ON THE REPRESENTATION OF OPERATORS BY CONVOLUTION INTEGRALS

J. D. Weston

1. Introduction. Let \mathfrak{X} be the complex vector space consisting of all complex-valued functions of a non-negative real variable. For each positive number u, let the shift operator I_{u} be the mapping of \mathfrak{X} into itself defined by the formula

$$
I_{u} x(t)=\left\{\begin{array}{cl}
0 & (0 \leqq t<u) \\
x(t-u) & (t \geqq u)
\end{array}\right.
$$

Evidently, $I_{u+v}=I_{u} I_{v}$, for any positive numbers u and v.
A linear operator A which maps a subspace \mathfrak{D} of \mathfrak{X} into itself will here be called a V-operator (after Volterra) if
(1.1) for each x in \mathfrak{D}, the conjugate function x^{*} belongs to \mathfrak{D},
(1.2) both \mathfrak{D} and $\mathfrak{X} \backslash \mathfrak{D}$ are invariant under the shift operators,
(1.3) every shift operator commutes with A.

Many operators that occur in mathematical physics are of this type. If \mathfrak{D} is any subspace of \mathfrak{X} having the properties (1.1) and (1.2), the restriction to \mathfrak{D} of each shift operator is an example of a V-operator. All 'perfect operators' (of which a definition may be found in [5]') are V-operators, on the space of perfect functions.

In this paper we obtain a representation theorem for V-operators which are continuous in a certain sense. This result leads to characterizations of two related classes of perfect operators, one of which has been considered from a different point of view in [5]. The main representation theorem (Theorem 4) is similar to a result obtained by R. E. Edwards [2] for V-operators which are continuous in another sense; and it closely resembles a theorem given recently by König and Meixner ([3], Satz 3).
2. Elementary properties of V -operators. An important property of V-operators is given by

Theorem 1. Let A be a V-operator, and let x_{1} and x_{2} be two of its operands such that, for some positive number $t_{0}, x_{1}(t)=x_{2}(t)$ whenever $0 \leqq t \leqq t_{0}$. Then $A x_{1}(t)=A x_{2}(t)$ whenever $0 \leqq t \leqq t_{0}$.

Proof. Let $x=x_{1}-x_{2}$. Then, since $x(t)=0$ if $0 \leqq t \leqq t_{0}$, there is

[^0]a function y such that $x=I_{t_{0}} y$; and y is an operand of A, by virtue of the property (1.2). Consequently, by virtue of (1.3), $A x=I_{t_{0}} A y$; so that $A x(t)=0$ whenever $0 \leqq t \leqq t_{0}$. But $A x=A x_{1}-A x_{2}$, since A is linear: hence the conclusion of the theorem.

With products and linear combinations defined in the usual way, the V-operators on a given space \mathfrak{D} constitute a linear algebra $\mathfrak{N}(\mathfrak{D})$. If A belongs to $\mathfrak{Y (}(\mathfrak{D})$ then so does the operator A^{*} defined by

$$
A^{*} x=\left(A x^{*}\right)^{*},
$$

where x is any function in \mathfrak{D}. We therefore have the unique decomposition

$$
A=B+i C
$$

where B and C belong to $\mathfrak{A}(\mathfrak{D})$ and are 'real' in the sense that $B x$ and $C x$ are real for every real function x in \mathfrak{D}. (The property (1.1) ensures that every function x in \mathfrak{D} can be uniquely expressed as $x_{1}+i x_{2}$, where x_{1} and x_{2} are real functions in \mathfrak{D}.)

If A is a linear combination of shift operators, we have

$$
A=\sum_{j=1}^{n} \alpha_{j} I_{u_{j}}=I_{u} \sum_{j=1}^{n} \alpha_{j} I_{u_{j}-u},
$$

where $\alpha_{1}, \cdots, \alpha_{n}$ are complex numbers, u is the least of the positive numbers u_{1}, \cdots, u_{n}, and I_{0} is the unit operator (to be denoted henceforth by ' I '). From this it is apparent that A has no reciprocal in the algebra $\mathfrak{Y}(\mathfrak{X})$; however, $I-A$ has a reciprocal in $\mathfrak{H}(\mathfrak{X})$, as the following result shows.

Theorem 2. Let A be a V-operator on a space \mathfrak{D}, and let u be any positive number. Then the formula

$$
B x(t)=x(t)+\sum_{n=1}^{\infty} I_{n u} A^{n} x(t)
$$

where x is any function in \mathfrak{D}, and $t \geqq 0$, defines a linear transformation B, of \mathfrak{D} into \mathfrak{X}, which commutes with every shift operator and is such that $B\left(I-I_{u} A\right) x=x$ for every x in \mathfrak{D} and $\left(I-I_{u} A\right) B x=x$ if $B x$ is in \mathfrak{D}.

Proof. The series defining B certainly converges (pointwise): in fact, if $t_{0} \geqq 0$ and m is a positive integer such that $m u \geqq t_{0}$, then, for any x in \mathfrak{D},

$$
B x(t)=x(t)+\sum_{n=1}^{m} I_{n u} A^{n} x(t)
$$

whenever $0 \leqq t \leqq t_{0}$. Hence if $B x$ is in \mathfrak{D} then, by Theorem 1,

$$
\left(I-I_{u} A\right) B x(t)=x(t)-I_{(m+1) u} A^{m \mid 1} x(t)=x(t)
$$

whenever $0 \leqq t \leqq t_{0}$; so that $\left(I-I_{u} A\right) B x=x$, since t_{0} is arbitrary. Also, if x is in \mathfrak{D} then $\left(I-I_{u} A\right) x$ is in \mathfrak{D}, so that

$$
\begin{aligned}
B\left(I-I_{u} A\right) x(t) & =\left(I-I_{u} A\right) x(t)+\sum_{n=1}^{m} I_{n u} A^{n}\left(I-I_{u} A\right) x(t) \\
& =x(t)-I_{(m+1) u} A^{m+1} x(t)=x(t)
\end{aligned}
$$

whenever $0 \leqq t \leqq t_{0}$. Thus $B\left(I-I_{u} A\right) x=x$. It can be verified in a similar way that B commutes with the shift operators and is linear.

