
ON THE REPRESENTATION OF OPERATORS

BY CONVOLUTION INTEGRALS

J. D. WESTON

1. Introduction* Let ΐ be the complex vector space consisting of
all complex-valued functions of a non-negative real variable. For each
positive number u, let the shift operator Iu be the mapping of X into
itself defined by the formula

° (0 = ι < u)

x(t-u) (t^u)

Evidently, Iu+υ — IuIυ, for any positive numbers u and v.
A linear operator A which maps a subspace ® of 3c into itself will

here be called a V-operator (after Volterra) if
(1.1) for each x in ®, the conjugate function x* belongs to ®,
(1.2) both © and ΐ\® are invariant under the shift operators,
(1.3) every shift operator commutes with A.

Many operators that occur in mathematical physics are of this type. If
® is any subspace of 36 having the properties (1.1) and (1.2), the rest-
riction to ® of each shift operator is an example of a F-operator. All
'perfect operators' (of which a definition may be found in [5]1) are
F-operators, on the space of perfect functions.

In this paper we obtain a representation theorem for F-operators
which are continuous in a certain sense. This result leads to characteri-
zations of two related classes of perfect operators, one of which has
been considered from a different point of view in [5]. The main repre-
sentation theorem (Theorem 4) is similar to a result obtained by R. E.
Edwards [2] for F-operators which are continuous in another sense; and
it closely resembles a theorem given recently by Kδnig and Meixner
([3], Satz 3).

2 Elementary properties of V-operators An important property of
F-operators is given by

THEOREM 1. Let A be a V-operator, and let xλ and x2 be two of
its operands such that, for some positive number t0, xλ(t) = x2(t) when-
ever 0 ^ t ^ t0. Then Axλ{t) — Ax2(t) whenever 0 g t ^ ί0.

Proof. Let x — x1 — x2. Then, since x(t) = 0 if 0 g t ^ t0, there is
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1 And in §4 below.
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a function y such that x = ItQy; and y is an operand of A, by virtue of
the property (1.2). Consequently, by virtue of (1.3), Ax — ItQAy; so that
Ax(t) = 0 whenever 0 ^ t ^ t0. But Ax = A ^ — A#2, since A is linear:
hence the conclusion of the theorem.

With products and linear combinations defined in the usual way, the
F-operators on a given space ® constitute a linear algebra 2ί(3)). If A
belongs to 31(2)) then so does the operator A* defined by

A*x = (Ax*)* ,

where x is any function in ®. We therefore have the unique decompo-
sition

A = B + iC ,

where B and C belong to SI(®) and are 'real' in the sense that Bx and
Cx are real for every real function x in ®. (The property (1.1) ensures
that every function x in 3) can be uniquely expressed as xx + i#2, where
#! and x2 are real functions in ®.)

If A is a linear combination of shift operators, we have

n n
A = 2-jpίμu •= lu\j0ίμu U

3=ι 3 3=ι J

where a19 ,an are complex numbers, u is the least of the positive
numbers u19

 m,v>n9 and Io is the unit operator (to be denoted henceforth
by ' / ' ) . From this it is apparent that A has no reciprocal in the algebra
2I(3t); however, I — A has a reciprocal in 2ί(ϊ), as the following result
shows.

THEOREM 2. Let A be a V-operator on a space ©, and let u be any
positive number. Then the formula

Bx(t) = x(t) + ^tlnuA
nx(t) ,

n=i

where x is any function in ®, and t ^ 0, defines a linear transforma-
tion B, of ® m£o 36, which commutes with every shift operator and is
such that B(I — IuA)x — x for every x in ® and (/ — IuA)Bx = x if Bx
is in ®.

Proof. The series defining B certainly converges (pointwise): in fact,
if ί0 ^ 0 and m is a positive integer such that mu ^ t0, then, for any
x in 2),

- α?(ί) + Σ InuAnx{t)
i
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whenever 0 g t ^ t0. Hence if Bx is in © then, by Theorem 1,

( / - IuA)Bx(t) = x(t) - I{n+1)nA
nnx(t) = a?(ί)

whenever 0 g £ ̂  ίo; so that (I — IuA)Bx = x, since ί0 is arbitrary. Also,
if x is in © then (/ — /WA)# is in 25, so that

= (/ - IuA)x(t) /

= x(t) - I{mΛλ)uA™K{t) = α(ί)

whenever 0 gΞ ί g ί0. Thus 5(7 — IuA)x = as. It can be verified in a
similar way that 5 commutes with the shift operators and is linear.

