ON THE REPRESENTATION OF OPERATORS BY CONVOLUTION INTEGRALS

J. D. WESTON

1. Introduction. Let \mathfrak{X} be the complex vector space consisting of all complex-valued functions of a non-negative real variable. For each positive number u, let the *shift operator* I_u be the mapping of \mathfrak{X} into itself defined by the formula

$$I_u x(t) = \begin{cases} 0 & (0 \leq t < u) \\ x(t-u) & (t \geq u) \end{cases}$$

Evidently, $I_{u+v} = I_u I_v$, for any positive numbers u and v.

A linear operator A which maps a subspace \mathfrak{D} of \mathfrak{X} into itself will here be called a *V*-operator (after Volterra) if

- (1.1) for each x in \mathfrak{D} , the conjugate function x^* belongs to \mathfrak{D} ,
- (1.2) both \mathfrak{D} and $\mathfrak{X}\backslash\mathfrak{D}$ are invariant under the shift operators,
- (1.3) every shift operator commutes with A.

Many operators that occur in mathematical physics are of this type. If \mathfrak{D} is any subspace of \mathfrak{X} having the properties (1.1) and (1.2), the restriction to \mathfrak{D} of each shift operator is an example of a V-operator. All 'perfect operators' (of which a definition may be found in [5]¹) are V-operators, on the space of perfect functions.

In this paper we obtain a representation theorem for V-operators which are continuous in a certain sense. This result leads to characterizations of two related classes of perfect operators, one of which has been considered from a different point of view in [5]. The main representation theorem (Theorem 4) is similar to a result obtained by R. E. Edwards [2] for V-operators which are continuous in another sense; and it closely resembles a theorem given recently by König and Meixner ([3], Satz 3).

2. Elementary properties of V-operators. An important property of V-operators is given by

THEOREM 1. Let A be a V-operator, and let x_1 and x_2 be two of its operands such that, for some positive number t_0 , $x_1(t) = x_2(t)$ whenever $0 \leq t \leq t_0$. Then $Ax_1(t) = Ax_2(t)$ whenever $0 \leq t \leq t_0$.

Proof. Let $x = x_1 - x_2$. Then, since x(t) = 0 if $0 \le t \le t_0$, there is

Received January 22, 1960.

¹ And in §4 below.

a function y such that $x = I_{t_0}y$; and y is an operand of A, by virtue of the property (1.2). Consequently, by virtue of (1.3), $Ax = I_{t_0}Ay$; so that Ax(t) = 0 whenever $0 \leq t \leq t_0$. But $Ax = Ax_1 - Ax_2$, since A is linear: hence the conclusion of the theorem.

With products and linear combinations defined in the usual way, the V-operators on a given space \mathfrak{D} constitute a linear algebra $\mathfrak{A}(\mathfrak{D})$. If A belongs to $\mathfrak{A}(\mathfrak{D})$ then so does the operator A^* defined by

$$A^{*}x = (Ax^{*})^{*}$$
 ,

where x is any function in \mathfrak{D} . We therefore have the unique decomposition

$$A = B + iC$$
,

where B and C belong to $\mathfrak{A}(\mathfrak{D})$ and are 'real' in the sense that Bx and Cx are real for every real function x in \mathfrak{D} . (The property (1.1) ensures that every function x in \mathfrak{D} can be uniquely expressed as $x_1 + ix_2$, where x_1 and x_2 are real functions in \mathfrak{D} .)

If A is a linear combination of shift operators, we have

$$A=\sum\limits_{j=1}^n lpha_j I_{u_j}=I_u \sum\limits_{j=1}^n lpha_j I_{u_j-u}$$
 ,

where $\alpha_1, \dots, \alpha_n$ are complex numbers, u is the least of the positive numbers u_1, \dots, u_n , and I_0 is the unit operator (to be denoted henceforth by 'I'). From this it is apparent that A has no reciprocal in the algebra $\mathfrak{A}(\mathfrak{X})$; however, I - A has a reciprocal in $\mathfrak{A}(\mathfrak{X})$, as the following result shows.

THEOREM 2. Let A be a V-operator on a space \mathfrak{D} , and let u be any positive number. Then the formula

$$Bx(t)=x(t)+\sum\limits_{n=1}^{\infty}I_{nu}A^{n}x(t)$$
 ,

where x is any function in \mathfrak{D} , and $t \geq 0$, defines a linear transformation B, of \mathfrak{D} into \mathfrak{X} , which commutes with every shift operator and is such that $B(I - I_u A)x = x$ for every x in \mathfrak{D} and $(I - I_u A)Bx = x$ if Bxis in \mathfrak{D} .

Proof. The series defining B certainly converges (pointwise): in fact, if $t_0 \ge 0$ and m is a positive integer such that $mu \ge t_0$, then, for any x in \mathfrak{D} ,

$$Bx(t) = x(t) + \sum_{n=1}^{m} I_{nu} A^n x(t)$$

whenever $0 \leq t \leq t_0$. Hence if Bx is in \mathfrak{D} then, by Theorem 1,

$$(I - I_u A)Bx(t) = x(t) - I_{(m+1)u}A^{m+1}x(t) = x(t)$$

whenever $0 \leq t \leq t_0$; so that $(I - I_u A)Bx = x$, since t_0 is arbitrary. Also, if x is in \mathfrak{D} then $(I - I_u A)x$ is in \mathfrak{D} , so that

$$B(I - I_u A)x(t) = (I - I_u A)x(t) + \sum_{n=1}^{m} I_{nu} A^n (I - I_u A)x(t)$$

= $x(t) - I_{(m+1)u} A^{m+1}x(t) = x(t)$

whenever $0 \leq t \leq t_0$. Thus $B(I - I_u A)x = x$. It can be verified in a similar way that B commutes with the shift operators and is linear.

