SOME CONGRUENCES FOR THE BELL POLYNOMIMALS

L. CARLITZ

1. Let a, a,, @, --+ denote indeterminates. The Bell polynomial
o.(ay, ay, a, +++) may be defined by ¢, = 1 and

— cee) = n! Eiore o e
(1'1) ¢n — ¢n(a19 a,, O, ) - Z kll(l')h]@'(z')h . o, ,

where the summation is over all nonnegative integers k; such that
ki +2k, +8k;+ «oc=m .

For references see Bell [2] and Riordan [5, p. 36]. The general coefficient

!
1.2 A kly k‘.n k3, ce0) = "
( ) n( ) kll(].!)k‘kz!(m)kz [P

is integral; this is evident from the representation

! 2k,)!  (3k,)!
Ay, by, ooy -+ -) = = :
o ) k1 2k,)!(BFs)! <o+ K, 1(21)F2 [, 1(B1)s

and the fact that the quotient

(rk)!
kl(r!)®

is integral [1, p. 57].
The coefficient A, (k. k,, k;, -+ +) resembles the multinomial coefficient

ke +ky + ks 4 -+ )!
kl, 2,k ees) — (1 2 3 .
M, o fes =) kMg -«

If p is a fixed prime it is known [3] that M(k, k., k;, --+) is prime to
p if and only if

k; = Z a;;p’ 0=a;<p),
k1+k2+k3+”'zza3’p1 (Oéaj<p)
J
and
Za’ii:a’j (j:071727‘°')-
It does not seem easy to find an analogous result for A,(k,k, k,, ««+).
For some special results see § 3 below.
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1216 L. CARLITZ

Bell [2] showed that
1.3) $pp=0a3+a, (mod p)

and also determined the residues (mod p) of ¢y, Ppis, b,15. He also
obtained an expression for the residue of ¢,., as a determinant of order
r + 1. Generalizing (1.3) we shall show first that

(1.4) or = +af T e oy (mod p)
and that
(15) (l)pn(alv Ay A5y o+ ') = ¢n(¢py Xypy Qgyyy *° ’) (mOd p)

for all » = 1. Note that on the right the first argument in ¢, is ¢, and
not «,.

2. From (1.1) we get the generating function

t'ﬂ
n!

- ) \
(2.1) Z—o¢” = exp<af1t + a2_;_ +a 4. > )

3!

Indeed this may be taken as the definition of ¢,. Differentiating with
respect to ¢ we get

n=0 ! n=0 /n! r=0 !
so that
(2°2) ¢n+1 = = (;:L>¢n—rar+l .
Since the binomial coefficient
(p ;’ ) =0 (mod p)

unless p|r and

on\ _ (n

<m> = <r> (mod p)
it follows from (2.2) that

_w(n
(2.3) Pont1 = TZ:) <,’.>¢p(n—r)apr+l (mod p) .

If for brevity we put

A(t) = g at|r!,
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so that
S, ¢ Lo = exp A(t) ,
ni

n=0

it is easily seen by repeated differentiation and by (1.3) that
(2.4 Z ¢,,+,, = {(4'@®)” + AP} (mod p) .

(By the statement

S48 =35t (mod m) ,
where A,, B, are polynomials with integral coefficients, is meant the
system of congruences

An = Bn (mOd m) (n = 07 17 2; "')) .

Hurwitz [4, p. 345] has proved the lemma that if a,,a, a, -++ are
arbitrary integers then
k
('n—l )

The proof holds without change when the a, are indeterminates. Since

0 (mod £!) .

=S .t
A (t) = "Z=o an+1 n' ’

it follows easily from Hurwitz’s lemma that

Ay = (@ + 5 twnor) = od
=\"\ T2 n+1;!_ = & (m D).

Thus (2.4) becomes
oo t -]
which yields

(2.5) buis = (@ + @)y + 5 (1) trrbay (mod 7).

In particular, for n = 0, (2.5) reduces to Bell’s congruence (1.3).
Similarly

Ppr1 = (a’f + ap)al + ap = o + g,
Ppiz = G + 20,00 + Ay, ,
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and so on.

We remark that (2.5) is equivalent to Bell’s congruence involving a
determinant [2, p.267, formula (6.5)]. Also for s=a, =a, = +.., (2.5)
reduces to
(2.5) @, ip(8) = (s? + s)a,(s) + s Z,l <Z,’L>a’n—r(s)

= a’n+1(s) + span(s) (mOd p) 9
where [5, p. 76]
@a(8) = ¢uls, s, -+ 0) = 3. S(n, k)s*
and S(n, k) denotes the Stirling number of the second kind. The con-

gruence (2.5)" is due to Touchard [6].
If in (2.5) we replace n by pn we get

(2'6) ¢p(n+1) = ¢p¢np + 21 <:.L>ap(r+1)¢p(n—r) (mOd p)

for all n =0,1,2,.--. Thus ¢,, is congruent to a polynomial in ¢,,
Oy, Oy, + -+ alone. Moreover, comparing (2.6) with (2.2), it is clear that

(2.7 Pon = Pulbpy Aoy Wy *+°) (mod p) ,

so that we have proved (1.5).
Replacing n by pn in (2.7) we get

Dprn = Ppu(Ppy Qapy Wspy < 0) = Pul(Ph + A2y Ay, Wy, =00
In particular for n =1
P2 = b+ = A’ + al + @, .
Again replacing n by pn we get
Potn = Puldhz + A, Wy, Ay, =2 0)
so that in particular
b=+ =al’ +ab + ah + ay.