If the transformation B of Theorem 2 maps 3) into itself, then I—IUA
has a reciprocal in 2I(©), namely B. This is certainly the case if © con-
sists of all the functions as that have some purely local property (for
example, continuity, with x(0) = 0, or differentiability, with #(0) = x'(0) = 0,
or local integrability).2 It is also the case with certain other choices of
®, provided that A is restricted to be a linear combination of shift
operators; for example, if © consists of the perfect functions, then an
operator of the form

(2.1) aj + ajui+ . . . +aJUn

has a reciprocal in 21(35) if a0 Φ 0 (this can be seen at once on taking
Laplace transforms and using Theorem 6 of [51).

If ® contains more than the zero function, it is clear that (2.1) re-
presents the zero operator on © only if all the coefficients α0, , an are
zero; and since the product of two operators of this form is another such
operator, the reciprocal of (2.1) cannot be expressed in the same form
unless it is a scalar multiple of /. Thus it is usual for 51 (®) to contain
operators other than those of the form (2.1). In general it seems to be
difficult to decide whether 21(25) is commutative or not; but it is shown
in § 4 that © can be chosen, of moderate size, so that 21(25) is not com-
mutative.

The Laplace transformation is naturally associated with the idea of
a F-operator, because it converts the shift operators to exponential fac-
tors. A locally integrable function x has an absolutely convergent Lap-
lace integral if x is of exponential order at infinity, in the sense that
x(t) = O(ect) as t —> co, for some real number c (depending on x). One
can consider F-operators on spaces consisting of such functions, and for
some of these spaces the following result is available.

THEOREM 3. Let A be a V-operator on a space © consisting of all
2 A property at infinity might be regarded as 'local', but this interpretation is to be

excluded here.



1456 J. D. WESTON

the functions in 3c which satisfy some (possibly empty) set of local con-
ditions and are of exponential order at infinity. Then there are posi-
tive numbers b, c, and τ such that \ Ax(t) | ^ bect whenever t ^ τ and
I x(t) I ̂  1 for all t, with x in ®.

Proof. Assuming the theorem to be false, we shall construct in-
ductively a sequence {xn} in 3), and a sequence {tn} of positive numbers,
such that, for each positive integer n,

(i) I xn(t) I ̂  2~w for all values of ί,
(ii) tn ^ n,

(iii) xn{t) = 0 if 0 S t ^ ίn_!, where t0 = 0,
(iv) I Σj=iAxj(tn) I ̂  eΛί».
In the first place, if the theorem is false, we can choose xx so that

I χλ(t) I S i for all values of t and | Axx(t) | ^ et for some value of t, say
*!, greater than 1. Suppose, then, that the first m — 1 terms of each
sequence have been chosen, where m > 1, so that (i)-(iv) hold when
n ^ m — 1. Let

w—l

1/™= ΊLAxj .

Since ?/m belongs to 2), there is a real number cm such that | ym(t) | ^
ecmf when ί is sufficiently large. We can choose xm so that | xm(t)
for all t, xjt) = 0 if 0 ^ ί ^ «,„_!, and

where tm is chosen so that tm^ m and | ym(tm) | ^ ec™tm. Then

> I Λ/γ (+ \\ \ ni (+ \ I ~> /?^cm+m^im ">> £>mtm

Thus (i)-(iv) hold when n — m.
Now let xQ — Σn=i#n Then | xQ(t) | ^ 1 for all t, by virtue of (i); and

x0 belongs to ® since, by (iii), it has the appropriate local properties.
Hence there is a real number c0 such that Ax(t) = O(eCQt) as t —> oo so
that, by (ii), Ax{tn) = O(eG°tn) as n —> oo. But, by (iii) and (iv), and Theo-
rem 1, I Ax(tn) I ̂  entn for each w. This contradiction proves the theorem.

