3.4 to complete the proof.

Now we can settle

THEOREM 3. T is AC.

Proof. From now on let v be real Lebesgue measure as restricted
to the real Borel sets &. Assume v{Δ) = 0. Lemma 2 assures us
that if \v\ <1. then <E(Λ)V*, F*> = 0. Suppose now that F e ί\ We
use the Schwarz inequality and the fact that E(Δ) is a projection to
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note that

£ \\E(Δ)V*\\ \\F\\ = [<fi(Δ)V*,

= [<E(Δ)V*, F*)] 1 '

Thus < E(Δ)V*, F> = 0 for all v, | v | < 1. But the set {F* : |. v | < 1} is
fundamental in P since <fi, F*> = ΣϊU &•*>" = 0 for all v, | v | < 1
implies that the #w all vanish. Thus (E{Δ)F, Fy = 0, and T is AC.

4 Spectral theory. Our principal goal now is to establish a spec-
tral analysis for T. More particularly, we wish to exhibit a multiplica-
tion operator MAC on an L2 space such that MAC is unitarily equivalent
to T. However, we were able to achieve this goal only for a small
class of T(W(φ)). From now on we assume that W is even and AC,
and that the derivative W of W has an absolutely convergent Fourier
series, so Σ n |w» | < °° O u r techniques follow those of Putnam [11],
but whereas he uses the theory presented by this author in [13], we
use T. Kato's generalization [7], [8] of [13]. See also [9] and [10].

We start by discussing some preliminary material that we include
here for completeness. A countably-additive function E on & to pro-
jection operators in a Hubert space jδf is AC if v(Δ) = 0 implies E(Δ) = 0.
E is singular if there exists β e & such that v(β) = 0 but E(Δ Π β)
= E(Δ) for all Δ e &. It is easy to see that a self-adjoint operator
M is AC if and only if its spectral measure is AC.

We shall now establish a Lebesgue decomposition theorem for
spectral measures as a corollary of the classical version of that theorem.

LEMMA 3. Suppose E(-) is a spectral measure in a separable
Hilbert space £f. Then:

( i ) There exists γ e & with v{ — γ) = 0 and such that

4.1 EA0( ) = E( Π 7) ^ an AC and

4.2 Es( ) = E( —y) is a singular projection-valued measure.

(ii) If F,Ge^f, Δe&, and E. is the resolution of the identity
associated with E( ), then

<J£AC {Δ)F, G> = ^d <EXF, G> Idxdv .

(iii) The decomposition E( ) = EAC(-) + Es( ) of E( ) as the sum
of an AC and singular measure is unique.

Proof. Suppose F,G e £f, i e ^ . Then since <β. F, G> is
of bounded variation it has a a derivative a.e. that is v-summable.
Also

d <βxF, F> ldxdv^[d <E(-)F, F> = ^ E(Δ)F, F g
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so the first term above represents a bounded quadratic form. Thus by

([4], p. 33), b(F,G) — [ d<(ExF,Gy Idxdv is a bounded bilinear func-

tional, so there exists a bounded operator EAC(Δ) such that ζEAC(Δ)F,

G> = b(F, G) for all F, G. JFAC( ) is clearly countably additive on ^ ,

and thus so is E8( ) = E(-) - EAC( ) .
Let {Fj}~=0 be a countable dense subset of jSf. By the classical

version of the Lebesgue decomposition theorem as found in ([14], p. 119),
corresponding to each pair j, k of non-negative integers there exists
βjtk e B such that v{βJtk) = 0 and

( * ) <E(Δ)Fjf Fky = (E{Δ ΓΊ /5 j,fc)F j, F t > + <EAC (Δ)Fjf Fk>

for all Δ e &. Let β be the union of all the βJιk, j, k = 0,1, 2,
Then (̂/3) = 0 and (*) holds with β3tk replaced by β. Now we pass
from the dense subset to all of £f. For all F, G e jg^, z/ e ^

(**) <fi(Δ)F, Gy = <^(J n /5)F, G> + <^A 0 (Δ)F, G> ,

where the decomposition of the left hand term into singular and AC
parts is unique. Put γ = — β. Then 4.2 holds and thus 4.1 is also
true, (iii) follows from (**).

It follows from lemma 3 that EAC( ) = E(y)E( )E(rγ) is a spectral
measure in the Hubert space E(y)£f'. MAC = E(i)ME(i) is the self-ad joint
operator on E{i)^ having this spectral measure. MAG is obviously AC.

The following simple example will play a role in what happens later.
Let W be as before, even, with Σ J wn I < °°. Let M be the multiplication
operator that maps any F e L2(0, π) = j ^ 7 into W F e £f. Let %{Δ)
be the characteristic function of {φ : W(φ) e Δ : 0 < ψ < π}. Since

<MF,Fy = J ^ Γ T^(Φ)|F(Φ)|2# = Γ i d , !
7Γ Jo J — π

it follows that the spectral measure E{ ) of iW is defined by E{Δ)F =

X(Δ)-F. Lemma 3 guarantees the existence of 7 6 ^ such the 1/π

[*X(Ύ)X( )(Φ)\F(Φ)\* dφ is AC for all f e ^ , while E(--y) is singular.
Jo

E(y)^f can be identified with the Hubert space L\A), where F e L\A)
if and only if | |JP|U < 00, where

4.3

and

\\F\\A = Γ ! (πχ(γ) |F(0)|2 ώφ]1/2 - [ 1 f
LTΓ Jo Lπ J

A = {Φ : W(φ) e γ, 0 ^ φ ^ π} .

