A THEOREM ON THE ACTION OF SO(3)

D. Montgomery and C. T. Yang

1. Introduction. We shall use notions given in [1]. Let G be a compact Lie group acting on a locally compact Hausdorff space X. We denote by $F(G, X)$ the set of stationary points of G in X, that is, $F(G, X)=\{x \in X \mid G x=x\}$. If G is a cyclic group generated by $g \in G$, $F(G, X)$ is also written $F(g, X)$.

Whenever $x \in X$, we call $G x=\{g x \mid g \in G\}$ the orbit of x and $G_{x}=$ $\{g \in G \mid g x=x\}$ the isotropy group at x. By a principal orbit we mean an orbit $G x$ such that G_{x} is minimal. By an exceptional orbit we mean an orbit of maximal dimension which is not a principal orbit. By a singular orbit we mean an orbit not of maximal dimension. Denote by U the union of all the principal orbits, by D the union of all the exceptional orbits and by B the union of all the singular orbits. Then U, D and B are all G-invariant and they are mutually disjoint. Moreover, $X=U \cup D \cup B$ and both B and $D \cup B$ are closed in X.

Denote by X^{*} the orbit space X / G and by π the natural projection of X onto X^{*}. Whenever $A \subset X, A^{*}$ denotes the image πA. If X is a connected cohomology n-manifold over $Z[1 ; \mathrm{p} .9]$, where Z denotes the ring of integers, then the following results are known.
(1.1) U^{*} is connected $[1 ; \mathrm{p} .122]$ so that whenever $x, y \in U, G_{x}$ and G_{y} are conjugate.
(1.2) $\operatorname{dim}_{z} B^{*} \leqq \operatorname{dim}_{z} U^{*}-1$ so that if r is the dimension of principal orbits and B_{k} is the union of all the k-dimensional singular orbits $(k<r)$, then $\operatorname{dim}_{z} B_{k} \leqq n-r+k-1[1 ; \mathrm{p} .118]$. Hence $\operatorname{dim}_{z} B \leqq n-2$.

Denote by E^{n+1} the euclidean $(n+1)$-space, by S^{n} the unit n-sphere in E^{n+1} and by $\mathrm{SO}(3)$ the rotation group of E^{3}. In this note G is to be SO(3) and X is to be a compact cohomology n-manifold over Z with $H^{*}(X ; Z)=H^{*}\left(S^{n} ; Z\right)$.

Let us first observe the following examples.

1. Let $G=\mathrm{SO}(3)$ act trivially on $X=S^{1}$. (Here we have $n=1$.)
2. Let $G=\mathrm{SO}(3)$ act on $E^{n+1}=E^{5} \times E^{n-4}(n \geqq 4)$ by the definition

$$
g(x, y)=(g x, y)
$$

where the action of G on E^{5} is an irreducible orthogonal action. Then G acts on $X=S^{n}$ and in this action, the 2-dimensional orbits are all

[^0]projective planes, $F(G, X)$ is an $(n-5)$-sphere and for every $x \in U, G_{x}$ is a dihedral group of order 4.
3. Let $G=\mathrm{SO}(3)$ act on $E^{n+1}=E^{3} \times E^{3} \times E^{n-5}(n \geqq 5)$ by the definition
$$
g(x, y, z)=(g x, g y, z)
$$
where the action on E^{3} is the familiar one. Then G acts on $X=S^{n}$ and in this action, the 2 -dimensional orbits are all 2 -spheres, $F(G, X)$ is an ($n-6$)-sphere and for every $x \in U, G_{x}$ is the identity group.

In all three examples, $D=\phi$ and $\operatorname{dim} B=n-2$. The orbit space X^{*} is X itself in the first example and it is a closed $(n-3)$-cell with boundary B^{*} in the other two examples.

The purpose of this note is to prove that if X is a compact cohomology n-manifold over Z with $H^{*}(X ; Z)=H^{*}\left(S^{n} ; Z\right)$, then every action of $G=\mathrm{SO}(3)$ on X with $\operatorname{dim}_{z} B=n-2$ strongly resembles one of these examples. In fact, we shall prove the following:

Theorem. Let X be a compact cohomology n-manifold over Z with $H^{*}(X ; Z)=H^{*}\left(S^{n} ; Z\right)$ and let $G=\operatorname{SO}(3)$ act on X with $\operatorname{dim}_{z} B=n-2$. Then $D=\phi$ and one of the following occurs.

1. $n=1$ and G acts trivially on X.
2. $n \geqq 4$ and for every $x \in U, G_{x}$ is a dihedral group of order 4. Moreover, the 2-dimensional ordits are all projective planes and $F(G, X)$ is a compact cohomology $(n-5)$-manifold over Z_{2} with $H^{*}\left(F(G, X) ; Z_{2}\right)=$ $H^{*}\left(S^{n-5} ; Z_{2}\right)$, where Z_{2} denotes the prime field of characteristic 2.
3. $n \geqq 5$ and for every $x \in U, G_{x}$ is the identity group. Moreover, the 2-dimensional orbits are all 2-spheres and $F(G, X)$ is a compact cohomology $(n-6)$-manifold over Z_{2} with $H^{*}\left(F(G, X) ; Z_{2}\right)=H^{*}\left(S^{n-6} ; Z_{2}\right)$.

In the last two cases, B^{*} is a compact cohomology ($n-4$)-manifold over Z with $H^{*}\left(B^{*} ; Z\right)=H^{*}\left(S^{n-4} ; Z\right)$ and X^{*} is a compact Hausdorff space which is cohomologically trivial over Z and such that $X^{*}-B^{*}$ is a cohomology ($n-3$)-manifold over Z.

The proof of this theorem is given in the next three sections.
2. The set D. Let X be a connected cohomology n-manifold over Z and let $G=\mathrm{SO}(3)$ act on X with $\operatorname{dim}_{z} B=n-2$. If G acts trivially on X, it is clear that $n=1$ and that $D=\phi$. Hence we shall assume that the action of G on X is nontrivial.

Since G is a 3-dimensional simple group which has no 2-dimensional
subgroup, it follows that
(2.1) G acts effectively on X and no orbit is 1-dimensional.
(2.2) Principal orbits are 3-dimensional so that for every $x \in U \cup D$, G_{x} is finite.

By (2.1), principal orbits are either 2-dimensional or 3-dimensional. If principal orbits are 2 -dimensional, then $B=F(G, X)$ so that, by (1.2), $\operatorname{dim}_{z} B<n-2$, contrary to our assumption.
(2.3) Denote by B_{2} the union of all the 2-dimensional orbits. Then $\operatorname{dim}_{z} B_{2}=n-2$ so that $B_{2} \neq \phi$ and $n \geqq 4$. Moreover, whenever $G z$ is a 2-dimensional orbit, G_{z} is either a circle group or the normalizer of a circle group and accordingly Gz is either a 2 -sphere or a projective plane.

