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Introduction* Let Φ{ω) be a random variable which takes only
a finite number of values

with probabilities

π19 τr2, , πp .

Let A(x) be the distribution function of Φ(ω).
We shall be concerned here with infinite convolutions of the type

(I.I) F(x, r) = A(£\ * A(£

where r = (r19 r2, ««, rw, •) is a given sequence of non-vanishing
real numbers. From standard theorems of Probability theory it
follows that the convolution product in (I.I) converges (if we exclude
the trivial case p — 1, xx = 0) if and only if Σ rl < °° and either

(1.2) -0(0) = 0

or

(1.3) £7(0) =£ 0 but Σ r % is convergent.

In either case, the limit distribution F(x, r) is continuous and pure.1

A proof of this result in the case that Φ(ω) takes only the two
values ± 1 with equal probabilities can be found in [4].

We can and shall restrict our study to the case E(Φ) = 0. Our
main result here concerns the distributions F(x, r) generated by
sequence {rn} such that, for some 0</3<l,

(1.4) rn = 0[/3*] .

Under this hypothesis it is easy to see that for a given A(x), when
β is sufficiently small, F(x, r) is necessarily singular. This result
follows from the simple fact that the set of points of increase of
F(x, r), for all sufficiently small β, has zero measure. On the other
hand, as β increases towards one F(x, r) in general will become
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1 That is either absolutely continuous or purely singular.
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absolutely continuous. We are interested in finding a lower bound
for the β's for which this may happen. Considerations involving the
set of points of increase of F(x, r) stop short of being helpful for,
as we shall see, in general we can be sure that F(x, r) will remain
singular beyond the first β for which this set acquires positive
measure.

Our discovery consists in the fact that, without further informa-
tion on the relations between the values x19 x2, * ,xp and the sequence
{rn}, the best possible dividing line between singularity and absolute
continuity of F(x, r) is given by the entropy [8] of the distribution

).
More specifically we shall show that

THEOREM I.I If {rn} satisfies 1.4 and

then the function F(x, r) is necessarily singular.

Our methods bring also to light some peculiarities of the Pisot-
Vijayaraghavan numbers. The latter are algebraic integers whose
conjugates are all in absolute value less than one [6]. Let a be in
the interval (1, 2) and set β = I/a. Let Hv{a) denote the entropy of
the distribution of the random variable

(1.5) yP = ε,β + e2β
2 + • + epβ* ,

where the e{ are independent random variables taking the values ± 1
with equal probabilities. We can show the following result:

THEOREM 1.2. For every a in (1, 2) the ratio Hp{a)jp is convergent,

and if a is a P. V. number

(1.6) lim Hp(a)/p < log a .
p—too

We note that Theorems I.I and 1.2 combined provide an explana-

tion for the singularity [2] of the distribution function of the random

variable

when β is the reciprocal of a P. V. number2. This is obtained by
letting A(x) be the distribution of the variable yp and setting

2 Cfr. [3] for further references and a history of this question.
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τn = βnp, then taking p sufficiently large.
The inequality in (1.6) contains the fact that the numbers

± β ± /32 ± ± βp ,

for sufficiently large p, cannot be all distinct. This implies that
^ach P. V. number in (1,2) satisfies a polynomial equation with
coefficients ± 1 or 0. Two different proofs of this results can be found
in [7] and [3]. Here we shall show that even more is true, namely

THEOREM 1.3 Let 1//3 be a P. V. number in the interval (1, 2),
For any increasing sequence of integers {nk} such that

(l!β)nk = 0(2*)

the corresponding powers of β

cannot be independent over the coefficients ±1,0.

A result of the same type as Theorem I.I holds for convolutions
of the form

(1.7) F(x) = Axφ)* Λία?)* • *An(x)*

where for each n, An(x) is the distribution of a random variable
which takes only a finite number of values. Such a function when
it is defined, is either totally discontinuous, continuous but purely
singular or absolutely continuous. We shall be concerned with the
eases in which F(x) is continuous.

We can visualize (1.7) as being the distribution of a sum of in-
dependent random variables

y = Xl + χ2 + . . . + χn+ . . .

where xn has distribution An{x). The continuity of F(x) is assured
as soon as y is not probabilistically equivalent to a series of constants [5].

In the case that

(1.8) E{xn) = 0, Σ E{x\) < ~

the result corresponding to Theorem I.I reads as follows. Let Hn

denote the entropy of the distribution An(x).