3. Strong continuity. If the field of complex numbers is given ei-
ther the discrete topology or the usual topology, the space X can be
given the corresponding topology of uniform convergence on finite closed
intervals. The first of these topologies for X has the property that every
V-operator is continuous with respect to it, as Theorem 1 shows; but it
does not make X a topological vector space (it has the defect that n~xx—>0
as n —-• oo only if x is the zero function). The second topology for X
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is more interesting, and will be referred to as the strong topology.
In fact we shall consider this only in relation to the closed subspace, (£0,
consisting of all the continuous functions x for which x(0) = 0. For each
x in Qt0, and each non-negative number t, we define || x \\t to be the least
upper bound of | x(u) \ with 0 ^ u ^ t. We can then give SO a metric,
which determines the strong topology, by taking the distance between
functions x and y to be

In this way 6t0 becomes a Frechet space.
In the case of (£0, which is an example of a space 35 satisfying (1.1)

and (1.2), a large class of F-operators, including those of the form (2.1),
can be defined in terms of Riemann-Stieltjes convolution integrals. If
v is a function which belongs to ΐ and has bounded variation in every
finite interval [0, t], then the formula

(3.1) Ax(t) = [x(t - u)dv(u)
Jo

where x is any function in So, defines a F-operator A on Gt0 (cf. [5],
Theorem 3). Moreover, if 0 gΞ v ^ t then

Ax(v) \^[\x(v- u ) || d v ( u ) I ̂  [\\ x \ \ t \ dv{u) | , ( ί ^ 0) ,
Jo Jo

so that

fί
Ax \\t S || x \\Λ \dv(u) I;

Jo

whence it follows that A is strongly continuous (continuous with respect
to the strong topology). The theorem we are about to prove shows that
every strongly continuous F-operator on a sufficiently large space ® of
continuous functions can be represented in this way (and can therefore
be extended from © to the whole of (£0).

If A is a linear operator on a subspace ® of Eo, and if £ ̂  0, we
denote by 'HAH/ the least upper bound of ||Acc||c with x in S and
|| x \\t ̂  1. It is clear that A is strongly continuous if and only if \\A\\t

is finite for all values of t (or, equivalently, for all sufficiently large values
of ί).

THEOREM 4. Let Abe a strongly continuous V-operator on a strong-
ly dense subspace 2) of GΓ0, and let t be any positive number. Then there
is a function v in ϊ , with v(0) = 0 and v(u—) = v(u) whenever 0<u^t,
such that Ax(t) is given by (3.1) for every x in 3). This function v is
uniquely determined by A, and is independent of t; its total variation
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in the interval [0,t] is | |A | | t .

Proof. For each function x in ®, and for each positive number t,
let xt be the restriction of x to the closed interval [0, ί]. Then, for a
fixed value of t, the mapping x —* xt is a linear transformation of ® on
to a subspace 3)t of the complex Banach space C[0, ί], consisting of all
continuous functions on the interval [0, t]; moreover, || xt \\ — || x \\t. If
xt — 0 then Ax(t) = 0, by Theorem 1; we can therefore define a linear
functional φ on ©t by the formula

9>(αβ) = Ax(t) .

This functional is continuous, with ||<p|| = | |A| | t .
An integral representation of φ can be found by adapting a const-

ruction used by Banach ([1], 59-60). By a well-known theorem3, φ can
be extended without change of norm to the complex Banach space M[0, ί],
which contains the characteristic functions of all the subintervals of
[0, t]. A function vt can then be defined on [0, t] so that 1̂ (0) = 0 and

(i)

