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GROUPS*
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1. Introduction. The normal subgroups of the group of all homeo-
morphisms of a space X have been enumerated by Fine and Schweigert
[2] when X is a line, by Schreier and Ulam [3] when X is a circle, by
Ulam and von Neumann [4] and Anderson [1] when X is a 2-sphere.
In each of these cases there are either one or two proper normal sub-
groups. However, when X is an ti-cell (n > 1), there are infinitely
many. The object of this paper is to investigate the normal subgroups
for a class of spaces X which includes the n-cell. Some of these nor-
mal subgroups, although not all, can be defined in terms of the family
of fixed point sets of their elements, and we investigate this relation-
ship at some length. A smallest normal subgroup is exhibited, and the
corresponding quotient group is represented as a group of transforma-
tions of a related space.

2* Families of fixed point sets. Let X be a set, Π(X) the group
of all permutations of X (one-to-one mappings of X onto itself), and G
a subgroup of Π(X). Suppose that j^~ is a non-empty family of sub-
sets of X satisfying the following conditions:

(i) If Fl9 F2 6 ^Γthen there exists an F3 e ^ such that F3 c
F, n Fi9

(ii) If Fx e ^ and g e G, then there exists an F2 e ^ such that
F2 C g(FJ.

We shall call j^~ ecliptic relative to G. For example, if JΓ con-
sists of the complements of all finite subsets of X, then ^ is ecliptic
relative to Tl(X). If X has a topology, we denote the group of homeo-
morphisms of X by H(X). Let X be a closed unit ball Bn in euclidean
%-space and J^ consist of the complements in Bn of those balls which
are concentric with Bn and have radius less than one. Then J^ is
ecliptic relative to H{Bn). In this connection, we note that for h e
H(Bn), ft(Sn-i) = Sn--i, where Sn^ is the boundary of Bn.

Let X again be an arbitrary set and G a subgroup of Π(X). We
introduce a partial ordering among the families of subsets of X as fol-
lows: ^ ^ ^ ' provided that, for every F e J^ there exists an F' e

f such that F' c F. Evidently J ^ c ^ ' implies ^ ^ ^~\ where
c j^~* means set inclusion, but the converse is false. We define

equivalence of j^~ and j ^ ' to mean j ^ ~ ^ JΓ' and j^~' ^ ^ and we
write
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LEMMA 1. // ^ ^ ' are families of subsets of X, j^~ = ^ \ and
is ecliptic relative to G, then j ^ ' is ecliptic relative to G.

Proof. If Fί, F'2 6 jr\ then there exist sets F19 F2, Fs e ^ and
F'2 e J^~' such that Fλ c F[, F2 c F'2, and F[ c F 3 c F1 Π F2 c F[ Π F[.
Second, if F[ e S*~' and g e G, then we can find Fu F2 e ^ and F'2 e
j ^ ~ ' such that Fx c F[ and Fί c F2 c #(2^) c βr(F{).

To any family j^~ we can adjoin all subsets of X which contain
some element of j^~ and thus obtain a family ^~* which is clearly
equivalent to ^ and, by Lemma 1, is ecliptic relative to G if ^ is.
In fact, j ^ ~ * has the property that Ff, F* e ^~* and g e G implies
F* Π F*,g(F*) e ^~*. In addition, J ^ * is an upper bound, with re-
spect to set inclusion, among the families equivalent to J^7 We shall
call JF~ replete if it is equivalent to no larger family.

If / e Π(X), we set K(f) = {x e X:f(x) = x}. For any family
of subsets of X, we define

S(jrG) = {g e G : X(flf) 3 F for some F

We note that if the empty set 0 e ^ then S(J^G) = G.

LEMMA 2. (a) ^~ = ^~' implies S(j^G) = S(jTΛ G).
(b) If ^ satisfies (i), then S(J^G) is a subgroup of G.
(c) If f e

(d) // . ^ is ecliptic relative to G, then S(^G) is a normal sub-
group of G.