THEOREM 1.4. If {Rn} is a sequence of positive numbers tending
to zero for which

lim inf RH(E(xl+1) + E(xl+2) + . . . ) > o
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then an estimate such as

(1.9) Km inf (fli + H2 + + JΓw)/log 1/ΛW < 1

implies the singularity of F(x).

It can be shown that, although the condition (1.9) is best
possible, no estimates on the entropy of the partial sums

y n = xλ + x2 + xn

are necessary for the singularity of F(x). However, it is worth-
while to note that the situation is quite different if we look for
necessary and sufficient conditions for F to be absolutely continuous,
with a derivative in the L logL class. To this effect we have the^
following theorem. Let y = yn + zn with yn and zn independent and
bounded and

E(zl) —> 0 as n —> co .

Let F(x) be the distribution of y and Fn(x) be that of yn. Suppose ̂
that F(x) is continuous.

THEOREM 1.5. If An is a sequence of positive numbers tending-
to zero and such that

lim inf AHE{z\) > 0

then a necessary and sufficient condition for F to be absolutely
continuous and Ff to be in the L logL class is that as n—> oo we-
have

log HAn + Σ [Fn(kAn + An) - Fn(kAn)]

•log [Fn(kAn + An) - Fn(kAn)] = 0(1) .

1Φ Auxiliary lemmas and definitions*
1.1 It will be useful to consider sequences {?βn} of ordered pro-

bability distributions

(1.11) 5βΛ - (p1(n)f pin), , pN[n){n)) .3

To be specific, for each n we shall suppose that

(a) px(n) ^ p2(n) ^ ^ pmn){n) ^ 0

(b) pin) + Pin) + + pN{n)(n) = 1 .

For a given probability distribution β̂ = (pu p2, , pN) the distribu

3 We shall assume that N(ri) -> «> asί i->oo.
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tion function F(x) defined by the condition that

fO for x < 0 or x ^ 1
F'(x) = ,

Oi for (̂

will be called the " associated " distribution function.
Given a sequence {S$J such that (1.11) and (1.12) hold we shall

liave the sequence {Fn} of associated distribution functions and the
family {Fn} of the distributions that can be obtained as limits of
the Fn'a.

1.2. LEMMA 1.21. For a given {̂ βj the functions of {F\}, except
for a possible jump at the origin, are absolutely continuous.

Proof. Because of (a) we have that for each i — 1, 2, , N

1 ^ p1 + p2 + Pi^ίPi]

this gives that for (i - 1)1 N ̂  x < i/N.

F\x) ^ N/i < l\x .

Thus the associated distribution functions are uniformly absolutely
continuous on the right of one, hence the same will hold for their
limits.

LEMMA 1.22. The functions Fn are uniformly absolutely con-
tinuous if and only if the functions of {Fn} are continuous at the
origin.

Proof. First of all it is clear that the functions Fn are uniform-
ly absolutely continuous if and only if they are equicontinuous. But
if the Fn's are equicontinuous, their limits are continuous. Vice
versa if their limits are continuous at the origin, a standard argu-
ment shows that the Fn'$ must be equicontinuous.

DEFINITION. If in the family {Fn} there are discontinuous func-
tions, we shall say that {̂ βj is a " singular " sequence. In this case
the maximum of the jumps of the functions of {Fn} will be called
the " deficiency " of the family {*βn}.

Clearly {̂ 3J has deficiency ^ 7 > 0 if and only if there exists a
.subsequence {nk} such that for any ε > 0 we have

lim [pίzN1(nk) + + P#(nk)] g 1 - 7 .4

[εN] is to mean " integral part of en".
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1.3. We shall now give a sufficient condition for a {$n} to be a
singular sequence.

LEMMA 1.3. The sequence {φj fails to be singular only if

(1.31) Km - ( Σ Pi(n) log ^) )/ log N(n) = 1 .

As a matter of fact, if (1.31) does woί hold, the deficiency 7 o/ {ψn}
satisfies the inequality

(1.32) 1 - 7 ^ lim inf - ( Σ ftfa) log Pi(n))/log JV(n) .

Proof. Since a sequence {̂ 3n} is singular with deficience ^ 7 if a.
a subsequence {$β»J is such, we can assume that

(1.33) lim - ( Σ Pi(n) log p<(rc))/log ΛΓ(n) = 1 - 70 < 1 .
ft,—»oo

We define the quantities ak( — ak(n)) for k — 1, 2, , JV(w) by setting-

α* = k[Vk - Pk+i] (set pN+1 = 0) .

