A CHARACTERISTIC SUBGROUP OF A p-GROUP

CHARLES HoBBY

If x,y are elements and H, K subsets of the p-group G, we shall
denote by [z, y] the element y?x2~?(xy)” of G, and by [H, K] the sub-
group of G generated by the set of all [k, k] for & in H and %k in K.
We call a p-group G p-abelian if (xy)? = x’y® for all elements z,y of
G. If we let 0(G) = [G, G] then 6(G) is a characteristic subgroup of G
and G/0(G) is p-abelian. In fact, 6(G) is the minimal normal subgroup
N of G for which G/N is p-abelian. It is clear that 6(G) is contained
in the derived group of G, and G/6(G) is regular in the sense of
P. Hall [3]

Theorem 1 lists some elementary properties of p-abelian groups.
These properties are used to obtain a characterization of p-groups G (for
p > 3) in which the subgroup generated by the pth powers of elements
of G coincides with the Frattini subgroup of G (Theorems 2 and 3).
A group G is said to be metacyclic if there exists a cyclic normal sub-
group N with G/N cyclic. Theorem 4 states that a p-group G, for
p > 2, is metacyclic if and only if G/6(G) is metacyclic. Theorems on
metacyclic p-groups due to Blackburn and Huppert are obtained as co-
rollaries of Theorems 3 and 4.

The following notation is used: G is a p-group; G™ is the nth
derived group of G; G, is the nth element in the descending central
series of G; P(G) is the subgroup of G generated by the set of all x? for
2 belonging to G; @(G) is the Frattini subgroup of G;<{z,y, ---> is the
subgroup generated by the elements z,¥, --+; Z(G) is the center of
G; (h, k) = h*k*hk; if H, K are subsets of G, then (H, K) is the sub-
group generated by the set of all (h, k) for he H and ke K.

THEOREM 1. If G is p-abelian, then

(1.1) P(GY) = P(G)",
1.2) P(G) € Z(G) ,
(1.3) O(G®) = RV = G® .

Proof of (1.1). 6(G) = (1> implies that (xyx~'y')” = x’y’x y " for
all 2,y in G. (1.1) follows immediately.

Proof of (1.2). Let x be an arbitrary element of G, and suppose
the order of z is p". Let u = z'*7++""* Then, for any vy in G,
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wynt = (uyuT) = utyu",

where the last equality follows from 6(G) = <1>. Therefore u'~-Pyu’* =
y?. But u? = 2" = 2, hence xy?z' = y?, and (1.2) follows.

Proof of (1.8). It is easy to see that &(G) = P(G)G"™, hence &(G)"» 2
P(G)G®. Thus, by (1.1), 2(G)" 2 P(G")G?® = o(G®) 2 G®. It re-
mains to show that G® 2 @(G)"™. But if x,y belong to @(G), we can
write x = a'u,y = y'v for «’, ¥ in P(G) and u,v in G® (since O(G) =
P(G)G™). By (1.2), " and ¥y’ belong to Z(G), hence xyx~'y~' = uvu'v!
is an element of G®. Thus @(G)® < G?, and the proof is complete.

COROLLARY 1.1. P(G™) C 4(G).

Proof. It suffices to show that 6(G) = (1> implies P(G™) = {1).
But, if 0(G) = (1), it follows from (1.1) and (1.2) that P(G?) = P(G)"
and P(G) € Z(G). Thus P(G") = 1.

REMARK 1. P. Hall [3] has shown that
(xy)? = x"y’cd

whenever z,y belong to a p-group G, where ¢ is a product of pth powers
of elements of <z, ¥>" and d is a product of elements contained in the
pth element of the descending central series of {z,y>. We have, as
an immediate consequence, 6(G) < P(GM)G,.

We shall now investigate p-groups G for which P(G) = @(G). The
following lemma will be useful.

LEMMA 1. Suppose p + 2. If P(G) = O(G) and P(G™) = (1), then
G3 - <1>.

Proof. 1If z,ye(, then

(", x) =y "(x'y"r) = y"(x"yx)”
=y " {yly, 2)}”
=, o)y, v, »)] =y, (v, »)] ,
where the last equality follows from P(G®) = {1>. Therefore G, <
(G, P(G)) € |G, G™] C [G, P(G)]. We complete the proof by showing that
G, P(@)] C G,.
We first observe that (x, ¥*) € G;, hence

ey = a7y (@, ¥z

for some z€@G,. Since p # 2 and P(G™) = (1), we have [z, y"] €G, for
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every z,y€G. It follows that [G, P(G)] < G..
THEOREM 2. If P(G) = @(G), then P(G®) = ¢(G*®) for k=1,2, ---..