Proof. For (a) we show that ^ ^ ^ " ' implies S(J^G) c S(J^', G).
Indeed, if ^ e S(J^G) and ϋΓ(βr) =) F for some F e ^ Γ we can find
F' e ^ " ' such that F' (Z F c K(g), whence g e S(^~'f G). In (b) we
need merely observe that, for any f,f2 e U(X), K(fuf2) Ό K{fx) n K{f2)
and Kifϊ1) = K{f). In part (c) we use the relation K{fgf~ι) = f(K(g)).
If g e f[S(^G)]f-\ then g=fg1f"

1

f where ft e G and K{gλ) D F for
some F e ^ Hence, 0 e /G/~\ #(</) D / ( F ) , and g e S(f{^
If g e S{f{jr),fGf~ι), then g = fgj-1 for some gλ e G, and K{g) D
for some F e Ĵ Γ Hence, ίΓ(ft) 3 F, and flr e f[S(J^G)]f-\ In part
(d), let / e G. From (c), /[S(^ΓG)]/-1 - S(/(JΠ, G). Normality will
follow from (a) if we can show that f(^~) = ^C Clearly (ii) implies
f(^~) ^ ^ lίF^SA then there is an F2 e ^ " such that F2df"\F^9

whence f(F2)(zFu and j r ^ / ( ^ ' ) .
We shall assume, from now on, that X is a Hausdorff topological

space, unless the contrary is explicitly stated. For S{^H{X)) we shall
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write S(^), and if j^~ is ecliptic relative to H(X), we shall simply say
that j^~ is ecliptic. For any family of subsets of X, we introduce a
further condition:

(iii) If Fe^~ and UaX is open (U Φ 0), then there exists an
h e H(X) such that h(cF) c U, where cF is the complement of F in X.
An ecliptic family which satisfies (iii) will be called strictly ecliptic. The
family ^ oί subsets of Bn defined above is evidently strictly ecliptic. If
^"satisfies (iii) and _̂ ~ ^ J^~\ then clearly j^~f satisfies (iii). Since
K(h) is closed for every h e H(X), there is no loss of generality in as-
suming that the elements of any family ^ are closed, and this assump-
tion will be made from now on, unless the contrary is stated.

LEMMA 3. If X admits families J^j^' which satisfy (ii) and (iii)
and contain more than one element, then JZΓ = .^ r ' .

Proof. We may as well assume that ^Γ.^~' are replete in the
closed subsets of X If Fe^ F Φ X, and Ff ej^\ then we can find
heH(X) such that h(cF')czcF. Hence, h(F')z)F, h{Ff) e jr9 and F ' =
h-\h{F')) e ̂ . Thus j ^ ~ ' c . j ^ and, similarly , r c j Γ ' ,

Some spaces contain no ecliptic families except {X} and the set C^(X)
of all closed subsets of X. For, by Lemma 2, such a family defines a
normal subgroup of H(X); when X is a 1-sphere, Schreier and Ulam
[3] showed that the only proper normal subgroup of H(X) consists of the
orientation-preserving elements of which some have no fixed points.

3 Minimal normal subgroups* We shall need to know something
more about H(X). Rather than make specific and detailed assumptions
about the existence of certain homeomorphisms, we shall assume a mild-
ly euclidean structure for X, namely:

(iv) If UaX is open (UΦ 0), then there exists an open Va U which
is homeomorphic to an open ball in a euclidean space of positive dimen-
sion.

The dimension of the ball may vary for different open sets. We
shall refer to F a s a euclidean neighborhood in X.

THEOREM 1. Suppose X satisfies (iv) and contains a strictly eclip-
tic family ^\ If N is a normal subgroup of H(X), then either

or N consists of the identity e.

Proof. Suppose N Φ {e} and gQeN, gQ φ e. Then go(x) Φ x for some
x 6 X, and we can find a neighborhood Uo of x and a euclidean neighbor-
hood Vo such that go(Uo)n UQ— 0 and Voczgo(Uo). Let ω map VQ homeo-
morphically onto an open ball in some euclidean space, let Bczω(V0) be
a closed unit ball of the same dimension, and set WQ = αr^intl?), where
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int denotes interior. We wish to construct a homeomorphism hQ of Wo

in its relative topology with the following properties:
(a) K(ho)z)WoncWQ,
(b) there exists an open Vc. Wo such that, for all integers n > 0,

(c) if A = \Jn=oho(V), then Af]cA is a single point. To do this is
evidently equivalent to constructing such a homeomorphism k0 of B, for
then hQ = ω~ιkQω has the desired properties in WQ. Let θ be a homeomor-
phism of [0,1] such that K(θ) = {0,1} and θ(r) < r for 0 < r < 1. If
pe B lies at a distance r from the center of B, then we define ko(p)
to be the point on the same radial line at a distance θ(r) from the
center. By choosing a sufficiently small open ball in B which does not
meet either the center or boundary, we can satisfy (a), (b), and (c).