By (2.2), $n=\operatorname{dim}_{z} X \geqq \operatorname{dim}_{z} U \geqq 3$. We infer that $B_{2} \neq \phi$ so that $n-2=\operatorname{dim}_{z} B_{2} \geqq 2$. Hence $n \geqq 4$.
(2.4) Let $x \in U$. Whenever $y \in D$, there is a $g \in G$ such that G_{x} is a normal subgroup of $G_{g y}$.

Let S be a connected slice at y [1; p. 105]. Then S is a connected cohomology $(n-3)$-manifold over Z and G_{y} acts on S. As seen in [7], S is also a connected cohomology ($n-3$)-manifold over Z_{p} for every prime p, where Z_{p} denotes the prime field of characteristic p.

Let $x^{\prime} \in S \cap U$. We claim that $G_{x^{\prime}}$ is a normal subgroup of G_{y}. Since G_{y} is a finite group (see (2.2)) and $G_{x^{\prime}}$ is a subgroup of G_{y}, there exists a neighborhood N of the identity in G such that $N^{-1} G_{x^{\prime}} N \cap G_{y}=$ $G_{x^{\prime}}$. Let V be a neighborhood of x^{\prime} such that whenever $x^{\prime \prime} \in V$, $h G_{x^{\prime}}, h^{-1} \subset G_{x^{\prime}}$ for some $h \in N$. (For the existence of V, see [4; p. 216].) Then for every $x^{\prime \prime} \in V \cap S, G_{x^{\prime \prime}} \subset N^{-1} G_{x^{\prime}} N \cap G_{y}=G_{x^{\prime}}$ so that $G_{x^{\prime \prime}}=G_{x^{\prime}}$. Therefore $G_{x^{\prime}}$ leaves every point of $V \cap S$ fixed. Since S is a connected cohomology ($n-3$)-manifold over Z_{p} for every prime p, it follows from Newman's theorem [6] that $G_{x^{\prime}}$ leaves every point of S fixed. Hence $G_{x^{\prime}}=\left\{g \in G_{y} \mid g x^{\prime \prime}=x^{\prime \prime}\right.$ for all $\left.x^{\prime \prime} \in S\right\}$, which is clearly a normal subgroup of G_{y}. By (1.1), G_{x} and $G_{x^{\prime}}$ are conjugate so that our assertion follows.
(2.5) Let $x \in U$. Whenever $G z$ is 2-dimensional, there is a $g \in G$ such that $G_{x} \subset G_{g z}$. Hence G_{x} is either cyclic or dihedral and it is cyclic if there is a 2-dimensional orbit which is a 2-sphere.

For the rest of this section, we assume that

$$
H_{c}^{*}(X ; Z)=H^{*}\left(S^{n} ; Z\right)
$$

Under this assumption, $H_{c}^{0}(X ; Z)=H^{0}\left(S^{n} ; Z\right)=Z$. Hence X is compact.
(2.6) Let T be a circle group in G. Then $F(T, X)$ is a compact cohomology $(n-4)$-manifold over Z with $H^{*}(F(T, X) ; Z)=H^{*}\left(S^{n-4} ; Z\right)$.

Since $F(T, X)$ intersects every singular orbit at one or two points, $\operatorname{dim}_{z} F(T, X)=\operatorname{dim}_{z} B^{*}=n-4$. Hence our assertion follows [$1 ;$ Chapters IV and V].
(2.7) Let $g \in G$ be of order p^{α}, where p is a prime and α is a positive integer. If $g \in G_{x}$ for some $x \in U \cup D$, then $F(g, X)$ is a compact cohomology $(n-2)$-manifold over Z_{p} with $H^{*}\left(F(g, X) ; Z_{p}\right)=H^{*}\left(S^{n-2} ; Z_{p}\right)$. Hence $F(g, X)$ intersects every principal orbit.

It is known that X is also a compact cohomology n-manifold over Z_{p} with $H^{*}\left(X ; Z_{p}\right)=H^{*}\left(S^{n} ; Z_{p}\right)$. Since G is connected, g preserves the orientation of X. It follows that for some $r<n$ of the same parity, $F(g, X)$ is a compact cohomology r-manifold over Z_{p} with $H^{*}\left(F(g, X) ; Z_{p}\right)=$ $H^{*}\left(S^{r} ; Z_{p}\right)$ [1; Chapters IV and V].

Let T be the circle group in G containing g. By (2.6), $F(g, X) \cap$ $B=F(T, X)$ is a compact cohomology $(n-4)$-manifold over Z_{p}. Since, by hypothesis, there exists a point of $U \cup D$ contained in $F(g, X)$, $F(g, X) \cap B$ is properly contained in $F(g, X)$ so that $r=n-2$. Hence $F(g, X)$ is a compact cohomology ($n-2$)-manifold over Z_{p} with $H^{*}\left(F(g, X) ; Z_{p}\right)=H^{*}\left(S^{n-2} ; Z_{p}\right)$.

Since $\operatorname{dim}_{Z} D^{*}<n-3[1 ; \mathrm{p} .121]$ and since $F(g, X)$ intersects every exceptional orbit at a set of dimension $\leqq 1$, it follows that $\operatorname{dim}_{z_{p}}(F(g, X) \cap$ $D) \leqq \operatorname{dim}_{z}(F(g, X) \cap D)<n-2$. But we have $\operatorname{dim}_{z_{p}} F(g, X)=n-2$ and $\operatorname{dim}_{z_{p}}(F(g, X) \cap B)=n-4$. Therefore $F(g, X) \cap U \neq \phi$. Hence, by (1.1), $F(g, X)$ intersects every principal orbit.
(2.8) Let $x \in U$ and $y \in D$. Let p be a prime and let α be a positive integer. If G_{y} has an element of order p^{x}, so does G_{x}.

Let $g \in G_{y}$ be of order p^{α}. By (2.7), $F(g, X) \cap G x \neq \phi$ so that for some $h \in G, h x \in F(g, X)$. Hence $h^{-1} g h$ is an element of G_{x} of order p^{x}.

$$
\begin{equation*}
D=\phi \tag{2.9}
\end{equation*}
$$

Suppose that $D \neq \phi$. Let $x \in U$ and $y \in D$ be such that G_{x} is a proper normal subgroup of G_{y} (see (2.4)). We first claim that G_{y} is dihedral.