Proof. Suppose G is a group of minimal order for which P(G) =
?(G) but P(G*) #= @(G*®) for some k> 1. If P(G") = @(G"), then we
must have P(G"') = @(G*) for all k > 1 since the order of G" 1is less
than the order of G. Thus P(G") + @(G"). We assert that P(G")
must be {1>. For, if P(G") = (1>, we let H = G/P(G"). Then it is easy
to see that P(H)= @(H). Thus, since H has smaller order than
G, P(H") = ¢(H"). Also, P(H") = (1)>. Therefore

(L = O(H") = 0@V [PG)) = 0(G")PG)PE") .

That is, P(G") 2 @(G""), and hence P(G") = &(G"), which contradicts
our assumption.

If p =2 it follows from P(G") = (1> that G is abelian. If p #
2, then by Lemma 1,G,= (1> and G" is again abelian. Therefore
P(G"M) = @(G"), contrary to our choice of G.

COROLLARY 2.1. If p #+ 2 and P(G) = &(G), then P(GV) = &(G") =
0(G) 2 G,.

Proof. By Corollary 1.1, P(G") < 6(G). By Lemma 1, G, € P(G").
Therefore P(G")G, = P(G") since p # 2. It follows from Remark 1
that P(G") = 0(G). By Theorem 2, P(G") = ¢(G™), and the proof is
complete.

COROLLARY 2.2. Let p #+ 2 and P(G) = ¢(G). Then P(GY) < G¥
implies G, = (1>, and hence G® = (1>.

Proof. By Corollary 2.1, G, € P(G"™), thus G, € G®. It is known
[3, Theorem 2.54] that G* < G,. Therefore G, = G, = G* = (1.

THEOREM 3. Suppose p + 2 and let %, x,, +-+, %, be coset represen-
tatives of a minimal basis of the abelian group G|GV. Then P(G) =
o(G) if, and only if, there exist integers n(i) such that

RIN pn(ll l]'ZZZ? ,/L’l\if
G —<x1 y Ly gty Xp >'

Proof. If such integers n(¢) exist, then G < P(G) and it follows
that P(G) = &(G).

Suppose P(G) = @(G), and let H = G/0(G). Then 6(H) = {1)>, and
H={<y,9, +++,¥y,> where ¥, is the image of x, under the homomorphism
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mapping G onto G/8(G). Since 8(H) = (1), P(H) = {y?, ¥, +++, Yoy, and
P(H) € Z(H). Also, P(H) = @(H) 2 H"Y, hence every element of H®
can be expressed in the form y?*y2° ... y2* for suitable integers u, v, +--,
w. Since the ¥, are independent generators of H modulo H®, it follows
that there exist integers ny, n,, +++, n, such that H® = {yi™, yi"2, « ..,
¥y, By Corollary 2.1, @(G®) = 6(G), thus H» = GV/6(G) = G*|o(G™).
Thus we can use the Burnside Basis Theorem [6, page 111] to obtain
G = {at™, gt -.. 22>, The proof follows if we let n(z) be the largest
positive integer n for which p* divides pmn,.

COROLLARY 3.1. Suppose p =2 and P(G) = &(G). If G can be
generated by k elements, then G™ can be generated by k elements for
r=1,28, --. ‘

Proof. Follows immediately from Theorems 2 and 3.

LEMMA 2. If p # 2 and G[@(G™)G, is metacyclic, then
O(GMG, = 0(G) .

Proof. Since p > 2 it follows from Remark 1 that 6(G) < P(G™)G,
and hence 6(G) € @(GV)G,. The lemma will follow if it is shown that
(GG, < 0(G). We may assume 0(G) = {1>. Then, by Corollary 1.1,
P(G™) = (1>, thus O(GV)G, = G,. If G, + {1> we may assume G, = {2,
where z is an element of order p in Z(G). Since G/G, is metacyclic,
there exist elements @,b such that G = <a,b) and G" is generated
modulo G, by a** for some integer &k > 0. By (1.2), a** belongs to Z(G).
But then GV = <(a?", 2> € Z(G) and G, = {1>.