We now define the function hx as follows: hx{x) = ho(x) if x e Wo,
hx{x)=x if xecW0 Clearly, h^HiX). Now gx = gJi^g^Ke N since N
is normal, and gji^g^h^x) = hx{x) for xe Wo, since g^1(W0)dcWQ. Thus
gτ(x) = Λ0(ί») for a? € TΓ0. Let g be any element of S ( J ^ ) . Then there
exists an F e ^ and h2eH(X) such that K{g)i)F and fe2

Thus Kt/ijfffcr1)^0^ M w e can construct an heH(X) such that

(1) g^hgjr1 = hghϊ1 = / ,

then we will have shown that g e N and S(^)c:N9 since the left mem-
ber of (1) lies in N. Let us rewrite (1) as hgλ = gjh. We set

h{x) = \ a J θ 1 (x) ί 0 r

ιx for x e c(\Jn

By property (b) above, m Φ n implies g?(V)Γ\g?(V) = 0 , whence h is
single-valued. Since K(f)Z)cV, the restriction of / to V is a homeo-
morphism of V, and the same holds for g?fgzn and g?(V)f n = 1,2, .
Let AΓ\cA consist of the point xQ, where A— U«=o^i(^) Then each
x Φ xQ has a neighborhood which meets at most one of the sets g?(V)9

and h, hr1 are evidently continuous at such points. By the construction
of hQ and V, every neighborhood of x0 contains all but a finite number
of the sets gΐ{V)9 whence k9 hr1 are continuous here as well. Hence,
heH(X). If xecA, then gλ{x) eK(h) and hg1(x) = gjh{x). When xeV,

Finally, if w ̂  1 and xeg?(V), we have g»(V)czK(f), so that g1fύί(y) =
gΐ+1(y) when j / e 7 . Hence,

This establishes (1) and completes the proof.
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We offer the following example of a non-Hausdorff space X without
euclidean neighborhoods which admits a strictly ecliptic family ^ r such
that S(^~) is not minimal. Let X be an infinite set in which r^(X)
consists of the finite subsets of X and X itself. Then H(X) = Π(X).
For ^ we take the collection of non-empty open sets and form S(j^~).
Since X is not Hausdorff, K(h) need not be closed for heH(X). Clearly
&~ is strictly ecliptic, but S(^~) contains, as a proper normal subgroup,
the set of h e H(X) such that cK(h) is finite and h is an even permuta-
tion of cK(h).

4 Normal subgroups of H(Bn). As we remarked in § 2, the family
^o of complements of smaller, open, concentric balls in Bn is strictly
ecliptic. When _^Γis extended to a replete family, it will consist of all
closed sets containing a neighborhood of the boundary Sw_lβ In this sec-
tion, we will also be concerned with the group H0(Bn) of those h e H(Bn)
such that K(h)z)Sn^. Evidently HQ(Bn)z>S(J^), and H0(Bn) is normal
in H(Bn).

THEOREM 2. If N is a normal subgroup of H(Bn) which contains
an element not in HQ(Bn), then Nz)H0(Bn).

Proof. We will assume, to begin with, than n ^ 2. Suppose g0 e
NC]cHQ(Bn), and choose ^ e S ^ so that go(x) Φ x. Let Wo be the part
of an open ball with center x which lies in Bn and is small enough so
that go( WQ) (Ί WQ = 0 . We wish to construct a homeomorphism hQ of WQ

and an open set We Wo such that W^S^ Φ 0 and h09 W satisfy (a),
(b), (c) in the proof of Theorem 1. Let B, k0, and V be the same as in
that proof. If 77 is an (n—l)-dimensional hyperplane which passes through
the center of B and meets V, then Π divides B into two regions (in-
cluding boundaries) Δ, Af such that Δ[\Δ* — Π. The restriction of k0 to
Δ is evidently a homeomorphism of A. Let ψ map Δ homeomorphically
onto Wo in such a way that ψ(Π) = W0Γ\Sn^lm Then h0 = ψkQψ~x and
W = ψ(Δ Π V) clearly satisfy (a), (b), (c). We define hλ{x) = h,{x) for x e
T ô, hx(x) = x for xecW0, so that hj.eHiBn). Then g1 — gQh^ιgQlh1eN1

and flr^fl?) = ^(a?) for α?e Wo, as in the proof of Theorem 1. If g is any
element of H0(Bn) such that K(g)z)cW, it follows from the construction
in the same proof that geN.