It is well known that a finite subgroup of $\mathrm{SO}(3)$ is either cyclic or dihedral or tetrahedral or octahedral or icosahedral. If G_{y} is cyclic, so is G_{x}. Let the order of G_{y} be $p_{1}^{s_{1}} \cdots p_{k}^{s_{k}}$, where $p_{1}, \cdots p_{k}$ are distinct primes and s_{1}, \cdots, s_{k} are positive integers. Then for every $i=1, \cdots, k$,
 an element of order $p_{i}^{p_{i}}$. Hence G_{x} is of order $\geqq p_{1}^{s_{1}^{s}} \cdots p_{k}^{g_{k}}$ and consequently $G_{x}=G_{y}$, contrary to the fact that G_{x} is a proper subgroup of G_{ν}. If G_{v} is either tetrahedral or octahedral or icosahedral, then
by (2.8), G_{x} contains a subgroup of order 2 and a subgroup of order 3. In case G_{x} is octahedral, it also contains a subgroup of order 4. Hence G_{x}, as a normal subgroup of G_{y}, is equal to G_{y}, contrary to our hypothesis. This proves that G_{v} is dihedral.

Now the order of G_{y} is even. It follows from (2.7) that whenever $g \in G$ is of order $2, F(g, X)$ is a compact cohomology ($n-2$)-manifold over Z_{2} with $H^{*}\left(F(g, X) ; Z_{2}\right)=H^{*}\left(S^{n-2} ; Z_{2}\right)$. Let H be a dihedral subgroup of G of order 4. By Borel's theorem [1; p. 175], $F(H, X)$ is a compact cohomology $(n-3)$-manifold over Z_{2} with $H^{*}\left(F(H, X) ; Z_{2}\right)=H^{*}\left(S^{n-3} ; Z_{2}\right)$. Since $\operatorname{dim}_{Z_{2}}(F(H, X) \cap(D \cup B)) \leqq \operatorname{dim}_{Z}(F(H, X) \cap(D \cup B))<n-3$, it follows that $F(H, X) \cap U$ is not null. Hence we may assume that $H \subset G_{x} \subset G_{y}$.

Let T be the circle group in G such that its normalizer contains G_{y}. Then $H \cap T \subset G_{x} \cap T \subset G_{y} \cap T$ so that $G_{y} \cap T$ is a cyclic group and $G_{x} \cap T$ is a proper subgroup of $G_{y} \cap T$ of even order. Let the order of $G_{y} \cap T$ be $2^{s^{s}} p_{1}^{s_{1}} \cdots p_{k}^{s_{k}^{k}}$, where p_{1}, \cdots, p_{k} are distinct odd primes and $s_{0}, s_{1}, \cdots, s_{k}$ are positive integers. By (2.8), there are $k+1$ elements $g_{0}, g_{1}, \cdots, g_{k}$ of G_{x} of order $2^{s_{0}}, p_{1}^{s_{1}}, \cdots, p_{k}^{s_{k}}$ respectively. Since p_{1}, \cdots, p_{k} are odd, $g_{1} \cdots, g_{k}$ are in $G_{x} \cap T$. Therefore no element of $G_{x} \cap T$ is of order $2^{s_{0}}$. But this implies that $s_{0}>1$ so that $g_{0} \in G_{x} \cap T$. Hence we have arrived at a contradiction.
3. Case that the 2-dimensional orbits are all projective planes.

Let X be a compact cohomology n-manifold over Z with $H^{*}(X ; Z)=$ $H^{*}\left(S^{n} ; Z\right)$ and let $G=\mathrm{SO}(3)$ act nontrivially on X with $\operatorname{dim}_{Z} B=n-2$. Throughout this section, we assume that for some $x \in U, G_{x}$ is of even order.
(3.1) Let H be a dihedral subgroup of G of order 4 and let M be the normalizer of H that is the octahedral group containing H. Then $F(H, X)$ is a compact cohomology ($n-3$)-manifold over Z_{2} with $H^{*}\left(F(H, X) ; Z_{2}\right)=H^{*}\left(S^{n-3} ; Z_{2}\right)$ and $K=M / H$ is isomorphic to the symmetric group of three elements and acts on $F(H, X)$. Moreover, the natural map of $F(H, X) / K$ into X^{*} is onto.

By (2.7), for every $g \in G$ of order $2, F(g, X)$ is a compact cohomology ($n-2$)-manifold over Z_{2} with $H^{*}\left(F(g, X) ; Z_{2}\right)=H^{*}\left(S^{n-2} ; Z_{2}\right)$. It follows from Borel's theorem [1; p. 175] that $F(H, X)$ is a compact cohomology $(n-3)$-manifold over Z_{2} with $H^{*}\left(F(H, X) ; Z_{2}\right)=H^{*}\left(S^{n-3} ; Z_{2}\right)$.

Clearly $K=M / H$ is isomorphic to the symmetric group of three elements and the action of M on $F(H, X)$ induces an action of K on $F(H, X)$. Moreover, there is a natural map $f: F(H, X) / K \rightarrow X^{*}$.

Let $z \in F(H, X) \cap B$. If $G z=z$, then $F(H, X) \cap G z=z$. If $G z$ is 2-dimensional, then G_{z} contains H so that by (2.3) it is the normalizer of a circle group. Therefore any two isomorphic dihedral subgroups of
G_{z} are conjugate in G_{z}. Let g be an element of G with $g z \in F(H, X)$. It is clear that $g^{-1} H g \subset g^{-1} G_{q z} g=G_{z}$ so that for some $h \in G_{z}, h^{-1} g^{-1} H g h=$ H or $g h \in M$. Hence $g z=g h z \in M z$. This proves that $F(H, X) \cap G z \subset M z$.

From these results it follows that $F(H, X)$ intersects every singular orbit at a finite set. [This and one or two facts mentioned below can be seen by examining the standard action of $S O(3)$ on S^{2} or on P^{2} (viewed as the acts of lines through the region in E^{3}).] Therefore, by (1.2), $\operatorname{dim}_{z}(F(H, X) \cap B) \leqq \operatorname{dim}_{z} B^{*}<n-3$. As a consequence of this result and that $D=\phi$ (see (2.9)), we have $F(H, X) \cap U \neq \phi$. Hence $F(H, X)$ intersects every principal orbit and consequently it intersects every orbit. This proves that the natural map $f: F(H, X) / K \rightarrow X^{*}$ is onto.
(3.2) Every 2-dimensional orbit is a projective plane and intersects $F(H, X)$ at exactly three points.

Let $G z$ be a 2 -dimensional orbit. By (3.1), $F(H, X)$ intersects $G z$ so that we may assume that $z \in F(H, X)$. Since G_{z} contains H, it follows from (2.3) that G_{z} is the normalizer of a circle group. Hence $G z$ is a projective plane.

In the proof of (3.1) we have shown that $F(H, X) \cap G z \subset M z$. But it is clear that $M z \subset F(H, X) \cap G z$. Hence

$$
F(H, X) \cap G z=M z=M /\left(M \cap G_{z}\right) .
$$

Since M is of order 24 and $M \cap G_{z}$ is of order 8, it follows that $F(H, X) \cap$ $G z$ contains exactly three points.
(3.3) B^{*} is a compact cohomology ($n-4$)-manifold over Z with $H^{*}\left(B^{*} ; Z\right)=H^{*}\left(S^{n-4} ; Z\right)$.

