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Introduction. An operator group with a principal series can
obviously be written as a direct product of finitely many directly
indecomposable admissible subgroups, and the classical Wedderburn-
Remak-Krull-Schmidt Theorem asserts that this representation i&
unique up to isomorphism. Numerous generalizations of this theorem
are known in the literature.1 Thus it follows from results in Baer
[1, 2] that if the admissible center of an operator group G satisfies-
the minimal and the local maximal conditions, then any two direct
decompositions of G (with arbitrarily many factors) have isomorphic
refinements. In a different direction, it is shown in Crawley [4] that
if an operator group G has a direct decomposition each factor of which
has a principal series, then any two direct decompositions of G have-
isomorphic refinements.

The results of this paper yield sufficient conditions for a group-
(with or without operators) to have the isomorphic refinement property*
For operator groups a common generalization of the theorems mentioned
above is obtained: If an operator group G has a direct decomposition
such that the admissible center of each factor satisfies the minimal
and local maximal conditions, then any two direct decompositions of
G have centrally isomorphic refinements. For groups without operators
we obtain the following result which eliminates any assumption of
chain conditions: If a group G (without operators) has a direct de-
composition such that the center of each factor is countable and the
reduced part of the center of each factor is a torsion group with
primary components of bounded order, then any two direct decom-
positions of G have centrally isomorphic refinements.

Actually our results hold for a much wider class of algebraic
structures, namely for algebras in the sense of Jonsson-Tarski [6], and
it is in this more general framework that the theory is developed*
The terminology from general algebra used in this preliminary discussioa
will be explained in §1.

Our techniques are based on an exchange property defined as*
follows: An algebra B is said to have the exchange property if, for

Received August 27, 1963. This work was supported in part by NSF Grants G-17957
and G-19673. A summary of the results presented here has appeared in Bull. Amer.
Math. Soc 69 (1963), 541-547.

1 For a fairly complete list of references see Baer [1, 2] or Specht [8], p. 449.
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any algebras A, C and A (i e /), the condition

A = δ x C = Π A
iei

implies that there exist subalgebras Έ{ ̂ D{(ie I) such that

A = B x Π Eι .
iei

The principal result relating this notion to the isomorphic refinement
problem is Theorem 7.1, which asserts that if an algebra A is a direct
product of subalgebras each of which has the exchange property and
has a countable generated center, then any two direct decompositions
of A have centrally isomorphic refinements. Two related results are
obtained where no cardinality conditions are imposed on the centers,
but the decompositions involved are of a more special nature. First
(4.2), if A = Bo x BL x B2 x = Co x Cx x C2 , with countably
many factors, and if all the subalgebras B{ and Cj have the exchange
property, then these two direct decompositions have centrally isomorphic
refinements. Second (5.3), if A is a direct product of subalgebras each
having the exchange property, then any two direct decompositions of
A into indecomposable factors are centrally isomorphic.

In §§8-11 sufficient conditions are given in order for an algebra
B to have the exchange property. In § 8 it is shown that if the center
Bc of B has the exchange property, then so does B. There it is also
shown that in proving the exchange property for an algebra B we may
assume that the factors D{ are isomorphic to subalgebras of B. In § 9
we prove that if Bc satisfies the minimal and local maximal conditions,
then B has the exchange property and Bc is countably generated.
Sections 10 and 11 are devoted to the study of binary algebras (algebras
with just one operation, the binary operation +) . The main result
here (11.5) asserts that if the reduced part of the abelian group Bc is
a torsion group all of whose primary components are torsion-complete,
then B has the exchange property. In the twelfth and final section
some counterexamples and open problems are discussed.

l Fundamental concepts* Our terminology is largely the same
as that in Jόnsson-Tarski [6], and it will therefore be described very
briefly. By an algebra we shall mean a system consisting of a set A,
a binary operation + called addition, a distinguished element 0 called
the zero element of the algebra, and operations Ft(teT) each of which
is of some finite2 rank p(t), subject only to the following conditions:

2 In Jόnsson-Tarski [6] the operations are not required to be of finite rank. The
main reason for this restriction is that it insures that the center of an algebra is a central
subalgebra.
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( i) A is closed under the operation + and the operations Ft (t e T);
(ii) for all x eA, x + 0 = 0 + x = x;
(iii) Ft(0, 0, , 0) = 0 for all t e T.

The set T and the function p are assumed to be the same for all the
algebras under consideration. We shall identify the algebras with the
sets of all their elements, and shall in general use the same symbols,
+ , Ft and 0, to denote the operations and the zero elements of all the
algebras. If no auxiliary operations Ft are present, i.e. if T— 0 ,
then we refer to A as a binary algebra.

