THE WAVE EQUATION FOR DIFFERENTIAL FORMS

Avner Friedman

1. The Problem. Let M be a compact C^{∞} Riemannian manifold of dimension N, having a positive definite metric. The operator $\Delta=d \delta+$ δd (see [13] for notation) maps p-forms ($0 \leqq p \leqq N$) into p-forms and it reduces, when $p=0$, to minus the Laplace-Beltrami operator. Let $c(P)$ be a C^{∞} function which is nonpositive for $P \in M$, and consider the Cauchy problem of solving the system

$$
\begin{align*}
& \left(L+\frac{\partial^{2}}{\partial t^{2}}\right) v \equiv\left(\Delta+c+\frac{\partial^{2}}{\partial t^{2}}\right) v=f(P, t) \tag{1.1}\\
& v(P, 0)=g(P), \quad \frac{\partial}{\partial t} v(P, 0)=h(P) \tag{1.2}
\end{align*}
$$

where f, g, h are C^{∞} forms of degree p. The main purpose of the present paper is to solve the system (1.1), (1.2) by the method of Fourier.

The Cauchy problem for second order self-adjoint hyperbolic equations was solved by Fourier's method by Ladyzhenskaya [8] and more recently (with some improvements) by V. A. Il'in [6]. In [8], other methods are also described, namely: finite differences, Laplace transforms, and analytic approximations using a priori inequalities. Higher order hyperbolic equations were treated by Petrowski [12], Leray [9] and Garding [5].

The Fourier method can be based on the fact that the series

$$
\begin{equation*}
\sum_{\lambda_{n}>0} \frac{\left|\varphi_{n}(x)\right|^{2}}{\lambda_{n}^{\alpha}}, \sum_{\lambda_{n}>0} \frac{\left|\partial \varphi_{n}(x) / \partial x\right|^{2}}{\lambda_{n}^{\alpha+1}}, \sum_{\lambda_{n}>0} \frac{\left|\partial^{2} \varphi_{n}(x) / \partial x^{2}\right|^{2}}{\lambda_{n}^{\alpha+2}} \tag{1.3}
\end{equation*}
$$

are uniformly convergent. Here $\left\{\varphi_{n}\right\}$ and $\left\{\lambda_{n}\right\}$ are the sequences of eigenfunctions and eigenvalues of the elliptic operator appearing in the hyperbolic equation. In [6] the convergence of (1.3) is proved for $\alpha=$ $[N / 2]+1$. Our proof of the analogous result for eigenforms is different from that of [6] and yields a better (and sharp) value for α, namely, $\alpha=N / 2+\varepsilon$ for any $\varepsilon>0$. It is based on asymptotic formulas which we derive for $\sum_{\lambda_{n} \leq \lambda}\left|\partial^{j} \varphi_{n}(x) / \partial x^{j}\right|^{2}$ as $\lambda \rightarrow \infty$.

In §2 we recall various definitions and introduce the fundamental solution for $L+\partial / \partial t$ which was constructed by Gaffney [4] in the case $c(P) \equiv 0$. In § 3 we derive some properties of the fundamental solution. These properties are used in $\S 4$ to derive the asymptotic formulas for $\sum_{\lambda_{n} \leq \lambda}\left|\partial^{j} \varphi_{n}(x) / \partial x^{j}\right|^{2}$, by which the convergence of the series in (1.3) for any $\alpha>N / 2$ follows. In § 5 we solve the problem (1.1), (1.2); first for f, g, h

[^0]infinitely differentiable and then under much weaker differentiability assumptions with regard to M, c, f, g, h. In $\S 6$ we briefly treat the Cauchy problem for the parabolic system
\[

$$
\begin{align*}
L u+\frac{\partial u}{\partial t} & =f(P, t) \tag{1.4}\\
u(P, 0) & =g(P) \tag{1.5}
\end{align*}
$$
\]

2. Preliminaries. The first one to use fundamental solutions of the heat equation in the study of the asymptotic distributions of eigenvalues and eigenfunctions was Minakshisundaram [11]. Gaffney [4] extended his method to derive asymptotic formulas for eigenvalues and eigenforms. We shall describe here some well known facts and some of the results of [4] which we will need later on. Slight modifications will be made due to the fact that in [4] $c \equiv 0$.

As is well known, there exists a sequence of eigenvalues $\left\{\lambda_{n}\right\}$ ($0 \leqq$ $\lambda_{1} \leqq \cdots \leqq \lambda_{k} \rightarrow \infty$ as $k \rightarrow \infty$) and a sequence of the corresponding eigenforms $\left\{\omega_{n}\right\}$ of degree $p(0 \leqq p \leqq N$, p is fixed throughout the paper) of L, that is, $L \omega_{n}=\lambda_{n} \omega_{n}$, such that the eigenforms form a complete orthonormal set in $L_{p}^{2}(M)$ (square integrable p-forms on M). The $\omega_{i}(p)$ are C^{∞} forms. The fundamental solution $\Theta(P, Q, t)$ of

$$
\begin{equation*}
\left(L+\frac{\partial}{\partial t}\right) \omega=0 \tag{2.1}
\end{equation*}
$$

is a double p-form which is twice differentiable in Q, once differentiable in t, satisfies (2.1) in (Q, t), $Q \in M, t>0$, (for any fixed P) and, for any $P \in M$,

$$
\begin{equation*}
\lim _{t \rightarrow 0} \int_{M} \Theta(P, Q, t) * \alpha(Q)=\alpha(P) \tag{2.2}
\end{equation*}
$$

for any $L^{2} p$-form α which is continuous at P. As in [4] one easily derives the expansion (provided Θ is known to exist)

$$
\begin{equation*}
\Theta(P, Q, t)=\sum_{i=1}^{\infty} \omega_{i}(P) \omega_{i}(Q) e^{-\lambda_{i} t} \tag{2.3}
\end{equation*}
$$

where the series on the right is pointwise convergent for all $P, Q \in M$, $t>0$ (that is, the series of each component is pointwise convergent).

