
SOME CONGRUENCES FOR THE BELL POLYNOMIMALS

L. CARLITZ

1. Let alf a2, a3, denote indeterminates. The Bell polynomial
φn(alf a2, a3, •) may be defined by φ0 = 1 and

(1.1) Φn = *,(«,, «,, α., •) = Σ ^Σ

where the summation is over all nonnegative integers kά such that

kλ + 2k2 + 3fc3 + == n .

For references see Bell [2] and Riordan [5, p. 36]. The general coefficient

(1.2) A n { h , K k t , • ) = fcJ

is integral; this is evident from the representation

)! (3fe,)!

and the fact that the quotient

(rk)l
kl(r\y

is integral [1, p. 57],
The coefficient An(klf k2, fc3, •) resembles the multinomial coefficient

M(klf K fcs •) = ~k + & + fc + )!
kλ\k2\kz

If p is a fixed p r i m e i t is k n o w n [3] t h a t M(k19 k2, k3, •••) is prime t o
p if and only if

ki = Σ aijPj (0 ^ α i y < p) ,

&! + fc2 + fc3 + = Σ ajPj (0 ^ αy < p)
i

and

It does not seem easy to find an analogous result for An(klfk2,kz, •••).
For some special results see § 3 below.
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1216 L. CARLITZ

Bell [2] showed that

(1.3) φp = a» + ap (modi?)

and also determined the residues (mod p) of φp+1, φ p + 2 , φp+3. He also
obtained an expression for the residue of φp+r as a determinant of order
r + 1. Generalizing (1.3) we shall show first that

(1.4) φpr = af + cΰΓ1 + +apr (mod p)

and that

(1.5) φpnitti, a2J α3, . .) = φn(φp, ατ21>, aw •) (mod p)

for all n ^ 1. Note that on the right the first argument in φn is φp and
not tfp.

2. From (1.1) we get the generating function

(2.1)

Indeed this may be taken as the definition of φn. Differentiating with
respect to t we get

oo J.n oo J.n oo J.r

Σ Φ»+1-V - Σ Φn-tγ Σ «r+1-V '
« = 0 72,1 n=0 ^ ! r=0 r\

so that

(2.2) ψM+1 =

Since the binomial coefficient

unless p | r and

it follows from (2.2) that

(2.3) φpn+1 = Σ (Jf)φ, ( ,_ r ) α w + X (mod p)

If for brevity we put

A(t) = Σ ccrtηrl ,
l
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SO t h a t

n=0 n\

it is easily seen by repeated differentiation and by (1.3) that

(2.4) Σ Φ*+*%f ~ WW)* + A™(t)}eAW (mod p) .

(By the statement

Σ ^n—r = Σ Bn—r (mod m) ,
w=o 72Ί Λ = O 72<!

where An, Bn are polynomials with integral coefficients, is meant the
system of congruences

An = Bn (mod ra) (n = 0,1, 2, .. •)) .

Hurwitz [4, p. 345] has proved the lemma that if alt α2, α3, are
arbitrary integers then

The proof holds without change when the an are indeterminates. Since

A\t) = Σ α.+rζ-

it follows easily from Hurwitz's lemma that

(A\tγ - (ax + Σ ^ + 1 ^ - ) P = αf (mod p) .

Thus (2.4) becomes

Σ Φn+i.-V = («ϊ + Σ «r+ -V) Σ Φ»-V 'w=o 72,1 \ r=o 7*J / Λ = o 72,1

which yields

(2.5) φn+p = (α? + αp)φΛ + Σ (J^απ-A-,. (mod p) .

In particular, for n = 0, (2.5) reduces to Bell's congruence (1.3).
Similarly

ΦP+I = (α? + ap)ax + αp + 1 Ξ φpaλ + αp + 1 ,

Φ P + a = ψpφ2 + 2ap+1ax + ap+2 ,
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and so on.
We remark that (2.5) is equivalent to Bell's congruence involving a

determinant [2, p. 267, formula (6.5)]. Also for s = ax = a2 — •••, (2.5)
reduces to

±(2.5)' an+p(s) = (sp + s)an(s) + s

= an+1(s) + s*an(s) (mod p) ,

where [5, p. 76]

and S(n, k) denotes the Stirling number of the second kind. The con-
gruence (2.5)' is due to Touchard [6],

If in (2.5) we replace n by pn we get

n ίn\
(2.6) Φpίn + l) = ΦpΦnp + Σ ( r )<Xp{r+l)Φpln-r) (mθd p)

for all n = 0,1, 2, . Thus φpn is congruent to a polynomial in φp,
(Xϊpy <*3P, alone. Moreover, comparing (2.6) with (2.2), it is clear that

(2.7) φpn = φn{φpy a2pj a,p, . . . ) (mod p) ,

so that we have proved (1.5).
Replacing n by pn in (2.7) we get

Φp*n = ΦpniΦp, &2p, M3p, •) = φn(φ* + Cίp<L, (X2p2, (X&, •) .

In particular for n = 1

a%

Again replacing ^ by p ^ we get

Φ Λ = φw(Φ 2̂

so that in particular

af

Continuing in this way we see that

(2.8) φprn = φn(ΦPr, a2pr, a,pr, . •) (mod p)

and

(2.9) φpr Ξ φpl_x + apr = af + a*r~~1 + + <v (mod p) .