Let p,qeSn-! be antipodal, D the diameter joining them, and Πu

Π2aBn two (n — l)-dimensional hyperplanes perpendicular to D. Now
Π19 Π2 divide Bn into three regions (including boundaries) Δ19 Δ2, z/3 and,
correspondingly, Sw_i into three zones (including boundaries) Z19 Z2, Z3.
We take Δ2 to be the middle region, so that Δλ Π Δ2 = Πlf Δ2 Π Λ3 = 772,
p e Δl9 q e Δ%. Let P, Q be arbitrary neighborhoods of p, g, respectively,
such that P c 4 , Q c J3.

Next, we construct h2fh5eH(Bn) such that ^2(P)z)cTF,
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For example, h2 might first expand P until its complement is quite small
and then rotate the complement into W. If geH0(Bn) and K(g)z)P,
then K{h2gh2

λ) zicW, whence g e N. Similarly, K{g) z> Q implies g e N.
We now wish to construct a homeomorphic mapping θ of Bn onto Δ% U Δs

such that θ(x) — x for all x e ΔΆ. To accomplish this, we introduce sphe-
rical coordinates r, φ19 , φn_λ for the points x e Bn such that φλ is the
angle between D and the radial line through x. Then 77 ̂  satisfies the
equation r cos φλ = fc4, | fc41 < 1 (i = 1, 2). Let r, φx be regarded as polar
coordinates for the closed upper half-plane in euclidean 2-space, and let
R be the set of (r, φλ) such that r ^ 1, 0 ^ φx ̂  TΓ. The lines r cos
φx = kt (i = 1, 2) divide 12 into three regions (including boundaries) Rl9

R2, 7?3. Let ω be a homeomorphic mapping of R onto R2 U i?3 such that
ω(y) — V for all y eR3. We then set

Let / be any element of HQ(Bn). Then θfθ'1 e H(Δ2 U ̂ 8 ), and
-1)D77,UZ2u^3. We define g2(x) = θfθ-\x) ΊίxeA2\jΔi9 g2(x) = a if

flce4ι Clearly, g2eH(Bn), and K{g2)z^P, whence g2eN. In addition,
&0») = / ( * ) for a ; e J 8 n / - U ) » s o that K{g2

lf)z>Q = A^f~\A,)y and g,=
g^feN. Hence, f=g^eN, and H0(Bn)czN. When w = 1, the con-
structions in the first half of the proof can not be carried out in So.
The theorem follows, in this case, from the result obtained in [2] that
the only proper normal subgroups of H(B^) are S(^) and HQ(B^).

If GaΠ(X) and 7 c l , we denote the restrictions of the elements
of G to Y by G \ Y. For any orientable space X, we let E(X) denote
the group of all orientation-preserving homeomorphisms of X

LEMMA 4. If N is a normal subgroup of H(Bn), then N\ Sw_! is a
normal subgroup of S

Proof. Clearly 2NΠ Sn_i is a subgroup of H(Sn^). If hoeH(Sn-J,
we can extend hQ to an element h of H(Bn). Let p0 be the center of
Bni p Φ p0 a point of Bn lying on the sphere S with center p09 and π the
radial projection of S onto Sn_lβ We define fc(p) = π-λhQπ(p), h(pQ) = pQ.
Clearly Λ e H(Bn). Then iV | S,_1 - (hNh'1) \ Sn^ - ho(N \ S^hό1.

COROLLARY. If N is not contained in H0(Bn) and n g 3, then N
is either E(Bn) or H(Bn).

Proof. By Lemma 4, N \ Sn^ is a normal subgroup of H(Sn^) dif-
ferent from {β}. It was proved in [3] for n = 2 and in [1] for w = 3
that the only normal subgroups of H(Sn^) are {e}, EiS^), and H(Sn^).
Hence, if heE(Bn), there exists a, geN such that /ι | Sw_! = βf | Sn_lβ
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Then / = g-'h e HQ(Bn)aN by Theorem 2, and h = gfeN. If NφE{Bn),
a similar argument shows that N=H(Bn). We note that HQ(B1) = E(B1).