A p-form α can be written locally as

$$
\alpha=\sum_{i_{1}<\ldots<i_{p}} A_{i_{1} \ldots i_{p}} d x^{i_{1}} \cdots d x^{i_{p}}=\Sigma^{\prime} A_{I} d x^{I}
$$

where' indicates summation on $I=\left(i_{1}, \cdots, i_{p}\right)$ with $i_{1}<\cdots<i_{p}$. The absolute value of α at P is given by

$$
|\alpha(P)|=\left[\Sigma^{\prime} A_{I}(x) A^{I}(x)\right]^{1 / 2}
$$

where x is the local coordinate of P. Similarly, for a double p-form having local representation $\alpha(P, Q)=\Sigma^{\prime} A_{I J}(x, y) d x^{I} d y^{J}$ where y is the local coordinate of Q, we define the absolute value by

$$
|\alpha(P, Q)|=\left[\sum_{I, J}^{\prime} A_{I J}(x, y) A^{I J}(x, y)\right]^{1 / 2}
$$

The right "half-norm" is defined by

$$
|\alpha| \mid(P)=\left[\int_{M}|\alpha(P, Q)|^{2} d V_{Q}\right]^{1 / 2}
$$

Given two double p-forms α and β, a new double p-form is defined by

$$
[\alpha, \beta]=[\alpha, \beta](P, Q)=\int_{M} \alpha(P, W) * \beta(Q, \mathrm{~W})
$$

One then verifies:

$$
\begin{equation*}
|[\alpha, \beta](P, Q)| \leqq|\alpha\|(P) \mid \beta\|(Q) \tag{2.4}
\end{equation*}
$$

The following inequalities are immediate:

$$
\begin{equation*}
|\alpha+\beta| \leqq|\alpha|+|\beta|,|\alpha+\beta||\leqq|\alpha||+|\beta| \mid \tag{2.5}
\end{equation*}
$$

where α, β are any double p-forms.
In order to construct Θ, one first constructs a parametrix. Gaffney [4] constructs a parametrix by generalizing the method of Minakshisandaram [11], making use of some calculation of Kodaira [7]. Given a point P, let $y=\left(y^{i}\right)$ be normal coordinates about P (with coordinates x^{i}). A p-form can be written as a vector X with $\binom{N}{p}$ components and then

$$
\begin{equation*}
\Delta X=-\Sigma g^{i j} \partial_{i} \partial_{j} X+\Sigma A^{i} \partial_{i} X+B X \tag{2.6}
\end{equation*}
$$

where $\left(g_{i j}\right)$ is the metric tensor, $\left(g^{i j}\right)$ is the inverse matrix, $\partial_{i}=\partial / \partial x^{i}$, and A^{i}, B are matrices depending on the $g_{i j}$ and their first two derivatives. If $X=f\left(r^{2}\right) W(x, y)$ where r is the geodesic distance from x to y (each component of X is now a vector so that W is a square matrix), then

$$
\begin{equation*}
\Delta_{y}\left[f\left(r^{2}\right) W\right]=f\left(r^{2}\right) \Delta_{y} W-f^{\prime}\left(r^{2}\right)\left\{2 N-4 K+4 r \frac{\partial}{\partial r}\right\} W-4 r^{2} f^{\prime \prime}\left(r^{2}\right) W \tag{2.7}
\end{equation*}
$$

where $K=K(x, y)$ is a C^{∞} matrix which vanishes for $y=x$.
There exists a C^{∞} matrix M satisfying

$$
\begin{equation*}
r \frac{\partial}{\partial r} M=K M(x \text { fixed }), \quad M(x, x)=I \tag{2.8}
\end{equation*}
$$

where I is the identity matrix. Using (2.8), (2.7) is simplified to

$$
\begin{equation*}
M^{-1} \Delta_{y}(f M W)=f\left(M^{-1} \Delta M\right)_{y} W-f^{\prime}\left\{2 N+4 r \frac{\partial}{\partial r}\right\} W-4 r^{2} f^{\prime \prime} W \tag{2.9}
\end{equation*}
$$

(2.9) will now be applied with

$$
f\left(r^{2}, t\right)=\frac{1}{(4 \pi t)^{N / 2}} e^{-r^{2} / 4 t} \quad(t>0 \text { fixed })
$$

Setting

$$
H_{m}=\sum_{j=0}^{m} f M U_{j} t^{j}, \quad U_{0}=I
$$

one then gets

$$
\Delta H_{\infty}=f M \sum_{j=0}^{\infty}\left\{\left(M^{-1} \Delta M\right) U_{j} t^{\jmath}+\frac{1}{4 t}\left(2 N+4 r \frac{\partial}{\partial r}\right) U_{j} t^{\jmath}-\frac{r^{2}}{4 t^{2}} U_{j} t^{\jmath}\right\} .
$$