Continuing in this way we see that

(2°8) ¢p"'n = ¢n(¢p"‘y azp"" a3p7‘7 b ') (mOd p)
and
(2.9) P =P+ ap=al +ay e oy, (mod p) .

We have therefore proved (1.4) as well as the more general congruence
(2.8).
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Since

¢ =0+ a,,
b, = a; + 3o, + ay ,
b, = a; + 6ada, + 4“1“3 =+ 3a3 + a,,
it follows from (2.8) that
¢2p7' = ¢)§;r =+ azp" ’
(2.10) (1)31,7' = ¢’:r + 3¢)pra'21,r -+ Ay
¢'4p7‘ = QS;T + 6¢;7'a2p7' + 4¢p"'a,3p7' + 3a§p7‘ -+ &ypr
and so on.
We note also that (2.3) implies
¢p"+1 = ¢’p7a'1 + afp"+1 ’
(2°11) ¢’2p?‘+1 = ¢2p"al + 2¢p"ap"+l ‘I‘ azp7'+1 ’
Poprir = Psprty + 3¢2pra'p7'+1 + 3¢p7a'2pr+1 + OQlypryy

3. By means of (1.5) we can obtain certain congruences for the
coefficient A(k,, k,, ks, -++). Indeed by (1.1) and (1.3)

3.1) Dby Aapy Aspy =+ *)
= Z An(kl? kzy ksy b ')(Off + ap)k1a§3a§3 M (mOd p) >

where the summation is over nonnegative k; such that
k,+ 2k, + 8k + -+ =m.
The right member of (8.1) is equal to

(3.2) 5, Al F i +-) 3 (B )apmragatiady -
On the other hand
(3.3) bon = 2. Apalls, hay oy -+ )03 - -,
summed over
(3.4) hy + 2h, + 8y + +++ =, .
It follows from (1.5) that
Apu(hyy by by, +o2) =0 (mod p)

except possibly when

(3.5) k; =0 (G>1,p+7).
When this condition is satisfied (3.4) becomes
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hy + p(hy + 2hyy + -+) = P10 ;
consequently k2, = pk, and (3.3) becomes
¢pn = Z Apn(pku 0’ *c 0’ hp) i .)af"laﬁpa;‘zp MY

We have therefore proved the following result:

THEOREM 1. The coefficient A,,(hy, ks, by, -« <) occurring in (3.3) is
certainly divisible by p unless (3.5) is satisfied and h, = pk,. If these
conditions are satisfied then

Azm(hlr hzr h3, b ') = (;ﬁ;)An(kl - hpr hpy thy b ') (mOd p) .
If we make use of (1.4) we obtain the following simpler

THEOREM 2. Let
h, + 2hy; + 8hy + --+ =" .
Then the coefficient A, r(hy, by, By, « <) ts divistble by p except when
hi=0 (@+35), h=p,
for some j, im which case
Ay by bgy -+2) =11 (mod p) .

Using (2.10) and (2.11) we can obtain additional results. For example
take

hy + 2hy + 3hy + -« = 2p" .

Then A,(hy, hs, by, +++) is divisible by p unless (i) all 2, =0 (s # 5),
h;=1o0r2; (i) all b, =0 (s #%,75), hy =h; =1. In case (i) A=1, in
case (ii) A = 2 (mod p).

For » = 3p™ the corresponding results are more complicated.

4. We turn now to the polynomial C,(a,;, a,, o, -++), the cycle in-
dicator of the symmetric group [5, p. 68]:

(401) Cn = Cn(a’u &y Oy = » ') = (]5”(0.’1, &y, 2!a3y e ')
R | S ﬂ)"‘(_“_z " ﬁ.)
Ekllkzlk3--~ <1 2)<3 ’
where the summation is over all nonnegative k; such that
ky+ 2k, + 8k, + «-- =mn.

It is convenient to define C, = 1.
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Put

n!

“.2) Calls, Koy By ++2) = Tellegley - 1912585 <2

the general coefficient of C,. Clearly c,(k,, k., ks, +++) is integral and
indeed a multiple of A.(k, k,, ks, +--) .
From (4.1) we get the generating function

n=0 n!

“3) GO =361 —exp (alt + —;-aztz + %asta + ) :

For brevity put

ct) = 5 atr

n=1

Differentiating (4.3) with respect to ¢t we get
G'(t) = C'(1)G() ,

that is

oo n oo L tn

S Conrtr = S @t” 3, C

n=0 n r=0 n=0
This implies
(4'4) n+1 Z —'—a —r+1Cr ’

r=0 9!

so that
{4.5) C.. = a,C, (mod 1) .

By repeated differentiation of (4.3) we get (compare (2.4))

L_G(t) = {(C'®) + CP(ENG() (mod p) .

(4.6) o

Now since

C0) =S o, €70 =3, (0 +p — Diayte,

it is clear that
Cc'Oy=a;, C?¢=-—a, (mod p) ;

at the last step we have used Wilson’s theorem. Thus (4.6) becomes
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> Cn+p—"— = (@} —a,) > C'n—' ’
n=0 ni n=0 n!

so that

4.7) Coip = (@8 — a,)C, (mod p) .
In particular we have

(4.8) C,=af —«, (mod p)

and

(4.9) Crirp = (@F — a,))’C, (mod p)

We remark that for p = 38,5,7, (4.8) is in agreement with the explicit
values of C, given in [5, p. 69].
By (4.9) with n = 0 we find that the coefficient

crp(kv ks, ks, - - )=0 (mod p)

unless all k; except k, and k, vanish and %, is a multiple of p; in this
case we have

(4.10) (Pl 0, -+, 0, Ky, - -2) = (=1)(]) (mod p) .
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