An obvious example of an algebra is an operator group, i.e. an
algebra for which addition is associative, each element has an additive
inverse, and each Ft (t e T) is a unary operation which distributes with
respect to + . Similarly, an ordinary group without operators is a
binary algebra.

If A is an algebra, then the sum of finitely many elements
#o> χι> '' •> χk, e A is defined recursively by

Σ χk = 0 Σ a* = Σ «* + &• (n = 0,1, •).
k<0 k<n+ί k<n

It is convenient to define also the (un-ordered) sum of certain special
systems of elements x{eA(ieI). This sum is defined if and only if
there exist finitely many distinct elements i09 i19 , in-x e I such that
Xι — 0 whenever i e I — {i0, ilf , in^} and such that

Σ Xk = 2-i Xiφ{k)
k<n k<n ΨK '

for every permutation φ of the integers 0,1, , n — 1. Under these
conditions we let

Σ__ ^i — 2-1 'bik
iβl k<n

For brevity, a system of elements Xι e A (ί e I) will be said to be finitely
nonzero if there are only finitely.many indices ie I such that x{ Φ 0.

The notions of subalgebra, homomorphism, isomorphism, and con-
gruence relation are assumed to be known. If θ is a congruence
relation over an algebra A, then for x e A we let x/θ be the congruence
class to which x belongs, and for l £ i we let X/θ = {x/θ \x e X}.
In particular, A/θ is the quotient algebra of A modulo θ. Observe
also that if B is a subalgebra of A, then B/θ is a subalgebra of A/θ.
It should be noted that if θ' is the restriction of θ to B, then B/θ
and B/θ' are in general distinct algebras although they are isomorphic.

A subalgebra B of an algebra A is called a subtractive subalgebra
of A if it satisfies the following condition: If a e A and b e B, and if
either a + beB or b + aeB, then aeB.

By a central subalgebra of A we mean a subalgebra C of A
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satisfying the following conditions:

( i ) for each ceC there exists ceC such t h a t c + c = 0;

(ii) if c e C and x,yeA, then x + (y + c) = (x + c)+y =
(iii) if ceC,teT,k < p(ί), and α?0, α?lf , α?p(t)-i e A, then

——. TP (iγ Ύ '7* / y » / y » • • • / ¥ * \

— r t\X0, Xlf , Xfc-u Xk, Xk+i, ' * Ί %p(t)-i)

+ Ft(0, 0, -- ,0,c,0, ---,0) .

fcth

It is easy to see that the family of all central subalgebras of an algebra
A is a complete sublattice of the lattice of all subalgebras of A. In
particular, the union of all the central subalgebras of A is a central
subalgebra of A. This largest central subalgebra of A is called the
venter of A, and is denoted by Ac. It is clear that if A is an operator
group, then Ac is the usual group-theoretic admissible center of A.3

For a binary algebra A we can alternatively define the center of A
as the set of all those elements of A that have an additive inverse
and that commute and associate with all the elements of A. If an
algebra A is such that Ac = A, then we say that A is abelian.

Given two subalgebras B and C of an algebra A, a function / is
called a central isomorphism of B onto C,—in symbols f:B~c C,—if
/ is an isomorphism of B onto C and for each xeB there exists ceAc

such that/O) = x + c. We say that B and C are centrally isomorphic,
—in symbols B ~c C,—if there exists a central isomorphism of B
onto C.

By the outer direct product4 of a system of algebras A< (i e I),—
in symbols

Π A<,

—we mean the algebra consisting of all functions x such that the
domain of x is /, x(i) e A{ for all i e I, and x(i) = 0 for all but finitely
many ie I. The operations in this algebra are defined componentwise,

and

Ft(xOf xu , xp{t)-i)(i) = Ft(x0(i), xx(i), , xP(ί)

and its zero element is the function that associates with each index

3 C.f., Specht [8], p. 118; here it is called the β-center.
4 Sometimes the outer direct products are referred to as weak outer direct products,

and the Cartesian products (which are used only incidentally in this paper) are called
strong outer direct products. In other cases, especially in the theory of abelian groups,
outer direct products are called direct sums and Cartesian products are called direct
products.
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the zero element of the corresponding algebra A{.
The concept of an algebra is designed to make it possible to

introduce the notion of an inner direct product of subalgebras of an
algebra A, and to reduce the study of (isomorphic) representations of
subalgebras B of A as outer direct products to considerations involving
this new concept. Since the notions of outer and inner direct products
are often confused in the literature, and in other cases the connection
between the two concepts is not clearly stated, it is perhaps worthwhile
to formulate this relationship in some detail. The basic idea is, of
course, that given a representation