(ii) <P(f) = [fit - u)dvt{n)
Jo

for every function / i n C[0, £].
Without affecting the validity of (i) or (ii), we can adjust vt so that

it is continuous on the left at each interior point of the interval [0, ί].
Moreover, if / is a continuous function such that /(0) = 0, then the jump
of vt at the point t makes no contribution to the integral in (ii); there-
fore, as far as such functions / are concerned, we may suppose vt chosen
so that vt(t —) = vt(t), giving left-hand continuity throughout the inter-
val (0, t], and retaining (i). Under these conditions, vt is uniquely de-
termined by A. For, if 0 < v ^ t and 0 < δ < v, there is a function /δ

in C[0, t] such that | |/ a || = 1 and

JO

Thus
— u)dvt(u) ,

JO Jv-δ

and therefore

I φ(A) - v*(v - δ) I ̂  Γ I dvt(u) I,
Jυ-δ

3 The Hahn-Banach-Bohnenblust-Sobczyk extension theorem: see, for example, [8], 113.
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so that φ(fs) —* vt(v) as δ —* 0.4 But since © is strongly dense in (£0, f8

belongs to the closure of ©β, in C[0, t]m, so that, φ being continuous,
φ(fs) is uniquely determined by A, for each value of δ. This establishes
the uniqueness of vt.

Now suppose that V > t. By what has been proved, we have, for

any x in ®,

x(£ — u)dvt(u) .

o

But Ax(t) = 7t/_tAa?(ί')» a n d ίf-ί-A = AIt,-t\ hence

It>~tx(tf — u)dvt,{u) = \χ(t — u)dvt,{u) .

It follows that vt{v) = vr(u) whenever 0 ^ u ^ t; in particular, vt(ί) =
vt>(t). Hence if we define the function v by

v{t) - vt(t) (t ^ 0) ,

we obtain the required representation of A.
Finally, (i) shows that

and we have previously noted that, for any x in SD,

I I ^ I L ^ \\x\\X\dv(u)\ .
Jo

S i

I dv(u) I = || A ||t, and the proof is complete.5

0

As a corollary, we have

THEOREM 5. Suppose that the formula

Ax(t) = [Kit, u)xiu)du it ^ 0)

defines a V-operator A on Ko, the kernel K being such that \ \ K{t,u) \du
Jo

exists as a Lebesgue integral which is locally bounded with respect to
t. Then there is a function k inϋ such that, for each t, K(ty u) — k(t — u)
for almost all values of u.

4 Here we use the fact that if a function of bounded variation is continuous on the left,
then so is its total variation.

5 In this proof we have not fully used the fact that A maps Φ into itself: it is enough
that A maps 2) into Co.
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\K(v,u)\du
0

with 0 ^ v ^ t; this is finite, by hypothesis. Then, for each x in (£0,

\\Ax\\t£\\K\\t\\x\\t,

so that A is strongly continuous. But

Ax(t) = \ K{t, t — u)x(t — u)du ,
Jo

so that if

Lt(u) = \UK(t,t -v)dv
Jo

then

i t
x(t — u)dLt(u) .

Hence, by Theorem 4, Lt = v, a function which is independent of t. Since
v has bounded variation, there is a function k such that

except when u is in a set E whose Lebesgue measure is 0. However,
for each value of ί,

A y(w) - i -L ( ( t t ) = ΛΓ(ί, t - w)

except when u is in a set Et of measure 0. Thus

K(t, u) = fc(ί - w)

except when w is in the set t — (Et U ί7), which has measure 0.

The functions in (£0 which are of exponential order at infinity form
a subspace Gf0. The perfect functions form a smaller subspace, S)o (in
fact ®0 is the largest subspace of 6f0 which is invariant under the dif-
ferential operator, D).

THEOREM 6. ®0 is strongly dense in Ko.

Proof. It is easily seen that @0 is strongly dense in Ko: in fact, if
a is in (£0 and xn is defined by

χ ,t) = ί^*) (0 = * = π )

(α (w) (ί Ξ> w) ,
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then xn belongs to G?o, for each n, and xn —> x strongly as n —> oo. To
show that ®0 is dense in Gf0, let x be any function in G?o and, for each
positive number δ, let g{8) be a positive perfect function such that if

S t
g{5)(u)du = 1 (for example, we could take g{5)

0

to be Dh{8), where h{8) is given by Lemma 1 of [5]). Let x(δ) = ίc*gr(δ).
Then α?(δ) belongs to ®0 ('#*' is a perfect operator), and, if v ^ δ,

S B

a?(ι; — u)g{8)(u)du — x(v)
0

j δ
= I {x(v — u) — x(v)}g{8)(u)du .