Calculating also $\partial H_{\infty} / \partial t$, one then obtains

$$
\left(L_{y}+\frac{\partial}{\partial t}\right) H_{\infty}=f M \sum_{j=0}^{\infty}\left\{\left(M^{-1} \Delta M+c\right) U_{j}+\left(r \frac{\partial}{\partial r}+j+1\right) U_{j+1}\right\} t^{j}
$$

which leads to the successive definitions:

$$
\begin{equation*}
U_{j}=-\frac{1}{r^{j}} \int_{0}^{r}\left(M^{-1} \Delta M+c\right) U_{j-1} d r(1 \leqq j<\infty), \quad \text { where } \quad U_{0}=I \tag{2.10}
\end{equation*}
$$

We conclude that, for any $m \geqq 0$,

$$
\begin{equation*}
\left(L_{y}+\frac{\partial}{\partial t}\right) H_{m}=\frac{1}{(4 \pi)^{N / 2}} e^{-r^{2} / 4 t} t^{m-N / 2} L_{y}\left(M U_{m}\right) \tag{2.11}
\end{equation*}
$$

H_{m} is a local parametrix. Note that when P, Q vary in a sufficiently small neighborhood V (contained in one coordinate patch), H_{m} is defined and is C^{∞} in (P, Q, t) if $t>0$. Let $\eta_{\varepsilon}(r)$ be a C^{∞} function of r which is equal to 1 for $r<\varepsilon$ and is equal to 0 for $r>2 \varepsilon$. If ε is sufficiently small then the support of $\eta_{\mathrm{s}}(r) H_{m}(P, Q, t)$ (where r is the distance from P to Q) as a form in Q lies in V, provided $P \in W$, where W is a given open subset of $V, \bar{W} \subset V$. We can cover the manifold M by a finite number of sets W, call then W_{i}. Let the H_{m} corresponding to (the corresponding) V_{i} be denoted by H_{m}^{i}. If $\left\{\alpha_{i}\right\}$ is a C^{∞} partition of unity subordinate to $\left\{W_{i}\right\}$, then the support of $\alpha_{i}(P) \eta_{s}(r) H_{m}^{i}(P, Q, t)$ as a form of (P, Q) lies in $W_{i} \times V_{i}$ and hence this form is C^{∞} in (P, Q, t) if $t>0$.

The global parametrix is given by

$$
\begin{equation*}
\Theta_{m}(P, Q, t)=\Sigma \alpha_{i}(P) \eta_{\mathrm{e}}(r) H_{m}^{i}(P, Q, t) \tag{2.12}
\end{equation*}
$$

The fundamental solution should then formally be

$$
\begin{equation*}
\Theta(P, Q, t)=\Theta_{m}(P, Q, t)+\int_{0}^{t}\left[\gamma_{m}(P, U, t), \Theta_{m}(Q, U, t-\tau)\right] d \tau \tag{2.13}
\end{equation*}
$$

where γ_{m} is defined by

$$
\begin{gather*}
\gamma_{m}(P, Q, t)=\sum_{i=1}^{\infty}(-1)^{i} \delta_{m}^{i}(P, Q, t) \tag{2.14}\\
\delta_{m}^{i}(P, Q, t)=\int_{0}^{t}\left[\delta_{m}^{i-1}(P, U, \tau), \delta_{m}^{i}(Q, U, t-\tau)\right] d \tau \\
\delta_{m}^{1}=\left(L_{y}+\frac{\partial}{\partial t}\right) \Theta_{m}
\end{gather*}
$$

Using (2.4) and the inequality

$$
\begin{equation*}
\left|\int_{0}^{t} \alpha(P, Q, \tau) d \tau\right| \leqq\binom{ N}{p} \int_{0}^{t}|\alpha| d \tau \tag{2.16}
\end{equation*}
$$

Gaffney establishes the uniform convergence of the right side of (2.14) and then proves that Θ, as defined in (2.13), is a fundamental solution, for any $m \geqq 0$, written in matrix form. We shall use the matrix notation of Θ and the usual double form notation for Θ interchangably; the same for Θ_{m}.
3. Properties of the fundamental solution. We denote by $\partial_{P}^{h} \theta(P, Q, t)$ an h th derivative of Θ with respect to the coordinates of P, in a given coordinate system. If $h=\left(h_{1}, \cdots, h_{N}\right)$, set $|h|=h_{1}+\cdots+h_{N}$. From the formulas defining Θ it is clear that $\partial_{P}^{h} \Theta(P, Q, t)$ exists and is continuous (in fact C^{∞}) in $P, Q \in M$ and $t>0$. Let

$$
\begin{equation*}
\partial_{P}^{h} \Theta(P, Q, t) \sim \sum_{i=1}^{\infty} B_{i}(P, t) \omega_{i}(Q) \tag{3.1}
\end{equation*}
$$

be the Fourier expansion of $\partial_{p}^{h} \Theta$, for (P, t) fixed. Then (recalling (2.3))

$$
\begin{align*}
B_{i}(P, t) & =\int_{M} \partial_{P}^{h} \Theta(P, U, t) * \omega_{i}(U)=\partial_{P}^{h} \int_{M} \Theta(P, U, t) * \omega_{i}(U) \tag{3.2}\\
& =\partial^{h} \omega_{i}(P) e^{-\lambda_{i} t}
\end{align*}
$$

where ∂_{P}^{h} is abbreviated by ∂^{h} when there is no confusion.
By the (easily verified) Parseval's equality we get

$$
\begin{align*}
\psi(P, Q, t) & \equiv\left[\partial_{P}^{h} \Theta\left(P, U, \frac{t}{2}\right), \partial_{Q}^{h} \Theta\left(Q, U, \frac{t}{2}\right)\right] \tag{3.3}\\
& =\sum_{i=1}^{\infty} \partial_{P}^{h} \omega_{i}(P) \partial_{Q}^{h} \omega_{i}(Q) e^{-\lambda_{i} t}
\end{align*}
$$

and the series is pointwise convergent for $P, Q \in M, t>0$.

