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In [4] Post obtained a variety of results about truth functions in
2-valued sentential calculus. He studied sets of truth functions which
could be used as primitive notions for various systems of 2-valued logics.
In particular, he was interested in complete sets of truth functions, i.e.,
sets having the property that every truth function with an arbitrary
finite number of arguments is definable in terms of the truth functions
belonging to the set. Among other results Post established a computable
criterion for a set of truth functions to be complete. Using this criterion
he showed that there is a finite upper bound for the number of ele-
ments in any complete and independent set of primitive notions for the
2-valued sentential calculus (and that actually the number 4 is the least
upper bound). Alfred Tarski has asked to what extent these results
can be extended to ^-valued sentential calculus, for any finite n. It
will be seen from this note that those results of Post concerning com-
plete sets of truth functions can actually be extended. On the other
hand it has been shown recently by A. Ehrenfeucht that the result
concerning arbitrary sets of functions cannot be extended.

Both the results of Post and those of this note can be formulated
in terms of truth functions of the 2-valued (w-valued) sentential calculus
or in terms of finitary operations in arbitrary 2 element (n element)
algebras. We choose the second alternative since the many-valued
sentential calculi have a rather restricted significance in logic and
mathematics.

Thus we shall concern ourselves with finitary operations under which
a given set A with n elements is closed. For simplicity we restrict our
attention to the case when A is the set N of all natural numbers less
than n. This restriction implies no loss of generality, since all the results
can be extended by isomorphism to any finite set with n elements. For
convenience we will identify N with nf as is frequently done in modern
set theory.

For any given natural number fc, let nk be the set of all /c-termed
sequences x = ζx0, xlf , xk-ϊ) with terms in n. Denote by FnιJC the
set of all fc-ary operations on and to elements of n, i.e., of all function

Received December 15, 1959. This is the text of a talk given by the author at the
Summer Institute of Symbolic Logic held in 1957 at Cornell University; it appeared in
condensed form in ' 'Summaries of talks presented at the Summer Institute of Symbolic
Logic in 1957 at Cornell University" (mimeographed), 1957, pp. 78-80. The results were
first communicated to the American Mathematical Society in [1]. The author thanks Professor
Alfred Tarski for his guidance and encouragement.

1169



1170 JEAN W. BUTLER

on nk to n. Let Fn = {Jjc<^Fn:Jci i.e., Fn is the set of all finitary opera-
tions on and to elements of n.

For any subset X of Fn we will denote by X the smallest set Y
which includes X and satisfies the following conditions:

( i ) if / e Y and h is obtained from / by exchanging or identifying
two arguments, then h e Y;

(ii) if / e Y, g e Y, and h is obtained from / by replacing an
argument by g, then h e Y. A function / is said to be generated by
a set X if / e X The set X is called closed if X = X, it is called
complete if X = Fn, it is called independent if there is no proper subset
X' of X for which X' = X A set Γ is called a basis for a set X if
Y c; X and Ϋ = X. A function / e i^,& is called reducible or reducible
to first order if its values depend on at most one argument; i.e., if
there is an i < k and an h e FnΛ such that for every sequence x e nk

we have f(x) = h(xt). Hence / is not reducible if and only if for every
q < k there are x,y e nk with xq = yq and f(x) Φ f(y). We will denote
by &(f) the range of /. We single out two functions in Fn. \[n is
the function of two arguments defined by the formula:

x\/ny = max(x,y) .

r^n is the function of one argument defined by:

r^nχ — x + l(mod n) .

In the following few lemmas we will establish some properties of
the notions just defined:

LEMMA 1. If f e FnιJc, n ^ 3, / not reducible and &{f) = n, then
{/} U FnΛ generates a function g e Fnt2, g not reducible and &(g) = n.

Proof. We first establish that there exist q < k and u, v e nk such
t h a t / 0 0 Φ f{v) and ut = v< for all i φ q, i < w. Since &{f) contains
more than one element there exist a,b e n* such that/(α) Φ f(b). There
are k + 1 sequences c(0), c(1), , c(fc) € n* with c(0) = α, c(fc) = 6, and such
that for any i < h, c{w) is obtained from c{ί) by replacing ciί] by clfc).
Hence c( ί) and c(^+1) differ only in the ith coordinate, moreover
c™ = at for i^j and c^ = 64 for i < y. Since f{a) = /(c(0)) =
/(cΓ,c{0), -. ,4°11), /(6)=,/(c ( f c )) and /(α) Φ f(b) it cannot be the case
that f(c{ί)) = f(c{ί+1)) for all i < k. Therefore there is some q < k such
that f(c{q)) Φ /(c(Q+1)) and cίq) = ciq+1) for all i Φ q, i < fe. Take c{q) for
^ and c(α+]) for v.