Blackburn [1] showed that a p-group G is metacyclic if, and only
if, G/o(GM)G, is metacyclic. Our next theorem follows immediately from
Lemma 2 and this result of Blackburn. We shall give a simple direct
proof of Theorem 4, and obtain Blackburn’s result for » > 2 as Corol-
lary 4.2. '

THEOREM 4. Suppose p > 2. Then G is metacyclic if, and only
if, GlO(G) 1s metacyclic.

Proof. Since any factor group of a metacyclic group is again
metacyclic, we need only show that G/0(G) metacyclic implies G is
matacyclic.

Suppose G is a non-metacyclic group of minimal order for which
G/0(G) is metacyclic. Then 6(G) # (1> and hence we can find an ele-
ment z in 6(G) such that z has order p and belongs to Z(G). If we let
H = G[<{z), then H|0(H) = (GI<))/(6(G)/<{z)) = G[6(G) is metacyclic, and
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consequently H is itself metacyclic since H has smaller order than G.
Thus we can find @, b in H such that H = <@, 5> and H™ = {@"y for
some k> 0. If we let a, b be coset representatives in G of @, b, then
it follows from the Burnside Basis Theorem that G = <{a, b> and hence
GY = <a”k, 2>. In particular, if we let ¢ = a~b~"'ab, there exist integers,
n and m such that ¢ = a™"2™. Since z belongs to Z(G), it is clear that
a“‘c'ac = 1, and

b'eb = b'a""bem = (b~'ab) e = (¢ ey em
thus
c_lb__lcb — an2p2kzmnpk — an2p2k
where the last equality follows from z? = 1. Similarly, b-¢”"b = a?*+**".
Thus G,, which is generated by ¢~b7'¢b, a~*¢"'ac, and the various con-
jugates of these elements, is contained in <a**>. Since P(G®) < <a"",

it follows from Remark 1 that 6(G) < <a*™>. But z belongs to 4(G),
hence G® = (a*™> and G is metacyclic.

REMARK 2. If p =2, it follows from 6(G) = (1> that (xy)’ = «*¥
and hence z7'yxy ' =1 for all z,y in G. Thus 6(G) = G* and G/H(G)
is metacyclic whenever G can be generated by two elements. Since
there exist non-metacyclic 2-groups having two generators we see that
Theorem 4 is false for p = 2.

The following result was established by Huppert [5, Hauptsatz 1].

COROLLARY 4.1. Suppose p = 2 and G can be generated by two ele-
ments. Then G is metacyclic if, and only if, P(G) = O(G).

Proof. It is clear that P(G) = @(G) if G is metacyclic. Suppose
P(G) = &(G). Since G can be generated by two elements, G is cyclic
modulo G, [3, Theorem 2.81]. We see from Theorem 3 that, if G =
{a, bY, then GV = (a?", b*™> for some integers m and n. It follows that
one of a®”,b”™ is mapped on a generator of G®/G, by the natural
homomorphism. Thus G/G, is metacyclic. By Corollary 2.1, 6(G) 2 G,
hence G/6(G) is metacyclic. It follows from Theorem 4 that G is meta-
cyclic.

The next corollary is an immediate consequence of Lemma 2 and
Theorem 4.

COROLLARY 4.2. If p + 2, then G is metacyclic if, and only if,
G|O(G™M)G, s metacyclic.

REMARK 3. We define 6,(G) = 6(G) and 6,(G) = 0(0,_(@)) for n > 1.
The series 6,(G) D 6,(G) D --- D 6,(G) = {1> can be considered a generali-
zation of the derived series of G. Corresponding generalizations of the
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ascending and descending central series of G can be obtained as follows:
let I'(G) be the subgroup of G generated by the set of all z in G such
that (2y)? = x”y® for every element y of G, and define I",(G) for n > 1
as the subgroup of G mapped onto I'(G/!",_.(G)) by the natural homo-
morphism; let ¥(G) =G, and ?,(G) =[G, ¥,_(@)] for n > 1. These
series have an important property in common with the ascending and
descending central series. Namely, if we define the lengths I(/") and
I(7) of the I' and ¥ series as, respectively, the smallest integers m and
n for which I',,(G) = G and ¥,,,(G) = (1D, it is easy to see that (/") =
).

The group 7',(G) has been studied by Grun [2]. The groups 6,(G)
and ¥,.(G) have not appeared in the literature, however the following
result is an immediate consequence of earlier work [4, Remark 1].

THEOREM 5. A mon-abelian group with cyclic center cannot be one
of the subgroups 0,(G) or ¥ ,.(G) (for m > 1) of a p-group G.
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