A REFINEMENT OF THE FUNDAMENTAL THEOREM
ON THE DENSITY OF THE SUM OF
TWO SETS OF INTEGERS

H. B. MANN

Let A= {a,<a, < ---} be a set of integers and let A(n) be the
number of integers in A not exceeding n. If A, B are two such sets,
we put A + B = {a + b}, where a denotes generically an element of A,
b an element of B. It should be noted that A and B may contain
negative numbers or zero and that these are counted in A(n) and B(n).

Erdoes in an unpublished paper proved:

If lim,,..(A(m)/m) = lim,,_..(B(m)/m) = 0, then for every ¢ > 0 there
are infinitely many « such that if C = A + B then

C(x) > A(x)(1 — ¢) + B(x) .
Clearly there are then also infinitely many y such that
Cly) = Aly) + By)(1 —¢).

Erdoes conjectured that it is possible to choose infinitely many
x =Y.

At the Number Theory Conference in Boulder, Colorado, Erdoes pro-
posed this problem to the author. It is clear that the Fundamental
Theorem [3] is inadequate to deal with this problem, because it fails if
1¢C. The search for a stronger theorem finally led the author to
Theorem 2. Theorem 38 is a consequence of Theorem 2 and is consider-
ably stronger than Erdoes conjecture.

THEOREM 1. Let a, =b,= 0. If n > 0,n¢C then there is an m¢ C,
m=mn or m < (n/2), such that

(1)

C(m) > A(m) + B(m) — 1
n—i—l'_‘ m+ 1

1
m+1"

+(C(n—m—1)—7f(T”)1.(n—m))

For the proof of Theorem 1, we consider the following transforma-
tion: Let n, <%, <-.:.-<m, =n be the gaps in C. Form d, =n — n,.
Choose, if possible, a fixed number e € B such that an equation
(2) a+e+d, =m

holds for some ¢. Let the set B’ consist of all numbers ¢ + d, for which
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an equation a + e + d, = n, holds with some value of a. Form B* =
B*(e) = BUB',C* = A + B*. The following propositions are easily seen
to hold.

PROPOSITION 1. n¢ C*.

Proof. The equation a + e + d, = n implies a + ¢ = n,, which is
impossible since e € B.

ProroSITION 2. B’'NB is empty.
Proof. The equation a + ¢ + d, = n, shows that e + d.¢ B.
ProposITION 3. C*(n) — C(n) = B*(n) — B(n).

Proof. The equation a + ¢ + d; = n, implies @ + ¢ + d, = n,. Hence
if m,e C* then e 4 d,e B! and vice versa.

ProposITION 4. All numbers of B’ are larger than e.

Proof. B’ consists of numbers of the form e + d,, d, > 0.

B*(e) is called the fundamental ¢ transform of B.

We now construct numbers e,, -++, ¢, and sets B= B,, B,,+-+, B,,
c=¢,0C,---,C, by the following rules:

Rule 1. B, is the fundamental e, transform of B,_,.

Rule 2. A+ B, =C,.

Rule 3. e, is the smallest number in B, , such that an equation

ate+d,=n,, acA, n, n,¢C,,
holds.

Rule 4. a + e+ d, #n, for any ac A, ee B,, n,, n, ¢ C,.
We then have
PROPOSITION 5. e, < e <o,

Proof. We have a+e+d,=mn,;acA, n,n¢C,,e,€B,,. If
e;¢ B,_, then e, > e, ,(Prop. 4). If e;e B, , then since C, ,DC,., the
inequality e, < e, , contradicts rule 3, while e, = e, , implies n,,n,€C,_,.

For any set A put
(3) A(m,n) = A(n) — A(m — 1) .