Since &(f) = w, we can choose w sequences τ/(0), i/(1), , y{n~ι) e n
such that f(y{0)) = f(u), f(y{1)) =f(v), and each value in n is taken on
by / for some y{i). There also exist w, z e n70 for which wq = zq and

k



ON COMPLETE AND INDEPENDENT SETS OF OPERATIONS 1171

f(w) Φ f(z), since if this were not the case / would depend only on its
qth argument and thus be reducible.

There are two possible cases: (i) there exist w, z e n16, with wq — zq,
and f(w) Φ f(z), f(w) Φ f(u), f(w) Φ f(v); (ii) for every w, z e n% with
wq = zq and f(w) Φ f(z) neither f(w) nor f(z) is different from both f(u)
and f(v).

If case (i) holds there exist w, z e n* for which wq = zqy and
f(w) φf(z), f(w) φf(u), f(w) φf(v). With no loss of generality we
may assume f(y{2)) = f(w). We define k functions h0, hlf , h^λ e FnΛ

separately for hq and for hj9 j Φq,

hq(x) =

yϊ

x = 0

x = 1

a? = 2

x > 2

fc,(aθ =

yf

a? = 0

x = l

x = 2

x > 2 .

), ftβ(i/), ftβ+1(αθ, , ftfc-i(x)) .

We define g e Fn>2 as follows:

( 1 ) 0(α, y) = f(ho(x), ftx(x), , hq

Notice that y appears only in the qth coordinate of / . &(g) = n since
9(0, 0) = f(u) = fW*), 0(0,1) = /(*) = f(y{1)), g(2, 2) = /(w) - f(y™), and
0(i, ί) = f(y{i)) for i > 2. Moreover g is not reducible, since g(0, 0) ^
0(0,1) and 0(1, 2) Φ 0(2, 2).

If case (ii) holds we take for hq the identity function in FnΛ and
using any w, z e nk for which wq = j?β and /(w) Φf(z) we choose & — 1
functions h3 e Fn>1 for j Φ q, satisfying

Uj

w3

X

X

X

= 0

= 1

= 2

and then define g by (1). Now for any sen10 with sq = yq

ί], 2 < i ^ w,
condition (ii) guarantees that f(s)=f(y{ί)) since f{y{i))Φf{u) and
/(»«>) ^=/(t;). Therefore ff(0, wβ) =/(w) =/(^/ ( 0 )), flf(l, vβ) =f(v) =f{y[1)),
g(m, yq

l)) =f(y{i)) for m < n and 2 ^ ί < n. Hence ^?(#) = w. The
function g is not reducible, since #(0, uq) Φ g(Q, vq) and g(l, wq) φ g{2, wq).

LEMMA 2. If f e Fn>2 is not reducible and &(f) has p elements
p ^ 3, then there exist i, j , k,l < n such that among the function values
f(iy )̂> f(i> ΐ)> f{j> k), f(j, I) at least three distinct values are represented.

Proof. There are two possibilities;
( i ) in the table of / all value in ^ ( / ) are taken on across some

row, i.e., there is an i < n such that the set of all values f(ί,j) with
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j < n coincides with
(ii) in no row are all values in ^ ( / ) taken on.
If (i) holds, since / is not reducible there must be j , I < n for which

f(if I) Φf(j, I). Since p ^ 3 and all values in &(f) are taken on in
the ith row there must be a k < n such that f(i,k) is distinct from
both f(i, I) and f(j, I).

If (ii) holds, since / is not reducible there is some non-constant row,
i.e., some i,j',j" such that f{i,jr) Φ f{i>j"). However, by assumption
there is a w e &(f) which does not appear in this row, i.e., for all
® < Pf f(i> χ) =£ w- Since w e &(f) there are j,l < n for which
f(j91) = w. Hence f(i, I) Φf(j, I). Since w does not appear in the ith
row and the ith row is not constant there is some k < n such that the
value f{iyk) is different from both f(i, I) and f(j, I).