f f [ i 9
ίei

we can associate with each index i e / a subalgebra Bt of B that is
isomorphic to C{. By definition, this subalgebra consists of all those
elements xeB such that f(x)(j) = 0 for all j el — {i}. If a system
of subalgebras B{(i el) of B corresponds in this manner to a represen-
tation of B as an outer direct product, then we say that B is an inner
direct product of the subalgebras jB<(i el). To complete the transition
from outer direct products to inner direct products we must find out
to what extent the subalgebras determine the representation, and we
must formulate intrinsic necessary and sufficient conditions for B to
be an inner direct product of a given system of subalgebras.

The solution of the first problem is easy: two representations,

/: B ~ C = Π C< and / ' : B ~ C" - Π C[
iei iei

yield the same system of subalgebras B{ (i e I) if and only if there
exist isomorphisms g{\ d = C , for all iei, such that / ' = gf where
the isomorphism g: C = C is induced by the isomorphisms g{ (i e I) in
t h e s e n s e t h a t g(x)(i) = gί(x(i)) f o r a l l xeC a n d iei.

Regarding the second problem, we first observe that B is an inner
direct product of subalgebras B{(iel) oί A if and only if, for every
element x of the algebra

B = flB,
iei

the sum Σ ej #(Ό exists, and the mapping x —* Σuez #(Ό is &n iso-
morphism of B onto B.

Consider now a system of subalgebras B{ (i e I) of A, and define B
as above. In order for the indicated map to be everywhere defined
and to be an isomorphism of B into A it is obviously necessary and
ŝufficient that the following four conditions be satisfied:
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( I ) For any finitely nonzero system of elements a{ eBi(ieI), the sum
^Σiiei ai exists.

(II) For any two finitely nonzero systems of elements α;, 6; e B{ (iei),
if Σiiei <*>i = Σaei K then di = bi for all iei.

(III) For any two finitely nonzero systems of elements aif bi eBi(ίe I),

iei iei iei

(IV) For any teT, and for any finitely nonzero systems of elements
akyi e B{ (i e I), k - 0,1, . , p(t) - 1,

a0,i, ' *> Σ 0p(ί)-l,i) — Σ ^i(^o,i, *, αP(t)-l,i)
i iei / iei

Consequently, in order that there exists a subalgebra B of A such that
B is an inner direct product of the algebras Bi (iei), it is necessary
and sufficient that (I)-(IV) hold. Furthermore, if such an algebra B
exists, then it is unique and can be characterized by either one of the
following conditions:

(V) B is the set of all elements be A such that b = Σ*e/ a% ί ° r some
finitely nonzero system of elements a{ eBi(ieI).

(V) B is the subalgebra of A generated by the union of all the
algebras B{(iei).

The conditions (I)-(V) or (I)-(IV) and (V;) are often taken as the
definition of the phrase "the subalgebra B of A is the inner direct
product of the subalgebra B{ (i e I) of A."

Since we shall henceforth be concerned exclusively with inner
direct products we will refer to these simply as direct products. The
direct product of a system of subalgebras Bi (i e I) of an algebra Λ
will be denoted by

TίBi9
iei

and the direct product of finitely many subalgebras Bo, Bu , Bn^x

will also be written

Box B1x x £„_! .

In the finite case our notion obviously coincides with the direct product
in Jόiisson-Tarski [6], where this notion is defined recursively in terms
of the binary operation x .

A subalgebra C of an algebra B is called a factor of B if B = C x D
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for some algebra D. B is said to be indecomposable if it has at least
two elements and the only factors of B are B and {0}. By a direct
decomposition or, briefly, a decomposition of B we mean a represen-
tation of B as a direct product of subalgebras. The direct decompositions,
of B,

are said to be (centrally) isomorphic if there exists a one-to-one
mapping / of I onto J such that, for each iei, d and D / ( i ) are
(centrally) isomorphic. Finally, the second decomposition is said to be
a refinement of the first if for each je J there exists iei such that

2. Elementary properties of direct products. In this section several
simple properties of direct products are listed. Since many of these
results are already known from the literature (c.f. Jόnsson-Tarski [6]),
and the derivations of the remaining ones offer no difficulty, all proofs-
will be omitted.

We assume throughout this section that A is an algebra.

LEMMA 2.1. // B and C are subalgebras of A such that B x C
exists, then for all b,b' eB and ceC,

b + c = c + b and (b + 6') + c = b + (V + e) = (6 + c) + 6' .

