SIMPLE PATHS ON CONVEX POLYHEDRA

Thomas A Brown

1. Introduction. In problems of linear programming, one sometimes wants to find all vertices of a given convex polyhedron. An algorithm for finding all such vertices will often define a path which passes from vertex to vertex along the edges of the polyhedron in question [1], and thus it is natural to ask, as Balinski does in [2], whether or not one can always find a path along the edges of a convex polyhedron which visits each vertex once and only once. This question has been answered in the negative independently by Grünbaum and Motzkin [5] and the author [3]. The purpose of the present paper is to present a modification of the results of [3], and answer certain questions which were asked by Grünbaum and Motzkin.

Figure 1.
Received September 5, 1960 in revised form October 20, 1960.
2. Path numbers and path lengths. For any graph G with $n(G)$ nodes we let $m(G)$ denote the number of disjoint simple paths required to cover all vertices of G, and let $p(G)$ denote the maximum number of nodes contained in a simple path on G. We call $m(G)$ the "path number" of G and $p(G)$ the "path length" of G. If G can be represented as the edges and vertices of a convex polyhedron in three-dimensional space, we say that G is " 3 -polyhedral". Now let

$$
\begin{aligned}
p(n) & =\min \{p(G): \quad G \text { is } 3 \text {-polyhedral and } n(G)=n\} \\
m(n) & =\max \{m(G): G \text { is } 3 \text {-polyhedral and } n(G)=n\}
\end{aligned}
$$

We will show, by means of a class of examples, that $m(n) \geqq$ $(n-10) / 3$ and $p(n) \leqq(2 n+13) / 3$ for all n.
3. The graphs G_{k}. Let the graph $G_{k}(k \geqq 3)$ have $3 k+2$ vertices, which we will denote by a, b_{i}, c_{i}, d_{i}, and $e(i$ ranging from 1 to k). Let the edges of G_{k} be $\left(a, b_{i}\right),\left(a, c_{i}\right),\left(e, d_{i}\right),\left(e, c_{i}\right),\left(c_{i}, c_{i+1}\right),\left(c_{i}, b_{i}\right),\left(c_{i}, d_{i}\right)$, (d_{i}, c_{i+1}), and (b_{i}, c_{i+1}). Thus a and e are of valence $2 k$, the c_{i} are of valence 8, and the b_{i} and d_{i} are of valence 3. See Figure 1 for a drawing of $G_{4} . \quad G_{k}$ can be represented as a triangulation of the plane, and it is easy to show by induction [4] that if $n(G) \geqq 4$ and G can be

Figure 2.
represented as a triangulation of the plane, then G can be represented as the edges and vertices of a convex polyhedron in 3 -space. Alternatively, one could apply the "Fundamentalsatz der Konvexen Typen" of E. Steinitz [6]. But in the case of G_{k} it is really unnecessary to use any such general results, for G_{k} is clearly the graph of the polyhedron obtained by appropriately truncating a bipyramid whose base is a regular $2 k$-gon (Figure 2 illustrates how the top half of a bipyramid should be truncated in obtaining G_{4}).

If we color a, c_{i}, and e black and let b_{i} and d_{i} be white (where i ranges from 1 to k), then G_{k} consists of $n+2$ black nodes and $2 n$ white ones. Since each white node has only black neighbors, each simple path in G_{k} must contain at most one more white node than black. Thus at least $2 k-(k+2)=k-2$ disjoint simple paths are required to visit every node of G_{k}. The following set of paths shows that the pathnumber of G_{k} is, in fact, exactly $k-2$:

$$
\begin{aligned}
& b_{1} \rightarrow c_{1} \rightarrow d_{1} \rightarrow e \rightarrow d_{2} \rightarrow c_{2} \rightarrow b_{2} \rightarrow a \rightarrow b_{3} \rightarrow c_{3} \rightarrow d_{3} \\
& b_{i} \rightarrow c_{i} \rightarrow d_{i} \quad(i=4, \cdots, k) .
\end{aligned}
$$

Similarly, since no simple path can contain more than $k+2$ black vertices, it follows that no simple path can contain more than

$$
(k+2)+(k+3)=2 k+5
$$

vertices. It is easy to construct simple paths containing exactly this many vertices, and thus the path-length of G_{k} is $2 k+5$. Since $n\left(G_{k}\right)=$ $3 k+2$, it follows that if $n \equiv 2(\bmod 3)$,

$$
\begin{aligned}
& p(n) \leqq \frac{2 n+11}{3} \\
& m(n) \geqq \frac{n-8}{3}
\end{aligned}
$$

To get bounds for $n \equiv 1(\bmod 3)$, consider the graph G_{k}^{-}obtained by omitting one white vertex from G_{k}. For $n \equiv 0(\bmod 3)$, consider the graph G_{k}^{+}obtained by adjoining to G_{k} a vertex connected to c_{1}, d_{1}, and
e. It follows that

$$
\left.\left.\left.\begin{array}{ll}
p(n) \leqq \frac{2 n+13}{3} \\
m(n) \geqq \frac{n-10}{3}
\end{array}\right\} n \equiv 1(\bmod 3) \leqq \frac{2 n+13}{3}\right) \quad \begin{array}{ll}
& m(n) \geqq \frac{n-9}{3}
\end{array}\right\} n \equiv 0(\bmod 3)
$$

Grünbaum and Motzkin asked if $n(G)=p(G)$ provided all of the faces of the polyhedron representing G were triangles, and our examples
show that this is not the case. They further conjectured that

$$
\max _{n(G)=n} m(G) \cdot p(G) \geqq n^{1+\gamma} \quad \text { for some } \gamma>0
$$

Our examples show that

$$
\max _{n(G)=n} m(G) \cdot p(G) \geqq \frac{2 n^{2}-7 n 130}{9}
$$

Thus for any $\gamma<1$ we can find an N_{γ} such that

$$
\max _{n(G)=n} m(G) \cdot p(G)>n^{1+\gamma} \quad \text { for all } n \geqq N_{\gamma} .
$$

Furthermore, this result is the best possible in a sense; for since $m(G)<n$ and $p(G) \leqq n$, it follows that

$$
\max _{n(G)=n} m(G) \cdot p(G)<n^{2} \quad \text { for all } n
$$

I want to thank Dr. Michel Balinski for drawing this subject to my attention, and the referee for making me aware of the paper by Grünbaum and Motzkin.

Bibliography

1. Michel L. Balinski, An Algorithm for Finding All Vertices of Convex Polyhedral Sets, Doctoral Dissertation, Princeton University, June 1959.
2. -, On the graph structure of convex polyhedra in n-space. Pacific J. Math., (to appear).
3. T. A. Brown, Hamiltonian Paths on Convex Polyhedra, unpublished note, the RAND Corporation, August, 1960.
4. -, The Representation of Planar Graphs by Convex Polyhedra, unpublished note, the RAND Corporation, August, 1960.
5. B. Grünbaum, and T. S. Motzkin, Longest Simple Paths in Polyhedral Graphs, (to appear).
6. E. Steinitz, and H. Rademacher, Vorlesungen über die Theorie des Polyeder, Springer, Berlin. 1934.

The RAND Corporation and Harvard University

