GROUPS WHICH HAVE A FAITHFUL REPRESENTATION OF DEGREE LESS THAN ($p-1 / 2$)

Walter Feit and John G. Thompson

1. Introduction. Let G be a finite group which has a faithful representation over the complex numbers of degree n. H. F. Blichfeldt has shown that if p is a prime such that $p>(2 n+1)(n-1)$, then the Sylow p-group of G is an abelian normal subgroup of G [1]. The purpose of this paper is to prove the following refinement of Blichfeldt's result.

Theorem 1. Let p be a prime. If the finite group G has a faithful representation of degree n over the complex numbers and if $p>2 n+1$, then the Sylow p-subgroup of G is an abelian normal subgroup of G.

Using the powerful methods of the theory of modular characters which he developed, R. Brauer was able to prove Theorem 1 in case p^{2} does not divide the order of G [2]. In case G is a solvable group, N. Ito proved Theorem 1 [4]. We will use these results in our proof.

Since the group $S L(2, p)$ has a representation of degree $n=(p-1) / 2$, the inequality in Theorem 1 is the best possible.

It is easily seen that the following result is equivalent to Theorem 1.
Theorem 2. Let A, B be n by n matrices over the complex numbers. If $A^{r}=I=B^{s}$, where every prime divisor of $r s$ is strictly greater than $2 n+1$, then either $A B=B A$ or the group generated by A and B is infinite.

For any subset S of a group $G, C_{G}(S), N_{G}(S),|S|$ will mean respectively the centralizer, normalizer and number of elements in S. For any complex valued functions ζ, ξ on G we define

$$
(\zeta, \xi)_{G}=\frac{1}{|G|} \sum_{\sigma} \zeta(x) \overline{\xi(x)}
$$

and $\|\zeta\|_{G}^{2}=(\zeta, \zeta)_{G}$. Whenever it is clear from the context which group is involved, the subscript G will be omitted. $H \triangleleft G$ will mean that H is a normal subgroup of G. For any two subsets A, B of $G, A-B$ will denote the set of all elements in A which are not in B. If a subgroup of a group is the kernel of a representation, then we will also say that it is the kernel of the character of the given representation. All groups

[^0]considered are assumed to be finite.
2. Proof of Theorem 1. We will first prove the following preliminary result.

Lemma 1. Assume that the Sylow p-group P of N is a normal subgroup of N. If x is any element of N such that $C_{N}(x) \cap P=\{1\}$, then $\lambda(x)=0$ for any irreducible character λ of N which does not contain P in its kernel.

Proof. Since $\left|C_{N}(x)\right|$ is not divisible by p, it is easily seen that $C_{N}(x)$ is mapped isomorphically into $C_{N / P}(\bar{x})$, where \bar{x} denotes the image of x in N / P under the natural projection. Let μ_{1}, μ_{2}, \cdots be all the irreducible characters of N which contain P in their kernel and let $\lambda_{1}, \lambda_{2}, \cdots$ be all the other irreducible characters of N. The orthogonality relations yield that

$$
\sum_{i}\left|\mu_{i}(x)\right|^{2}=\left|C_{N / P}(\bar{x})\right| \geqq\left|C_{N}(x)\right|=\sum_{i}\left|\mu_{i}(x)\right|^{2}+\sum_{i}\left|\lambda_{i}(x)\right|^{2}
$$

This implies the required result.
From now assume that G is a counter example to Theorem 1 of minimal order. We will show that p^{2} does not divide $|G|$, then Brauer's theorem may be applied to complete the proof. The proof is given in a series of short steps.

Clearly every subgroup of G satisfies the assumption of Theorem 1, hence we have
(I) The Sylow p-group of any proper subgroup H of G is an abelian normal subgroup of H.

Let P be a fixed Sylow p-group of G. Let Z be the center of G.
(II) P is abelian.

As P has a faithful representation of degree $n<p$, each irreducible constituent of this representation has degree one. Therefore in completely reduced form, the representation of P consists of diagonal matrices. Consequently these matrices form an abelian group which is isomorphic to P.
(III) G contains no proper normal subgroup whose index in G is a power of p.