We need the following notations. Let α be a double p-form. If it is locally represented by $\Sigma^{\prime} A_{I J} d x^{I} d y^{J}$, then we set

$$
[\alpha(P, P)]=\Sigma^{\prime} A_{I}^{I}
$$

If β is also a double p-form, then we define $\left[[\alpha(P, U), \beta(P, U)]_{\sigma}\right]$ to be $[\gamma(P, P)]$ where $\gamma(P, Q)=[\alpha(P, U), \beta(Q, U)]$.

Using (2.13) and the definition of ψ in (3.3) we have

$$
\begin{align*}
& \sum_{i=1}^{\infty}\left|\partial^{h} \omega_{i}(P)\right|^{2} e^{-\lambda_{i} t}=[\psi(P, P, t)] \tag{3.4}\\
&= {\left[\left[\partial_{P}^{h} \Theta_{m}\left(P, U, \frac{t}{2}\right), \partial_{P}^{h} \Theta_{m}\left(P, U, \frac{t}{2}\right)\right]_{\sigma}\right] } \\
&+2\left[\left[\int_{0}^{t / 2}\left[\partial_{P}^{h} \gamma_{m}(P, W, \tau), \Theta_{m}\left(U, W, \frac{t}{2}-\tau\right)\right] d \tau, \partial_{P}^{h} \Theta_{m}\left(P, U, \frac{t}{2}\right)\right]_{\sigma}\right] \\
&+\left[\left[\int_{0}^{t / 2}\left[\partial_{P}^{h} \gamma_{m}(P, W, \tau), \Theta_{m}\left(U, W, \frac{t}{2}-\tau\right)\right] d \tau\right.\right. \\
&\left.\left.\int_{0}^{t / 2}\left[\partial_{P}^{h} \gamma_{m}(P, W, \tau), \Theta_{m}\left(U, W, \frac{t}{2}-\tau\right)\right] d \tau\right]_{V}\right] \\
& \equiv J_{1}(P, t)+2 J_{2}(P, t)+J_{3}(P, t) .
\end{align*}
$$

We proceed to estimate the J_{i}. We shall make use of the inequality [4]

$$
\begin{equation*}
[\alpha(P, P)] \leqq\binom{ N}{p}|\alpha(P, P)|^{2} \tag{3.5}
\end{equation*}
$$

and of the inequality [1]

$$
\begin{align*}
& \int_{0}^{t} \int_{-\infty}^{\infty} \frac{\exp \left\{-\lambda|x-z|^{2} /(t-\tau)\right\}}{(t-\tau)^{\mu}} \frac{\exp \left\{-\lambda|z-y|^{2} / \tau\right\}}{\tau^{\nu}} d z d \tau \tag{3.6}\\
& \quad \leqq \text { const. } \frac{\exp \left\{-\lambda|x-y|^{2} / t\right\}}{t^{\mu+\nu-1-N / 2}}
\end{align*}
$$

where $d z=d z^{1} \cdots d z^{N}$ and $\lambda>0, \mu<N / 2+1, \nu<N / 2+1$. The following, easily verified, inequality will also be used:

$$
\begin{align*}
& \int_{-\infty}^{\infty} \exp \left\{-\lambda|x-z|^{2} / t\right\} \exp \left\{-\lambda|z-y|^{2} / t\right\} d z \tag{3.7}\\
& \quad \leqq \text { const. } \exp \left\{-\mu|x-y|^{2} / t\right\} t^{N / 2}
\end{align*}
$$

where $d z=d z^{1} \cdots d z^{N}$ and $\lambda>\mu>0$. We shall denote by $A_{\text {, constants }}$ which (unless otherwise stated) may depend only on h and on the manifold M.

Using (3.6) one can prove by induction on i that

$$
\begin{equation*}
\left|\partial_{P}^{h} \delta_{m}^{i}(P, U, t)\right| \leqq \frac{A_{1}^{i+1}}{i!} t^{i(m+1-|n| / 2)-1-N / 2} e^{-r^{2} / 5 t} \tag{3.8}
\end{equation*}
$$

The case $i=1$ follows by (2.11), (2.12). (In deriving (3.8) we also use the elementality inequality $\lambda e^{-\alpha \lambda} \leqq$ const. $e^{-\delta \lambda}$ for all $\lambda>0$, where α, δ are constants and $\alpha>\delta \geqq 0$.) In (3.8) it is understood that t° (if it occurs) must be replaced by $-\log t$. From now on we take m such that

$$
m+1-\frac{|h|}{2}>0
$$

Using the definition (2.14) we then conclude from (3.8) that

$$
\begin{equation*}
\left|\partial_{P}^{h} \gamma_{m}(P, Q, t)\right| \leqq A_{2} e^{-r^{2} / 5 t} t^{m-\left(| | b^{\prime}+N\right) / 2} \tag{3.9}
\end{equation*}
$$