Jo

Now let t and ε be any positive numbers. Since x is uniformly
continuous in the interval [0, ί], with x(0) = 0, we can choose δ so that

I x(v — u) — x(v) I < ε

whenever δ ^ v ^ ί, and | a (t ) | < Jε whenever 0 ^ v ^ δ; then

S δ

g{δ)(u)du = ε
o

if δ ^ v g ί, and if 0 ^ v ^ δ,

S δ

I x(^ - u) g{B) (u)du + x(v) \
o

S δ

g{h){u)du + £ε = ε .
0

Thus || a?(8) — x ||ί < ε. It follows that ®0 is strongly dense in (£0.

In [5] it is shown that any positive perfect operator has the repre-
sentation (3.1), with v a non-decreasing function (in fact this holds for
any positive F-operator on a space ® such that ®0 = ® £ &o) It follows
that the linear combinations of positive perfect operators, which form
a linear algebra 2Ji(®0)

6, are strongly continuous. On the other hand,
there are strongly continuous perfect operators which do not belong to
2Jί(©0): for example, if v(t) = sin(e ί2 —1), and A is defined on ®0 accord-
ing to (3.1), then, as is shown in [5], A is a perfect operator which is
not in sJJί(®0); but of course A is strongly continuous. However, it is
possible to characterize 9JΪ(®0) in terms of seminorms, as follows.

THEOREM 7. A V-operator A on ®0 is an element of 3Jί(®0) if and
only if there is a real number c such that \\A\\t = O(ect) as t—>oo.

Proof. By Theorem 1 of [5], an operator A on ®0 is in 3Jί(®0) if

a)ί(®o) is denoted in [5] by '
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and only if it admits the representation (3.1) with v a linear combination
of positive non-decreasing functions which are of exponential order at
infinity. This condition on v is equivalent to the existence of a real

number c such that I | dv(u) | = O(ect) as t —> oo. Therefore, by Theorems

4 and 6 above, A is in 3Ή(®0) if and only if || A \\t = O(ect) as t -— oo.
Each function y in &0 determines a strongly continuous F-operator

A on (£0 according to the formula Ax = cc*τ/; for, integration by parts
shows that this formula is equivalent to (3.1), with

fί
v(t) — D~xy{t) — \ y(u)du (t ^ 0) .

An important property of convolution in (£0 is the fact that it obeys the
associative law (as well as the commutative law); more generally, we
have

THEOREM 8. Let A and B be strongly continuous V-operators, on
©o and on a subspace ® of (£0 respectively. If x is any function in ®
then Ax belongs to the strong closure of ®; if Ax is in ® itself, then
ABx — BAx. In particular, if y is a function in (£0 such that x*y is
in ®, then B(x*y) = (Bx)*y.

Proof. Let A be represented by a function v in accordance with
Theorem 4. Then for any x in ®, each value Ax(t) can be arbitrarily
approximated by sums of the form

n

Σ*{v(uj) - viuj-^xit - u3) ,
J=l

where O ^ u ^ ^ ^ ^ ί ; and this approximation is locally uniform
with respect to t. Now the above sum is the value at t of the function

(i) Σ
3=ι

where a5 — v(u}) —v{u5^. This function belongs to ®, since S) satifies
(1.2). Thus Ax belongs to the strong closure of 3). Further, the points
Uj can be chosen in such a way that, while Ax is strongly approximated
by (i), ABx is simultaneously approximated, in the same sense, by

(ϋ) ΣfljIujBx .

But, since B is a F-operator, (ii) is the same as

3=1
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Since B is strongly continuous, it follows that ABx = BAx if Ax is an
operand of B.

We can now prove a partial converse of Theorem 1, namely.

THEOREM 9. Let A be a non-zero strongly continuous V-operator on
(£0. Then there is a non-negative number τ such that (i) for any func-
tion x in Co, Ax(t) = 0 whenever 0 ^ t ^ τ, and (ii) if Ax(t) = 0 when-
ever 0 ^ ί ^ ί0, where x belongs to (£0 ornd ί0 ^ τ, ίfeew cc(t) = 0 whenever

0 ^ t S t0 — τ. In particular, x = 0 if Ax = 0.