Similarly MAC can be considered to be the mapping that takes any
F e L\A) into f F e L2(A).

Another concept that we shall have cause to use is that of trace
class. As is usual, a bounded operator on I2 is identified with its



994 MARVIN ROSENBLUM

matrix representation. A matrix H = [wjk], i, j = 0,1, 2, belongs
to the Schmidt-Hilbert class SH if ΣΓfc=oNJifc|

2 < °o. H belongs to the
trace class TC if H e SH and || H \\λ < oo, where || H ||x is the sum of
the absolute values of the eigenvalues of H repeated according to mul-
tiplicity.

As an example we treat the Hankel matrix H— [wJ+k+2\. As pro-
ved in [5], He SH if and only if Σ»=i^ I w»+i I2 < °° This follows
from the equality ΣΓ*=o|wJ+fc+2|

2 = Σn=Mwn+1\\ and gives a necessary
condition that He TC. Now, define Hn = [Sj+k+2<n], Then H = Σ»=2

w ^ . Since HflΓJIx ^ n it follows that Hff̂  ^ Σ ^ W ||ff̂ |U ^ Σϊ=«^|w»|.
Thus a sufficient condition /ϊ e TC is that W be AC such that W has
an absolutely convergent Fourier series. This, of course, is part of our
standing hypothesis on W for this section. We do not know a useful
necessary and sufficient condition for a Hankel matrix to belong to TC.

Hankel matrices enter into our picture, following an idea of Put-
nam's, via the following

LEMMA 4. Let H be as as in the above example. Let S = [sjιk],

where sjtk = 2/π Γ W(φ) sin (j + l)ψ sin (k + l)ψ dψ, j , k = 0, 1, 2,

Then T- S=H.

1 f*
Proof. Wj-k — Sj k = — I W(φ) cos ( i —

π Jo

A (^(φ) sin (j + l)φ sin (k + l)φ dφ .
π Jo

I cos (j + k + 2) dφ .
π Jo

We can now state a specialization of Kato's theorem in a form
suitable for our application. It is understood that in the statement T
and S need not necessarily be the operators we have already defined.

THEOREM 5. (Kato). Suppose T and S are self-adjoint operators
on a separable Hilbert space _Sf such that T — S = H e TC and T is
AC. Let y and E(') = EAC (•) + Es( ) be the Borel set and decomposi-
tion respectively guaranteed by Lemma 3. Then

(i) as t —* oo, exp (itT) exp (— US) E(y) converges strongly to an
isometric mapping U of E(y) £fonto J5?.

(ii) U'1 is the strong limit as t —> oo of exp (US) exp (—itT).

(iii) The self-adjoint operator SAC = E(y) SE(y) on E(i)£f is uni-
tarily equivalent to T, with / = USAG U~λ.

From this follows the following spectral analysis theorem for T.

THEOREM 6. Suppose W is a real even AC function on ( — π, π)
whose derivative W has an absolutely convergent Fourier series. Then
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the Toeplίtz operator T(W(φ)) is unitarίly equivalent to to the multi-
plication operator MAC :/—> W f on L\A) {see 4.3).

Proof. The hypotheses of Theorem 5 are satisfied via Lemma 4,
the discussion following Lemma 3, and Theorem 3. Thus T is unitarily
equivalent to SAC . Since {fn}ΐ —* 21/2 Σ ^ = 0 / w sin (n + l)ψ is an isometry of
/2 onto L2(0, π), it follows that <SAC is unitarily equivalent to MAC. Thus
T is unitarily equivalent to MAC.

COROLLARY 1. Suppose W(φ) = w0 + 2 Σ Γ ^ W cos nφ, where the wn

are real and m is a positive integer. Then T(W(φ)) is unitarily
equivalent to the multiplication operator M:f-^ W f on L2(0, π).

Proof. In this case M = MAC. (See Putnam [11], p. 522). Now
use Theorem 6.

If W is AC and W" e L2(0, π) then Σ J w J < °° Hence a W
satisfying Theorem 6 can haye intervals of constancy. If such is the
case, then M has an infinite number of eigenvectors. Thus one cannot
validly replace " M A C " and "L\A)" by "M" and "L2(0, π)" respectively
in the statement of Theorem 6, since T has no point spectra.

We can easily deduce 1.2 from Corollary 1. T( W(2 cos nφ)) is uni-
tarily equivalent to multiplication by 2 cos nφ on L2(0, π), n = 1, 2, ,
and hence to 2 cos (n arc cos \ T(2 cos φ)) = 2 Tw(iΓ(2cos φ)) on /2.

It would be of great interest to evaluate the limits in Theorem 5
(ii) and (iii) so one could exhibit the unitary transformation of Theorem
6. One could then have a super-abundance of new unitary operators.
We pose this as an unsolved problem.

5* Appendix. C. R. Putnam has extended the theory he set forth
in [11] in his recent article "On Toeplitz matrices, absolute continuity
and unitary equivalence", Pacific J. Math., 9 (1959), 837-846. He
proves that T is AC provided that Ao is bounded and M = MAC . whence,
using [13], he proves Theorem 6 under the added hypothesis that
M^MAC.

It is interesting to compare our proof that T is AC with Putnam's
weaker version of that result. He applies his abstract theory of com-
mutators, while we exhibit the resolvent of T and employ the rather
deep function-theoretic results of [1].
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