Let T be a circle group in G. It is clear that $F(T, X) \subset B$. Since, by (2.1) and (3.2), every singular orbit is either a point or a projective plane, it follows that $F(T, X)$ intersects every singular orbit at exactly one point. Therefore the natural projection π maps $F(T, X)$ homeomorphically onto B^{*} and hence our assertion follows from (2.6).
(3.4) Let $Y=F(H, X)-F(G, X)$. Then $\bar{Y}=F(H, X)$ and every point of Y has a neighborhood V in Y which is a cohomology $(n-3)$ manifold over Z and such that the isotropy group is constant on $V-B$.

Let T be a circle group whose normalizer N contains H. Then $F(H, X) \supset F(N, X)=F(T, X) \supset F(G, X)$. Since $F(H, X)$ is a compact ($n-3$)-manifold over Z_{2} (see (3.1)) and since $F(T, X)$ is a compact ($n-4$)-manifold over Z_{2} (see (2.6)), it follows that the closure of $F(H, X)$ $F(T, X)$ is $F(H, X)$. Hence $\bar{Y}=F(H, X)$.

Let $x \in Y \cap U$ and let S be a slice at x. Then S is a cohomology ($n-3$)-manifold over Z. Moreover, $G_{y}=G_{x}$ for all $y \in S$ so that $S \subset Y$. Since both S and Y are cohomology ($n-3$)-manifolds over Z_{2}, it follows that S is open in Y. Hence our assertion follows by taking S as V.

Let $z \in Y \cap B$ and let S be a slice at z. Then S is a cohomology ($n-2$)-manifold over Z and G_{z} is the normalizer of a circle group T acting on S. Whenever $x \in S \cap U, G_{x} \cap T$ is a finite cyclic group in T and the index of $G_{x} \cap T$ in G_{x} is 2 because G_{x} in a dihedral subgroup of G_{z}. Since the order of G_{x} is independent of $x \in S \cap U$, so is the order of $G_{x} \cap T$. Hence $G_{x} \cap T$ is independent of $x \in S \cap U$ so that for $x \in F(H, S) \cap U$.

$$
G_{x} S=H\left(G_{x} \cap T\right) S=H S=S
$$

and

$$
F\left(G_{x}, S\right)=F\left(G_{x} /\left(G_{x} \cap T\right), S\right)=F(H /(H \cap T), S)=F(H, S)
$$

Let Q be a neighborhood of the identity of G such that $Q^{-1} T Q \cap G_{z}=$ T. If $g y \in F(H, X)$ with $g \in Q$ and $y \in S$, then $g^{-1} H g \subset g^{-1} G_{g y} g=G_{y} \subset G_{z}$ so that $g^{-1}(H \cap T) g \subset Q^{-1} T Q \cap G_{z}=T$. Therefore $g^{-1} T g=T$ or $g \in G_{z}$. Hence $g y \in G_{z} y \subset S$. This proves that $F(H, S)=F(H, X) \cap S=$ $F(H, X) \cap Q S$ is open in $F(H, X)$ so that it is a cohomology $(n-3)$ manifold over Z_{2}.

Since S is a cohomology ($n-2$)-manifold over Z with

$$
F(H /(H \cap T), S)=F(H, S)
$$

it follows that $F(H, S)$ is also a cohomology $(n-3)$-manifold over Z. (If Z_{2} acts on a cohomology m manifold over Z with $F\left(Z_{2}\right)$ being a cohomology ($m-1$)-manifold over Z_{2}, then $F\left(Z_{2}\right)$ is also a cohomology ($m-1$)-manifold over Z.) That G_{x} is constant on $F(H, S) \cap U$ is a direct consequence of the fact that $F\left(G_{x}, S\right)=F(H, S)$ for all $x \in F(H, S) \cap U$.
(3.5) Y is a connected cohomology ($n-3$)-manifold over Z and the isotropy group is constant on $Y-B$.

By (3.4), Y is a cohomology $(n-3)$-manifold over Z. Let T be a circle group in G whose normalizer N contains H. Then $F(H, X) \supset F(N, X)=$ $F(T, X) \supset F(G, X)$. From (2.6) and (3.1), it is easily seen that $F(H, X)$ $F(T, X)$ has exactly two components with $F(T, X)$ as their common boundary. By (2.3), there exists a point z of $F(T, X)$ such that $G z$ is a projective plane so that $z \in F(T, X)-F(G, X)$. Hence Y is connected.

Let $x \in Y \cap U$. Then $F\left(G_{x}, X\right) \cap Y$ is clearly closed in Y. But, by (3.4), it is also open in Y. Hence, by the connectedness of Y, $F\left(G_{x}, X\right) \cap Y=Y$.
(3.6) Whenever $x \in F(H, X) \cap U, G_{x}=H$. Hence for every $x \in U$, G_{x} is a dihedral group of order 4.

Let x be a point of $F(H, X) \cap U$. Since $H \subset G_{x}, F(H, X) \supset F\left(G_{x}, X\right)$. But, by (3.4) and (3.5), $F(H, X) \subset F\left(G_{x}, X\right)$. Hence $F(H, X)=F\left(G_{x}, X\right)$.

It is clear that $G^{\prime}=\{g \in G \mid g F(H, X)=F(H, X)\}$ is a closed subgroup of G containing M. Since $F(H, X)=F\left(G_{x}, X\right), G_{x}$ is a normal subgroup of G^{\prime} so that G^{\prime} is contained in the normalizer of G_{x}. But, by (2.5), G_{x} is dihedral and H is the only dihedral group whose normalizer contains M. It follows that $G_{x}=H$. Hence, by (1.1), the isotropy group at any point of U is a dihedral group of order 4.
(3.7) Whenever $x \in F(H, X), F(H, X) \cap G x=K x$ which contains one point or three points or six points according as $G x$ is 0-dimensional or 2-dimensional or 3-dimensional.

If $G x$ is 0 -dimensional, it is clear that $F(H, X) \cap G x=x=K x$. If $G x$ is 2-dimensional, we have shown in the proof of (3.2) that $F(H, X) \cap G x=M x=K x$ which contains exactly three points.