Next, from the definition of Θ_{m} one derives

$$
\begin{equation*}
\left|\partial_{P}^{h} \Theta_{m}(P, Q, t)\right| \leqq A_{3} e^{-r^{2} / 5 t} t^{-(|m|+N) / 2} \tag{3.10}
\end{equation*}
$$

Combining (3.9) and (3.10) ($h=0$) and applying (3.6), we get

$$
\begin{equation*}
\left|\int_{0}^{t / 2}\left[\partial_{P}^{h} \gamma_{m}(P, W, \tau), \Theta_{m}\left(U, W, \frac{t}{2}-\tau\right)\right] d \tau\right| \leqq A_{4} e^{-2 r^{2} / s t} t^{m+1-\left(\left|m_{1}\right|+N\right) / 2} . \tag{3.11}
\end{equation*}
$$

Using (3.10), (3.11) one easily derives, applying (3.7),

$$
\begin{equation*}
J_{2}(P, t) \leqq A_{5} t^{m+1-|n|-N / 2} \tag{3.12}
\end{equation*}
$$

Similary one gets

$$
\begin{equation*}
J_{3}(P, t) \leqq A_{6} t^{2(m+1)-\left|h_{1}\right|-N / 2} . \tag{3.13}
\end{equation*}
$$

Evaluation of $J_{1}(P, t)$. From the construction of Θ_{m} it follows that for every sufficiently small neighborhood V we may take it to be of the form

$$
\begin{equation*}
\Theta_{m}(P, U, t)=H_{m}(P, U, t)+R_{m}(P, U, t) \quad \text { for all } \quad P \in V \tag{3.14}
\end{equation*}
$$

where H_{m} is constructed in § 2 and where, for some $\alpha^{\prime}>0$,

$$
\begin{equation*}
\left|\partial_{P}^{h} R_{m}(P, U, t)\right| \leqq A_{7} e^{-\alpha^{\prime} \mid t} t^{|n|+N / 2} \leqq A_{8} t^{\zeta} \tag{3.15}
\end{equation*}
$$

for any $\zeta>0 . \quad A_{8}$ depends also on ζ. Next,

$$
\begin{equation*}
\partial_{P}^{h} H_{m}(P, U, t)=\sum_{j=0}^{m} t^{j} \sum_{|\nu|=0}^{|h|}\binom{h}{\nu} \partial_{P}^{\nu} f \partial_{P}^{h-\nu}\left(M U_{j}\right) \tag{3.16}
\end{equation*}
$$

where $\binom{h}{\nu}=\binom{h_{1}}{\nu_{1}} \cdots\binom{h_{N}}{\nu_{N}}$. It is easily seen that

$$
\begin{equation*}
\partial_{P}^{\nu} f\left(r^{2}, t\right)=\sum_{|\mu|=0}^{\nu_{0}} H_{\nu \mu}\left(\frac{y-x}{\sqrt{t}}\right) f\left(r^{2}, t\right) t^{|\nu| / 2+|\mu| / 2} \tag{3.17}
\end{equation*}
$$

where y^{i}, x^{i} are the coordinates of U, P respectively, and $H_{\nu \mu}(z)$ is a polynomial in $z=\left(z^{1}, \cdots, z^{N}\right)$ with C^{∞} coefficients which, for H_{20}, are
functions of x only. Substituting (3.17) into (3.16) and recalling that $M(P, U) \nu_{2}$ becomes $\left(\delta_{I}^{J}\right)$ at $P=U$, we obtain

$$
\begin{equation*}
\partial_{P}^{h} H_{m}(P, U, t)=H_{n 0}\left(\frac{y-x}{\sqrt{t}}\right) f\left(r^{2}, t\right) t^{-|n| / 2} Y+S_{h}(P, U, t) \tag{3.18}
\end{equation*}
$$

where Y is the matrix (δ_{I}^{J}) and

$$
\begin{equation*}
\left|S_{h}(P, U, t)\right| \leqq A_{9} e^{-r^{2} / 2 t} t^{(1-|h|-N) / 2} \tag{3.19}
\end{equation*}
$$

Combining (3.14), (3.15), (3.18), (3.19) we conclude that

$$
\begin{equation*}
\partial_{P}^{h} \Theta_{m}(P, U, t)=H_{n o}\left(\frac{y-x}{\sqrt{t}}\right) f\left(r^{2}, t\right) t^{-|n| / 2} Y+T_{h}(P, U, t) \tag{3.20}
\end{equation*}
$$

and

$$
\left|T_{h}(P, U, t)\right| \leqq A_{10} t^{(1-|h|-N) / 2}
$$

Using the definition of J_{1}, and substituting (3.20) in the part of the integral $\left[\partial_{P}^{h} \Theta_{m}(P, U, t / 2), \partial_{P}^{h} \Theta_{m}(P, U, t / 2)\right]_{\sigma}$ taken over a coordinate patch V_{0} containing $\bar{V}: y^{i}-x^{i}=\xi^{i} \sqrt{t}$, we find that

$$
\begin{equation*}
J_{1}(P, t)=\left(C_{n}(P)+B_{0}(P, t)\right) t^{-|n|-N / 2} \tag{3.21}
\end{equation*}
$$

where $C_{h}(P)$ is a continuous function of P, and $\left|B_{0}(P, t)\right| \leqq A_{11} \sqrt{t}$ for $P \in V, 0<t \leqq b$, for any $b>0$. A_{11} depends on b.