If the transformation B of Theorem 2 maps \mathscr{D} into itself, then $I-I_{u} A$ has a reciprocal in $\mathfrak{A}(\mathfrak{D})$, namely B. This is certainly the case if \mathfrak{D} consists of all the functions x that have some purely local property (for example, continuity, with $x(0)=0$, or differentiability, with $x(0)=x^{\prime}(0)=0$, or local integrability). ${ }^{2}$ It is also the case with certain other choices of \mathfrak{D}, provided that A is restricted to be a linear combination of shift operators; for example, if \mathfrak{D} consists of the perfect functions, then an operator of the form

$$
\begin{equation*}
\alpha_{0} I+\alpha_{1} I_{u_{1}}+\cdots+\alpha_{n} I_{u_{n}} \tag{2.1}
\end{equation*}
$$

has a reciprocal in $\mathfrak{A}(\mathfrak{D})$ if $\alpha_{0} \neq 0$ (this can be seen at once on taking Laplace transforms and using Theorem 6 of [5]).

If \mathfrak{D} contains more than the zero function, it is clear that (2.1) represents the zero operator on \mathfrak{D} only if all the coefficients $\alpha_{0}, \cdots, \alpha_{n}$ are zero; and since the product of two operators of this form is another such operator, the reciprocal of (2.1) cannot be expressed in the same form unless it is a scalar multiple of I. Thus it is usual for $\mathfrak{H}(\mathfrak{D})$ to contain operators other than those of the form (2.1). In general it seems to be difficult to decide whether $\mathfrak{A}(\mathfrak{D})$ is commutative or not; but it is shown in $\S 4$ that \mathfrak{D} can be chosen, of moderate size, so that $\mathfrak{A}(\mathfrak{D})$ is not commutative.

The Laplace transformation is naturally associated with the idea of a V-operator, because it converts the shift operators to exponential factors. A locally integrable function x has an absolutely convergent Laplace integral if x is of exponential order at infinity, in the sense that $x(t)=O\left(e^{c t}\right)$ as $t \rightarrow \infty$, for some real number c (depending on x). One can consider V-operators on spaces consisting of such functions, and for some of these spaces the following result is available.

Theorem 3. Let A be a V-operator on a space \mathfrak{D} consisting of all

[^1]the functions in \mathfrak{X} which satisfy some (possibly empty) set of local conditions and are of exponential order at infinity. Then there are positive numbers b, c, and τ such that $|A x(t)| \leqq b e^{c t}$ whenever $t \geqq \tau$ and $|x(t)| \leqq 1$ for all t, with x in \mathfrak{D}.

Proof. Assuming the theorem to be false, we shall construct inductively a sequence $\left\{x_{n}\right\}$ in \mathfrak{D}, and a sequence $\left\{t_{n}\right\}$ of positive numbers, such that, for each positive integer n,
(i) $\left|x_{n}(t)\right| \leqq 2^{-n}$ for all values of t,
(ii) $t_{n} \geqq n$,
(iii) $x_{n}(t)=0 \quad$ if $0 \leqq t \leqq t_{n-1}$, where $t_{0}=0$,
(iv) $\left|\sum_{j=1}^{n} A x_{j}\left(t_{n}\right)\right| \geqq e^{n t_{n}}$.

In the first place, if the theorem is false, we can choose x_{1} so that $\left|x_{1}(t)\right| \leqq \frac{1}{2}$ for all values of t and $\left|A x_{1}(t)\right| \geqq e^{t}$ for some value of t, say t_{1}, greater than 1. Suppose, then, that the first $m-1$ terms of each sequence have been chosen, where $m>1$, so that (i)-(iv) hold when $n \leqq m-1$. Let

$$
y_{m}=\sum_{j=1}^{m-1} A x_{j} .
$$

Since y_{m} belongs to \mathfrak{D}, there is a real number c_{m} such that $\left|y_{m}(t)\right| \leqq$ $e^{c_{m}{ }^{t}}$ when t is sufficiently large. We can choose x_{m} so that $\left|x_{m}(t)\right| \leqq 2^{-m}$ for all $t, x_{m}(t)=0$ if $0 \leqq t \leqq t_{m-1}$, and

$$
\left|A x_{m}\left(t_{m}\right)\right| \geqq 2 e^{\left(c_{m}+m\right) t_{m}}
$$

where t_{m} is chosen so that $t_{m} \geqq m$ and $\left|y_{m}\left(t_{m}\right)\right| \leqq e^{c_{m} t_{m}}$. Then

$$
\left|\sum_{j=1}^{m} A x_{j}\left(t_{m}\right)\right| \geqq\left|A x_{m}\left(t_{m}\right)\right|-\left|y_{m}\left(t_{m}\right)\right| \geqq e^{\left(\epsilon_{m}+m\right) t_{m}} \geqq e^{m t_{m}}
$$

Thus (i)-(iv) hold when $n=m$.
Now let $x_{0}=\sum_{n=1}^{\infty} x_{n}$. Then $\left|x_{0}(t)\right| \leqq 1$ for all t, by virtue of (i); and x_{0} belongs to \mathfrak{D} since, by (iii), it has the appropriate local properties. Hence there is a real number c_{0} such that $A x(t)=O\left(e^{c_{0} t}\right)$ as $t \rightarrow \infty$; so that, by (ii), $A x\left(t_{n}\right)=O\left(e^{c_{0} t} n\right)$ as $n \rightarrow \infty$. But, by (iii) and (iv), and Theorem $1,\left|A x\left(t_{n}\right)\right| \geqq e^{n t_{n}}$ for each n. This contradiction proves the theorem.
3. Strong continuity. If the field of complex numbers is given either the discrete topology or the usual topology, the space \mathfrak{X} can be given the corresponding topology of uniform convergence on finite closed intervals. The first of these topologies for \mathfrak{X} has the property that every V-operator is continuous with respect to it, as Theorem 1 shows; but it does not make \mathfrak{X} a topological vector space (it has the defect that $n^{-1} x \rightarrow 0$ as $n \rightarrow \infty$ only if x is the zero function). The second topology for \mathfrak{X}
is more interesting, and will be referred to as the strong topology. In fact we shall consider this only in relation to the closed subspace, \mathfrak{c}_{0}, consisting of all the continuous functions x for which $x(0)=0$. For each x in \mathfrak{J}_{0}, and each non-negative number t, we define $\|x\|_{t}$ to be the least upper bound of $|x(u)|$ with $0 \leqq u \leqq t$. We can then give $\mathfrak{๒}_{0}$ a metric, which determines the strong topology, by taking the distance between functions x and y to be