Now let $G x$ be 3 -dimensional. If g is an element of G with $g x \in F(H, X)$, then, by (3.6), $g H g^{-1}=g G_{x} g^{-1}=G_{g x}=H$ so that $g \in M$. Therefore $F(H, X) \cap G x \subset M x$. But it is obvious that $M x \subset F(H, X) \cap G x$. Hence

$$
F(H, X) \cap G x=M x=K x
$$

which clearly contains six points.
From this result, it is easily seen that the natural map f : $F(H, X) / K \rightarrow X^{*}$ is a homeomorphism onto.
(3.8) Whenever $a \in K$ is of order 2, we abbreviate $F(a, F(H, X))$ by $F(a)$. Then $F(a) \subset B$ and $F(\alpha)$ is a compact cohomology $(n-4)$ manifold over Z with $H^{*}(F(a) ; Z)=H^{*}\left(S^{n-4} ; Z\right)$. Moreover, $F(H, X)-$ $F(a)$ contains exactly two components V and V^{\prime} with $a V=V^{\prime}$.

Whenever $x \in F(H, X) \cap U, G_{x}=H$ (see (3.6)) so that $x \notin F(a)$. Hence $F(a) \subset B$. Let $a=\alpha^{\prime} H$ with a^{\prime} being of order 4 and let T be the circle group containing a^{\prime}. Then $F(a)=F(T, X)$ and hence the first part follows from (2.6). Now $F(H, X)$ is a compact cohomology $(n-3)$ manifold over Z_{2} with $H^{*}\left(F(H, X) ; Z_{2}\right)=H^{*}\left(S^{n-3} ; Z_{2}\right)$ and $F(a)=$ $F(a, F(H, X))$ is a compact cohomology $(n-4)$-manifold over Z_{2}. The second part follows.
(3.9) $F(H, X)-B$ contains exactly six components and whenever P is a component of $F(H, X)-B, K P=F(H, X)-B$ and the natural
projection π maps P homeomorphically onto U^{*}.

Let P be a component of $F(H, X)-B$. Since the isotropy group is constant on P (see (3.5)), the natural projection π defines a local homeomorphism $\pi^{\prime}: P \rightarrow U^{*}$. By (3.7), for every $x^{*} \in U^{*}, \pi^{\prime-1} x^{*}$ contains no more than six points. We infer that π^{\prime} is closed so that $\pi^{\prime} P$ is both open and closed in U^{*}. Hence, by the connectedness of $U^{*}, \pi^{\prime} P=U^{*}$.

Let Q be a second component of $F(H, X)-B$ and let $y \in Q$. Then there is a point $x \in P$ such that $\pi x=\pi y$. Therefore, by (3.7), for some $k \in K, y=k x$ so that $Q=k P$. Hence $K P=F(H, X)-B$.

Let $x \in P$. By (3.8), x and $a x$ belong to different components of $F(H, X)-F(a) \supset F(H, X)-B$. Therefore $a P$ is a component of $F(H, X)-B$ different from P. Similarly, $b P$ and $c P$ are components of $F(H, X)-B$ different from P.

If $a P, b P$ and $c P$ are not distinct, say $b P=c P$, then $\{k \in K \mid k P=P\}$ is of order 3 so that P and $a P=b P=c P$ are the only two components of $F(H, X)-B$. Now $F(H, Z)-B=F(H, Z)-(F(a) \cup F(b) \cup F(c))$ and $F(a), F(b), F(c)$ are manifold over Z of dimension one less than the dimension of $F(H)$. Hence $F(H, X) \cap B=F(a) \cap F(b) \cap F(c)=F(G, X)$. This is impossible, because the intersection of $F(H, X)$ and a 2-dimensional orbit is contained in B but not contained in $F(G, X)$. From this result it follows that $P, a P, b P, c P$ are distinct components of $F(H, X)-B$. Hence $P, a P, b P, c P, b c P, c b P$ are all the distinct components of $F(H, X)-B$.

Now it is clear that for every $x^{*} \in U^{*}, \pi^{\prime-1} x^{*}$ contains exactly one point. Hence π^{\prime} is a homeomorphism.
(3.10) Let P be a component of $F(H, X)-B$. Then the map of $G / H \times P$ onto U defined by $(g H, x) \rightarrow g x$ is a homeomorphsim onto. Hence U is homeomorphic to the topological product of a principal orbit and U^{*}.

This is an immediate consequence of (3.5) and (3.9).
(3.11) The closure of $F(a)-F(G, X)$ is equal to $F(a)$. Hence $\operatorname{dim}_{Z_{2}} F(G, X) \leqq \operatorname{dim}_{Z} F(G, X) \leqq n-5$.

Suppose that the closure of $F(\alpha)-F(G, X)$ is not equal to $F(a)$. Then there is a point z of $F(G, X)$ and a neighborhood A of z such that $A \cap F(a)=A \cap F(G, X)$. Since $A \cap F(G, X) \subset F(b)$ and since, by (3.8), both $A \cap F(G, X)$ and $F(b)$ are cohomology ($n-4$)-manifolds over Z, $A \cap F(G, X)$ is open in $F(b)$ so that we may assume that $A \cap F(G, X)=$ $A \cap F(b)$. Similarly, we may assume that $A \cap F(G, X)=A \cap_{-} F(c)$. Hence $A \cap F(G, X)=A \cap F(H, X) \cap B$. By (3.1) and (3.8), we. may
also assume that $K A=A$ and $A \cap(F(H, X)-F(\alpha))$ contains exactly two components Q and Q^{\prime}. Now both Q and Q^{\prime} are contained in $F(H, X)-B$ and $a Q=b Q=Q^{\prime}$ Therefore $a b Q=Q$ so that $a b$ maps the component of $F(H, X)-B$ containing Q into itself, contrary to (3.9).

Since, by (3.8), $F(a)$ is a cohomology $(n-4)$-manifold over Z and since $F(G, X)$ is nowhere dense in $F(a)$, it follows that $\operatorname{dim}_{z_{2}} F(G, X) \leqq$ $\operatorname{dim}_{z} F(G, X) \leqq n-5$.
(3.12) If $n=4$, then $F(G, X)$ is null.

This is a direct consequence of (3.11).
(3.13) Let T be a circle group in G, let N be the normalizer of T and let A be an orbit. If A is a projective plane, then A / T is an arc and N / T acts trivially on A / T so that $F(N / T, A / T)=A / T=A / N$. If A is 3-dimensional, then A / T is a 2-sphere and A / N is a closed 2-cell so that $F(N / T, A / T)$ is a circle.

If A is a projective plane, it is clear that A / T is an arc and N / T acts trivially on A / T. Therefore $A / N=A / T=F(N / T, A / T)$.

Now let A be 3 -dimensional. By (3.6), we may let $A=G / H=$ $\{g H \mid g \in G\}$. Therefore A / T is the double coset space $(G / H) / T$ and $(G / T) / H$ are homeomorphic. Since G / T is a 2 -sphere and since every element of H preserves the orientation of G / T, it follows that $(G / T) / H$ is a 2 -sphere. Hence A / T is a 2 -sphere.

