A THEOREM ON REGULAR MATRICES

Peter Perkins

In this paper it will be proved that if any nonnegative, square matrix P of order r is such that $P^{m}>0$ for some positive integer m, then $P^{r^{2}-2 r+2}>0$. This result has already appeared in the literature, [2], but the following is a complete and elementary proof given in detail except for one theorem of I. Schur in [1] which is stated without proof. The term regular is taken from Markov chain theory ${ }^{1}$ in which a regular chain is one whose transition matrix has the above property.

A graph G_{P} associated with any nonnegative, square matrix P of order r is a collection of r distinct points $S=\left\{s_{1}, s_{2}, \cdots, s_{r}\right\}$, some or all of which are connected by directed lines. There is a directed line (indicated pictorially by an arrow) from s_{i} to s_{j} in the graph G_{P} if and only if $p_{i j}>0$ in the matrix $P=\left(p_{i j}\right)$. A path sequence or path in G_{P} is any finite sequence of points of S (not necessarily distinct) such that there is a directed line in G_{P} from every point in the sequence to its immediate successor. The length of a path is one less than the number of occurrences of points in its sequence. A cycle is any path that begins and ends with the same point and a simple cycle is a cycle in which no point occurs twice except, of course, for the first (and last). Two cycles are distinct if their sequences are not cyclic permutations of each other. A nonnegative, square matrix P is regular if $P^{m}>0$ for some positive integer m. Likewise, a graph G_{P} associated with a nonnegative. square matrix P is regular if there exists a positive integer m such that an infinite set of paths $A_{0}, A_{1}, \cdots, A_{n}, \cdots$ can be found, the length of each path being $L_{n}=m+n, n=0,1,2, \cdots$. The usual notation $p_{i j}^{(m)}$ is used to denote the $i j$ th entry of the matrix P^{m}. In all that follows we shall consider only regular matrices P and their associated graphs G_{P}.

Some immediate consequences of these definitions and the definition of matrix multiplication are the following:
(1) There is a path $s_{k_{1}} \cdots s_{k_{m+1}}$ in G_{P} if and only if $p_{k_{1} k_{m+1}}^{(m)}>0$ in P^{m}.
(2) P is regular if and only if G_{P} is regular.
(3) There exists some path from any point in G_{P} to any point in G_{P}.
(4) For any given i and j there exists some m such that $p_{i,}^{(m)}>0$.
(5) If $P^{m}>0$ then $P^{m+n}>0, n=0,1,2, \cdots$.

Let $C=\left\{C_{1}, C_{2}, \cdots, C_{t}\right\}$ be all the distinct simple cycles of G_{P} and $\left\{c_{1}, c_{2}, \cdots, c_{t}\right\}$ be the corresponding lengths.

[^0]Lemma 1. The length of any cycle C^{*} is always of the form $c^{*}=$ $\sum_{\imath=1}^{t} a_{i} c_{i}$, where a_{i} is some nonnegative integer.

Proof. Let any cycle $C^{*}=s_{k_{1}}, s_{k_{2}}, \cdots, s_{k_{m}}$ be given $\left(k_{1}=k_{m}\right)$. Let $C^{*}=C_{1}^{*}$ and form C_{i+1}^{*} in the following manner from C_{i}^{*} : Wherever simple cycle C_{i} occurs in cycle C_{i}^{*} delete it except for its last point, thus forming the new cycle C_{i+1}^{*}. It is clear that after the t th step there will remain only a single point of the original C^{*}, which has of course zero length. If we let a_{i} be the number of times simple cycle C_{i} occurred in cycle C_{i}^{*} then the lemma follows.

Theorem 1. If G_{P} is any regular graph then it must contain a set of simple cycles whose lengths are relatively prime.

Proof. By the regularity assumption and (1) there exists a positive integer m such that cycles of lengths $L_{n}=m+n, n=0,1,2, \cdots$ can be found in G_{P}. Also, from Lemma 1, $L_{n}=\sum_{i=1}^{t} a_{i} c_{i}$ for $n=0,1,2, \cdots$, and suitable a_{i}. Let d be the common factor of the simple cycle lengths c_{i}. Then

$$
\sum_{1=1}^{t} a_{i} c_{i}=d \sum_{i=1}^{t} a_{i} c_{i}^{\prime}
$$

which could never equal $m+n, n=0,1,2, \cdots$ unless $d=1$.
We would like to find a least integer M such that for arbitrary points s_{i} and s_{j} there are paths beginning at s_{i} and ending at s_{j} and whose lengths are $L_{n}=M+n, n=0,1,2, \cdots$. If we can do this, then, by (1), we shall have also found a least integer M such that $P^{M}>0$ where P is the regular matrix associated with G_{P}.