Proof. Let v be the function representing A according to Theorem
4, and let τ be the greatest lower bound of the numbers t for which
v(t) Φ 0. Obviously, τ has the property (i) required by the theorem.
Suppose that x is a function in ©0 such that Ax(t) = 0 whenever O^t^tOy

where ί0 ^ τ. Let g{5) be defined as in the proof of Theorem 6, and let
%(&) — #*0(δ). Then, for each value of δ, x{8) has a derivative x[8) in Ko;
in fact x[δ) — x*^;δ). Also, if 0 ^ ί ^ ί0,

- u)v(u)du = Ax{h){t) =

= I Acc(ί
Jo

u)g{6)(u)du = 0 .

Therefore, by a theorem of Titchmarsh [4, 327], x\^{t) = 0 whenever
0 ^ ί ^ t0 — τ (we cannot have v(t) = 0 for almost all ί in a neighbour-
hood of τ, since y is continuous on the left). Hence x{8)(t) — 0 whenever
0 ^ t ^ t0 — τ. Since #ιδ)(t) —• x(t) as δ —> 0, the theorem follows.

It is a consequence of Theorem 8 that every strongly continuous
F-operator on S)o is a perfect operator (the converse is false; in fact it
is easy to see that the differential operator D is not strongly continu-
ous). Thus an operator A represented by (3.1) is a perfect operator if
and only if it maps S)o into itself. An equivalent condition is given by

THEOREM 10. The formula (3.1), with x in ®0, represents a perfect
operator A if and only if there is a positive integer n such that D~nv
belongs to Qf0, where

nv{t) = Γ . . . [^viujdur -dun (t = un+1 ^ 0) .
Jo Jo

D-n

Proof. For any perfect function x and any positive integer n, we
have from (3.1), after integration by parts,
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Ax(t) = [x{n+1)(t - u)D~nv(u)du (t ^ 0) .
o

Thus if D~nv belongs to G?o for some value of n, then A is a perfect
operator. On the other hand, suppose that A, given by (3.1), is a per-
fect operator (when restricted to ©0). By a general representation theo-
rem for perfect operators [6], there is a function y in G?o such that, for
some positive integer n, and every perfect function x,

Ax(t) = x{n+1)(t - u)y(u)du (ί ^ 0) .
Jo

Hence x{n+1)*(y - D~nv) = 0, so that, by Theorem 9,y = D'nv.

If u(t) = ee\ the F-operator A given by (3.1) does not map ®0 into
itself, since v does not satisfy the condition of Theorem 10.

Every perfect operator A has a Laplace transform, A: if A is given
by (3.1), A may or may not be given by

(3.2) A(z) = \°°e-ztdv(t) ,
Jo

the integral being convergent when ΪRz is sufficiently large. This repre-
sentation of A is certainly valid if A belongs to 9Qΐ(®0) (cf. [5], Theorem
4); and also if v(t) = sin(βί2 —1), for example. But if J3"1v(ί) = sin (efc2—1)
the integral in (3.2) does not converge for any value of z (as can be
seen on integrating twice by parts). However, (3.2) holds whenever the
integral is convergent, as the following result shows.

THEOREM 11. Let A be any strongly continuous perfect operator,
and let v be a function such that A is represented by (3.1). Then the
Laplace transform A is represented by (3.2), with 9ΐz sufficiently large,
if the infinite integral is interpreted in the sense of summability (C, n),
where n is any non-negative integer such that D~nv belongs to G?o.