As seen in [3], the double coset space $(G / N) / H$ is a closed 2-cell. Since A / N may be regarded as the double coset space $(G / H) / N$ which is homeomorphic to $(G / N) / H$, we infer that A / N is a closed 2 -cell.

From these results, it follows that $f(N / T, A / T)$ is a circle.
(3.14) X^{*} is cohomological trivial over Z.

Let N be the normalizer of a circle group T in G. Then N / T is a cyclic group of order 2 which acts on X / T with $(X / T) /(N / T)=X^{*}$. Since, by (2.6), $H^{*}(F(T, X) ; Z)=H^{*}\left(S^{n-4} ; Z\right)$, it follows that $H(X \mid T ; Z)=$ $H^{*}\left(S^{n-1} ; Z\right)[1 ; ~ p .65]$.

By (3.13), $F(N / T, B / T)=B / T$ and for every singular orbit $A, A / T$ is either a single point or an arc. It follows from the Vietoris map theorem that $H^{*}(B / T ; Z)=H^{*}\left(B^{*} ; Z\right)=H^{*}\left(S^{n-4} ; Z\right)$ (see (3.3)). By (3.10) and (3.13), $F(N / T, U / T)$ is homeomorphic to the topological product of a circle and U^{*} so that $H^{n-2}(F(N / T, U / T) ; Z) \neq 0$. Therefore $H^{*}(F(N / T$, $X / T) ; Z)=H^{*}\left(S^{n-2} ; Z\right)$. Hence $H^{*}(X / N ; Z)=0$. By (3.13), for every orbit $A, A / N$ is either a single point or an arc or a closed 2 -cell. It follows from the Vietoris map theorem that $H^{*}\left(X^{*} ; Z\right)=H^{*}(X / N ; Z)=0$.

$$
H_{c}^{k}\left(U^{*} ; Z_{2}\right)= \begin{cases}Z_{2} & \text { for } k=n-3 \tag{3.15}\\ 0 & \text { otherwise }\end{cases}
$$

This follows from (3.3), (3.14) and the cohomology sequence of $\left(X^{*}, B^{*}\right)$.

$$
H_{c}^{k}\left(U ; Z_{2}\right)= \begin{cases}Z_{2} & \text { for } k=n-3, n \tag{3.16}\\ Z_{2} \oplus Z_{2} & \text { for } k=n-2, n-1 \\ 0 & \text { otherwise }\end{cases}
$$

Since for a principal orbit A, we have

$$
H^{k}\left(A ; Z_{2}\right)= \begin{cases}Z_{2} & \text { for } k=0,3 \\ Z_{2} \oplus Z_{2} & \text { for } k=1,2 \\ 0 & \text { otherwise }\end{cases}
$$

our assertion follows from (3.10) and (3.15).
As a consequence of (3.16) and the cohomology sequence of (X, B), we have

$$
H^{k}\left(B ; Z_{2}\right)= \begin{cases}Z_{2} & \text { for } k=0, n-4 ; \tag{3.17}\\ Z_{2} \oplus Z_{2} & \text { for } k=n-3, n-2 \\ 0 & \text { otherwise }\end{cases}
$$

(3.18) Let T be a circle group in G and let $n \geqq 5$. Then $H_{c}^{k}\left(F(T, X)-F(G, X) ; Z_{2}\right)^{v}= \begin{cases}\widetilde{H}^{k-1}\left(F(G, X) ; Z_{2}\right)(\text { the reduced group }) \\ & \text { for } k=1 ; \\ H^{k-1}\left(F(G, X) ; Z_{2}\right) \oplus Z_{2} & \text { for } k=n-4 ; \\ H^{k-1}\left(F(G, X) ; Z_{2}\right) & \text { otherwise } .\end{cases}$

This follows from (2.6) and the cohomology sequence of $(F(T, X)$, $F(G, X)$).
(3.19) Let $n>5$. Then

$$
H_{c}^{k}\left(B-F(G, X) ; Z_{2}\right) \begin{cases}H^{k}\left(B ; Z_{2}\right) & \text { for } k>n-4 ; \\ H^{k}\left(B ; Z_{2}\right) \oplus H^{k-1}\left(F(G, X) ; Z_{2}\right) \\ H^{k-1}\left(F(G, X) ; Z_{2}\right) & \text { for } k=n-4 ; \\ & \text { for } k=2, \cdots, n-5 ; \\ \tilde{H}^{k-1}\left(F(G, X) ; Z_{2}\right) & \text { for } k=1\end{cases}
$$

This follows from the cohomology sequence of $(B, F(G, X))$.
(3.20) $B-F(G, X)$ is homeomorphic to the topological product of a projective plane and $F(T, X)-F(G, X)$. Hence

$$
\begin{aligned}
& H_{c}^{k}\left(B-F(G, X) ; Z_{2}\right) \\
& \quad=H_{c}^{k}\left(F(T, X)-F(G, X) ; Z_{2}\right) \oplus H_{c}^{k-1}\left(F(T, X)-F(G, X) ; Z_{2}\right) \\
& \oplus H_{c}^{k-2}\left(F(T, X)-F(G, X) ; Z_{2}\right) .
\end{aligned}
$$

The first part follows from the that $F(T, X)-F(G, X)$ is a crosssection of the transformation group ($G, B-F(G, X)$) on which the isotropy group is constant. The second part follows from the first part and the fact that if A is a projective plane, then

$$
H^{k}\left(A ; Z_{2}\right)= \begin{cases}Z_{2} & \text { for } k=0,1,2 \\ 0 & \text { otherwise }\end{cases}
$$

(3.21) $\operatorname{dim}_{z_{2}} F(G, X)=n-5$. If $n=4$, then B contains exactly two projective planes. If $n=5$, then $F(G, X)$ contains exactly two points. If $n>5$, then $H^{n-5}\left(F(G, X) ; Z_{2}\right)=Z_{2}$ so that $F(G, X)$ is not null.

Setting $k=n-2$ in (3.20), we have, by (2.6) and (3.17),

$$
Z_{2} \oplus Z_{2}=H_{c}^{n-4}\left(F(T, X)-F(G, X) ; Z_{2}\right) .
$$

If $n=4$, then, by (3.12), $H^{\circ}\left(F(T, X) ; Z_{\bar{z}}\right)=Z_{2} \oplus Z_{2}$ so that $F(T, X)$ contains exactly two points. Hence B contains exactly two projective planes.

If $n=5$, then $H_{c}^{1}\left(F(T, X)-F(G, X) ; Z_{2}\right)=\tilde{H}^{\circ}\left(F(G, X) ; Z_{2}\right) \oplus$ $H^{1}\left(F(T, X) ; Z_{2}\right)$ so that $\widetilde{H}^{\circ}\left(F(G, X) ; Z_{2}\right)=Z_{2}$. Hence $F(G, X)$ contains exactly two points.