LEMMA 1. Let n, be the least gap in C,, then
(4) Bk(’ns) - B(ns‘) = Clc(dsr n) - C(dsy ’I’L)

=n, — C(d,, n) .
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Proof. Let d, ,,---,d, ,, <n,,d, ., >mn, where we formally set
d,=mn+1. If d, < n, then n, — d,€ C;, n, — d; = a + b*, b* € B,. Hence
by rule 4 we have n,e C;,. But d, < n, implies d; < n, hence

(5) Ck(dsvn)ﬂc(ds’n):(I-

Moreover C, contains all numbers x for which d, < « < n, but does not
contain n so that Cyd,,n)=n— (d, — 1) — 1 = n,.

On the other hand if n,e C,, n,¢ C,_, then e¢,+d,e B,, e, + d;¢ B,_,,
(Prop. 2). If d, <mn, and e, + d; > n, then

e, >N, —d;,=a + b*,b*eB, .
By Prop. 4 and 5,b* e B,_, and e, > b* contradicts rule 8. Hence
(6) By(n,) — B(n,) = q .

This completes the proof of Lemma 1.
We are now prepared for the proof of Theorem 1. Since 7, is not
in C, no number of the form n, — a is in B, and therefore

(7) ny + 1> A(n,) + By(n,) .
Subtracting 4 from 7 we get

which after some simple algebra gives

C(n) A(ng) + B(ng) — 1 1 Cn) 1
n—l-l2 n, + 1 +<C(ds 2 n+1ds)ns+1'

Finally if wm, < n then because of rule 4 we must have n,< d, =
n — ng, n, < nf2. This completes the proof of Theorem 1.

THEOREM II. Let A+ B=C,a,=0b,=0,n>0. Then either C(n)=

n + 1 or there exist numbers m, m, satisfying the conditions

C(n) < A(m) + B(m) — 1 Cn)  C(m,)
n+1 m+1 n+1 m, + 1

megC,m<n,méeg¢C,m <max(m,n—m—1).

Proof. The theorem is true if » = 0. Hence we can apply induc-
tion on n. If for any m¢ C, m<n we have C(n)/(n+1)>C(m)/(m-+1)
then by induction
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Cm) _| Cw) _ Cm) |, Clm)
n+1 n+1 m+ 1 m+ 1
> |G| Clm) |, Alm) + Bon) — 1
Tiln+1 m+ 1 m, + 1
C(m) _ C(m,)
m—+1 m, + 1
>’ Cm) _ C(m,) 4 A(m) + B(my) — 1
“In+1l m+1 m, + 1 ’

where m, ¢ C, m, ¢ C, m, < max(m,, m — m, — 1) < max(m,, n — m, — 1).
Now assume C(n) #n + 1 and

C(n) C(m)
(9) n+1<m+1

forall m <n,m¢gC. If neC then C(n)/(n + 1) > C(n — 1)/n hence (9)
implies n¢ C. We apply Theorem 1. If in Theorem 1 m = n then Theo-
rem 2 holds with n=m=m,. If m<n/2 in Theorem 1, thenn—m—1 > m,
hence there is a largest m;, <n — m — 1, m, & C. We then have

C(n—m——l)> C(m,)
n—m “m,+1°

Moreover since (n — m)/(m + 1) > 1 we get from Theorem 1

C(n) Cm) _ C(n) n A(m) + B(m) — 1

>
n+1  m +1 n+1 m+ 1
_| Cm) _ Cm) |, A(m)+ Bom) —1
n+ 1 m, + 1 m+1

and Theorem 2 is proved.

Theorems 1 and 2 can easily be generalized for arbitrary a,, b,. One
simply applies the two theorems to the set A’ = (4 — a,), B’ = (B—b,).
If a,+b,=¢, then C'(n) = C(n + ¢,), A'(m)=A(m+a,), B'(m) = B(m + b,).
After some fairly obvious transformation Theorem 2 then reads

THEOREM 2a. Let A= {a,<a, < -}, B={b<b <--+},A+B=
C={<e,; < --}. Let n >c¢,. FEither C(n) =n — ¢, + 1 or there exist
m, m, satisfying the conditions:

C) o Atm—b) + Bm—a) — 1
n—c+1 m—c,+ 1

Cm) _  Cim)
n—c+1 m—c+1"
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c<m<nmgC,mécC, c, <m <max(m,n — m + ¢, — 1).
It is worth noting that Theorem 2 implies the Fundamental theorem
proved in [3]. We shall prove the following

COROLLARY TO THEOREM 2. Let a, =b,=0,n ¢ C,v(n) = C(n) — 1,
a(m) = A(m) + B(m) — 2. Then either v(n) > a(n) or v(n)/n > a(m)/m
for some méC,0 < m < n.