Suppose this is false. Let H be a normal subgroup of G of minimum
order such that $\left[G: H\right.$] is a power of p. Let P_{0} be a Sylow p-group of H. By (I) $P_{0} \triangleleft H$, hence $P_{0} \triangleleft G$. Thus $C_{\theta}\left(P_{0}\right) \triangleleft G$. If $C_{G}\left(P_{0}\right) \neq G$, then by (I) and (II), $P \triangleleft C_{G}\left(P_{0}\right)$, thus $P \triangleleft G$ contrary to assumption. Therefore $C_{\theta}\left(P_{0}\right)=G$. Burnside's Theorem ([3], p. 203) implies that H contains a normal p-complement which must necessarily be normal in G. The minimal nature of H now yields that p does not divide $|H|$.

If q is any prime dividing $|H|$, then it is a well known consequence of the Sylow theorems that it is possible to find a Sylow q-group Q of H such that $P \subseteq N(Q)$. Hence $P Q$ is a solvable group which satisfies the hypotheses of Theorem 1. Ito's Theorem [4] now implies that $P \triangleleft P Q$, thus $Q \subseteq N(P)$. As q was an arbitrary prime dividing $|H|$, we get that $|H|$ divides $|N(P)|$. Consequently $N(P)=G$, contrary to assumption.
(IV) Z is the unique maximal normal subgroup of $G . \quad G / Z$ is a noncyclic simple group. $|Z|$ is not divisible by p.

Let H be a maximal normal subgroup of G, hence G / H is simple. Let P_{0} be a Sylow p-group of H. Then by (I) $P_{0} \triangleleft H$, hence $P_{0} \triangleleft G$, thus $C\left(P_{0}\right) \triangleleft G$. If $C\left(P_{0}\right) \neq G$, then by (I) and (II) $P \triangleleft C\left(P_{0}\right)$, hence $P \triangleleft G$ contrary to assumption. Therefore $C\left(P_{0}\right)=G$. If $P_{0} \neq\{1\}$, then it is a simple consequence of Grün's Theorem ([3], p. 214) that G contains a proper normal subgroup whose index is a power p. This contradicts (III). Hence $P_{0}=\{1\}$ and p does not divide $|H|$.

By (III) $P H \neq G$, hence by (I) $P \triangleleft P H$. Consequently $P H=P \times H$, and $P \subseteq C(H) \triangleleft G$. If $C(H) \neq G$, then (I) yields that $P \triangleleft C(H)$. Hence once again $P \triangleleft G$, contrary to assumption. Consequently $C(H)=G$. Therefore $H \subseteq Z$. As G is not solvable, neither is G / H. Now the maximal nature of H yields that $H=Z$ and suffices to complete the proof.
(V) $P \cap x P x^{-1}=\{1\}$ unless x is in $N(P)$.

Let $D=P \cap x P x^{-1}$ be a maximal intersection of Sylow p-groups of G. Then P is not normal in $N(D)$. Hence by (I) $N(D)=G$, or $D \triangleleft G$. However (IV) now implies that $D \subseteq Z$. Hence (IV) also yields that $D=\{1\}$ as was to be shown.

Define the subset N_{0} of $N(P)$ by

$$
N_{0}=\{x \mid x \in N(P), C(x) \cap P \neq\{1\}\}
$$

Clearly $\{P, Z\} \subseteq N_{0}$.
(VI) $\quad N\left(N_{0}\right)=N(P) . \quad\left(N_{0}-Z\right) \cap x\left(N_{0}-Z\right) x^{-1}$ is empty unless $x \in N(P)$.