If $n>5$, it follows from (3.18) that $H^{n-5}\left(F(G, X) ; Z_{2}\right)=Z_{2}$. Hence $F(G, X)$ is not null.
(3.22) $H^{*}\left(F(G, X) ; Z_{2}\right)=H^{*}\left(S^{n-5} ; Z_{2}\right)$.

For $n=4$ and 5 , the result has been shown in (3.12) and (3.21). For $n>5$, our assertion follows from (3.18), (3.19), (3.20) and (3.21).
(3.23) $\quad F(G, X)$ is a compact cohomology ($n-5$)-manifold over Z_{2}.

To prove (3.23), we have only to localize the preceding computations. Details are omitted.

Remark. There is no difficulty to use Z in place of Z_{2} in these computations. However, the computations over Z will not strengthen our final results (3.22) and (3.23).
4. Case that the 2 -dimensional orbits are all 2 -spheres.

Let X be a compact cohomology n-manifold over Z with $H^{*}(X ; Z)=$ $H^{*}\left(S^{n} ; Z\right)$ and let $G=\operatorname{SO}(3)$ act nontrivially_on X with $\operatorname{dim}_{Z} B=n-2$.

Throughout this section, we assume that for some $x \in U, G_{x}$ is of odd order.
(4.1) Let H be a dihedral subgroup of G of order 4. Then $F(H, X)$ is a compact cohomology $(n-6)$-manifold over Z_{2} with $H^{*}\left(F(H, X) ; Z_{2}\right)=$ $H^{*}\left(S^{n-6} ; Z_{2}\right)$. Hence $n \geqq 5$.

Let $g \in G$ be of order 2 and let T be the circle group in G containing g. Since for some $x \in U, G_{x}$ is of odd order, $F(g, X) \subset B$ so that $F(g, X)=$ $F(T, X)$ is a compact cohomology $(n-4)$-manifold over Z_{2} with $H^{*}\left(F(g, X) ; Z_{2}\right)=H^{*}\left(S^{n-4} ; Z_{2}\right)$. By Borel's theorem [1; p. 175], $F(H, X)$ is a compact cohomology $(n-6)$-manifold over Z_{2} with $H^{*}\left(F(H, X) ; Z_{2}\right)=$ $H^{*}\left(S^{n-6} ; Z_{2}\right)$. From this result it follows that $n-6 \geqq-1$. Hence $n \geqq 5$.
(4.2) The 2-dimensional orbit are all 2-spheres.

Suppose that this assertion is false. Then there is, by (2.3), a projective plane $G z$. Denote by T the identity component of G_{z} and by H a dihedral subgroup of G_{z} of order 4 . Let S be a connected slice at z. Then S is a cohomology $(n-2)$-manifold over Z and G_{z} acts on S. Moreover, $F(T, S)=F(T, X) \cap S$ is open in $F(T, X)$ so that it is a cohomology ($n-4$)-manifold over Z. Hence we may let S be so chosen that $F(T, S)$ is connected and that both S and $F(T, S)$ are orientable.

Since T is a circle group and since $\operatorname{dim}_{z} S-\operatorname{dim}_{z} F(T, S)=2$, it follows that S / T is a connected cohomology ($n-3$)-manifold over Z with boundary $F(T, S)[1 ;$ p. 196]. Hence we have a connected cohomology ($n-3$)-manifold Y over Z obtained by doubling S / T on $F(T, S)$ [1; p. 196]. Since S is orientable, so is $S / T-F(T, S)$. It follows from the connectedness of $F(T, S)$ that Y is orientable.

It is clear that $K=G_{z} / T$ is a cyclic group of order 2 which acts on S / T with $K F(T, S)=F(T, S)$. Since $F(K, F(T, S))=F(H, S)$ is a cohomology $(n-6)$-manifold over Z_{2}, we infer from the dimensional parity that K preserves the orientation of $F(T, S)$ [1; p. 79].

The action of K on S / T defines a natural action of K on Y which also preserves the orientation of Y. Hence $\operatorname{dim}_{z_{2}} F(K, Y)>n-6$ so that for some $y^{*}=T y \in S / T-F(T, S), K y^{*}=y^{*}$. But this implies that $G_{z} y=T y$ so that y is a point of D, contrary to (2.9). Hence (4.2) is proved.
(4.3) $F(G, X)$ is a compact cohomology ($n-6$)-manifold over Z_{2} with $H^{*}\left(F(G, X) ; Z_{2}\right)=H^{*}\left(S^{n-6} ; Z_{2}\right)$.

By (4.2), $F(G, X)=F(H, X)$. Hence our assertion follows from (4.1).
(4.4) Whenever $x \in U, G_{x}$ is the identity group.

If X is strongly paracompact, the result can be found in [5]. But an unpublished result of Yang shows that it is true in general.
(4.5) B^{*} is a compact cohomology ($n-4$)-manifold over Z with $H^{*}\left(B^{*} ; Z\right)=H^{*}\left(S^{n-4} ; Z\right)$.

Proof. Let T be a circle group in G and N its normalizer. Then $F(T, X)$ is a compact cohomology ($n-4$)-manifold over Z with $H^{*}(F(T, X) ; Z)=H^{*}\left(S^{n-4} ; Z\right)$ and N / T is a cyclic group of order 2 acting on $F(T, X)$ with $F(T, X) /(N / T)=B^{*}$. Therefore $H^{*}\left(B^{*} ; Z\right)$ is finitely generated [1; p. 44]. If H is a dihedral subgroup of N of order 4, it is easily seen that $F(N / T, F(T, X))=F(H, X)$ so that $F(N / T, F(T, X))$ is a compact cohomology ($n-6$)-manifold over Z_{2} with $H^{*}(F(N / T, F(T, X))$; $\left.Z_{2}\right)=H^{*}\left(S^{n-8} ; Z_{2}\right)$. Hence, by the dimensional parity theorem, N / T preserves the orientation of $F(T, X)$.

By [1; pp. 63-64],

$$
H^{*}\left(B^{*} ; Z_{2}\right)=H^{*}\left(F(T, X) /(N / T) ; Z_{2}\right)=H^{*}\left(S^{n-4} ; Z_{2}\right) .
$$

We now use the following diagram from [1; p. 45]

in which the horizontal sequence is exact and the triangle is commutative. For $k \neq 0, n-4$, we have $H^{k}\left(B^{*} ; Z_{2}\right)=0$ and $H^{k}(F(T, X) ; Z)=0$; hence $H^{k}\left(B^{*} ; Z\right)=0$. For $k=0$, we have $H^{0}\left(B^{*} ; Z\right)=Z$, because B^{*} is clearly connected. For $k=n-4, H^{n-4}\left(B^{*} ; Z\right)$ is a finitely generated group with $H^{n-4}\left(B^{*} ; Z\right) \otimes Z_{2}=H^{n-4}\left(B^{*} ; Z_{2}\right)=Z_{2}$. It follows from the universal coefficient theorem that there is a finite subgroup K of $H^{n-4}\left(B^{*} ; Z\right)$ of odd order such that $H^{n-4}\left(B^{*} ; Z\right) / K$ is Z or Z_{2}. Since $K=2 K=\mu \pi^{*} K=0$, $H^{n-4}\left(B^{*} ; Z\right)=Z$ or Z_{2}. But $H^{n-4}\left(B^{*} ; Z\right) \neq Z_{2}$, because N / T preserves the orientation of $F(T, X)$. Hence $H^{n-4}\left(B^{*} ; Z\right)=Z$.