Proof. Let B be the perfect operator obtained on replacing v by
D~ιv in (3.1). Then, if x is any perfect function, and t ^ 0,

DBx(t) = Bx\t) = [xf(t - u)v(u)du = v(0)x(t) + [x(t - u)dv{u) .
Jo Jo

Thus DB = v(0)I + A. If v belongs to Gf0 then, since B is determined
by the function v in the sense that Bx = x*vy B has the same Laplace
transform as v; that is to say, when 9Ϊ2 is sufficiently large,

B(z) = [°e-ztv(t)dt .
Jo
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Therefore, in this case,

A(z) = zB(z) - v(0) = \°° ze~zt{v{t) -v(0)}dt = [°°e-ztdv(t) ,
Jo Jo

so that (3.2) holds, the integral being convergent.
We now proceed by induction. Suppose that, for some non-negative

integer n, (3.2) holds in the sense of summability (C, n) provided that
D~nv belongs to (So and $ϊz is sufficiently large. If D~n~ιv belongs to Gr0,
and t > 0, then

- ±) e~zudv(u) = -v(0) + z
"0

t JoV t

But, by the induction hypothesis (with D'1^ in place of v),

- Γ f / 01 \W + 1 f ί / ηi

B(«) = hm I 1 - — e-βttdJD-Mw) = lim I 1 — Γ

when 3ϊa; is sufficiently large; so that

lim \ ( 1 — — ) e~zudv(u) = — v(0) + 2;JS(2;) = A(z) .
ί-^oo JoV ί /

Thus

A(z) = \ e~ztdv(ΐ) (C, n + 1) ,
Jo

and the theorem follows.

If ® is any subspace of Ko satisfying (1.1) and (1.2), the strongly
continuous V-operators on ® form a subalgebra of 3ί(®), say 9i(5)). If
2) is strongly dense in Ko, it follows from Theorem 4 that 5R(S)) effectively
consists of those operators in 5R(QT0) which leave ® invariant. In this
case, Theorems 8 and 9 show that 5R(®) is an integral domain (it is
commutative, and has no divisors of zero). The full algebra 9^(EΌ)7 has
the further property that any operator which is inverse to an operator
in ^((SQ) is itself in 5R(E0): this is special case of

THEOREM 12. Let A and B be strongly continuous V-operators on
a strongly closed subspace ® of So>

 and suppose that there is an ope-
rator C on 3) such that A = BC. Suppose also that Bx = 0 only if
x = 0. I%e% C is a strongly continuous V-operator.

consisting of the linear combinations of positive F-operators on So.
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Proof. If u > 0 and x is any function in ® then, since A and B

are F-operators,

B(IuCx - CIux) = JttAα - A/w£ = 0;

so that, by the hypothesis concerning B, IuCx — CIux. In a similar way
it can be verified that C is linear, and is therefore a F-operator. To
show that C is strongly continuous, let {xn} be a strongly convergent
sequence in © such that the sequence {C#J is also strongly convergent.
Since A and B are strongly continuous,

ί?(lim Cxn — C lim xn) = lim A#w — A lim #w = 0 ,

so that lim^ooCα^ = Clim^^a^; thus the graph of C is closed. Now ®,
being strongly closed, is a Frechet space relative to the strong topology;
hence, by Banach's closed-graph theorem [1, 41], C is strongly continuous.

4 Operators that commute with convolution* It is a consequence
of Theorem 8 that a subspace 3) of (£0, satisfying (1.1) and (1.2), is
closed under convolution if it is strongly closed. On the other hand, 3)0

is closed under convolution though it is not strongly closed. If ® is any
subspace of (£0 which is closed under convolution (so forming an integral
domain with no unit element), an operator Aon S will be said to com-
mute with convolution if

A(x*y) — (Ax)*y

for all x and y in ®. Such operators are necessarily linear (cf. [5], § 4),
and, for a given choice of ®, they form an integral domain 2)* in which
® is isomorphically embedded (by the correspondence x —* a?*).

A shift operator belongs to ®* if it maps ® into itself. Hence if
Φ satisfies (1.1) and (1.2), in addition to being closed under convolution,
then all the operators in ®* are F-operators; in fact 5D# is then a maxi-
mal commutative subalgebra of SI(®). In this case, Theorem 8 shows
that every strongly continuous F-operator commutes with convolution;
so that

$R(Φ) S ®* £ 31(3)) .