Clearly $N(P) \subseteq N\left(N_{0}\right)$. Since P consists of all elements in N_{0} whose
order is a power of p, it follows that $N\left(N_{0}\right) \subseteq N(P)$.
Suppose $y \in\left(N_{0}-Z\right) \cap x\left(N_{0}-Z\right) x^{-1}$. Then y and $x^{-1} y x$ are both contained in $\left(N_{0}-Z\right)$. Let $P_{0}=C(y) \cap P, P_{1}=C\left(x^{-1} y x\right) \cap P$. By assumption $P_{0} \neq\{1\} \neq P_{1}$. It follows from the definitions that P_{0} and $x P_{1} x^{-1}$ are both contained in $C(y)$. Since y is not in $Z, C(y) \neq G$. Hence (I) yields that P_{0} and $x P_{1} x^{-1}$ generate a p-group. Thus by (II) $x P_{1} x^{-1} \subseteq C\left(P_{0}\right)$. Now (V) implies that $x P_{1} x^{-1} \subseteq N(P)$. Consequently $x P_{1} x^{-1} \subseteq P$. By (V), this yields that $x \in N(P)$ as was to be shown.

From now on we will use the following notation:

$$
|P|=p^{e}, \quad|Z|=z, \quad|N(P)|=p^{e} z t .
$$

Let $\chi_{0}=1, \chi_{1}, \cdots$ be all the irreducible characters of G. Define $\alpha_{i}, \beta_{i}, b_{i}$ by

$$
\chi_{i_{\mid N(P)}}=\alpha_{i}+\beta_{i}, \quad b_{i}=\beta_{i}(1)
$$

where α_{i} is a sum of irreducible characters of $N(P)$, none of which contain P in their kernel and β_{i} is a character of $N(P)$ which contains P in its kernel.
(VII) If $i \neq 0$, then $b_{i}<\left(1 / p^{e / 2}\right) \chi_{i}(1)$.

By (VI) $\left(N_{0}-Z\right)$ has $|G| / p^{e} z t$ distinct conjugates and no two of them have any elements in common. Since χ_{i} is a class function on G, this yields that

$$
\begin{aligned}
1 & =\left\|\chi_{i}\right\|^{2}>\frac{1}{|G|} \frac{|G|}{p^{e} z t} \Sigma_{\left(N_{0}-Z\right)}\left|\chi_{i}(x)\right|^{2} \\
& =\frac{1}{p^{e} z t}\left\{-\Sigma_{Z}\left|\chi_{i}(x)\right|^{2}+\Sigma_{N_{0}}\left|\alpha_{i}(x)+\beta_{i}(x)\right|^{2}\right\}
\end{aligned}
$$

If $x \in Z$, then $\left|\chi_{i}(x)\right|^{2}=\left|\chi_{i}(1)\right|^{2}$. As $P \cong N_{0}$, we get that

$$
1>\frac{1}{p^{e} z t}\left[-\left|\chi_{i}(1)\right|^{2} z+\Sigma_{N_{0}}\left\{\left|\alpha_{i}(x)\right|^{2}+\alpha_{i}(x) \overline{\beta_{i}(x)}+\overline{\alpha_{i}(x)} \beta_{i}(x)\right\}+\Sigma_{P Z}\left|\beta_{i}(x)\right|^{2}\right]
$$

Since P is in the kernel of β_{i}, we get that $\left|\beta_{i}(x)\right|=b_{i}$ for $x \in P Z$. Lemma 1 implies that α vanishes on $N(P)-N_{0}$. Hence

$$
1>\frac{-\left|\chi_{i}(1)\right|^{2}}{p^{e} t}+\left\|\alpha_{i}\right\|_{N(P)}^{2}+\left(\alpha_{i}, \beta_{i}\right)_{N(P)}+\left(\overline{\alpha_{i}, \beta_{i}}\right)_{N(P)}+\frac{b_{i}^{2}}{t} .
$$

By definition $\left(\alpha_{i}, \beta_{i}\right)=0$, hence

$$
\frac{\left|\chi_{i}(1)\right|^{2}}{p^{e} t}>\left\|\alpha_{i}\right\|_{N(P)}^{2}-1+\frac{b_{i}^{2}}{t}
$$

By (IV) the normal subgroup generated by P is all of G, hence $\alpha_{i} \neq 0$.