By localizing this result, we can show that B^{*} is a cohomology ($n-4$)-manifold over Z near every point of $F(G, X)$. (This result is also shown in [2].) Since the projection of $F(T, X)-F(G, X)$ onto $B^{*}-F(G, X)$ is a local homeomorphism, B^{*} is a cohomology $(n-4)$ manifold over Z near every point of $B^{*}-F(G, X)$. Hence B^{*} is a compact cohomology ($n-4$)-manifold over Z.
(4.6) Let T be a circle group in G and let N be the normalizer of T. Then $H^{*}(B \mid N ; Z)=H^{*}\left(S^{n-4} ; Z\right)$.

Let A be a singular orbit. If A is a single point, so is A / N. If A
is a 2 -sphere, we may let $A=G / T$. Therefore $A / N=(G / T) / N$ is homeomorphic to $(G / N) / T$ which is known to be a closed 2-cell [3]. Hence A / N is a closed 2-cell.

Since, by (2.1) and (4.2), every singular orbit is either a single point or a 2 -sphere, it follows from Vietoris map theorem that $H^{*}(B / N ; Z)=$ $H^{*}\left(B^{*} ; Z\right)$. Hence our assertion follows from (4.5).

$$
H^{k}(X \mid N ; Z)= \begin{cases}Z & \text { for } k=0 ; \tag{4.7}\\ Z_{2} & \text { for } k=n-1 \\ 0 & \text { otherwise }\end{cases}
$$

Since $H^{*}(F(T, X) ; Z)=H^{*}\left(S^{n-4} ; Z\right)$, it follows that $H^{*}(X / T ; Z)=$ $H^{*}\left(S^{n-1} ; Z\right)$. Now N / T is a cyclic group of order 2 acting on X / T with $(X / T) /(N / T)=X / N$.

Let A be an orbit. If A is 3 -dimensional, then, by (4.4), A / T is a 2 -sphere and N / T acts freely on A / T. If A is a 2 -sphere, then A / T is an arc and $F(N / T, A / T)$ is a single point. If A is a point, then $F(N / T, A / T)=A / T=A$. Hence $F(N / T, X / T)$ is homeomorphic to B^{*} so that, by (4.5), $H^{*}\left(F(N / T, X / T) ; Z_{2}\right)$.

As in the proof of (4.5), we can show that

$$
H_{c}^{k}(U \mid N ; Z)= \begin{cases}Z & \text { for } k=n-3 \tag{4.8}\\ Z_{2} & \text { for } k=n-1 \\ 0 & \text { otherwise }\end{cases}
$$

(4.9) There is an exact sequence

$$
\cdots \rightarrow H_{c}^{k-3}\left(U^{*} ; Z_{2}\right) \rightarrow H_{c}^{k}\left(U^{*} ; Z\right) \rightarrow H_{c}^{k}(U / N ; Z) \rightarrow H_{c}^{k-2}\left(U^{*} ; Z_{2}\right) \rightarrow \cdots .
$$

By (4.4), G acts freely on U. Hence we have the desired exact sequence as seen in [3].

$$
H_{c}^{k}\left(U^{*} ; Z\right)= \begin{cases}Z & \text { for } k=n-3 \tag{4.10}\\ 0 & \text { otherwise }\end{cases}
$$

Since $\operatorname{dim}_{z} U^{*}=n-3$, we have

$$
H_{c}^{k}\left(U^{*} ; Z\right)=0 \quad \text { for } k>n-3
$$

It follows from (4.9) and (4.8) that $H_{c}^{n-3}\left(U^{*} ; Z_{2}\right)=H_{c}^{n-1}(U / N ; Z)=Z_{2}$. From (4.9), it is easily seen that $H_{c}^{n-3}\left(U^{*} ; Z\right)=Z \oplus I$, where $I=$ $i m\left(H_{c}^{n-6}\left(U^{*} ; Z_{2}\right) \rightarrow H_{c}^{n-3}\left(U^{*} ; Z\right)\right)$ so that every element of I different from 0 is of order 2. By the universal coefficient theorem,

$$
\begin{aligned}
Z_{2}=H_{c}^{n-3}\left(U^{*} ; Z_{2}\right) & =H_{c}^{n-3}\left(U^{*} ; Z\right) \otimes Z_{2} \oplus \operatorname{Tor}\left(H^{n-2}\left(U^{*} ; Z\right), Z_{2}\right) \\
& =Z_{2} \oplus I
\end{aligned}
$$

Hence $I=0$, proving that

$$
H_{c}^{n-3}\left(U^{*} ; Z\right)=Z
$$

If $k<n-3$, then by (4.8) and (4.9), $H_{c}^{k}\left(U^{*} ; Z\right)=H_{c}^{k-3}\left(U^{*} ; Z_{2}\right)$. Hence for $k<n-3$,

$$
H_{c}^{k}\left(U^{*} ; Z\right)=0 .
$$

(4.11) X^{*} is cohomologically trivial over Z.

This is an easy consequence of (4.5), (4.10) and the cohomology sequence of (X^{*}, B^{*}).

References

1. A. Borel et al., Seminar on transformation groups, Annals of Math., Studies, No. $46^{\text { }}$ Princeton University Press, 1960.
2. G. E. Bredon, On the structure of orbit spaces of generalized manifolds, (to appear).
3. P. E. Conner and E. E. Floyd, A note on the action of $S O(3)$, Proc. Amer. Math. Soc., 10 (1959), 616-620.
4. D. Montgomery and L. Zippin, Topological transformation groups, Interscience Publishers, Inc., 1955.
5. D. Montgomery and H. Samelson, On the action of $S O(3)$ on S^{n}, Pacific J. Math., 12 (1962), 649-659.
6. P. A. Smith, Transformations of finite period III, Newman's theorem, Ann. of Math. (2), 42 (1941), 446-458.
7. C. T. Yang, Transformation groups on a homological manifold, Trans. Amer. Math. Soc., 87 (1958), 261-283.

Institute for Advanced Study
University of Pennsylvania

[^0]: Received December 20, 1961. The second named author is supported in part by the U. S. Army Research Office.