If, further, 3) is strongly closed, then 5R(3)) = ®#: for, if £ is defined
by Bx = x*y, with y in 3), and A = 5C, where C is any operator in S)#,
then, for any # in 3),

Ax = (Cx)*2/ = C(#*?/) = C(t/*#) = (Cy)*x;

thus the conditions of Theorem 12 are satisfied, so that C belongs to

5R(35), In particular, the operators on ©0 that commute with convolution
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are precisely the strongly continuous F-operators on Ko (and can there-
fore be represented according to Theorem 4).

An operator A on 6?0 which commutes with convolution can be ex-
tended to the whole of (£0 so as to preserve this property. For, if x is
any function in Eo, let xn be defined, for each positive integer n, as in
the proof of Theorem 6: then xn belongs to G?o, and Theorem 1 shows
that Axn(t) is independent of n provided that n ^ t; therefore, if ί^O,
we can define Ax(t) to be Axjt), where n^t, without ambiguity. Since
convolution is defined locally this extension of A is an operator on (£0

which commutes with convolution. It follows that A is strongly conti-
nuous, and that its extension to (£0 is unique (since G?o is strongly dense
in e0).

The integration operator, D" 1 , is an example of an operator on Eo

which commutes with convolution. Since ®0 can be expressed as Γ\n=iD~n(£Q,
any operator on (£0 which commutes with convolution and leaves @0 in-
variant must leave ®0 invariant. The converse of this is false: for, if
A is defined by (3.1), v being such that D~2v belongs to @0 but D~ιv
does not, and v(0) = 0, then A maps SD0 into itself, by Theorem 10; how-
ever, if x(t) = t then

Ax(t) = Γ(ί - u)dv{u) = D~ιv{t) ,
Jo

so that x is in Gf0 but Ax is not.
The operators on S)o that commute with convolution are the perfect

operators. These can be characterized as those F-operators on ®0 which
are continuous in a sense defined in terms of Laplace transforms [7]8.
The strongly continuous perfect operators are the strongly continuous
F-operators on S)o, constituting the algebra ϊϊ(®0); this algebra, and also
its subalgebra 3K(5)0)> can be characterized in terms of convolution, as
follows.

THEOREM 13. A perfect operator belongs to 5R(®0) if and on^V if
it can be extended to the whole of (£0 so as to commute with convolution;
it belongs to sDΪ(®0) if and only if this extension {necessary unique)
leaves Gf0 invariant.

Proof. If an operator A on ®0 can be extended to Ko so as to com-
mute with convolution, then its extension belongs to $ft(@Ό)> so that A
itself belongs to 5ί(®0). On the other hand, any operator A in sJΪ(®0)
admits the representation (3.1), which provides an extension of A to So:
this extension, being strongly continuous, commutes with convolution;

8 It is not at present known whether there are any F-operators on ®0 which are not
perfect; that is to say, it is not known whether siί(S)o) is commutative or not (but there are
linear operators on Φo which commute with D and are not perfect [6]).
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it is also unique, since ®0 is strongly dense in (£0.
If a perfect operator A has a strongly continuous extension to Ko

which leaves Gr0 invariant, we can regard A as a F-operator on @0; then,
by Theorem 3, there is a real number c such that || A \\t = O(ect) as t—>co,
and this implies, by Theorem 7, that A belongs to 2Jί(®0). On the other
hand, if A belongs to 3JΪ(®0) then the extension of A to &0 given by
(3.1) leaves Gr0 invariant, by Theorem 3 of [5].

Finally, we give an example of a F-operator, on a strongly dense
subspace of (£0, which does not commute with convolution. Let h be the
Heaviside unit function (h(t) = 1 if t i> 0), and let ®2 be the class of all
functions x given by

(4.1) x = D-\y + Bh) ,

where y belongs to (£0 and B is an operator of the type (2.1). Then
®0 <Ξ Sj £ ©o, and ®! satiyfies (1.1) and (1.2); moreover, ®x is closed
under convolution. It is clear that y and B in (4.1) are uniquely deter-
mined by xf and that the mapping x —• # is a F-operator, say A, on 3)1#

The operator D~x maps ®x into itself and commutes with convolution.
However, AD~xx — x and Ό~λAx — y, so that AD'1 Φ D~λA. Hence A
does not commute with convolution. It follows that the algebra 31(®i),
of all F-operators on ®x, is not commutative.
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