Proof. Let m be the integer of Theorem 2. If n=m then Theorem
2 reads y(n) > a(n). If v(n) < g(n) then Theorem 2 yields

Y(m)ym + v(n) + m > o(m)n + o(m) + n .

If y(n)m < o(m)n then we obtain from this v(n) + m > o(m) + =,
a(m)n + m* > o(m)ym+nm and therefore o(m) > (m). Hence C(n)>n+1,
which is impossible since n ¢ C. This proves the corollary.

We shall now prove Theorem 3. If lim ((A(m) + B(m))/m = 0, then
there are infinitely many m such that
(10) Cim) > A(m — b)) + B(m —a,) — 1.

If C has only finitely many gaps above ¢,, then Theorem 3 is ob-
vious. There is an infinite sequence of m,; such that

A(m; — b) + B(m; —a) =1 - _A(m —b) + Bm —a,) — 1
m; — ¢ + 1 m—c, + 1

for ¢, < m < m;. It follows from Theorem 2a that
C(m;) > A(m; — b)) + B(m; — a,) — 1.

(If m,¢ C this follows directly from Theorem 2a. If m,eC take the
next gap in C below m;.)

THEOREM 4. If A+ B = C and lim (C(n)/n = 0, then

lim, e, Am) + Blm) _
m

and 10 holds for infinitely many m ¢ C.

Proof. Without loss of generality we may assume a,=b,=0. There
is an infinite sequence {n;} such that C(n;)/(n,+1) < C(m)/(m + 1) for
m < n;. Clearly n;¢ C. Let m, be the value of m of Theorem 1
corresponding to m;. From Theorem 1 we see that the values m, also
form an infinite sequence, since A(m) + B(m) — 1 cannot vanish and since
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by assumption C(n; — m — 1) — C(n;)(n; — m)/(m + 1) > 0 for m < n,.
Now

Cm) o Cm) Clny—m—1) Cny)
m + 1 n, +1° N, — m n, + 1

for 0 < m < m,; implies C(m) + C(n, — m — 1) > C(n;) for 0 < m < m, and
this together with (1) implies

C(m;) =z A(m;) + B(m;) — 1.

Modifications analogous to those applied in the present paper to the
proof of the authors Fundamental Theorem [3] can also be applied to
Dyson’s [1] proof of its generalization to more than two sets. The
special case of Dyson’s Theorem considered here then reads:

IftC=A4,++--+A, and if ¢, a, are the smallest elements in C
and A, respectively, then for n > ¢,, there is an-m such that

1) Cm) o SAm —cy+ay) = (9= 1)
n—c,+1 m—c,+1
CGE<m<n.

This inequality with a, = b, = 0 was first obtained by Kneser [4,
Theorem VII]. Inequality (11) for g = 2 already known to van der Cor-
put [5] is somewhat weaker than Theorem 2, because the minimum is
not restricted to m ¢ C. This weakening is necessary if g > 2. The re-
lation (11) with g > 8 becomes false, if m is not restricted to elements
not in C. It is not known to the author if C(n)/(n + 1) # C(m)/(m + 1)
for ¢, <m <n and

Cn) < ;Aj(n — ¢+ ay)—(g—1)

implies strict inequality in (11) when g > 3.
Clearly on account of (11), Theorems 3 and 4, the latter without the
condition m ¢ C, carry over to the sum of an arbitrary number of sets.
The author takes the opportunity to refute Khintchine’s [2] assertion
that the methods used in his exposition are altogether different from
those introduced in [3]. Anybody acquainted with the authors first proof
must see that the basic ideas are exactly the same.
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