We have therefore proved (1.4) as well as the more general congruence
(2.8).
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Since

φ2 = a\ + a2 ,

φs = a\ + Zaxa2 + a3,

φ4 = oίί + §a\a2 + Aaxaz + Sal + a, ,

it follows from (2.8) that

!

'Φ*pr = ΦJr + OΓ2pr ,

φ3pr = φjr + 3φpr0:2l)r + α8pr ,

04p» = ΦPr + 6φjrαr2pr + 4φprα3pr + 3aτjpr + α:42,r ,

and so on.
We note also that (2.3) implies

(2.11)

ί! + Sφ2pr(Xpr+1

3 By means of (1.5) we can obtain certain congruences for the
coefficient A(k19k2fk39 •••)• Indeed by (1.1) and (1.3)

(3.1) φn{φpja2p,a3pj . . . )

= Σ An{kly K K ' OK + ap)^a\ιa\ι... (mod p) ,

where the summation is over nonnegative fcy such that

kx + 2fc2 + 3fc3 + = n .

The right member of (3.1) is equal to

(Ί 9\ V A (h h h . . . 1 V I λ \fYp

(kj) r=0 \ '

On the other hand

(3.3) φpn = Σ Apnihi, h2, ht

summed over

(3.4) K + 2h2 + 3hz + = pn .

It follows from (1.5) that

Apn(h19 h2, h3, •) = 0 (mod p)

except possibly when

(3.5) hj = 0 (j>ifP + j) m

When this condition is satisfied (3.4) becomes
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K + p(hp + 2h2p + •) = pn

consequently hx — pkλ and (3.3) becomes

ΦPn = Σ Apn(pklf 0, . . , 0, h9, .)a

We have therefore proved the following result:

THEOREM 1. The coefficient Apn(hlf h2, h3, ••) occurring in (3.3) is
certainly divisible by p unless (3.5) is satisfied and hx = pkγ. If these
conditions are satisfied then

ίk \
Apn(hlf h2, hZi •) = (, * )An{k1 — hp, hp, h2p, •) (mod p) .

\'i/p/

If we make use of (1.4) we obtain the following simpler

THEOREM 2. Let

hx + 2h2 + Sh3 + = pr .

Then the coefficient Apr(hlf h2, h3, «••) is divisible by p except when

h = 0 (iΦ o) , hj = ps ,

for some j y in which case

Apr(h19 h2J hz, •) = 1 (mod p) .

Using (2.10) and (2.11) we can obtain additional results. For example
take

hx + 2h2 + 3&3 + = 2pr .

Then A2pr{hlf h2, h3, •••) is divisible by p unless ( i ) all hs = 0 (s Φ j),
hj = 1 or 2; (ii) all hs = 0 (s Φ i, j), hi = hj = 1. In case (i) A Ξ 1, in
case (ii) 4 Ξ 2 (mod p).

For ^ = Spr the corresponding results are more complicated.

4 We turn now to the polynomial Cn(alf a2, az, •••), the cycle in-
dicator of the symmetric group [5, p. 68]:

(4.1) Cn = Cn(alf a2y a3, •) = φn(a19 a2, 2laz, •)

^ kλ\k2\kz... \ l / \ 2 / \ 3

where the summation is over all nonnegative fey such that

kλ + 2k2 + 3fc3 + = n .

It is convenient to define Co = 1.
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Put

the general coefficient of CH. Clearly cn(klfk2,k3, •••) is integral and

indeed a multiple of An(k19 k2, k3, •) .

From (4.1) we get the generat ing function

(4.3) G(t) = Σ < ? „ — = exp (axt + — α 2 ί 2 + — α 3 ί 8 +
n=0 tl! V 2 3

For brevity put

Differentiating (4.3) with respect to t we get

G'(t) - C'(

that is

oo j.<n oo oo j.n

w=0 72,J r=0 Λ = 0 7l!

This implies

(4.4) uw + 1 - 2,

so that

(4.5) Cn+1 = aλCn (mod n) .

By repeated differentiation of (4.3) we get (compare (2.4))

(4.6) - ^ - G ( ί ) = {(C'(t))p + C(p)(ί)}G(ί) (mod p) .

Now since

Cf(ί) = ^P cc tn C ^pHt) — y1 ίti 4- x) lVct
n=0 n=0 92,|

it is clear that

(C'(ί))'sαϊ, C ^ ί ί j s - α , (modp);

at the last step we have used Wilson's theorem. Thus (4.6) becomes



1222 L. CARLITZ

Σ Cn+P^- = (αϊ - a,) Σ cΛ-,
w=o n\ «=o nl

so that

(4.7) C n + P = (α? - αp)Cn (mod p) .

In particular we have

(4.8) Cp = a\ - ap (mod p)

and

(4.9) Cn+rp = (α? - α p) rCn (mod p)

We remark that for p = 3, 5, 7, (4.8) is in agreement with the explicit
values of Cn given in [5, p. 69].

By (4.9) with n = 0 we find that the coefficient

cr,(fci, fc2, &3, •) Ξ 0 (mod p)

unless all fc, except kλ and fcp vanish and kL is a multiple of p; in this
case we have

(4.10) crp(pk, 0, , 0, kp, •) = (-1)*'(£) (mod p) ..
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