If the transformation B of Theorem 2 maps \mathfrak{D} into itself, then $I-I_uA$ has a reciprocal in $\mathfrak{A}(\mathfrak{D})$, namely B. This is certainly the case if \mathfrak{D} consists of all the functions x that have some purely local property (for example, continuity, with x(0) = 0, or differentiability, with x(0)=x'(0)=0, or local integrability).² It is also the case with certain other choices of \mathfrak{D} , provided that A is restricted to be a linear combination of shift operators; for example, if \mathfrak{D} consists of the perfect functions, then an operator of the form

(2.1)
$$\alpha_0 I + \alpha_1 I_{u_1} + \cdots + \alpha_n I_{u_n}$$

has a reciprocal in $\mathfrak{A}(\mathfrak{D})$ if $\alpha_0 \neq 0$ (this can be seen at once on taking Laplace transforms and using Theorem 6 of [5]).

If \mathfrak{D} contains more than the zero function, it is clear that (2.1) represents the zero operator on \mathfrak{D} only if all the coefficients $\alpha_0, \dots, \alpha_n$ are zero; and since the product of two operators of this form is another such operator, the reciprocal of (2.1) cannot be expressed in the same form unless it is a scalar multiple of I. Thus it is usual for $\mathfrak{A}(\mathfrak{D})$ to contain operators other than those of the form (2.1). In general it seems to be difficult to decide whether $\mathfrak{A}(\mathfrak{D})$ is commutative or not; but it is shown in §4 that \mathfrak{D} can be chosen, of moderate size, so that $\mathfrak{A}(\mathfrak{D})$ is not commutative.

The Laplace transformation is naturally associated with the idea of a V-operator, because it converts the shift operators to exponential factors. A locally integrable function x has an absolutely convergent Laplace integral if x is of exponential order at infinity, in the sense that $x(t) = O(e^{ct})$ as $t \to \infty$, for some real number c (depending on x). One can consider V-operators on spaces consisting of such functions, and for some of these spaces the following result is available.

THEOREM 3. Let A be a V-operator on a space \mathfrak{D} consisting of all ² A property at infinity might be regarded as 'local', but this interpretation is to be excluded here. the functions in \mathfrak{X} which satisfy some (possibly empty) set of local conditions and are of exponential order at infinity. Then there are positive numbers b, c, and τ such that $|Ax(t)| \leq be^{ct}$ whenever $t \geq \tau$ and $|x(t)| \leq 1$ for all t, with x in \mathfrak{D} .

Proof. Assuming the theorem to be false, we shall construct inductively a sequence $\{x_n\}$ in \mathfrak{D} , and a sequence $\{t_n\}$ of positive numbers, such that, for each positive integer n,

- (i) $|x_n(t)| \leq 2^{-n}$ for all values of t,
- (ii) $t_n \ge n$,
- (iii) $x_n(t) = 0$ if $0 \leq t \leq t_{n-1}$, where $t_0 = 0$,
- (iv) $|\sum_{j=1}^n Ax_j(t_n)| \ge e^{nt_n}$.

In the first place, if the theorem is false, we can choose x_1 so that $|x_1(t)| \leq \frac{1}{2}$ for all values of t and $|Ax_1(t)| \geq e^t$ for some value of t, say t_1 , greater than 1. Suppose, then, that the first m-1 terms of each sequence have been chosen, where m > 1, so that (i)-(iv) hold when $n \leq m-1$. Let

$$y_m = \sum_{j=1}^{m-1} A x_j$$
.

Since y_m belongs to \mathfrak{D} , there is a real number c_m such that $|y_m(t)| \leq e^{c_m t}$ when t is sufficiently large. We can choose x_m so that $|x_m(t)| \leq 2^{-m}$ for all $t, x_m(t) = 0$ if $0 \leq t \leq t_{m-1}$, and

$$\mid Ax_m(t_m) \mid \geq 2e^{(c_m+m)t_m}$$
 ,

where t_m is chosen so that $t_m \ge m$ and $|y_m(t_m)| \le e^{c_m t_m}$. Then

$$\left|\sum_{j=1}^m Ax_j(t_m)
ight| \ge |Ax_m(t_m)| - |y_m(t_m)| \ge e^{(c_m+m)t_m} \ge e^{mt_m}$$

Thus (i)-(iv) hold when n = m.

Now let $x_0 = \sum_{n=1}^{\infty} x_n$. Then $|x_0(t)| \leq 1$ for all t, by virtue of (i); and x_0 belongs to \mathfrak{D} since, by (iii), it has the appropriate local properties. Hence there is a real number c_0 such that $Ax(t) = O(e^{c_0 t})$ as $t \to \infty$; so that, by (ii), $Ax(t_n) = O(e^{c_0 t_n})$ as $n \to \infty$. But, by (iii) and (iv), and Theorem 1, $|Ax(t_n)| \geq e^{nt_n}$ for each n. This contradiction proves the theorem.

3. Strong continuity. If the field of complex numbers is given either the discrete topology or the usual topology, the space \mathfrak{X} can be given the corresponding topology of uniform convergence on finite closed intervals. The first of these topologies for \mathfrak{X} has the property that every *V*-operator is continuous with respect to it, as Theorem 1 shows; but it does not make \mathfrak{X} a topological vector space (it has the defect that $n^{-1}x \rightarrow 0$ as $n \rightarrow \infty$ only if x is the zero function). The second topology for \mathfrak{X}

is more interesting, and will be referred to as the *strong* topology. In fact we shall consider this only in relation to the closed subspace, \mathbb{G}_0 , consisting of all the continuous functions x for which x(0) = 0. For each x in \mathbb{G}_0 , and each non-negative number t, we define $||x||_t$ to be the least upper bound of |x(u)| with $0 \leq u \leq t$. We can then give \mathbb{G}_0 a metric, which determines the strong topology, by taking the distance between functions x and y to be

$$\sum_{n=1}^{\infty} 2^{-n} || x - y ||_n / (1 + || x - y ||_n)$$
 .