Let us say that a path touches a given set of points if there is some point belonging to both the path and the set. Then we have

Lemma 2. Let G_{P} be a regular graph with r points, let S be a subset containing r_{k} distinct points of the graph, and let g be any point of G_{P}. Then there always exists a path from g which touches S whose length is less than or equal to $r-r_{k}$.

Proof. If $g \in S$ then the lemma is trivial. Suppose $g \notin S$. By (3) there is at least one path which starts at g and touches the set S. Let $p=g_{0}, g_{1}, \cdots, s$ be such a path of shortest length. Obviously no point of S can precede the final point s in this path sequence p. Furthermore, there can be no repeated points in p, for the deletion of any cycle (except for its last point) would produce a path from g to S shorter than path p, contrary to the choice of p. Therefore, p can have at most $r-r_{k}$ points.

We shall say that a minimal set of relatively prime integers is a set of relatively prime integers such that if one of the integers is deleted the remaining integers are no longer relatively prime. A step along a path in G_{P} is a pair of consecutive points of the path sequence.

Theorem 2. If $R=\left\{R_{1}, R_{2}, \cdots, R_{k}\right\}$ is a set of simple cycles of graph G_{P} whose lengths $\left\{r_{1}, r_{2}, \cdots, r_{k}\right\}$ form a minimal set of relatively prime integers and if s_{i} and s_{j} are arbitrary points of G_{P}, then there is always a path which starts at s_{i}, ends at s_{j}, touches each cycle of R and whose length $L \leqq(k+1) r-\sum_{i=1}^{k} r_{i}-1$.

Proof. Note that the set of distinct points belonging to a simple cycle contains a number of points exactly equal to the length of the cycle. Hence, by Lemma 2 there is a path from an arbitrary point s_{i} which touches a particular cycle R_{p} and whose length is less than or equal to $r-r_{p}$. Thus, we have the following:

from		to		
arb. pt.	s_{i}	cycle	R_{1}	$r-r_{1}$
cycle	R_{1}	$"$	R_{2}	$r-r_{2}$
\cdot		\cdot		\cdot
\cdot		\cdot		\cdot
.		\cdot		$r-r_{k}$
cycle	R_{k-1}	cycle	R_{k}	$r-1$
$"$	R_{k}	arb. pt.	s_{j}	
		TOTAL		$L \leqq(k+1) r-\sum_{i=1}^{k} r_{i}-1$.

We shall now state without proof I. Schur's theorem cited above and use it in our final theorem.

Theorem 3. (Schur) If $\left\{a_{1}, a_{2}, \cdots, a_{n}\right\}$ is a set of relatively prime integers with a_{1} the least and a_{n} the greatest, then $B=\sum_{i=1}^{n} x_{i} a_{i}$ has solutions in nonnegative integers x_{i} for any $B \geqq\left(a_{1}-1\right)\left(a_{n}-1\right)$. This is a best bound for $n=2$.

Theorem 4. If M is the least integer such that paths between any two points of G_{P} can be found whose lengths are $L_{n}=M+n, n=$ $0,1,2, \cdots$, then $M \leqq r^{2}-2 r+2$.

Proof. Given any two points s_{i} and s_{j} of G_{P} we know by Theorem 2 that there is a path from s_{i} to s_{j} touching each of the cycles $\left\{R_{1}, R_{2}, \cdots, R_{k}\right\}$ and whose length is

$$
L \leqq(k+1) r-\sum_{i=1}^{k} r_{i}-1
$$

We can, then, interject into this path the simple cycles $\left\{R_{1}, R_{2}, \cdots, R_{k}\right\}$ at the touching points, interjecting cycle R_{i} say x_{i} times. The length L of the original path has now been increased to $L+\sum_{i=1}^{k} x_{i} r_{i}=L+B$, the second part of which, by Schur's theorem, can be made to take on any integral value B where $B \geqq\left(r_{s}-1\right)\left(r_{g}-1\right)$, and $r_{s}=\min \left(r_{1}, r_{2}, \cdots, r_{k}\right)$, $r_{g}=\max \left(r_{1}, r_{2}, \cdots, r_{k}\right)$. Therefore, we have:

$$
\begin{equation*}
M \leqq L+B=(k+1) r-\sum_{i=1}^{k} r_{i}-r_{s}-r_{g}+r_{s} r_{g} \tag{7}
\end{equation*}
$$