Note that from our assumption 1.12 (a) it follows that ak ^ 0. We
also have that

pk = ajk + ak+j(k + l) + . . . + aN/N (k = 1, 2, , N) .

From 1.12 (b) we have

a, + α2 + + α^ = pλ + p2 + + pN = 1

From the concavity of F(#) = — #log#, for any nonnegative con-
stants (&!, 62, , 6̂ ) we have

Using this inequality with (b19 b2, , bN) replaced by

o,o, ...,0,4,-^r, -- , ^
ΐ % + 1 iV

we get

- Σ ajk log 1/fc ^ - ( Σ ajk) log ( Σ a*/*) = -Pi'M p, .

Summing with respect to i we obtain

-ΣiPi log ^ ^ - Σ Σ α*/fc log 1/fc = Σ ^ log A? .
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Making the substitution ak — θk — θk-λ (setting θo=Of θk = a1 + a2-i \-ak).,
we get

(1.34) - Σ Vi log Pi ^ log N + NΣθk log k/(l + k) ̂  - Σ «*/* + log ΛΓ.
i = l /c=l Λ;=i

Now let v(n) be a sequence of integers taken with the sole restric-
tion that v(n) ~ εN(n) for some ε > 0. Then from (1.34) we deduce
that

log N + Σ Pi log Pi S θv(n) log N +

Dividing by log N and passing to the limit we get

To ̂  lim inf 0V(W) .
n-*oo

In view of the fact that px + p2 + + pv ^ ^i + α2 + + αv and'
the definition of v(n) we deduce that the functions of {F\} must all
have a jump at the origin at least as big as τ0. This establishes the^
inequality in (1.32).

Suppose we are given a sequence of probability distributions

Qn = {Qi(n), q2(n), , qmn)(n)} .

In case the q^n) are not ordered we shall say that the sequence {Qn}
is singular if and only if the ordered sequence {$n} that we obtain,
by rearranging the probabilities of the Qn's is a singular sequence..
Similarly the deficiency of Qn will be the deficiency of Pn. Lemma 1.3.
remains valid for unordered sequences of probability distributions.

2* Proofs of the results*

2.1. Theorem I.I can be readily obtained from Theorem 1.4-
We shall thus concentrate in proving the latter. To this end we
need the following result. Let y and yn denote random variables*
with distributions F(x) and Fn(x) respectively with F(x) continuous..
Assume in addition that the random variable zn = y — yn is in-
dependent of yn and that E(z%) —> 0.

LEMMA 2.1. If Rn is a sequence tending to zero in such a way?
that

lim inf R\\E(z\) > 0 ,

then a necessary and sufficient condition for the distribution F(x)>
to have a singular part is that for an M so large that the quantity
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(2.11) λ B = Σ [Fn(kRn + Rn)-
\kRn\^M

is bounded away from zero, the probability distributions

Qn = [(Fn(kRn + Rn) - Fn(kRn))IXn; V integers k3\kRn\^M]

form a singular sequence.

This result follows from Lemma 2.5 of [3].

2.2. Assume then, with the notation and the hypotheses of
Theorem 1.4, that

(2.21) lim inf (H, + H2 + . + fΓJ/log IIRn < 1 .

Let us set

y n = xx + x2 + + xn .

We shall visualize the probability space Ω where yn and y are
defined as the product of the probability spaces Ωlf Ω2, , Ωn where
the variables xl9 x2, , xn are defined. Then the equivalence relation

ω' — α>" if and only if xn(a)') = Xi(co") for i = 1, 2, , n

generates a partition of Ω which is finer than the partition generated
by the relation

(2.22) ω' ** ω" if and only if yn(ω') = yn (ω") .

Thus denoting by Dn the entropy of the distribution of yn9 in view
of well known properties of the entropy function, we shall have

(2.23) Dn^Hx+ •••, + Hn.

Suppose now that yn takes the values

Vl n> Vϊ ni * * ' t VN{Π) n

with respective probabilities

Qi(n),q2(n), *--,qN{n)(n) .

We shall consider, for a given ikf, a partition of the indices
1, 2, , N{n) into two sets S' and S" defined as follows. S' is the
set of all i such that \yiH\ ^ M and S" is the complement. Let

Q: = Σ ' Qi, D : = - Σ ' ?,/Q:

Q;; - Σ " Ϊ* , i>;' = - Σ " Λ/Qί log qj
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where the summations Σ ' and Σ " are carried out over S' and S"
respectively. We have then that

(2.24) Q'nD'n + QW; = Dn + Q'n\ogQ'n + Qf:logQ? £ Dn .