In this way \mathbb{G}_0 becomes a Fréchet space.

In the case of \mathbb{G}_0 , which is an example of a space \mathfrak{D} satisfying (1.1) and (1.2), a large class of V-operators, including those of the form (2.1), can be defined in terms of Riemann-Stieltjes convolution integrals. If ν is a function which belongs to \mathfrak{X} and has bounded variation in every finite interval [0, t], then the formula

(3.1)
$$Ax(t) = \int_0^t x(t-u)d\nu(u)$$

where x is any function in \mathbb{G}_0 , defines a V-operator A on \mathbb{G}_0 (cf. [5], Theorem 3). Moreover, if $0 \leq v \leq t$ then

$$|Ax(v)| \leq \int_{_0}^{_v} |x(v-u)|| \, d
u(u)| \leq \int_{_0}^{^t} ||x||_{_t} \, |\, d
u(u)|$$
 , $(t \geq 0)$,

so that

$$||Ax||_t \leq ||x||_t \int_0^t |d\nu(u)|;$$

whence it follows that A is strongly continuous (continuous with respect to the strong topology). The theorem we are about to prove shows that every strongly continuous V-operator on a sufficiently large space \mathfrak{D} of continuous functions can be represented in this way (and can therefore be extended from \mathfrak{D} to the whole of \mathbb{G}_0).

If A is a linear operator on a subspace \mathfrak{D} of \mathfrak{C}_0 , and if $t \geq 0$, we denote by ' $||A||_t$ ' the least upper bound of $||Ax||_t$ with x in \mathfrak{D} and $||x||_t \leq 1$. It is clear that A is strongly continuous if and only if $||A||_t$ is finite for all values of t (or, equivalently, for all sufficiently large values of t).

THEOREM 4. Let A be a strongly continuous V-operator on a strongly dense subspace \mathfrak{D} of \mathfrak{C}_0 , and let t be any positive number. Then there is a function ν in \mathfrak{X} , with $\nu(0) = 0$ and $\nu(u-) = \nu(u)$ whenever $0 < u \leq t$, such that Ax(t) is given by (3.1) for every x in \mathfrak{D} . This function ν is uniquely determined by A, and is independent of t; its total variation in the interval [0, t] is $||A||_t$.

Proof. For each function x in \mathfrak{D} , and for each positive number t, let x_t be the restriction of x to the closed interval [0, t]. Then, for a fixed value of t, the mapping $x \to x_t$ is a linear transformation of \mathfrak{D} on to a subspace \mathfrak{D}_t of the complex Banach space C[0, t], consisting of all continuous functions on the interval [0, t]; moreover, $||x_t|| = ||x||_t$. If $x_t = 0$ then Ax(t) = 0, by Theorem 1; we can therefore define a linear functional φ on \mathfrak{D}_t by the formula

$$\varphi(x_t) = Ax(t)$$
.

This functional is continuous, with $|| \varphi || = || A ||_{\iota}$.

An integral representation of φ can be found by adapting a construction used by Banach ([1], 59-60). By a well-known theorem³, φ can be extended without change of norm to the complex Banach space M[0, t], which contains the characteristic functions of all the subintervals of [0, t]. A function ν_t can then be defined on [0, t] so that $\nu_t(0) = 0$ and

(i)
$$\int_0^t |d\nu_t(u)| \leq ||\varphi||,$$

(ii)
$$\varphi(f) = \int_0^t f(t-u) d\nu_t(u)$$

for every function f in C[0, t].

Without affecting the validity of (i) or (ii), we can adjust ν_t so that it is continuous on the left at each interior point of the interval [0, t]. Moreover, if f is a continuous function such that f(0) = 0, then the jump of ν_t at the point t makes no contribution to the integral in (ii); therefore, as far as such functions f are concerned, we may suppose ν_t chosen so that $\nu_t(t-) = \nu_t(t)$, giving left-hand continuity throughout the interval (0, t], and retaining (i). Under these conditions, ν_t is uniquely determined by A. For, if $0 < v \leq t$ and $0 < \delta < v$, there is a function f_{δ} in C[0, t] such that $||f_{\delta}|| = 1$ and

$$f_\delta(u) = egin{cases} 0 & (0 \leq u \leq t-v) \ 1 & (t-v+\delta \leq u \leq t) \,. \end{cases}$$

Thus

$$arphi(f_{\delta}) = \int_{0}^{v-\delta} d
u_{\iota}(u) + \int_{v-\delta}^{v} f_{\delta}(t-u) d
u_{\iota}(u) ,$$

and therefore

$$|arphi(f_{\delta})-
u_{\iota}(v-\delta)|\leq \int_{v-\delta}^{v}|d
u_{\iota}(u)|,$$

³ The Hahn-Banach-Bohnenblust-Sobczyk extension theorem: see, for example, [8], 113.

so that $\varphi(f_{\delta}) \to \nu_t(v)$ as $\delta \to 0.^4$ But since \mathfrak{D} is strongly dense in \mathbb{C}_0, f_{δ} belongs to the closure of \mathfrak{D}_t , in C[0, t]; so that, φ being continuous, $\varphi(f_{\delta})$ is uniquely determined by A, for each value of δ . This establishes the uniqueness of ν_t .

Now suppose that t' > t. By what has been proved, we have, for any x in \mathfrak{D} ,

$$Ax(t) = \int_0^t x(t-u) d\nu_t(u) \; .$$

But $Ax(t) = I_{t'-t}Ax(t')$, and $I_{t'-t}A = AI_{t'-t}$; hence

$$Ax(t) = \int_{0}^{t'} I_{t'-t} x(t'-u) d\nu_{t'}(u) = \int_{0}^{t} x(t-u) d\nu_{t'}(u) .$$

It follows that $\nu_t(u) = \nu_{t'}(u)$ whenever $0 \leq u \leq t$; in particular, $\nu_t(t) = \nu_{t'}(t)$. Hence if we define the function ν by

$$\nu(t) = \nu_t(t) \qquad (t \ge 0) ,$$

we obtain the required representation of A.