$$
\sum_{n=1}^{\infty} 2^{-n}\|x-y\|_{n} /\left(1+\|x-y\|_{n}\right)
$$

In this way \mathfrak{F}_{0} becomes a Fréchet space.
In the case of \mathfrak{C}_{0}, which is an example of a space \mathfrak{D} satisfying (1.1) and (1.2), a large class of V-operators, including those of the form (2.1), can be defined in terms of Riemann-Stieltjes convolution integrals. If ν is a function which belongs to \mathfrak{X} and has bounded variation in every finite interval $[0, t]$, then the formula

$$
\begin{equation*}
A x(t)=\int_{0}^{t} x(t-u) d \nu(u) \tag{3.1}
\end{equation*}
$$

where x is any function in \mathfrak{S}_{0}, defines a V-operator A on \mathfrak{S}_{0} (cf. [5], Theorem 3). Moreover, if $0 \leqq v \leqq t$ then

$$
|A x(v)| \leqq \int_{0}^{v}\left|x (v - u) \left\|d \nu(u)\left|\leqq \int_{0}^{t}\|x\|_{t}\right| d \nu(u) \mid, \quad(t \geqq 0)\right.\right.
$$

so that

$$
\|A x\|_{t} \leqq\|x\|_{t} \int_{0}^{t}|d \nu(u)|
$$

whence it follows that A is strongly continuous (continuous with respect to the strong topology). The theorem we are about to prove shows that every strongly continuous V-operator on a sufficiently large space \mathfrak{D} of continuous functions can be represented in this way (and can therefore be extended from \mathfrak{D} to the whole of \mathfrak{C}_{0}).

If A is a linear operator on a subspace \mathfrak{D} of \Im_{0}, and if $t \geqq 0$, we denote by ' $\|A\|_{t}$ ' the least upper bound of $\|A x\|_{t}$ with x in \mathfrak{D} and $\|x\|_{t} \leqq 1$. It is clear that A is strongly continuous if and only if $\|A\|_{t}$ is finite for all values of t (or, equivalently, for all sufficiently large values of t.

Theorem 4. Let A be a strongly continuous V-operator on a strongly dense subspace \mathfrak{D} of $\mathfrak{\Im}_{0}$, and let t be any positive number. Then there is a function ν in \mathfrak{X}, with $\nu(0)=0$ and $\nu(u-)=\nu(u)$ whenever $0<u \leqq t$, such that $A x(t)$ is given by (3.1) for every x in \mathfrak{D}. This function ν is uniquely determined by A, and is independent of t; its total variation
in the interval $[0, t]$ is $\|A\|_{t}$.
Proof. For each function x in \mathfrak{D}, and for each positive number t, let x_{t} be the restriction of x to the closed interval $[0, t]$. Then, for a fixed value of t, the mapping $x \rightarrow x_{t}$ is a linear transformation of \mathfrak{D} on to a subspace \mathfrak{D}_{t} of the complex Banach space $C[0, t]$, consisting of all continuous functions on the interval [0, t]; moreover, $\left\|x_{t}\right\|=\|x\|_{t}$. If $x_{t}=0$ then $A x(t)=0$, by Theorem 1; we can therefore define a linear functional φ on \mathfrak{D}_{t} by the formula

$$
\varphi\left(x_{t}\right)=A x(t)
$$

This functional is continuous, with $\|\Phi\|=\|A\|_{t}$.
An integral representation of φ can be found by adapting a construction used by Banach ([1], 59-60). By a well-known theorem ${ }^{3}$, φ can be extended without change of norm to the complex Banach space $M[0, t]$, which contains the characteristic functions of all the subintervals of $[0, t]$. A function ν_{t} can then be defined on $[0, t]$ so that $\nu_{t}(0)=0$ and

$$
\begin{gather*}
\int_{0}^{t}\left|d \nu_{t}(u)\right| \leqq\|\varphi\| \tag{i}\\
\varphi(f)=\int_{0}^{t} f(t-u) d \nu_{t}(u)
\end{gather*}
$$

for every function f in $C[0, t]$.
Without affecting the validity of (i) or (ii), we can adjust ν_{t} so that it is continuous on the left at each interior point of the interval $[0, t]$. Moreover, if f is a continuous function such that $f(0)=0$, then the jump of ν_{t} at the point t makes no contribution to the integral in (ii); therefore, as far as such functions f are concerned, we may suppose ν_{t} chosen so that $\nu_{t}(t-)=\nu_{t}(t)$, giving left-hand continuity throughout the interval $(0, t]$, and retaining (i). Under these conditions, ν_{t} is uniquely determined by A. For, if $0<v \leqq t$ and $0<\delta<v$, there is a function f_{δ} in $C[0, t]$ such that $\left\|f_{\delta}\right\|=1$ and

$$
f_{\delta}(u)= \begin{cases}0 & (0 \leqq u \leqq t-v) \\ 1 & (t-v+\delta \leqq u \leqq t)\end{cases}
$$

Thus

$$
\varphi\left(f_{\delta}\right)=\int_{0}^{v-\delta} d \nu_{t}(u)+\int_{v-\delta}^{v} f_{\delta}(t-u) d \nu_{t}(u)
$$

and therefore

$$
\left|\varphi\left(f_{\delta}\right)-\nu_{t}(v-\delta)\right| \leqq \int_{v-\delta}^{v}\left|d \nu_{t}(u)\right|
$$

[^2]so that $\varphi\left(f_{\delta}\right) \rightarrow \nu_{t}(v)$ as $\delta \rightarrow 0 .{ }^{4}$ But since \mathfrak{D} is strongly dense in $\mathfrak{C}_{0}, f_{\delta}$ belongs to the closure of \mathfrak{D}_{t}, in $C[0, t]$; so that, φ being continuous, $\varphi\left(f_{\delta}\right)$ is uniquely determined by A, for each value of δ. This establishes the uniqueness of ν_{t}.