Therefore $\left\|\alpha_{i}\right\|_{N(P)}^{2} \geqq 1$. This finally yields that

$$
\frac{\left|\chi_{i}(1)\right|^{2}}{p^{e} t}>\frac{b_{i}^{2}}{t}
$$

which is equivalent to the statement to be proved.
(VIII) If Γ is the character of G induced by the trivial character 1_{P} of P, then $\left(\Gamma, \chi_{i}\right)=b_{i}$.

If λ is an irreducible character of $N(P)$ which does not contain P in its kernel, then λ is not a constituent of the character of $N(P)$ induced by 1_{P}. Hence by the Frobenius reciprocity theorem $\left(\lambda_{\mid P}, 1_{P}\right)_{P}=\mathbf{0}$. Consequently $\left(\alpha_{i \mid P}, 1_{P}\right)_{P}=0$. The Frobenius reciprocity theorem now implies that

$$
\left(\chi_{i}, \Gamma\right)=\left(\chi_{i \mid P}, 1_{P}\right)_{P}=\left(\beta_{i \mid P}, 1_{P}\right)=b_{i}
$$

From now on let χ be an irreducible character of minimum degree greater than one. Define the integers a_{i} by

$$
a_{i}=\left(\chi_{i}, \chi \bar{\chi}\right) .
$$

(IX) $\quad \chi(1)-1 \leqq \sum_{i \neq 0} a_{i} b_{i}$.

By (VIII)

$$
\begin{aligned}
a_{0} b_{0}+\sum_{i \neq 0} a_{i} b_{i} & =(\Gamma, \chi \bar{\chi})=\frac{\chi(1)^{2}}{p^{e}}+\frac{1}{p^{e} z t} \Sigma_{P-(1)} z t \chi \bar{\chi}(x) \\
& =\frac{1}{p^{e}} \Sigma_{P} \chi \bar{\chi}(x)=\left\|\chi_{\mid P}\right\|_{P}^{2} .
\end{aligned}
$$

By (II), $\chi_{\mid P}$ is a sum of $\chi(1)$ linear characters of P. Consequently

$$
a_{0} b_{0}+\sum_{i \neq 0} a_{i} b_{i} \geqq \chi(1) .
$$

As χ is irreducible, $a_{0}=1$. Clearly $b_{0}=1$. This yields the desired inequality.

We will now complete the proof of Theorem 1.
It follows from (IX) that

$$
\chi(1)-1 \leqq \sum_{i \neq 0} a_{i} b_{i}
$$

(VII) yields that

$$
\sum_{i \neq 0} a_{i} b_{i}<\frac{1}{p^{e / 2}} \sum_{i \neq 0} a_{i} \chi_{i}(1) .
$$

The definition of the integers a_{i} implies that

$$
\sum_{i \neq 0} a_{i} \chi_{i}(1)=\chi(1)^{2}-1
$$

Combining these inequalities we get that

$$
\chi(1)-1<\frac{\chi(1)^{2}-1}{p^{e / 2}},
$$

or

$$
p^{e / 2}<\chi(1)+1
$$

By assumption $\chi(1)<(p-1) / 2$, hence

$$
p^{e / 2}<\chi(1)+1<p .
$$

This implies that $e<2$. Thus $e \leqq 1$.
R. Brauer's theorem [2] now yields that $P \triangleleft G$ contrary to assumption. This completes the proof of Theorem 1.

Bibliography

1. H. F. Blichfeldt, On the order of linear homogeneous groups, Trans. Amer. Math. Soc., 4 (1903), 387-397.
2. R. Brauer, On groups whose order contains a prime number to the first power II, Amer. J. of Math., 64 (1942), 421-440.
3. M. Hall, The Theory of Groups, The MacMillan Company, New York, 1959.
4. N. Ito, On a theorem of H. F. Blichfeldt, Nagoya Math. J., 5 (1954), 75-77.

Cornell University and the University of Chicago
Harvard University and the University of Chicago

[^0]: Received November 25, 1960. The first author was partly supported by O. O. R. and an NSF Grant. The second author was partly supported by the Esso Research Foundation.