Finally, (i) shows that

$$\int_{\scriptscriptstyle 0}^{\scriptscriptstyle t} \mid d
u(u) \mid \ \leq \ \parallel A \parallel_t$$
 ,

and we have previously noted that, for any x in \mathfrak{D} ,

$$|| Ax ||_t \leq || x ||_t \int_0^t | d
u(u) | .$$

Thus $\int_{0}^{t} |d\nu(u)| = ||A||_{\iota}$, and the proof is complete.⁵

As a corollary, we have

THEOREM 5. Suppose that the formula

$$Ax(t) = \int_0^t K(t, u) x(u) du \qquad (t \ge 0)$$

defines a V-operator A on \mathbb{G}_0 , the kernel K being such that $\int_0^t |K(t,u)| du$ exists as a Lebesgue integral which is locally bounded with respect to t. Then there is a function k in \mathfrak{X} such that, for each t, K(t, u) = k(t-u) for almost all values of u.

⁴ Here we use the fact that if a function of bounded variation is continuous on the left, then so is its total variation.

⁵ In this proof we have not fully used the fact that A maps \mathfrak{D} into itself: it is enough that A maps \mathfrak{D} into C_0 .

Proof. For each t, let $||K||_t$ be the least upper bound of $\int_0^v |K(v,u)| du$ with $0 \le v \le t$; this is finite, by hypothesis. Then, for each x in \mathbb{C}_0 ,

 $||Ax||_t \leq ||K||_t ||x||_t$

so that A is strongly continuous. But

$$Ax(t) = \int_0^t K(t, t-u)x(t-u)du$$

so that if

$$L_\iota(u) = \int_0^u K(t, t-v) \, dv$$

then

$$Ax(t) = \int_0^t x(t-u) dL_t(u) \;.$$

Hence, by Theorem 4, $L_t = \nu$, a function which is independent of t. Since ν has bounded variation, there is a function k such that

$$k(u) = \frac{d}{du} \nu(u)$$

except when u is in a set E whose Lebesgue measure is 0. However, for each value of t,

$$rac{d}{du}
u(u) = rac{d}{du} L_t(u) = K(t, t-u)$$

except when u is in a set E_t of measure 0. Thus

$$K(t, u) = k(t - u)$$

except when u is in the set $t - (E_t \cup E)$, which has measure 0.

The functions in \mathbb{C}_0 which are of exponential order at infinity form a subspace \mathfrak{C}_0 . The perfect functions form a smaller subspace, \mathfrak{D}_0 (in fact \mathfrak{D}_0 is the largest subspace of \mathfrak{C}_0 which is invariant under the differential operator, D).

THEOREM 6. \mathfrak{D}_0 is strongly dense in \mathfrak{C}_0 .

Proof. It is easily seen that \mathfrak{S}_0 is strongly dense in \mathfrak{S}_0 : in fact, if x is in \mathfrak{S}_0 and x_n is defined by

$$x_n(t) = egin{cases} x(t) & (0 \leq t \leq n) \ x(n) & (t \geq n) \end{cases}$$
 ,

then x_n belongs to \mathfrak{S}_0 , for each n, and $x_n \to x$ strongly as $n \to \infty$. To show that \mathfrak{D}_0 is dense in \mathfrak{S}_0 , let x be any function in \mathfrak{S}_0 and, for each positive number δ , let $g_{(\delta)}$ be a positive perfect function such that if $t \geq \delta$ then $g_{(\delta)}(t) = 0$ and $\int_0^t g_{(\delta)}(u) du = 1$ (for example, we could take $g_{(\delta)}$ to be $Dh_{(\delta)}$, where $h_{(\delta)}$ is given by Lemma 1 of [5]). Let $x_{(\delta)} = x * g_{(\delta)}$. Then $x_{(\delta)}$ belongs to \mathfrak{D}_0 ('x*' is a perfect operator), and, if $v \geq \delta$,

$$egin{aligned} x_{\scriptscriptstyle(\delta)}(v) - x(v) &= \int_{_0}^v x(v-u) g_{\scriptscriptstyle(\delta)}(u) du - x(v) \ &= \int_{_0}^\delta \{x(v-u) - x(v)\} g_{\scriptscriptstyle(\delta)}(u) du \ . \end{aligned}$$

Now let t and ε be any positive numbers. Since x is uniformly continuous in the interval [0, t], with x(0) = 0, we can choose δ so that

$$|x(v-u)-x(v)|<\varepsilon$$

whenever $\delta \leq v \leq t$, and $|x(v)| < \frac{1}{2}\varepsilon$ whenever $0 \leq v \leq \delta$; then

$$|x_{\scriptscriptstyle(\delta)}(v)-x(v)|$$

if $\delta \leq v \leq t$, and if $0 \leq v \leq \delta$,

$$egin{aligned} &|x_{\scriptscriptstyle(\delta)}(v)-x(v)| \leq \int_{\scriptscriptstyle 0}^{\scriptscriptstyle \delta} &|x(v-u)|\,g_{\scriptscriptstyle(\delta)}(u)du+|x(v)|\ &\leq rac{1}{2}arepsilon \int_{\scriptscriptstyle 0}^{\scriptscriptstyle \delta} &g_{\scriptscriptstyle(\delta)}(u)du+rac{1}{2}arepsilon=arepsilon \ . \end{aligned}$$

Thus $||x_{(\delta)} - x||_t < \varepsilon$. It follows that \mathfrak{D}_0 is strongly dense in \mathfrak{C}_0 .