Now suppose that $t^{\prime}>t$. By what has been proved, we have, for any x in \mathfrak{D},

$$
A x(t)=\int_{0}^{t} x(t-u) d \nu_{t}(u)
$$

But $A x(t)=I_{t^{\prime}-t} A x\left(t^{\prime}\right)$, and $I_{t^{\prime}-t} A=A I_{t^{\prime}-t}$; hence

$$
A x(t)=\int_{0}^{t^{\prime}} I_{t^{\prime}-t} x\left(t^{\prime}-u\right) d \nu_{t^{\prime}}(u)=\int_{0}^{t} x(t-u) d \nu_{t^{\prime}}(u) .
$$

It follows that $\nu_{t}(u)=\nu_{t^{\prime}}(u)$ whenever $0 \leqq u \leqq t$; in particular, $\nu_{t}(t)=$ $\nu_{t^{\prime}}(t)$. Hence if we define the function ν by

$$
\nu(t)=\nu_{t}(t)
$$

we obtain the required representation of A.
Finally, (i) shows that

$$
\int_{0}^{t}|d \nu(u)| \leqq\|A\|_{t}
$$

and we have previously noted that, for any x in \mathfrak{D},

$$
\|A x\|_{t} \leqq\|x\|_{t} \int_{0}^{t}|d \nu(u)|
$$

Thus $\int_{0}^{t}|d \nu(u)|=\|A\|_{t}$, and the proof is complete. ${ }^{5}$
As a corollary, we have
Theorem 5. Suppose that the formula

$$
A x(t)=\int_{0}^{t} K(t, u) x(u) d u \quad(t \geqq 0)
$$

defines a V-operator A on $\mathfrak{\Im}_{0}$, the kernel K being such that $\int_{0}^{t}|K(t, u)| d u$ exists as a Lebesgue integral which is locally bounded with respect to t. Then there is a function k in \mathfrak{X} such that, for each $t, K(t, u)=k(t-u)$ for almost all values of u.

[^3]Proof. For each t, let $\|K\|_{t}$ be the least upper bound of $\int_{0}^{v}|K(v, u)| d u$ with $0 \leqq v \leqq t$; this is finite, by hypothesis. Then, for each x in $\mathfrak{๒}_{0}$,

$$
\|A x\|_{t} \leqq\|K\|_{t}\|x\|_{t},
$$

so that A is strongly continuous. But

$$
A x(t)=\int_{0}^{t} K(t, t-u) x(t-u) d u
$$

so that if

$$
L_{t}(u)=\int_{0}^{u} K(t, t-v) d v
$$

then

$$
A x(t)=\int_{0}^{t} x(t-u) d L_{t}(u)
$$

Hence, by Theorem 4, $L_{t}=\nu$, a function which is independent of t. Since ν has bounded variation, there is a function k such that

$$
k(u)=\frac{d}{d u} \nu(u)
$$

except when u is in a set E whose Lebesgue measure is 0 . However, for each value of t,

$$
\frac{d}{d u} \nu(u)=\frac{d}{d u} L_{t}(u)=K(t, t-u)
$$

except when u is in a set E_{t} of measure 0 . Thus

$$
K(t, u)=k(t-u)
$$

except when u is in the set $t-\left(E_{t} \cup E\right)$, which has measure 0 .
The functions in \mathfrak{c}_{0} which are of exponential order at infinity form a subspace \mathfrak{F}_{0}. The perfect functions form a smaller subspace, \mathfrak{D}_{0} (in fact \mathfrak{D}_{0} is the largest subspace of \mathfrak{F}_{0} which is invariant under the differential operator, D).

Theorem 6. \mathfrak{D}_{0} is strongly dense in $\mathfrak{\Im}_{0}$.
Proof. It is easily seen that \mathfrak{F}_{0} is strongly dense in \mathscr{F}_{0} : in fact, if x is in $\mathfrak{๒}_{0}$ and x_{n} is defined by

$$
x_{n}(t)= \begin{cases}x(t) & (0 \leqq t \leqq n) \\ x(n) & (t \geqq n)\end{cases}
$$

then x_{n} belongs to \mathfrak{F}_{0}, for each n, and $x_{n} \rightarrow x$ strongly as $n \rightarrow \infty$. To show that \mathfrak{D}_{0} is dense in \mathfrak{F}_{0}, let x be any function in \mathfrak{F}_{0} and, for each positive number δ, let $g_{(\delta)}$ be a positive perfect function such that if $t \geqq \delta$ then $g_{(\delta)}(t)=0$ and $\int_{0}^{t} g_{(\delta)}(u) d u=1$ (for example, we could take $g_{(\delta)}$ to be $D h_{(\delta)}$, where $h_{(\delta)}$ is given by Lemma 1 of [5]). Let $x_{(\delta)}=x * g_{(\delta)}$. Then $x_{(\delta)}$ belongs to \mathfrak{D}_{0} (' $x *$ ' is a perfect operator), and, if $v \geqq \delta$,

$$
\begin{aligned}
x_{(\delta)}(v)-x(v) & =\int_{0}^{v} x(v-u) g_{\langle\delta\rangle}(u) d u-x(v) \\
& =\int_{0}^{\delta}\{x(v-u)-x(v)\} g_{(\delta)}(u) d u
\end{aligned}
$$

Now let t and ε be any positive numbers. Since x is uniformly continuous in the interval $[0, t]$, with $x(0)=0$, we can choose δ so that

$$
|x(v-u)-x(v)|<\varepsilon
$$

whenever $\delta \leqq v \leqq t$, and $|x(v)|<\frac{1}{2} \varepsilon$ whenever $0 \leqq v \leqq \delta$; then

$$
\left|x_{(\delta)}(v)-x(v)\right|<\varepsilon \int_{0}^{\delta} g_{(\delta)}(u) d u=\varepsilon
$$

if $\delta \leqq v \leqq t$, and if $0 \leqq v \leqq \delta$,

$$
\begin{gathered}
\left|x_{(\delta)}(v)-x(v)\right| \leqq \int_{0}^{\delta}|x(v-u)| g_{(\delta)}(u) d u+|x(v)| \\
\leqq \frac{1}{2} \varepsilon \int_{0}^{\delta} g_{(\delta)}(u) d u+\frac{1}{2} \varepsilon=\varepsilon .
\end{gathered}
$$

Thus $\left\|x_{(\delta)}-x\right\|_{t}<\varepsilon$. It follows that \mathfrak{D}_{0} is strongly dense in \mathfrak{C}_{0}.