LEMMA 3. If f e Fn>2 is not reducible and &(f) has exactly p
elements, 3 t^p ^ n, then there exist two functions hlf h2 e FnΛ with
&{h^, &{h2) each consisting of at most p — 1 elements, and such that
for every x e ^ ( / ) we have f{hλ{x), h2(x)) = x.

Proof. By Lemma 2 we can find i, j , k,l < n such that f(i, k),
f(ίt l)> fU> k)f f(j, I) represent at least three distinct values. Assume
f(i9 k) — u, f(i, I) — v, f(j, k) — w are all different. Functions hlf h2 e
FnΛ can be found such that

h^u)
K(v)

h±(w)

= i
= i
— j

h2(u) = k

h2(v) = I

h2(w) = Jk

hλ(x) — i , h2(x) = k for x $

f{hλ{x), h2(x)) = x for x e &(f) ~ {u, v, w} .

and

Clearly, hλ and h2 satisfy the requirements of the Lemma. The proof
in the other cases is analogous.

LEMMA 4. If f e Fn<2 and 2 g p ^ n, and there exist i, j , k < n
such that for all y < p

f(h y) = V and ftf, y) = k

then f together with the functions in FnΛ generate a function g e Fn>2

such that g(x, y) = x\/ny for x,y < p.

Proof. We shall prove, by induction on p, a slightly weakened form
of the theorem, replacing the condition i, j , k < n by i,j,k< p. The
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theorem as stated then follows, since {/} U ̂ j generates a function
satisfying the strengthened hypothesis.

For p = 2, since ί,j<p the function / must agree on {0,1} with
one of the following four tables:

( i )

0
1

0

0
1

1

1
1

(ϋ) 0

0
0

1

1
0

(iii)

0
1

0

0
0

1

0
1

(iv)

0
1

0

1
0

1

1
1

In case (i) / itself may be taken for g. In the other cases using any
homomorphism h e FnΛ which exchanges 0 and 1, g may be constructed
as (ii) h(f(x, h(y)))f (iii) h(f(h(x), h(y))), (iv) f(h(x), y).

Assume the theorem is true for p — 1. From {f}l)FnΛ we can
construct a function satisfying the induction hypothesis for p — 1. Thus
we can generate a function gf such that

g'(x, y) = x\fny for x, y < p — 1 .

Now choose functions hlf h2 e FnΛ such that

'p — 1 if x = k

k if x = p — 1

otherwise

and construct / ' e Fn>2 as follows:

f'(χ, v) = Uf(H*), Πv)))

It can be seen that

if x < p — 1

if x = p — 1

f'(x, y) =

Now we define # 6 J

y if x < P - 1 and y < p

p — 1 if # = p — 1 and y < p .

For x,y < p - 1, #(&, #) = #'(&, T/) = 05 V»2/; for a; = p - 1, 2/ < p,
0(®, 1/) = / ' (P - 1, Q'(P -l,y)) = p-l; for x < p - 1 and y = p - 1,
g(x, y) =f'(p — 1, flf'(«, p — 1)) = p — 1. Therefore gf agrees with V^
for x,y < p, which estalishes the Lemma.

LEMMA 5. If f e Fn>2 is not reducible and &(f) = p, 3 ^ p ^ n,
then f together with the functions in FnΛ generate a function g e Fn>2

such that g(x, y) — x\fny for all x,y < p.

Proof. The proof is by induction on p. For p = 3, using the i, j ,
.k, I of Lemma 3 and appropriate homomorphisms from Fn>1 we can



0

0
2

1

1
0

1174 JEAN W. BUTLER

generate a function h e Fn>2 such that the values of h on {0,1} agree
with one of the two tables:

( i) 0 1 (ii)

0 I 0 1 0
1 I 2 2 1

We then choose five functions hlf h2, hS9 h4, h5 e FnΛ such that

hλ{ϋ) = 0 h2(0) = 0 h3(0) = 0 h(0) = 0 hδ(0) = 0

^(1) = 0 ^(1) - 1 Λs(l) - 0 Λ4(l) - 1 Λβ(l) - 2

Λχ(2) = 1 h2(2) = 1 Λ8(2) = 0 A4(2) = 0 hδ(2) = 2 .

In case (i) # can be constructed as

g(x, y) = h(h(x, hλ{y)), h(x, h2(y))) .