In [5] it is shown that any positive perfect operator has the representation (3.1), with ν a non-decreasing function (in fact this holds for any positive V-operator on a space \mathfrak{D} such that $\mathfrak{D}_0 \subseteq \mathfrak{D} \subseteq \mathfrak{C}_0$). It follows that the linear combinations of positive perfect operators, which form a linear algebra $\mathfrak{M}(\mathfrak{D}_0)^6$, are strongly continuous. On the other hand, there are strongly continuous perfect operators which do not belong to $\mathfrak{M}(\mathfrak{D}_0)$: for example, if $\nu(t) = \sin(e^{t^2} - 1)$, and A is defined on \mathfrak{D}_0 according to (3.1), then, as is shown in [5], A is a perfect operator which is not in $\mathfrak{M}(\mathfrak{D}_0)$; but of course A is strongly continuous. However, it is possible to characterize $\mathfrak{M}(\mathfrak{D}_0)$ in terms of seminorms, as follows.

THEOREM 7. A V-operator A on \mathfrak{D}_0 is an element of $\mathfrak{M}(\mathfrak{D}_0)$ if and only if there is a real number c such that $||A||_t = O(e^{ct})$ as $t \to \infty$.

Proof. By Theorem 1 of [5], an operator A on \mathfrak{D}_0 is in $\mathfrak{M}(\mathfrak{D}_0)$ if ⁶ $\mathfrak{M}(\mathfrak{D}_0)$ is denoted in [5] by ' \mathfrak{M} '. J. D. WESTON

and only if it admits the representation (3.1) with ν a linear combination of positive non-decreasing functions which are of exponential order at infinity. This condition on ν is equivalent to the existence of a real number c such that $\int_{0}^{t} |d\nu(u)| = O(e^{ct})$ as $t \to \infty$. Therefore, by Theorems 4 and 6 above, A is in $\mathfrak{M}(\mathfrak{D}_{0})$ if and only if $||A||_{t} = O(e^{ct})$ as $t \to \infty$.

Each function y in \mathbb{C}_0 determines a strongly continuous V-operator A on \mathbb{C}_0 according to the formula Ax = x*y; for, integration by parts shows that this formula is equivalent to (3.1), with

$$u(t)=D^{-1}y(t)=\int_0^t y(u)du \qquad (t\geq 0) \;.$$

An important property of convolution in \mathbb{G}_0 is the fact that it obeys the associative law (as well as the commutative law); more generally, we have

THEOREM 8. Let A and B be strongly continuous V-operators, on \mathbb{C}_0 and on a subspace \mathbb{D} of \mathbb{C}_0 respectively. If x is any function in \mathbb{D} then Ax belongs to the strong closure of \mathbb{D} ; if Ax is in \mathbb{D} itself, then ABx = BAx. In particular, if y is a function in \mathbb{C}_0 such that x*y is in \mathbb{D} , then B(x*y) = (Bx)*y.

Proof. Let A be represented by a function ν in accordance with Theorem 4. Then for any x in \mathfrak{D} , each value Ax(t) can be arbitrarily approximated by sums of the form

$$\sum_{j=1}^{n} \{
u(u_j) -
u(u_{j-1}) \} x(t - u_j)$$
 ,

where $0 \leq u_1 \leq \cdots \leq u_n \leq t$; and this approximation is locally uniform with respect to t. Now the above sum is the value at t of the function

(i)
$$\sum_{j=1}^{n} \alpha_j I_{u_j} x ,$$

where $\alpha_j = \nu(u_j) - \nu(u_{j-1})$. This function belongs to \mathfrak{D} , since \mathfrak{D} satifies (1.2). Thus Ax belongs to the strong closure of \mathfrak{D} . Further, the points u_j can be chosen in such a way that, while Ax is strongly approximated by (i), ABx is simultaneously approximated, in the same sense, by

(ii)
$$\sum_{j=1}^{n} \alpha_j I_{u_j} Bx .$$

But, since B is a V-operator, (ii) is the same as

$$B\sum_{j=1}^n \alpha_j I_{u_j} x$$
.

Since B is strongly continuous, it follows that ABx = BAx if Ax is an operand of B.

We can now prove a partial converse of Theorem 1, namely.

THEOREM 9. Let A be a non-zero strongly continuous V-operator on \mathfrak{C}_0 . Then there is a non-negative number τ such that (i) for any function x in C_0 , Ax(t) = 0 whenever $0 \leq t \leq \tau$, and (ii) if Ax(t) = 0 whenever $0 \leq t \leq \tau$, and $t_0 \geq \tau$, then x(t) = 0 whenever $0 \leq t \leq t_0$, where x belongs to \mathfrak{C}_0 and $t_0 \geq \tau$, then x(t) = 0 whenever $0 \leq t \leq t_0 - \tau$. In particular, x = 0 if Ax = 0.

Proof. Let ν be the function representing A according to Theorem 4, and let τ be the greatest lower bound of the numbers t for which $\nu(t) \neq 0$. Obviously, τ has the property (i) required by the theorem. Suppose that x is a function in \mathbb{G}_0 such that Ax(t) = 0 whenever $0 \leq t \leq t_0$, where $t_0 \geq \tau$. Let $g_{(\delta)}$ be defined as in the proof of Theorem 6, and let $x_{(\delta)} = x * g_{(\delta)}$. Then, for each value of δ , $x_{(\delta)}$ has a derivative $x'_{(\delta)}$ in \mathbb{G}_0 ; in fact $x'_{(\delta)} = x * g'_{(\delta)}$. Also, if $0 \leq t \leq t_0$,

$$\int_0^t x'_{(\delta)}(t-u)
u(u) du = A x_{(\delta)}(t) = (Ax) st g_{(\delta)}(t)
onumber \ = \int_0^t A x(t-u) g_{(\delta)}(u) du = 0$$

Therefore, by a theorem of Titchmarsh [4, 327], $x'_{(\delta)}(t) = 0$ whenever $0 \leq t \leq t_0 - \tau$ (we cannot have $\nu(t) = 0$ for almost all t in a neighbourhood of τ , since ν is continuous on the left). Hence $x_{(\delta)}(t) = 0$ whenever $0 \leq t \leq t_0 - \tau$. Since $x_{(\delta)}(t) \to x(t)$ as $\delta \to 0$, the theorem follows.