In [5] it is shown that any positive perfect operator has the representation (3.1), with ν a non-decreasing function (in fact this holds for any positive V-operator on a space \mathfrak{D} such that $\mathfrak{D}_{0} \subseteq \mathfrak{D} \subseteq \mathfrak{G}_{0}$). It follows that the linear combinations of positive perfect operators, which form a linear algebra $\mathfrak{M}\left(\mathfrak{D}_{0}\right)^{6}$, are strongly continuous. On the other hand, there are strongly continuous perfect operators which do not belong to $\mathfrak{M}\left(\mathfrak{D}_{0}\right)$: for example, if $\nu(t)=\sin \left(e^{t^{2}}-1\right)$, and A is defined on \mathfrak{D}_{0} according to (3.1), then, as is shown in [5], A is a perfect operator which is not in $\mathfrak{M}\left(\mathfrak{D}_{0}\right)$; but of course A is strongly continuous. However, it is possible to characterize $\mathfrak{M}\left(\mathfrak{D}_{0}\right)$ in terms of seminorms, as follows.

Theorem 7. A V-operator A on \mathfrak{D}_{0} is an element of $\mathfrak{M}\left(\mathfrak{D}_{0}\right)$ if and only if there is a real number c such that $\|A\|_{t}=O\left(e^{c t}\right)$ as $t \rightarrow \infty$.

Proof. By Theorem 1 of [5], an operator A on \mathfrak{D}_{0} is in $\mathfrak{M}\left(\mathfrak{D}_{0}\right)$ if

[^4]and only if it admits the representation (3.1) with ν a linear combination of positive non-decreasing functions which are of exponential order at infinity. This condition on ν is equivalent to the existence of a real number c such that $\int_{0}^{t}|d \nu(u)|=O\left(e^{c t}\right)$ as $t \rightarrow \infty$. Therefore, by Theorems 4 and 6 above, A is in $\mathfrak{M}\left(\mathfrak{D}_{0}\right)$ if and only if $\|A\|_{t}=O\left(e^{c t}\right)$ as $t \rightarrow \infty$.

Each function y in \mathfrak{S}_{0} determines a strongly continuous V-operator A on \mathfrak{E}_{0} according to the formula $A x=x * y$; for, integration by parts shows that this formula is equivalent to (3.1), with

$$
\nu(t)=D^{-1} y(t)=\int_{0}^{t} y(u) d u \quad(t \geqq 0)
$$

An important property of convolution in \mathfrak{C}_{0} is the fact that it obeys the associative law (as well as the commutative law); more generally, we have

Theorem 8. Let A and B be strongly continuous V-operators, on \mathfrak{S}_{0} and on a subspace \mathfrak{D} of \mathfrak{E}_{0} respectively. If x is any function in \mathfrak{D} then $A x$ belongs to the strong closure of \mathfrak{D}; if $A x$ is in \mathfrak{D} itself, then $A B x=B A x$. In particular, if y is a function in $\mathfrak{\Im}_{0}$ such that $x * y$ is in \mathfrak{D}, then $B(x * y)=(B x) * y$.

Proof. Let A be represented by a function ν in accordance with Theorem 4. Then for any x in \mathfrak{D}, each value $A x(t)$ can be arbitrarily approximated by sums of the form

$$
\sum_{j=1}^{n}\left\{\nu\left(u_{j}\right)-\nu\left(u_{j-1}\right)\right\} x\left(t-u_{j}\right),
$$

where $0 \leqq u_{1} \leqq \cdots \leqq u_{n} \leqq t$; and this approximation is locally uniform with respect to t. Now the above sum is the value at t of the function

$$
\begin{equation*}
\sum_{j=1}^{n} \alpha_{j} I_{u_{j}} x \tag{i}
\end{equation*}
$$

where $\alpha_{j}=\nu\left(u_{j}\right)-\nu\left(u_{j-1}\right)$. This function belongs to \mathfrak{D}, since \mathfrak{D} satifies (1.2). Thus $A x$ belongs to the strong closure of \mathfrak{D}. Further, the points $u_{\text {j }}$ can be chosen in such a way that, while $A x$ is strongly approximated by (i), $A B x$ is simultaneously approximated, in the same sense, by

$$
\begin{equation*}
\sum_{j=1}^{n} \alpha_{j} I_{u_{j}} B x \tag{ii}
\end{equation*}
$$

But, since B is a V-operator, (ii) is the same as

$$
B \sum_{j=1}^{n} \alpha_{j} I_{u_{j}} x .
$$

Since B is strongly continuous, it follows that $A B x=B A x$ if $A x$ is an operand of B.

We can now prove a partial converse of Theorem 1, namely.

Theorem 9. Let A be a non-zero strongly continuous V-operator on $\mathfrak{๒}_{0}$. Then there is a non-negative number τ such that (i) for any function x in $C_{0}, A x(t)=0$ whenever $0 \leqq t \leqq \tau$, and (ii) if $A x(t)=0$ whenever $0 \leqq t \leqq t_{0}$, where x belongs to $\mathbb{\bigotimes}_{0}$ and $t_{0} \geqq \tau$, then $x(t)=0$ whenever $0 \leqq t \leqq t_{0}-\tau$. In particular, $x=0$ if $A x=0$.

Proof. Let ν be the function representing A according to Theorem 4 , and let τ be the greatest lower bound of the numbers t for which $\nu(t) \neq 0$. Obviously, τ has the property (i) required by the theorem. Suppose that x is a function in $\mathfrak{\zeta}_{0}$ such that $A x(t)=0$ whenever $0 \leqq t \leqq t_{0}$, where $t_{0} \geqq \tau$. Let $g_{(\delta)}$ be defined as in the proof of Theorem 6 , and let $x_{(\delta)}=x * g_{(\delta)}$. Then, for each value of $\delta, x_{(\delta)}$ has a derivative $x_{(\delta)}^{\prime}$ in \mathfrak{C}_{0}; in fact $x_{(\delta)}^{\prime}=x * g_{(\delta)}^{\prime}$. Also, if $0 \leqq t \leqq t_{0}$,

$$
\begin{aligned}
\int_{0}^{t} x_{(\delta)}^{\prime}(t-u) \nu(u) d u & =A x_{(\delta)}(t)=(A x) * g_{(\delta)}(t) \\
& =\int_{0}^{t} A x(t-u) g_{(\delta)}(u) d u=0 .
\end{aligned}
$$

Therefore, by a theorem of Titchmarsh [4, 327], $x_{(\delta)}^{\prime}(t)=0$ whenever $0 \leqq t \leqq t_{0}-\tau$ (we cannot have $\nu(t)=0$ for almost all t in a neighbourhood of τ, since ν is continuous on the left). Hence $x_{(\delta)}(t)=0$ whenever $0 \leqq t \leqq t_{0}-\tau$. Since $x_{(\delta)}(t) \rightarrow x(t)$ as $\delta \rightarrow 0$, the theorem follows.