Combining the evaluation of J_{1} with (3.12), (3.13), we obtain from (3.4),

$$
\begin{equation*}
\sum_{i=1}^{\infty}\left|\partial^{h} \omega_{i}(P)\right|^{2} e^{-\lambda_{i} t}=C_{h}(P) t^{-|n|-N / 2}+D_{h}(P, t) t^{-|n|-(N-1) / 2} \tag{3.22}
\end{equation*}
$$

where $D_{h}(P, t)$ is a uniformly continuous function of $(P, t), P \in V$ and $0<t \leqq b$ for any $b>0$. Thus

$$
\begin{equation*}
\left|D_{n}(P, t)\right| \leqq A_{12} \tag{3.23}
\end{equation*}
$$

where A_{12} depends on b.
Note that the A_{i}, in particular A_{12}, are independent of P which varies in V.
4. Asymptotic formulas. To derive asymptotic formulas from the equation (3.22) we use a Tauberian theorem due to Karamata, specialized to Dirichlet series [14; p. 192]. It states:

Let $a_{k} \geqq 0$ and $0 \leqq \lambda_{1} \leqq \lambda_{2} \leqq \cdots \leqq \lambda_{n} \leqq \cdots$, and assume that the Dirichlet series $f(t)=\sum_{k=1}^{\infty} a_{k} e^{-\lambda_{k} t}$ converges for $t>0$ and satisfies

$$
f(t) \sim \frac{A}{t^{\gamma}} \text { as } t \searrow 0 \quad(\gamma \geqq 0)
$$

Then the function $\alpha(x)=\sum_{\lambda_{k} \leq x} a_{k}$ satisfies

$$
\alpha(x) \sim \frac{A x^{\gamma}}{\Gamma(\gamma+1)} \quad \text { as } \quad x \rightarrow \infty
$$

Applying it to (3.22) (using (3.23)), we get

$$
\begin{equation*}
\sum_{\lambda_{i} \leq \lambda}\left|\partial^{h} \omega_{i}(P)\right|^{2}=\frac{C_{h}(P)}{\Gamma(|h|+1+N / 2)} \lambda^{\mid h_{1}+N / 2}[1+o(1)](\lambda \rightarrow \infty) \tag{4.1}
\end{equation*}
$$

and $o(1) \rightarrow 0$ as $\lambda \rightarrow \infty$, uniformly in $P \in V$.
Let $\lambda_{1}=\cdots=\lambda_{q-1}=0, \lambda_{q}>0$. Using the asymptotic formula (4.1) we shall prove:

Theorem 1. For any h and for any $\varepsilon>0$, the series

$$
\begin{equation*}
\sum_{i=q}^{\infty} \frac{\left|\partial^{h} \omega_{i}(P)\right|^{2}}{\lambda_{i}^{N / 2+|h|+z}} \tag{4.2}
\end{equation*}
$$

is uniformly convergent in $P \in M$.

Proof. We introduce the function

$$
B(P, \lambda) \equiv \sum_{\lambda_{q} \leq \lambda_{i} \leq \lambda}\left|\partial^{h} \omega_{i}(P)\right|^{2}
$$

Then, we can write the series (4.2) in the form

$$
\int_{\lambda^{\prime}}^{\infty} \frac{d B(P, \lambda)}{\lambda^{N / 2+|n|+\varepsilon}} \text { for any } 0<\lambda^{\prime}<\lambda_{q} .
$$

Integrating by parts we get

$$
\begin{equation*}
\lim _{\mu \rightarrow \infty}\left[\frac{B(P, \lambda)}{\lambda^{N / 2+|h|+\varepsilon}}\right]_{\lambda=\lambda,}^{\lambda=\mu}-\left(\frac{N}{2}+|h|+\varepsilon\right) \int_{\lambda,}^{\infty} \frac{B(P, \lambda)}{\lambda^{N / 2+|h|+\varepsilon+1}} d \lambda . \tag{4.3}
\end{equation*}
$$

Since, by (4.1), $B(P, \lambda) \leqq A_{13} \lambda^{|h|+N / 2}$ and since $B\left(P, \lambda^{\prime}\right)=0$, the first term in (4.3) vanishes. The integral in (4.3) converges uniformly in P in view of the bound on $B(P, \lambda)$ just given. The proof of Theorem 1 is thereby completed.
5. Solution of the system (1.1), (1.2). We first derive the formal solution. Substituting
(5.1) $g(P)=\sum_{n=1}^{\infty} g_{n} \omega_{n}(P), h(P)=\sum_{n=1}^{\infty} h_{n} \omega_{n}(P), f(P, t)=\sum_{n=1}^{\infty} f_{n}(t) \omega_{n}(P)$

$$
\begin{equation*}
v(P, t)=\sum_{n=1}^{\infty} v_{n}(t) \omega_{n}(P) \tag{5.2}
\end{equation*}
$$

into (1.1), (1.2) we arrive at the equations

$$
\begin{align*}
& v_{n}^{\prime \prime}(t)+\lambda_{n} v_{n}(t)=f_{n}(t) \tag{5.3}\\
& v_{n}(0)=g_{n}, v_{n}^{\prime}(0)=h_{n} . \tag{5.4}
\end{align*}
$$