It is a consequence of Theorem 8 that every strongly continuous V-operator on \mathfrak{D}_0 is a perfect operator (the converse is false; in fact it is easy to see that the differential operator D is not strongly continuous). Thus an operator A represented by (3.1) is a perfect operator if and only if it maps \mathfrak{D}_0 into itself. An equivalent condition is given by

THEOREM 10. The formula (3.1), with x in \mathfrak{D}_0 , represents a perfect operator A if and only if there is a positive integer n such that $D^{-n}\nu$ belongs to \mathfrak{E}_0 , where

$$D^{-n}\nu(t)=\int_0^t\cdots\int_0^{u_2}\nu(u_1)du_1\cdots du_n\qquad (t=u_{n+1}\ge 0)\ .$$

Proof. For any perfect function x and any positive integer n, we have from (3.1), after integration by parts,

J. D. WESTON

$$Ax(t) = \int_{0}^{t} x^{(n+1)}(t-u) D^{-n} \nu(u) du \qquad (t \ge 0) .$$

Thus if $D^{-n}\nu$ belongs to \mathfrak{E}_0 for some value of n, then A is a perfect operator. On the other hand, suppose that A, given by (3.1), is a perfect operator (when restricted to \mathfrak{D}_0). By a general representation theorem for perfect operators [6], there is a function y in \mathfrak{E}_0 such that, for some positive integer n, and every perfect function x,

$$Ax(t) = \int_{0}^{t} x^{(n+1)}(t-u)y(u)du \qquad (t \ge 0) .$$

Hence $x^{(n+1)}*(y - D^{-n}\nu) = 0$, so that, by Theorem 9, $y = D^{-n}\nu$.

If $\nu(t) = e^{e^t}$, the V-operator A given by (3.1) does not map \mathfrak{D}_0 into itself, since ν does not satisfy the condition of Theorem 10.

Every perfect operator A has a Laplace transform, A: if A is given by (3.1), \overline{A} may or may not be given by

(3.2)
$$\bar{A}(z) = \int_0^\infty e^{-zt} d\nu(t) ,$$

the integral being convergent when $\Re z$ is sufficiently large. This representation of \overline{A} is certainly valid if A belongs to $\mathfrak{M}(\mathfrak{D}_0)$ (cf. [5], Theorem 4); and also if $\nu(t) = \sin(e^{t^2} - 1)$, for example. But if $D^{-1}\nu(t) = \sin(e^{t^2} - 1)$ the integral in (3.2) does not converge for any value of z (as can be seen on integrating twice by parts). However, (3.2) holds whenever the integral is convergent, as the following result shows.

THEOREM 11. Let A be any strongly continuous perfect operator, and let ν be a function such that A is represented by (3.1). Then the Laplace transform \overline{A} is represented by (3.2), with $\Re z$ sufficiently large, if the infinite integral is interpreted in the sense of summability (C, n), where n is any non-negative integer such that $D^{-n}\nu$ belongs to \mathfrak{C}_0 .

Proof. Let B be the perfect operator obtained on replacing ν by $D^{-1}\nu$ in (3.1). Then, if x is any perfect function, and $t \ge 0$,

$$DBx(t) = Bx'(t) = \int_0^t x'(t-u)\nu(u)du = \nu(0)x(t) + \int_0^t x(t-u)d\nu(u) .$$

Thus $DB = \nu(0)I + A$. If ν belongs to \mathfrak{E}_0 then, since B is determined by the function ν in the sense that $Bx = x * \nu$, B has the same Laplace transform as ν ; that is to say, when $\Re z$ is sufficiently large,

$$ar{B}(z)=\int_{_{0}}^{^{\infty}}\!\!e^{-zt}
u(t)dt\;.$$

Therefore, in this case,

$$ar{A}(z) = zar{B}(z) -
u(0) = \int_0^\infty z e^{-zt} \{
u(t) -
u(0)\} dt = \int_0^\infty e^{-zt} d
u(t)$$

so that (3.2) holds, the integral being convergent.

We now proceed by induction. Suppose that, for some non-negative integer n, (3.2) holds in the sense of summability (C, n) provided that $D^{-n}\nu$ belongs to \mathfrak{G}_0 and $\Re z$ is sufficiently large. If $D^{-n-1}\nu$ belongs to \mathfrak{G}_0 , and t > 0, then

$$\int_{0}^{t} \left(1 - rac{u}{t}
ight)^{n+1} e^{-zu} d
u(u) = -
u(0) + z \int_{0}^{t} \left(1 - rac{u}{t}
ight)^{n+1} e^{-zu} dD^{-1}
u(u) \ + rac{n+1}{t} \int_{0}^{t} \left(1 - rac{u}{t}
ight)^{n} e^{-zu} dD^{-1}
u(u) \; .$$

But, by the induction hypothesis (with $D^{-1}\nu$ in place of ν),

$$ar{B}(z) = \lim_{t o \infty} \int_0^t \left(1 - rac{u}{t}
ight)^{n+1} e^{-zu} dD^{-1}
u(u) = \lim_{t o \infty} \int_0^t \left(1 - rac{u}{t}
ight)^n e^{-zu} dD^{-1}
u(u)$$

when $\Re z$ is sufficiently large; so that

$$\lim_{t\to\infty} \int_0^t \left(1 - \frac{u}{t}\right)^{n+1} e^{-zu} d\nu(u) = -\nu(0) + z\bar{B}(z) = \bar{A}(z) \; .$$

Thus

$$ar{A}(z)=\int_{0}^{\infty}\!\!e^{-zt}d
u(t)\quad (C,\,n\,+\,1)\;,$$

and the theorem follows.