It is a consequence of Theorem 8 that every strongly continuous V-operator on \mathfrak{D}_{0} is a perfect operator (the converse is false; in fact it is easy to see that the differential operator D is not strongly continuous). Thus an operator A represented by (3.1) is a perfect operator if and only if it maps \mathfrak{D}_{0} into itself. An equivalent condition is given by

Theorem 10. The formula (3.1), with x in \mathfrak{D}_{0}, represents a perfect operator A if and only if there is a positive integer n such that D^{-n} belongs to \mathfrak{F}_{0}, where

$$
D^{-n} \nu(t)=\int_{0}^{t} \cdots \int_{0}^{u_{2}} \nu\left(u_{1}\right) d u_{1} \cdots d u_{n} \quad\left(t=u_{n+1} \geqq 0\right) .
$$

Proof. For any perfect function x and any positive integer n, we have from (3.1), after integration by parts,

$$
A x(t)=\int_{0}^{t} x^{(n+1)}(t-u) D^{-n} \nu(u) d u \quad(t \geqq 0)
$$

Thus if $D^{-n} \nu$ belongs to ξ_{0} for some value of n, then A is a perfect operator. On the other hand, suppose that A, given by (3.1), is a perfect operator (when restricted to \mathfrak{D}_{0}). By a general representation theorem for perfect operators [6], there is a function y in \mathfrak{F}_{0} such that, for some positive integer n, and every perfect function x,

$$
A x(t)=\int_{0}^{t} x^{(n+1)}(t-u) y(u) d u \quad(t \geqq 0)
$$

Hence $x^{(n+1)} *\left(y-D^{-n} \nu\right)=0$, so that, by Theorem $9, y=D^{-n} \nu$.
If $\nu(t)=e^{e^{t}}$, the V-operator A given by (3.1) does not map \mathfrak{D}_{0} into itself, since ν does not satisfy the condition of Theorem 10.

Every perfect operator A has a Laplace transform, \bar{A} : if A is given by (3.1), \bar{A} may or may not be given by

$$
\begin{equation*}
\bar{A}(z)=\int_{0}^{\infty} e^{-z t} d \nu(t), \tag{3.2}
\end{equation*}
$$

the integral being convergent when $\mathfrak{R z}$ is sufficiently large. This representation of \bar{A} is certainly valid if A belongs to $\mathfrak{M}\left(\mathfrak{D}_{0}\right)$ (cf. [5], Theorem 4); and also if $\nu(t)=\sin \left(e^{t^{2}}-1\right)$, for example. But if $D^{-1} \nu(t)=\sin \left(e^{t^{2}}-1\right)$ the integral in (3.2) does not converge for any value of z (as can be seen on integrating twice by parts). However, (3.2) holds whenever the integral is convergent, as the following result shows.

Theorem 11. Let A be any strongly continuous perfect operator, and let ν be a function such that A is represented by (3.1). Then the Laplace transform \bar{A} is represented by (3.2), with $\mathfrak{\Re z}$ sufficiently large, if the infinite integral is interpreted in the sense of summability (C, n), where n is any non-negative integer such that $D^{-n} \nu$ belongs to \mathfrak{F}_{0}.

Proof. Let B be the perfect operator obtained on replacing ν by $D^{-1} \nu$ in (3.1). Then, if x is any perfect function, and $t \geqq 0$,

$$
D B x(t)=B x^{\prime}(t)=\int_{0}^{t} x^{\prime}(t-u) \nu(u) d u=\nu(0) x(t)+\int_{0}^{t} x(t-u) d \nu(u)
$$

Thus $D B=\nu(0) I+A$. If ν belongs to F_{0} then, since B is determined by the function ν in the sense that $B x=x * \nu, B$ has the same Laplace transform as ν; that is to say, when $\mathfrak{R z}$ is sufficiently large,

$$
\bar{B}(z)=\int_{0}^{\infty} e^{-z t} \nu(t) d t
$$

Therefore, in this case,

$$
\bar{A}(z)=z \bar{B}(z)-\nu(0)=\int_{0}^{\infty} z e^{-z t}\{\nu(t)-\nu(0)\} d t=\int_{0}^{\infty} e^{-z t} d \nu(t),
$$

so that (3.2) holds, the integral being convergent.
We now proceed by induction. Suppose that, for some non-negative integer n, (3.2) holds in the sense of summability (C, n) provided that $D^{-n} \nu$ belongs to \mathscr{F}_{0} and $\Re z$ is sufficiently large. If $D^{-n-1} \nu$ belongs to \mathfrak{F}_{0}, and $t>0$, then

$$
\begin{aligned}
\int_{0}^{t}\left(1-\frac{u}{t}\right)^{n+1} e^{-z u} d \nu(u)=-\nu(0) & +z \int_{0}^{t}\left(1-\frac{u}{t}\right)^{n+1} e^{-z u} d D^{-1} \nu(u) \\
& +\frac{n+1}{t} \int_{0}^{t}\left(1-\frac{u}{t}\right)^{n} e^{-z u} d D^{-1} \nu(u) .
\end{aligned}
$$

But, by the induction hypothesis (with $D^{-1} \nu$ in place of ν),

$$
\bar{B}(z)=\lim _{t \rightarrow \infty} \int_{0}^{t}\left(1-\frac{u}{t}\right)^{n+1} e^{-z u} d D^{-1} \nu(u)=\lim _{t \rightarrow \infty} \int_{0}^{t}\left(1-\frac{u}{t}\right)^{n} e^{-z u} d D^{-1} \nu(u)
$$

when $\mathfrak{R} z$ is sufficiently large; so that

$$
\lim _{t \rightarrow \infty} \int_{0}^{t}\left(1-\frac{u}{t}\right)^{n+1} e^{-z u} d \nu(u)=-\nu(0)+z \bar{B}(z)=\bar{A}(z)
$$