Case I. Suppose $k=2$. Then $M \leqq 3 r-\left(r_{s}+r_{q}\right)-r_{s}-r_{g}+r_{s} r_{g}=$ $3 r-2 r_{s}-2 r_{g}+r_{s} r_{g}=3 r+\left(r_{g}-2\right)\left(r_{s}-2\right)-4$. The right side of this inequality is obviously maximum when r_{s} and r_{g} are as large as possible. Recall that $r_{g} \leqq r$ and $r_{s} \leqq r-1$. Therefore we have:

$$
M \leqq 3 r+(r-2)(r-3)-4=r^{2}-2 r+2
$$

Case II. Suppose $k \geqq 3$. The reader may wish to skip the following formidable looking, though straightforward calculations. They result in a proof that the integer M with the desired property is in fact smaller when the arbitrary graph contains a larger set of these cycles.

Since the lengths of these cycles are a minimal set of relatively prime integers, it is certainly true that

$$
\begin{aligned}
\sum_{i=1}^{k} r_{i} & \geqq r_{s}+\left[r_{s}+2\right]+\left[r_{s}+4\right]+\cdots+\left[r_{s}+2(k-2)\right]+r_{g} \\
& =(k-1) r_{s}+(k-1)(k-2)+r_{g} .
\end{aligned}
$$

Thus, with (7) we have:

$$
\begin{aligned}
M & \leqq(k+1) r-\left[(k-1) r_{s}+(k-1)(k-2)+r_{g}\right]-r_{s}-r_{g}+r_{s} r_{g} \\
& =(k+1) r-k r_{s}-2 r_{g}+r_{s} r_{g}-(k-1)(k-2) \\
& =(k+1) r+\left(r_{s}-2\right)\left(r_{g}-k\right)-2 k-(k-1)(k-2) .
\end{aligned}
$$

Since r_{g} must be larger than k, the right side again is maximum when r_{g} and r_{s} are as large as possible. But $r_{g} \leqq$ and $r_{s} \leqq r-k+2$. So

$$
\begin{aligned}
M & \leqq(k+1) r+(r-k)(r-k)-k^{2}+k-2 \\
& =r^{2}+(1-k) r+k-2 .
\end{aligned}
$$

This is easily seen to be less than $r^{2}-2 r+2$ of Case I, if $r>1$. So in any case $M \leqq r^{2}-2 r+2$.

To see that $r^{2}-2 r+2$ is the least value for an arbitrary graph of r points and thus for an arbitrary matrix of order r, we need only consider the following example in which $r=3$ and $M=5$.

As a matter of fact it can be shown for any regular matrix P of order r whose graph G_{P} contains only two cycles, one of length r and one of length $r-1$, that $P^{r^{2}-2 r+1}$ is not positive. We have, therefore, established the claim of the paper as stated in the opening paragraph.

Bibliography

1. Alfred Brauer, On a problem of partitions, Amer. J. Math. LXIV, (1942), 299-312.
2. J. C. Holladay, and R. S. Varga, On powers of nonnegative matrices, Proc. Amer. Math. Soc. Vol. IX, no. 4, (August, 1958), 631.
3. John G. Kemeny and J. Laurie Snell, Finite Markov Chains, New York, D. Van Nostrand Company, Incorporated, 1960.
4. David Rosenblatt, On the Graphs and Asymptotic Forms of Finite Boolean Relation Matrices and Stochastic Matrices, Naval Research Logistics Quarterly, Vol. IV, no. 2, (June, 1957), 151-167.

Dartmouth College

[^0]: Received November 21, 1960. I wish to thank Professor R. Z. Norman for his suggestions in the writing of this paper.
 ${ }^{1}$ This is as treated by Kemeny and Snell in [3].