To construct g in case (ii) we define gf, g" e Fn>2

g'(x, y) - h(h(h(x), UV)), hMh(x), h(y))))

g"{χ, y) - k(g'(x, hδ(y)))

and then

g(χ, v) = g'(g"(χ, y), g\χ, y)).

Assuming the theorem true for p — 1, we prove it for p, 3 < p ^ n.
First we construct a function / " satisfying the induction hypothesis for
p — 1. To do this we apply Lemma 2, taking an i, y, &, ϊ such that
/(ί> ^), /(i> l)> fU>k), f(j, I) represent at least 3 distinct values, u, v, w.
Since p > 3 there is a value z e &(f) ~ {u, v, w). Let h e FnΛ such
that

(^ x — z
h(x) =

I a? otherwise.

Then the function h(f(x, y)) is not reducible and has p — 1 elements in
its range. The application of an appropriate isomorphism from FnΛ will
produce a function / " e Fn>2 with &(f") = p — I and / " not reducible.
Then by the induction assumption we can generate a function g" e Fn>2:

such that

g"{x, y) = xyny for x, y < p — 1 .

Next by Lemma 3 there exist hλ, h2 e FnΛ with ^?(/?Ί), &(h2) each
consisting of at most p — 1 elements and such that

fQφ), h2(x)) = x

for x < p.
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Let h3, K € FnΛ be isomorphisms such that

h(%) < V — 1 for x e

Λ4(a0 < p — 1 for a? e

and define / ' e F w > 2 , ft8, feβ 6 FnΛ:

h5(x) = h^h^x)) , x < n

h6(x) = h4(h2(x)) , x < w

/'(» , 1/) = f(hτ\x)9 K\y)) , x,y <n .

Then

f'(hb(x), h6(x)) = x for x < p

and ^(Λ β ), ^(/^ 6) g p - 1 .
We can now define a function g' e Fn>2 as follows:

*'(*, w) =f'(g"(χ, Uv))> g"(χ,

Then

and

g'(p-2,y)=f'(p-2,p-2) for y < p .

Therefore by Lemma 4 we can generate a function g e Fn>2 such t h a t
0(α, i/) = α?Vni/ for x,y < p.

LEMMA 6. If f e Fn, n ̂  3, / is not reducible, and &(f) = n
then FnΛ U {/} is complete.

Proof. By definition ~n e i^Λfl. By Lemma 1 there is a # e

J*»,i U {/} Π Ί?nΛ s u c ^ ̂ a t &(g) — n and ̂  is not reducible. Using
Lemma 5 with p = n we see that V« e FnΛ U {/}. It is known1 that
the set {V«, ~»} is complete. Clearly, if XgΞ F and X is complete
then Y is complete. Therefore FnΛ U {/} is complete.

In [4] Post established a necessary and sufficient condition for a
set X S JP2 to be complete. In order to extend this result to n > 2 we
use his method. This consists in constructing a finite family ^fn of
proper closed subsets of Fn satisfying the condition that every proper
closed subset of Fn is included in some set of the family. The existence
of such a finite family of maximal sets is an important property of the
lattice of all closed subsets of Fn.

By our definition FnΛ is closed. Moreover FnΛ is finite, containing

i Post [3].
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exactly nn elements; therefore the family of all closed subsets of FnΛ is
finite. For each closed S S FnΛ, n Ξ> 3, we define a set M(S) as follows:

(i) if S = FnΛ then M(S) is the set of all functions f e Fn such
that either / is reducible or &(f) is a proper subset of n;

(ii) if S Φ FnΛ9 then M(S) is the set of all functions / e Fn satis-
fying the following condition: if in / we replace zero or more argu-
ments by functions in S and then identify all arguments, the resulting
function is in S.

Finally, we take as ^//ny n ^ 3, the family of all sets M(S) where
S is any closed subset of FnΛ.

2 That this family ^//n actually has the
property mentioned above is seen from the following.

LEMMA 7. Let S is a closed subset of FnΛ, (n ̂  3). Then
(i) M(S) is closed.
(ii) M(S) is a proper subset of Fn.
(iii) M(S)ΠFnΛ = S.
(iv) If Y is a proper closed subset of Fn with Y (Ί FnΛ = S then

Proof. We establish Lemma 7 first for the case S Φ FnΛ. M(S)
is closed, since the defining property for M(S) is preserved under ex-
change or identification of variables and also under substitution. Since
S is a proper subset of Fn>1, M(S) does not contain all functions of FnΛ.
Therefore M(S) is a proper subset of Fn. S s M(S) Π FnΛ S S, hence
M(S) Π FnΛ = S. The fourth property can be verified directly from
the definition of M(S): Let Y be any proper closed subset of Fn with
Y n FnΛ = S, / e Y, and h a function obtained by replacing zero or more
arguments of / by functions in S and then identifying all arguments.
Since S g Γ a n d Y is closed, h e Y. But YΠ FnΛ £ S and h e FnΛ, so
he S. Thus every function / e Y is in M(S). Therefore Y g M(S).