Thus

$$
\bar{A}(z)=\int_{0}^{\infty} e^{-z t} d \nu(t) \quad(C, n+1)
$$

and the theorem follows.
If \mathfrak{D} is any subspace of \mathfrak{C}_{0} satisfying (1.1) and (1.2), the strongly continuous V-operators on \mathfrak{D} form a subalgebra of $\mathfrak{H}(\mathfrak{D})$, say $\mathfrak{M}(\mathfrak{D})$. If \mathfrak{D} is strongly dense in \mathfrak{C}_{0}, it follows from Theorem 4 that $\mathfrak{P}(\mathfrak{D})$ effectively consists of those operators in $\mathfrak{R}\left(\mathfrak{§}_{0}\right)$ which leave \mathfrak{D} invariant. In this case, Theorems 8 and 9 show that $\mathfrak{N}(\mathfrak{D})$ is an integral domain (it is commutative, and has no divisors of zero). The full algebra $\mathfrak{N}\left(\S_{0}\right)^{7}$ has the further property that any operator which is inverse to an operator in $\mathfrak{P}\left(\mathfrak{C}_{0}\right)$ is itself in $\mathfrak{R}\left(\mathfrak{C}_{0}\right)$: this is special case of

Theorem 12. Let A and B be strongly continuous V-operators on a strongly closed subspace \mathfrak{D} of $\mathfrak{\Im}_{0}$, and suppose that there is an operator C on \mathfrak{D} such that $A=B C$. Suppose also that $B x=0$ only if $x=0$. Then C is a strongly continuous V-operator.

[^5]Proof. If $u>0$ and x is any function in \mathfrak{D} then, since A and B are V-operators,

$$
B\left(I_{u} C x-C I_{u} x\right)=I_{u} A x-A I_{u} x=0
$$

so that, by the hypothesis concerning $B, I_{u} C x=C I_{u} x$. In a similar way it can be verified that C is linear, and is therefore a V-operator. To show that C is strongly continuous, let $\left\{x_{n}\right\}$ be a strongly convergent sequence in \mathfrak{D} such that the sequence $\left\{C x_{n}\right\}$ is also strongly convergent. Since A and B are strongly continuous,

$$
B\left(\lim _{n \rightarrow \infty} C x_{n}-C \lim _{n \rightarrow \infty} x_{n}\right)=\lim _{n \rightarrow \infty} A x_{n}-A \lim _{n \rightarrow \infty} x_{n}=0,
$$

so that $\lim _{n \rightarrow \infty} C x_{n}=C \lim _{n \rightarrow \infty} x_{n}$; thus the graph of C is closed. Now \mathfrak{D}, being strongly closed, is a Fréchet space relative to the strong topology; hence, by Banach's closed-graph theorem [1, 41], C is strongly continuous.
4. Operators that commute with convolution. It is a consequence of Theorem 8 that a subspace \mathfrak{D} of $\mathfrak{\zeta}_{0}$, satisfying (1.1) and (1.2), is closed under convolution if it is strongly closed. On the other hand, \mathfrak{D}_{0} is closed under convolution though it is not strongly closed. If \mathfrak{D} is any subspace of \mathfrak{C}_{0} which is closed under convolution (so forming an integral domain with no unit element), an operator A on \mathfrak{D} will be said to commute with convolution if

$$
A(x * y)=(A x) * y
$$

for all x and y in \mathfrak{D}. Such operators are necessarily linear (cf. [5], § 4), and, for a given choice of \mathfrak{D}, they form an integral domain \mathfrak{D} in which \mathfrak{D} is isomorphically embedded (by the correspondence $x \rightarrow x *$).

A shift operator belongs to \mathfrak{D}^{\sharp} if it maps \mathfrak{D} into itself. Hence if $(\mathfrak{D}$ satisfies (1.1) and (1.2), in addition to being closed under convolution, then all the operators in \mathfrak{D}^{*} are V-operators; in fact \mathfrak{D}^{*} is then a maximal commutative subalgebra of $\mathfrak{Y}(\mathfrak{D})$. In this case, Theorem 8 shows that every strongly continuous V-operator commutes with convolution; so that

$$
\mathfrak{R}(\mathfrak{D}) \cong \mathfrak{D} \cong \mathfrak{A}(\mathfrak{D}) .
$$

If, further, \mathfrak{D} is strongly closed, then $\mathfrak{R}(\mathfrak{D})=\mathfrak{D}^{\sharp}$: for, if B is defined by $B x=x * y$, with y in \mathfrak{D}, and $A=B C$, where C is any operator in \mathfrak{D}^{\sharp}, then, for any x in \mathfrak{D},

$$
A x=(C x) * y=C(x * y)=C(y * x)=(C y) * x
$$

thus the conditions of Theorem 12 are satisfied, so that C belongs to $\mathfrak{N}(\mathfrak{D})$. In particular, the operators on $\mathfrak{\Xi}_{0}$ that commute with convolution
are precisely the strongly continuous V-operators on \mathscr{S}_{0} (and can therefore be represented according to Theorem 4).

An operator A on \mathfrak{F}_{0} which commutes with convolution can be extended to the whole of $⿷_{0}$ so as to preserve this property. For, if x is any function in $\mathfrak{\zeta}_{0}$, let x_{n} be defined, for each positive integer n, as in the proof of Theorem 6: then x_{n} belongs to \mathfrak{F}_{0}, and Theorem 1 shows that $A x_{n}(t)$ is independent of n provided that $n \geqq t$; therefore, if $t \geqq 0$, we can define $A x(t)$ to be $A x_{n}(t)$, where $n \geqq t$, without ambiguity. Since convolution is defined locally this extension of A is an operator on \mathfrak{c}_{0} which commutes with convolution. It follows that A is strongly continuous, and that its extension to \mathscr{C}_{0} is unique (since \mathfrak{F}_{0} is strongly dense in \mathfrak{C}_{0}).