By choosing M sufficiently large, by the hypothesis 1.8, we can
guarantee that Ql after a while remains as close to one as we wish.
In particular, since D'l ^ 0, by 2.23, 2.24 and the hypothesis 2.21
we can make sure that we have also

(2.25) lim inf D'Jlog 1/Rn < 1 .
•n, —> o o

In the subset of Ω where | yn | ^ M we introduce a partition by
means of the equivalence ω' ^ ω" if and only if yn(co') and yn(co")
belong to the same interval [kRn + Rni kRn). Since this partition is
even coarser than the one induced by the equivalence in 2.22, for
the entropy Er

n associated with this partition we must have

(2.26) E'n^D'n.

On the other hand if we let λw be as in 2.11 and set

En = - Σ [Fn(kRn + Rn) - Fn(kBn)]l\n\og[Fn{kRn + Rn) - Fn(kRn)]/Xn,
\kRn\^M

we must have

Combining this relation with (2.26) and (2.25) we deduce that

lim inf EJlog 1/Rn < 1 .

Using this inequality in conjunction with Lemmas 1.3 and 2.1 we
obtain the singularity of the distribution F(x). This completes the
proof of Theorem 1.4

REMARK. It should be pointed out that Theorem 1.4 gives a
simpler condition and is more general than Theorem 2.6 of [3].

2.3. Proof of Theorem 1.2. For a given n and p we can write
the variable ynΊ> defined in 1.5 in the form

ynP(o>) - Vv(a>d + βpVp(&d + + βv{n-1]yA(*>n),

where yP(o)1)9yp(ω2)f ---,yP(a)n) are supposed independent and equally
distributed. If m = np + r where 0 ̂  r < p we have that

Vjfo) = V*P(ω) + /3"pyr(ωn+1) .
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By an argument similar to that used in §2.2 we deduce that the
entropy of the variable ym{ω) is less than or equal to the sum of
the entropies of the summands. In other words, with the notation
of the introduction, we must have

Hm{a) ^ nHp(a) + Hr(a) .

Dividing by m and passing to the limit as m —• oo we obtain

lim sup HJa)jm ^ Hp(a)/p .
m—*oo

Since p was arbitrarily chosen we deduce that

(2.31) lim HJa)lm = inf Hp(a)/p .
m-»oo

Clearly the limit in (2.31) may differ from log 2 only when a satisfies
polynomial equations with coefficients ± 1 or 0.

If a is a P. V. number it can be shown (for instance by means
of Lemma 2.5 of [3]) that Hp(a)/p eventually takes values below
log a. This accounts for the estimate in 1.6. It would be of some
interest to know whether or not 1.6 holds for other than P. V.
numbers.

2.4. Proof of Theorem 1.3. For a P. V. number a we have
the following estimates. If each α̂  (i = 1, 2, ••-,%) takes only the
values ± 1 or 0 then either

axa + a2a
2 + + ana

n — 0

or

(2.41) I axa + a2a
2 + + ana

n \ Ξ> c

where c is a constant depending only on a. This result can be
easily deduced from the definition of P. V. numbers. (See for
instance Lemma 1.51 of [3]).

Let then {nk} be a sequence of constants satisfying the condition
of Theorem 1.3. If the numbers

±/Swi ± βn* ± ± βnjc

(with β — Ha) were all distinct, the minimum distance between any
two of them, in view of (2.41) would be greater than a fixed con-
stant divided by 2\ Theorem 1.2 of [3] would then apply, and we
would deduce that the distribution of the random variable

y = Σ ± βnk
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is absolutely continuous with a bounded derivative. This is of course
absurd since it is known [2] that the distribution of

is singular.

2.5. We shall omit the proof of Theorem 1.5, for it can be
carried out step by step as it was done for Theorem 1.10 of [3],
The difference here is that Orlicz spaces methods would have to
replace the Lp spaces methods used there. There is one point of
the proof that is worth noting. Namely, it is known [1] that a
bounded functional on an Orlicz space does not necessarily have an
integral representation. However, at a point of our proof of Theorem
1.10 in [3] we use the Riesz representation theorem. Nevertheless,
in carrying out the proof of Theorem 1.5 even this point need not-
be modified. In fact, for functionals of the type

L(y) = [~y{x)dF{x)

such a representation holds in an Orlicz space just as well as in an.
Lp space.
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