If \mathfrak{D} is any subspace of \mathfrak{C}_0 satisfying (1.1) and (1.2), the strongly continuous V-operators on \mathfrak{D} form a subalgebra of $\mathfrak{A}(\mathfrak{D})$, say $\mathfrak{N}(\mathfrak{D})$. If \mathfrak{D} is strongly dense in \mathfrak{C}_0 , it follows from Theorem 4 that $\mathfrak{N}(\mathfrak{D})$ effectively consists of those operators in $\mathfrak{N}(\mathfrak{C}_0)$ which leave \mathfrak{D} invariant. In this case, Theorems 8 and 9 show that $\mathfrak{N}(\mathfrak{D})$ is an integral domain (it is commutative, and has no divisors of zero). The full algebra $\mathfrak{N}(\mathfrak{C}_0)^{\gamma}$ has the further property that any operator which is inverse to an operator in $\mathfrak{N}(\mathfrak{C}_0)$ is itself in $\mathfrak{N}(\mathfrak{C}_0)$: this is special case of

THEOREM 12. Let A and B be strongly continuous V-operators on a strongly closed subspace \mathfrak{D} of \mathfrak{S}_0 , and suppose that there is an operator C on \mathfrak{D} such that A = BC. Suppose also that Bx = 0 only if x = 0. Then C is a strongly continuous V-operator.

 $^{^{7} \}mathfrak{N}(\mathfrak{G}_{0}) = \mathfrak{M}(\mathfrak{G}_{0})$, consisting of the linear combinations of positive V-operators on \mathfrak{G}_{0} .

Proof. If u > 0 and x is any function in \mathfrak{D} then, since A and B are V-operators,

$$B(I_uCx - CI_ux) = I_uAx - AI_ux = 0;$$

so that, by the hypothesis concerning B, $I_uCx = CI_ux$. In a similar way it can be verified that C is linear, and is therefore a V-operator. To show that C is strongly continuous, let $\{x_n\}$ be a strongly convergent sequence in \mathfrak{D} such that the sequence $\{Cx_n\}$ is also strongly convergent. Since A and B are strongly continuous,

$$B(\lim_{n o \infty} C x_n - C \lim_{n o \infty} x_n) = \lim_{n o \infty} A x_n - A \lim_{n o \infty} x_n = 0$$
 ,

so that $\lim_{n\to\infty} Cx_n = C \lim_{n\to\infty} x_n$; thus the graph of C is closed. Now \mathfrak{D} , being strongly closed, is a Fréchet space relative to the strong topology; hence, by Banach's closed-graph theorem [1, 41], C is strongly continuous.

4. Operators that commute with convolution. It is a consequence of Theorem 8 that a subspace \mathfrak{D} of \mathbb{G}_0 , satisfying (1.1) and (1.2), is closed under convolution if it is strongly closed. On the other hand, \mathfrak{D}_0 is closed under convolution though it is not strongly closed. If \mathfrak{D} is any subspace of \mathbb{G}_0 which is closed under convolution (so forming an integral domain with no unit element), an operator A on \mathfrak{D} will be said to commute with convolution if

$$A(x*y) = (Ax)*y$$

for all x and y in \mathfrak{D} . Such operators are necessarily linear (cf. [5], § 4), and, for a given choice of \mathfrak{D} , they form an integral domain \mathfrak{D}^{\sharp} in which \mathfrak{D} is isomorphically embedded (by the correspondence $x \to x*$).

A shift operator belongs to \mathfrak{D}^* if it maps \mathfrak{D} into itself. Hence if \mathfrak{D} satisfies (1.1) and (1.2), in addition to being closed under convolution, then all the operators in \mathfrak{D}^* are V-operators; in fact \mathfrak{D}^* is then a maximal commutative subalgebra of $\mathfrak{A}(\mathfrak{D})$. In this case, Theorem 8 shows that every strongly continuous V-operator commutes with convolution; so that

$$\mathfrak{N}(\mathfrak{D}) \subseteq \mathfrak{D}^* \subseteq \mathfrak{A}(\mathfrak{D})$$
.

If, further, \mathfrak{D} is strongly closed, then $\mathfrak{N}(\mathfrak{D}) = \mathfrak{D}^*$: for, if B is defined by Bx = x*y, with y in \mathfrak{D} , and A = BC, where C is any operator in \mathfrak{D}^* , then, for any x in \mathfrak{D} ,

$$Ax = (Cx)*y = C(x*y) = C(y*x) = (Cy)*x;$$

thus the conditions of Theorem 12 are satisfied, so that C belongs to $\mathfrak{N}(\mathfrak{D})$. In particular, the operators on \mathfrak{C}_0 that commute with convolution

are precisely the strongly continuous V-operators on \mathfrak{C}_0 (and can therefore be represented according to Theorem 4).

An operator A on \mathfrak{C}_0 which commutes with convolution can be extended to the whole of \mathfrak{C}_0 so as to preserve this property. For, if x is any function in \mathfrak{C}_0 , let x_n be defined, for each positive integer n, as in the proof of Theorem 6: then x_n belongs to \mathfrak{C}_0 , and Theorem 1 shows that $Ax_n(t)$ is independent of n provided that $n \ge t$; therefore, if $t \ge 0$, we can define Ax(t) to be $Ax_n(t)$, where $n \ge t$, without ambiguity. Since convolution is defined locally this extension of A is an operator on \mathfrak{C}_0 which commutes with convolution. It follows that A is strongly continuous, and that its extension to \mathfrak{C}_0 is unique (since \mathfrak{C}_0 is strongly dense in \mathfrak{C}_0).