If $\lambda_{n}=0$ the solution is

$$
v_{n}(t)=g_{n}+h_{n} t+\int_{0}^{t} f(\tau)(t-\tau) d \tau
$$

If $\lambda_{n}>0$ the solution is

$$
v_{n}(t)=g_{n} \cos \sqrt{\lambda_{n}} t+\frac{h_{n}}{\sqrt{\lambda_{n}}} \sin \sqrt{\lambda_{n}} t+\frac{1}{\sqrt{\lambda_{n}}} \int_{0}^{t} f_{n}(\tau) \sin \sqrt{\lambda_{n}}(t-\tau) d \tau
$$

Hence, the formal solution of (1.1), (1.2) is

$$
\begin{align*}
& v(P, t)=\sum_{n=1}^{\infty} g_{n} \omega_{n}(P) \cos \sqrt{\lambda_{n}} t+\sum_{n=1}^{q-1} h_{n} \omega_{n}(P) t \tag{5.5}\\
& \quad+\sum_{n=q}^{\infty} \frac{h_{n}}{\sqrt{\overline{\lambda_{n}}}} \omega_{n}(P) \sin \sqrt{\lambda_{n}} t+\sum_{n=1}^{q-1} \omega_{n}(P) \int_{0}^{t} f_{n}(\tau)(t-\tau) d \tau \\
& \quad+\sum_{n=q}^{\infty} \frac{1}{\sqrt{\overline{\lambda_{n}}}} \omega_{n}(P) \int_{0}^{t} f_{n}(\tau) \sin \sqrt{\lambda_{n}}(t-\tau) d \tau .
\end{align*}
$$

To prove that the formal solution is a genuine one we observe that if $\lambda_{n}>0$

$$
\begin{equation*}
g_{n}=\int_{M} g(Q) * \omega_{n}(Q)=\frac{1}{\lambda_{n}^{m}} \int_{M} L^{m} g(Q) * \omega_{n}(Q) \tag{5.6}
\end{equation*}
$$

for any positive integer m. Applying Bessel's inequality, we get

$$
\begin{equation*}
\sum_{n=1}^{\infty} \lambda_{n}^{2 m} g_{n}^{2} \leqq \int_{M} L^{m} g(Q) * L^{m} g(Q)=\left\|L^{m} g\right\|^{2} \tag{5.7}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\sum_{n=1}^{\infty} \lambda_{n}^{2 m} h_{n}^{2} \leqq\left\|L^{m} h\right\|^{2}, \sum_{n=1}^{\infty} \lambda_{n}^{2 m}\left(f_{n}(t)\right)^{2} \leqq\left\|L^{m} f(\cdot, t)\right\|^{2} \tag{5.8}
\end{equation*}
$$

It will be enough to show that the part of the first series on the right side of (5.5), where summation is on $\lambda_{n}>0$, when differentiated term-by-term twice with respect to P is uniformly convergent in $P \in M$, $0 \leqq t \leqq b$, for any $b>0$. Now the series obtained is majorized by

$$
\Sigma\left|g_{n}\right|\left|\partial^{2} w_{n}(P)\right| \leqq \Sigma \lambda_{n}^{k}\left|g_{n}\right| \frac{\left|\partial^{2} \omega_{n}(P)\right|}{\lambda_{n}^{k}} \leqq \Sigma \lambda_{n}^{2 k} g_{n}^{2} \Sigma \frac{\left|\partial^{2} \omega_{n}(P)\right|^{2}}{\lambda_{n}^{2 k}}
$$

Hence that series is uniformly convergent if $k>N / 2+1$.
It is clear that each series in (5.5) can actually be differentiated term-by-term any number of times and the resulting series is uniformly convergent.

By a solution of (1.1), (1.2) we mean a p-form which is (a) twice continuously differentiable in (P, t) for $P \in M, t>0$ (b) once continuously differentiable in t for $P \in M, t \geqq 0$ and (c) satisfies (1.1), (1.2).

The uniqueness of the solution can be proved as for the classical wave equation. Assuming $g \equiv 0, h \equiv 0, f \equiv 0$ and using the rule $\int d u^{*} \omega=\int u^{*} \delta \omega$ one finds that if u is a solution then

$$
\frac{\partial}{\partial t} \int_{M}\left[u_{t} * u_{t}+\delta u * \delta u+d u * d u-c u * u\right]=0
$$

Since the integral vanishes for $t=0$, it vanishes for all $t>0$. Since the integrand is nonnegative, $u_{t} * u_{t} \equiv 0$, which implies $u_{t} \equiv 0$ and hence, $u \equiv 0$.

We have thus completed the proof of the following theorem.

Theorem 2. Let g, h be $C^{\infty} p$-forms and let f be a $C^{\infty} p$-form such that $\partial_{P}^{\lambda} f$ is continuous in (P, t), for any λ. Then the Cauchy problem (1.1), (1.2) has one and only one solution. The solution is a $C^{\infty} p$-form and is given by (5.5).

The assumption that the manifold M is C^{∞} can be weakened. Indeed, the theory of differential forms used above remains valid under the assumption that the metric tensor is C^{5} (Gaffney [3]; see also Friedrichs [2]). The assumptions on f, g, h can also be weakened without any modification of the preceding proof of Theorem 2.