5 The lattice of normal subgroups. In the first part of this sec-
tion, we revert to the assumption that X is an arbitrary set. The in-
tersection of two ecliptic families may be empty. If, for example, <βζ
is the ecliptic family defined above for B2 and ^ is the family of com-
plements of interiors of simple polygons lying entirely in the interior
of B2, then ^ ~ n ^ Γ = 0 , although ^ t — ^ Ί * . However, the inter-
section of any collection of replete, ecliptic families is also replete,
ecliptic, and non-empty, since it always contains {X}. The smallest
ecliptic family (up to equivalence) which contains a given collection {^}
of ecliptic families consists of all finite intersections of elements in
U ^l. We denote this set by V ^ and set Λ^K = Π JK- If the Jϊ~
are replete, then V ^ i s also replete. For if 1^, , F n e U ^ , and
F D f l / i , then F\jFt e \JJ^(i = 1, , n), and F = Γh(^Ui^).

For any collection {Ga} of subgroups of a group G, we set ΛGα =
PiGa and define VGΛ as the smallest subgroup of G which contains Ga.

LEMMA 5. If G is a subgroup of Π(X) and {J^}aeA is a collection
of replete ecliptic families relative to G, then

Proof. If g e S( A J^9 G), then there is an F e Π ^ such that K(g) u F,
whence geS(Jsζ,G) for each as A. If g e /\S{J^,G), then, for each
aeA, there is an F^e^ζ such that K(g)i)Fω. Hence, K(g)zDF =
VJcoeήF^ Fe^ for each βeA since j ^ is replete, and geS(A^fG).
This proves the first relation. In the second, if g e v S ( ^ , G ) , then
there are sets Flf , Fn e \JaeA^ and elements glf , gneG such that
if(fif4)Dfτ

i(i = l, . ,w) and flf = ffi ff«. Hence, K(g)z>F = ΓitFifF e
V<^ζ, and geS(VJ^,G).

We now return to the case X — Bn.

LEMMA 6. Let & be a family of {not necessarily closed) subsets
of Sw_! which

(a) satisfies (i), or
(b) is ecliptic relative to H(Bn). Let J^ be the family of closed

subsets of Bn which contain a member of & in their interior (in the
relative topology of Bn). Then

(a) <Ψ~ is ecliptic relative to H0(Bn), or
(b) J^~ is ecliptic relative to H(Bn). In either case, J^ is replete.

Proof. If Fo, F'oe%? and Fo c int F, F[ c int F', then FonF'Qc int
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F Π iτΛF' = iτA(FΓ[F'), and FnF'ejT, whence JT satisfies (i). In
part (a), if he H0(Bn), then int h(F) = fe(int F)zDh(F0)== FQy and h(F) e SK
In part (b), if heH(Bn), then there is an F'o'e & such that h(F0)z)Ff

0\
and int h(F) ID F" as in (a), so that h(F)eJ*\ Thus (ii) is verified in
each case. The repleteness of j ^ * is obvious.

We will indicate the above relationship between S^ and 2^ by say-
ing that j ^ ~ is derived from 2^. The simplest example of a derived
ecliptic family relative to H0(Bn) is that in which & consists of a single
subset of Sn_lβ An ecliptic family relative to H(Bn) is obtained by let-
ting Sf consist of the complements in Sn^ of finite subsets of S ^ .
When n = 2, a family equivalent to the latter can be described as the
set of complements in B2 of interiors of simple closed curves which meet
Sλ in a finite number of points. The construction can be varied by tak-
ing the set of complements of countable or first category subsets in Sra.lβ

Returning to Lemma 5 and the case X—Bn,G — H(Bn), we have
not been able to determine whether equality holds in the second relation
even for the case S(J^V^ f)z)S{^)yS(J^'), ά^V^1 = ^(X). How-
ever, we do have the following result for derived families.

THEOREM 3. Let ^ ^ f be derived from Sf, 5?', respectively,
where & = {Po}, &' = {Qo}> and suppose that Po, QQ can be separated in
Sπ_i by an (n — 2)-sphere Σ c ^ - i which is tame relative to H(Bn).
Then

(2) S(JTvJT', HQ(Bn)) = S(^H0(Bn))vS(jr', HQ(BU)) .