The integration operator, D^{-1} , is an example of an operator on \mathfrak{C}_0 which commutes with convolution. Since \mathfrak{D}_0 can be expressed as $\bigcap_{n=1}^{\infty} D^{-n}\mathfrak{E}_0$, any operator on \mathfrak{C}_0 which commutes with convolution and leaves \mathfrak{E}_0 invariant must leave \mathfrak{D}_0 invariant. The converse of this is false: for, if A is defined by (3.1), ν being such that $D^{-2}\nu$ belongs to \mathfrak{E}_0 but $D^{-1}\nu$ does not, and $\nu(0) = 0$, then A maps \mathfrak{D}_0 into itself, by Theorem 10; however, if x(t) = t then

$$Ax(t) = \int_{_0}^t (t-u) d
u(u) = D^{_-1}
u(t)$$
 ,

so that x is in \mathfrak{G}_0 but Ax is not.

The operators on \mathfrak{D}_0 that commute with convolution are the perfect operators. These can be characterized as those V-operators on \mathfrak{D}_0 which are continuous in a sense defined in terms of Laplace transforms [7]⁸. The strongly continuous perfect operators are the strongly continuous V-operators on \mathfrak{D}_0 , constituting the algebra $\mathfrak{N}(\mathfrak{D}_0)$; this algebra, and also its subalgebra $\mathfrak{M}(\mathfrak{D}_0)$, can be characterized in terms of convolution, as follows.

THEOREM 13. A perfect operator belongs to $\Re(\mathfrak{D}_0)$ if and only if it can be extended to the whole of \mathfrak{C}_0 so as to commute with convolution; it belongs to $\mathfrak{M}(\mathfrak{D}_0)$ if and only if this extension (necessary unique) leaves \mathfrak{C}_0 invariant.

Proof. If an operator A on \mathfrak{D}_0 can be extended to \mathfrak{C}_0 so as to commute with convolution, then its extension belongs to $\mathfrak{N}(\mathfrak{C}_0)$, so that A itself belongs to $\mathfrak{N}(\mathfrak{D}_0)$. On the other hand, any operator A in $\mathfrak{N}(\mathfrak{D}_0)$ admits the representation (3.1), which provides an extension of A to \mathfrak{C}_0 : this extension, being strongly continuous, commutes with convolution;

⁸ It is not at present known whether there are any V-operators on \mathfrak{D}_0 which are not perfect; that is to say, it is not known whether $\mathfrak{U}(\mathfrak{D}_0)$ is commutative or not (but there are linear operators on \mathfrak{D}_0 which commute with D and are not perfect [6]).

it is also unique, since \mathfrak{D}_0 is strongly dense in \mathfrak{C}_0 .

If a perfect operator A has a strongly continuous extension to \mathfrak{C}_0 which leaves \mathfrak{C}_0 invariant, we can regard A as a V-operator on \mathfrak{C}_0 ; then, by Theorem 3, there is a real number c such that $||A||_t = O(e^{ct})$ as $t \to \infty$, and this implies, by Theorem 7, that A belongs to $\mathfrak{M}(\mathfrak{D}_0)$. On the other hand, if A belongs to $\mathfrak{M}(\mathfrak{D}_0)$ then the extension of A to \mathfrak{C}_0 given by (3.1) leaves \mathfrak{C}_0 invariant, by Theorem 3 of [5].

Finally, we give an example of a V-operator, on a strongly dense subspace of \mathbb{G}_0 , which does not commute with convolution. Let h be the Heaviside unit function $(h(t) = 1 \text{ if } t \ge 0)$, and let \mathfrak{D}_1 be the class of all functions x given by

(4.1)
$$x = D^{-1}(y + Bh)$$
,

where y belongs to \mathbb{G}_0 and B is an operator of the type (2.1). Then $\mathfrak{D}_0 \subseteq \mathfrak{D}_1 \subseteq \mathfrak{G}_0$, and \mathfrak{D}_1 satisfies (1.1) and (1.2); moreover, \mathfrak{D}_1 is closed under convolution. It is clear that y and B in (4.1) are uniquely determined by x, and that the mapping $x \to y$ is a V-operator, say A, on \mathfrak{D}_1 . The operator D^{-1} maps \mathfrak{D}_1 into itself and commutes with convolution. However, $AD^{-1}x = x$ and $D^{-1}Ax = y$, so that $AD^{-1} \neq D^{-1}A$. Hence A does not commute with convolution. It follows that the algebra $\mathfrak{A}(\mathfrak{D}_1)$, of all V-operators on \mathfrak{D}_1 , is not commutative.

References

1. S. Banach, Théorie des opérations linéaires, Warsaw, 1932.

2. R. E. Edwards, Representation theorems for certain functional operators, Pacific J. Math., 7 (1957), 1333-1339.

3. H König und J. Meixner, Lineare Systeme und lineare Transformationen, Math. Nachrichten, **19** (1958), 265-322.

4. E. C. Titchmarsh, Theory of Fourier integrals, Oxford, 1937.

J. D. Weston, Positive perfect operators, Proc. London. Math. Soc. (3), 10 (1960), 545-565.
 _____, Characterizations of Laplace transforms and perfect operators, Archive for Rational Mechanics and Analysis, 3 (1959), 348-354.

7. _____, Operational calculus and generalized functions, Proc. Roy. Soc. A, **250** (1959), 460-471.

8. A. C. Zaanen, Theory of integration, Amsterdam, 1958.

UNIVERSITY OF DURHAM, NEWCASTLE UPON TYNE

AND

CALIFORNIA INSTITUTE OF TECHNOLOGY, PASADENA