We turn now to the case S — FnΛ. That M(FnΛ) is closed follows
from its definition: Both reducibility and range different from n are
preserved under exchange or identification of variables. Let/, g e M(FnΛ),
h a function obtained by replacing an argument of / by the function g.
If &(g) Φ n then &(h) φ n and h e M(FnΛ). If g is reducible, either
h is reducible or h =f, so h e M(FnΛ). Clearly M(Fn>1) is a proper sub-
set of Fn since there exist functions in Fn with full range n which are
not reducible. M(FnΛ) Π FnΛ = FΛ ι l, since every function in FW i l is
reducible. The proof of the fourth property follows from Lemma 6:

2 The corresponding family for n = 2 contains nine elements since F2,i has exactly nine
closed subsets. In [4] Post defined these nine sets individually: d, Rλf R3, Rg, C2, C3, Di,
Ai, Li. Our definition of M(S) is directly applicable to the eight proper closed subsets of
Fz.i. However, it is of interest to note that in the case S= Fn,\ the structure of M(S)
is essentially different for n > 2.
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Let Y be any proper closed subset of Fn with Y Π FnΛ = FnΛ. Clearly,
Y cannot be complete. By Lemma 6, since FnΛ £ Y, Y cannot contain
any function /, with ^ ( / ) = n, which is not reducible. Hence Y £
M(Fn>1). This completes the proof.

Thus we see that the family ^/n of all sets M(S) where S is any
closed subset of FnΛ consists of finitely many proper closed subsets of
Fn. Moreover, if X is any proper closed subset of Fn by property (iv)
of Lemma 7 I g M(Xn FnΛ) e ^ , since I n FnΛ is a closed subset of
FnΛ.

We now state the main result of the note:

THEOREM 1. A necessary and sufficient condition for a set X £ Fn,
n ^ 3, to be complete is that for every closed subset S of F1>n there is
an f e X such that f <£ M(S).3

The proof of this theorem follows directly from Lemma 7. If there
were any closed subset S of F1<n such that X £ M(S) then ϊ g Ι ( S )
since M(S) is closed and hence X would not be complete. On the other
hand if for every closed subset S of F1>n there is an / e X ^ M(S) then
ΐ ^ I ( S ) for any closed subset S of FlιU. By Lemma 7, X cannot
be a proper subset of Fn. Therefore X must be complete.

COROLLARY 1. A set X ^ Fn is complete if and only if FnΛ £ X,
n ^ 3, and there is an f e X such that &(f) = n, and f is not
reducible.

Proof. If X is complete then FnΛ £ X; and by Theorem 1, I g
M(FnΛ). Therefore there is a n / e X~M(FnΛ); i.e., / e X, &(f) = n,
and / not reducible. On the other hand if FnΛ £ X, then X is not
included in M(S) for any proper closed subset S of FnΛ. If, in addition,
there is an / e X with ^ ( / ) = n and/ not reducible, then X gΞ M(FnΛ).
Therefore by Theorem 1, X must be complete.

We now state two further results, Theorems 2 and 3,4 which follow
easily from Theorem 1;

THEOREM 2. There exist finite decision procedures to determine
3 An analogous result for n = 2 with the family ^ n replaced by the set {D3, C2, C3, Aίf Li}

was obtained by Post in [4]. It may be noted that our theorem can be sharpened to include
this result by adding the restriction: S contains the identity function and at least one
other element.