The integration operator, D^{-1}, is an example of an operator on \mathfrak{C}_{0} which commutes with convolution. Since \mathfrak{D}_{0} can be expressed as $\bigcap_{n=1}^{\infty} D^{-n} \mathfrak{F}_{0}$, any operator on \mathfrak{C}_{0} which commutes with convolution and leaves \mathfrak{F}_{0} invariant must leave \mathfrak{D}_{0} invariant. The converse of this is false: for, if A is defined by (3.1), ν being such that $D^{-2} \nu$ belongs to $⿷_{0}$ but $D^{-1} \nu$ does not, and $\nu(0)=0$, then A maps \mathfrak{D}_{0} into itself, by Theorem 10 ; however, if $x(t)=t$ then

$$
A x(t)=\int_{0}^{t}(t-u) d \nu(u)=D^{-1} \nu(t)
$$

so that x is in \mathfrak{F}_{0} but $A x$ is not.
The operators on \mathfrak{D}_{0} that commute with convolution are the perfect operators. These can be characterized as those V-operators on \mathfrak{D}_{0} which are continuous in a sense defined in terms of Laplace transforms [7] ${ }^{8}$. The strongly continuous perfect operators are the strongly continuous V-operators on \mathfrak{D}_{0}, constituting the algebra $\mathfrak{R}\left(\mathfrak{D}_{0}\right)$; this algebra, and also its subalgebra $\mathfrak{M}\left(\mathfrak{D}_{0}\right)$, can be characterized in terms of convolution, as follows.

Theorem 13. A perfect operator belongs to $\mathfrak{N}\left(\mathfrak{D}_{0}\right)$ if and only if it can be extended to the whole of \mathfrak{S}_{0} so as to commute with convolution; it belongs to $\mathfrak{M}\left(\mathfrak{D}_{0}\right)$ if and only if this extension (necessary unique) leaves \mathfrak{F}_{0} invariant.

Proof. If an operator A on \mathfrak{D}_{0} can be extended to \mathfrak{C}_{0} so as to commute with convolution, then its extension belongs to $\mathfrak{N}\left(\mathfrak{S}_{0}\right)$, so that A itself belongs to $\mathfrak{R}\left(\mathfrak{D}_{0}\right)$. On the other hand, any operator A in $\mathfrak{N}\left(\mathfrak{D}_{0}\right)$ admits the representation (3.1), which provides an extension of A to \mathfrak{C}_{0} : this extension, being strongly continuous, commutes with convolution;

[^6]it is also unique, since \mathfrak{D}_{0} is strongly dense in \mathfrak{C}_{0}.
If a perfect operator A has a strongly continuous extension to \mathfrak{E}_{0} which leaves \mathfrak{F}_{0} invariant, we can regard A as a V-operator on \mathscr{F}_{0}; then, by Theorem 3, there is a real number c such that $\|A\|_{t}=O\left(e^{c t}\right)$ as $t \rightarrow \infty$, and this implies, by Theorem 7, that A belongs to $\mathfrak{M}\left(\mathfrak{D}_{0}\right)$. On the other hand, if A belongs to $\mathfrak{M}\left(\mathfrak{D}_{0}\right)$ then the extension of A to \mathfrak{S}_{0} given by (3.1) leaves \mathfrak{F}_{0} invariant, by Theorem 3 of [5].

Finally, we give an example of a V-operator, on a strongly dense subspace of \mathfrak{C}_{0}, which does not commute with convolution. Let h be the Heaviside unit function $(h(t)=1$ if $t \geqq 0)$, and let \mathfrak{D}_{1} be the class of all functions x given by

$$
\begin{equation*}
x=D^{-1}(y+B h) \tag{4.1}
\end{equation*}
$$

where y belongs to \mathfrak{C}_{0} and B is an operator of the type (2.1). Then $\mathfrak{D}_{0} \subseteq \mathfrak{D}_{1} \subseteq \mathfrak{C}_{0}$, and \mathfrak{D}_{1} satiyfies (1.1) and (1.2); moreover, \mathfrak{D}_{1} is closed under convolution. It is clear that y and B in (4.1) are uniquely determined by x, and that the mapping $x \rightarrow y$ is a V-operator, say A, on \mathfrak{D}_{1}. The operator D^{-1} maps \mathfrak{D}_{1} into itself and commutes with convolution. However, $A D^{-1} x=x$ and $D^{-1} A x=y$, so that $A D^{-1} \neq D^{-1} A$. Hence A does not commute with convolution. It follows that the algebra $\mathfrak{Y}\left(\mathfrak{D}_{1}\right)$, of all V-operators on \mathfrak{D}_{1}, is not commutative.

References

1. S. Banach, Théorie des opérations linéaires, Warsaw, 1932.
2. R. E. Edwards, Representation theorems for certain functional operators, Pacific J. Math., 7 (1957), 1333-1339.
3. H König und J. Meixner, Lineare Systeme und lineare Transformationen, Math. Nachrichten, 19 (1958), 265-322.
4. E. C. Titchmarsh, Theory of Fourier integrals, Oxford, 1937.
5. J. D. Weston, Positive perfect operators, Proc. London. Math. Soc. (3), 10 (1960), 545-565.
6. —, Characterizations of Laplace transforms and perfect operators, Archive for Rational Mechanics and Analysis, 3 (1959), 348-354.
7. -, Operational calculus and generalized functions, Proc. Roy. Soc. A, 250 (1959), 460-471.
8. A. C. Zaanen, Theory of integration, Amsterdam, 1958.

University of Durham, Newcastle upon Tyne
AND
California Institute of Technology, Pasadena

[^0]: Received January 22, 1960.
 ${ }^{1}$ And in $\S 4$ below.

[^1]: ${ }^{2}$ A property at infinity might be regarded as 'local', but this interpretation is to be excluded here.

[^2]: ${ }_{3}^{3}$ The Hahn-Banach-Bohnenblust-Sobczyk extension theorem: see, for example, [8], 113.

[^3]: ${ }^{4}$ Here we use the fact that if a function of bounded variation is continuous on the left, then so is its total variation.
 ${ }^{5}$ In this proof we have not fully used the fact that A maps \mathfrak{D} into itself: it is enough that A maps \mathfrak{D} into C_{0}.

[^4]: ${ }^{6} \mathfrak{M}\left(\mathscr{D}_{0}\right)$ is denoted in [5] by ' \mathfrak{M} '.

[^5]: $7 \mathfrak{n}\left(\mathfrak{C}_{0}\right)=\mathfrak{M}\left(\mathfrak{C}_{0}\right)$, consisting of the linear combinations of positive V-operators on \mathfrak{C}_{0}.

[^6]: ${ }^{8}$ It is not at present known whether there are any V-operators on \mathfrak{D}_{0} which are not perfect; that is to say, it is not known whether $\mathfrak{U l}\left(\mathfrak{D}_{0}\right)$ is commutative or not (but there are linear operators on \mathfrak{D}_{0} which commute with D and are not perfect [6]).