Proof. Let Π1 be an (n — l)-dimensional hyperplane passing through
the center of Bn, and set Σ1 = Π^S^. Choose heH(Bn) such that
h(Σ) = Σx. Since Πλ and h(Q0) are closed and disjoint, we can findL a
second hyperplane Π2 parallel to Πλ and lying between Π1 and h(Q0).
Now Πlf Π2 divide Bn into three regions (including boundaries) Δ19 Δ2, Δd

such that h(PQ) c Δu h(Q0) c 4 . In fact, Po c int hr\Δύ, Qo c int hτ\Δ^>
where int denotes interior in the relative topology of Bn. Hence, hr\ΔD e J^"
and h"\Δ^) e j^~'m Since these sets are disjoint, 0 6 j^~ V J ^ ' and
Si^V^', fli^n)) = fl"0(J5n). By setting 4 = P, J8 = Q, and following
the argument in the second half of the proof of Theorem 2, we can
show that the group generated by those g e H0(Bn) such that K(g) ID ΔX

or 4J is precisely HQ(Bn). Since K(g)z)Δ1 implies geS(h"1(J^')9 H0(Bn)),
and K{g)uΔz implies geS(hr\^'), HQ(Bn)), it follows from Lemma 2(c)
that

H0(Bn) - h[S(h~\jr)f Ho(Bn)) V

H0(Bn))]h-i V

V S(^-', HQ(Bn)) .
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Hence, (2) is established. When n — 1, the hypothesis of the theorem
states that Po and Qo are the two points in So. The construction in the
second half of the proof of Theorem 2 can evidently be carried through
in this case.

6. Quotient spaces* we turn now to the problem of representing
the quotient groups H0(Bn)IS(J^), where JF' is an ecliptic family, as
groups of transformations.

THEOREM 4. Let A c Sn-X have the property that the set of its
neighborhoods in Bn has a countable base, and let J^ be the ecliptic
family derived from {A}. Then HQ{BV)IS{^') can be represented as a
group of order-preserving transformations of a partially ordered set
Z onto itself.

Proof. Let Y be the set of all countable sequences {Uk} of open
subsets Uk c Bn such that Uλ z) U2 3 , and {Uk} is a base for the set
of neighborhoods of A. We introduce a partial ordering in Y as follows:
{Uk} ^ {Vk} if there exists a kQ > 0 such that k > k0 implies Uk d Vk.
We call {Uk} and {Vk} equivalent if {Uk} ^ {Vk} and {Vk} ^ {Uk}, and we
write {Uk} Ξ= {FJ. Thus {Uk} = {Vk} means that Uk = Vk for all but a
finite set of fc's. If {£/*}={7,} and { t / J ^ T O , then clearly {Vk}S{Wk}.
Let Z be the set of equivalence classes in Y formed by the relation Ξ= .
If u,ve Z, we define u ^ v to mean that the same ordering subsists
between their respective equivalence classes. Moreover, u g v and v ^ u
implies u — v.

If heH0(Bn) and { i/Je7, then {&(#*)} e γm Furthermore, {Vk}eY
and {?7J ^ {FJ implies {Λ(ί/»)} ^ {h(Vk)}. In particular, {C/fc} = {Vk} im-
plies {̂ (ί7fc)} = {h(Vk)}. Thus, corresponding to /̂  there is an element
ω(h) e Π(Z) which is order-preserving, and g e H0(Bn) implies ω{gh) =
ω(g)ω(h). We now show that heS(J?r) if, and only if, ω(h) = ί, where
i is the identity in Π(Z). If heS(^")f then there is an F c Bn such
that K(h)z)F and int F ID A. For any weZ, let {Uk} be a representative
of u in F. Since {Uk} is a base for the neighborhoods of A, we can find
k0 > 0 such that k > kQ implies ί7fc c int F, whence ω (h) (u) = u, and
(o(h) = i. Conversely, if h^S(^)f then for each {Uk}e Y, there exists
a sequence {xk} of points in Bn such that xke Uk and h(xk) Φ xk (k — 1,
2, ) Setting Ffc = Uk Π c{h(xk)} for each k, we have {Vk}eY and
W"̂ *)} ^ {̂ ΐb} If ί̂ fc} is a respresentative of veZ, then α)(fc)(̂ ) ^ v,
and o>(/̂ ) ̂  ί. This proves our assertion. Let θ denote the canonical
mapping from H0{Bn) onto HQ(Bn)IS(J^). Then θ{g) = θ(h) if, and only
if, ω(g) = α>(/̂ ). Hence, ωθ'1 is an isomorphism between H0(Bn)IS(^)
and ω(H0(Bn)).

If A is closed in I?w, then A is compact, and the uniform (1/fc)-
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neighborhoods of A form a base for its set of neighborhoods, so that the
hypothesis of the theorem is satisfied in this case. If A — Sn-lf then
jF" = J?Q and the construction in the proof allows us to represent
H(Bn)IS(^r) as a subgroup of order-preserving elements in Π(Z) which
contains ω(H0(Bn)).
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