4 Yablonskiΐ in [5] states without proof Theorem 2, which he attributes to A. V.
Kuznecov. He also attributes to Kuznecov another result which he states (again without
proof) as follows: Every complete set (included in Fn) contains a finite complete subset
(i.e., a finite basis). In this form the result is rather obvious and follows directly from the
results of Post [3]; compare the first part of the proof of Corollary 2. The subsequent
remarks of Yablonskiϊ make it likely, however, that Kuznecov obtained a stronger result
established here as Corollary 2.
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whether or not any finite subset of Fn, n ^ 3, is complete and if
complete whether independent.5

This theorem depends essentially on the computable character of
our definition of the sets M(S). This means that for any f e Fn and
any closed subset S of FnΛ we can tell by a finite procedure whether
or not / e M(S). Therefore if X is a finite set, Theorem 1 provides a
finite method for determining whether or not X is complete. This part
of the proof can also be based on Corollary 1. The only thing to be
shown is that all functions belonging to FnΛ Π X can be obtained by
means of a well determined finite procedure.

If X is complete then X is independent if and only if no proper
subset of X is complete. For a finite complete X, therefore, we can
determine in finitely many steps whether or not X is independent.

THEOREM 3. For any natural number n, n^2, there is a natural
number p such that every complete and independent subset of Fn has
at most p elements.6

For n = 2 this theorem was proved by Post in [4]. For n ^ 3 it
can be derived directly from Theorem 1. Let p be the number of ele-
ments in the family ^ n of all sets M(S) for S any proper closed subset
of FnΛ. By Theorem 1, any set which contains an / 0 M(S) for each
M(S) in ^/ίn is complete. Thus any complete set with more than p
elements would contain a proper subset which is complete.

COROLLARY 2. For any number n, n ^ 2, there is a natural number
p such that every complete set included in Fn has a finite basis with
at most p element.

If I F M £ is complete, then \/n, ~n e X. Hence {\/n, ~n} can be
generated by a finite subset Y of X. Since {\/n, ~n} is complete Y must
be complete. Let Z be any complete independent subset of Y. Z is a
finite basis of X and by Theorem 3, Z has at most p elements.

By modifying the proof of this result (and in fact making the
argument independent of Theorem 1) A. Tarski has obtained the following
generalization of Theorem 3.

THEOREM 4. For any closed set X £j Fn which has a finite basis
there is a natural number q such that every independent basis of X
has at most q elements.

The method of proof is similar to the proof of Theorem 3. We
replace the family ^ n by a finite family £fx — {Lo, Llf , L^} of
closed proper subsets of X with the property that for any closed proper

5 By Post's results in [4], this theorem is also valid for n = 2 since the conditions
defining the sets A , C2, C3, Ai and L\ are finitely computable.

6 For n = 3, Yablonskiϊ in [5] found p = 18.
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subset Y of X there is a set Li9 i < q, in J9J such that Y g Li# ^
is constructed as follows. Let J5 be any finite basis of X. Since B is
finite there is a natural number & such that B gΞ Ui< ] f cF l i n. For each
A satisfying

i Λ , A^X, and InUiΛ = A

we define the set L(A) in the same manner as the sets M(S) were de-
fined for S Φ Fn>1. The proof that the sets L(A) are closed proper sets
with the required property in the lattice all closed subsets of X is
entirely analogous to the proof of Lemma 7.

For complete sets the upper bound q of Theorem 4 is much larger
than the p of Theorem 3.

For n = 2, Post in [4] computed an upper bound p = 5 in Theorem
3, and then showed that actually 4 was the least upper bound. He also
proved that every closed subset of F2 has a finite basis. Therefore,
two further questions arise for n ^ 3:

(1) does every closed system of functions in Fn have a finite basis;
(2) (proposed by A. Tarski) is there any finite procedure to deter-

mine the least upper bound for the number of elements in any inde-
pendent basis of the complete system Fn.

The solutions of these two problems have been communicated to me
by A. Ehrenfeucht. He has shown that the solution of problem (2) is
positive, while that of problem (1) is negative. Ehrenfeucht exhibits a
very simple closed subset of Fn, n ^ 3, which has no finite basis.

(Added in proof.) It has been communicated to me by Professor
C. C. Chang that Lemma 5 was obtained by Jerzy Slupecki in "A
criterion of fullness of many-valued systems of propositional logic'',
Comptes Rendues des seances de la Societe des Sciences et des lettres
de Varsovie 33, 1939, Classe III, pp 102-109. Slupecki proves the
following extension of Lemma 5: If FnΛ g X then X is complete if
and only if there is an / e l , feFUt2,f not reducible and &(f) = n.
Note that Lemma 6 and Corollary 1 extend this result by using Lemmas
1 and 7 to remove the condition feFn>2, which is necessary for the main
results of this note.
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