We need the assumptions:
(A) The metric tensor $g_{i j}$ belongs to $C^{[N / 2]+2}$ and to C^{5}, and c belongs to $C^{[N / 2]+1}$ (recall that $c \leqq 0$).
(B) The form g belongs to $C^{[N / 2]+3}$ and $L^{[(N+4) / 4]} g$ belongs to C^{1}.
(C) The form h belongs to $C^{[N / 2]+2}$ and $L^{[(N+2 / 2]} h$ belongs to C^{1}.
(D) The form f and its first $[N / 2]+2 p$-derivatives are continuous for $P \in M, 0 \leqq t \leqq b$ (for any $b>0$); $L^{[(N+2) / 2]} f$ and its first p-derivatives are continuous for $P \in M, 0 \leqq t \leqq b$.

Theorem 2'. Under the assumptions (A) - (D), there exists one and only one solution of the Cauchy problem (1.1), (1.2). It is given by (5.5).

The assertion of Theorem 2^{\prime} remains valid if we further weaken the assumptions (A) - (D) by replacing the classes of continuous deriva-
tives C^{q} by classes of "strong" derivatives W_{2}^{q} (see [6]), assuming that $g_{i j} \in C^{5}$.
6. The heat equation. The method of $\S 5$ can easily be extended to solve the system (1.4), (1.5). The formal solution is

$$
\begin{equation*}
u(P, t)=\sum_{n=1}^{\infty} g_{n} \omega_{n}(P) e^{-\lambda_{n} t}+\sum_{n=1}^{\infty} \omega_{n}(P) \int_{0}^{t} f_{n}(\tau) e^{-\lambda_{n}(t-\tau)} d \tau \tag{6.1}
\end{equation*}
$$

We shall need the assumptions:
(A') $g_{i j}$ belong to $C^{[N / 2]+1}$ and to C^{5}, and e belongs to $C^{[N / 2]}$. (B^{\prime}) The form g belongs to $C^{[N / 2]+1}$ and $L^{[N / 4]} g$ belongs to C^{1}.

Theorem 3. Under the assumption (A^{\prime}), (B^{\prime}), (D) there exists a unique solution of the system (1.4), (1.5). It is given by (6.1).

Remark 1. The assumption $c \leqq 0$ is not needed for the validity of Theorem 3 since it can be achieved by a transformation $u=e^{\alpha t} u$ for any constant $\alpha \geqq c$.

Remark 2. Assuming $c \leqq 0, f \equiv 0$, we can rewrite (6.1) as an operator equation

$$
\begin{equation*}
T_{t}=H+\sum_{k=1}^{\infty} e^{-\mu_{k} t} H_{k} \tag{6.2}
\end{equation*}
$$

where $\left\{\mu_{k}\right\}$ is the sequence $\left\{\lambda_{j}\right\}$ taken without multiplicities, H_{k} is the projection into the space of eigenforms corresponding to μ_{k}, H corresponds to $\mu_{0}=0$, and T_{t} is the operator which maps g into the solution u, that is, $u(P, t)=T_{t} g(P)$. Formula (6.2) was derived, in a different way (for $c \equiv 0$) by Milgram and Rosenbloom [10].

References

1. F. G. Dressel, The fundamental solution of the parabolic equation II, Duke Math. J., 13 (1946), 61-70.
2. K. O. Friedichs, Differential forms on Riemannian manifolds, Comm. Pure Appl. Math., 8 (1955), 551-590.
3. M. P. Gaffney, Hilbert space methods in the theory of harmonic integrals, Trans. Amer. Math. Soc., 78 (1955), 426-444.
4. M. P. Gaffney, Asymptotic distributions associated with the Laplacian forms, Comm. Pure Appl. Math., 11 (1958), 535-545.
5. L. Garding, Cauchy's Problem for hyperbolic equations, University of Chicago Notes, 1957.
6. V. A. Il'in, On solving mixed problems for hyperbolic and parabolic equations, Uspehi Math. Nauk, 15, no. 2 (1960), 97-154.
7. K. Kodaira, Harmonic fields in Riemannian manifolds, generalized potential theory, Ann. of Math., 50 (1949), 587-665.
8. O. A. Ladyzhenskaya, The mixed problem for hyperbolic equations, Gosudarvstv. Izdat.

Tehn.-Teor. Lit., Moscow, 1953.
9. J. Leray, Lectures on hyperbolic equations with variable coefficients, Princeton, Inst. for Advanced Study, 1952.
10. A. N. Milgram and P. C. Rosenbloom, Harmonic forms and heat conduction I: Closed Riemannian manifolds, Proc. Nat. Acad. Sci., 37 (1951), 180-184.
11. S. Minakshisundaram, Eigenfunctions on Riemannian manifolds, J. Indian Math. Soc., 17 (1953), 159-165.
12. I. G. Petrowski, Über des Cauchysche Problem für Systeme von partiellen Differentialgleichungen, Rec. Math. (Moscow) N.S., 2 (1937), 814-868.
13. G. De Rham, Variétés Différentiables, Hermann, Paris, 1955.
14. D. Widder, The Laplace Transform, Princeton Univ. Press, Princeton, 1946.

University of Minnesota
Institute of Technology
Minneapolis, Minnesota

[^0]: Received January 13, 1961. Prepared under Contract Nonr 710 (16) (NR 044 004) between the Office of Naval Research and the University of Minnesota.