LEMMA 2.2. Every factor of A is a subtractive subalgebra of A..

LEMMA 2.3. (The modular law) Suppose B and C are sub-
algebras of A such that B x C exists, and suppose D is a subtractive
subalgebra of A. If BQD, then (B x C) Π D = B x (C Π D). In-
particular, if B^D^B x C, then D - B x (C Π D).

LEMMA 2.4. If, for each iei, B{ and B[ are subalgebras of A
such that B'iSBif and if the direct product

exists, then

( i) the direct product

B' - Π B\
iei

exists and is a subalgebra of B.
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(ii) Bf = B if and only if B\ = B{ for all iel.

(iii) Bf is a subtractive subalgebra of B if and only if, for each
iel, B\ is a subtractive subalgebra of B{.

<iv) Bf is a central subalgebra of A if and only if, for each iel,
B\ is a central subalgebra of B{.

LEMMA 2.5. Suppose B{ (i e I) are subalgebras of A. Then

iei

if and only if there exist homomorphisms /4 of A onto Bu for all
•i e I, such that for each aeA

a = Σ/i( α ) 9 and fifj(a) — 0 whenever i, jel and i Φ j .
ίίei

These homomorphisms fi9 if they exist, are unique and have the
^property that fji — fi for all iel.

DEFINITION 2.6. Assuming that

the homomorphisms fi characterized by the conditions in Lemma 2.5
are called the projections of A onto the algebras B{ induced by the
given decomposition of A.

LEMMA 2.7. Suppose Bi (i e I) are subalgebras of A. Then the
direct product

exists if and only if for each finite subset J of I the direct product

exists.

LEMMA 2.8. Suppose that Bi (i e I) are subalgebras of A, that
I~ UkeκJk9 and that the sets Jk{keK) are pairwise disjoint. If
either the direct product

B=UBi
iei

exists, or if the direct products

Ck= Π BiikeK) and B' = Π Ck
iej keε

exists, then all these direct products exist, and B = B\
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LEMMA 2.9. Given two direct decompositions of A,

A — J[ B{ and A = Y[ Cj ,

the second decomposition of A is a refinement of the first if and
only if for each iei there exists a subset Ji of J such that

JLJi JLĴ  \J j

LEMMA 2.10. If B^iel) are subalgebras of A, if the direct
product

iei

exists, and if J and K are subsets of I, then

iej J \ieκ J

LEMMA 2.11. Suppose Bi(iel) are subalgebras of A, and for
each ie I let Bi be the subalgebra of A that is generated by the union
of all the algebras Bό with j el and ί Φ j . Then the direct product

exists if and only if B{ x B{ exists for all iei.

LEMMA 2.12. If C is a central subalgebra of Ay then for all

a, α/ G A and ceC,

a + c = c + a , and a + c = af + c implies a = a1 .

LEMMA 2.13. If C is a central subalgebra of A, then C is a
subtractive subalgebra of A, and C is an abelian group under the
operation + .

LEMMA 2.14. If B is a subtractive subalgebra of A, and if C is
a central subalgebra of A, then

( i ) B n C is a central subalgebra of A.

(ii) B x C exists if and only if B f) C = {0}.

LEMMA 2.15. Suppose Co, Cl9 •••, Cw_i are central subalgebras of
A, and for k = 1,2, , n — 1 let Ck be the subalgebra of A that is
generated by the union of the algebras Co, CΊ, , C -̂i- Then the
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direct product

τιck
k<n

exists if and only if Ck Γ) Ck = {0} for k — 1, 2, , n — 1.

LEMMA 2.16. / /

Ά. — yy ίS^ ,

then

Ac = ]JBί.
iei

LEMMA 2.17. Suppose

A^JlB^nCj,

and for i e i and je J let / έ and g^ be the projections of A onto Bi
and onto C3- that are induced by these two decompositions. If i, if β Ir

j eJ9 and i Φ i', then fig3fi, maps A into the center of B{.

LEMMA 2.18. If

then

BC x c = Π ((Bc x C)n A).iex

LEMMA 2.19. / / B, C and D are subalgebras of A such that
B x C exists, then the conditions

B x C = B x D and Bc x C = Bc x D

are equivalent.

LEMMA 2.20. Suppose A~BxC = BxD, and let f and g be
the projections of A onto C and onto D induced by these two decom-
positions. Then the restriction gf of g to C is a central isomorphism
of C onto D, and the inverse of gr is equal to the restriction of f
to D.

3. Exchange properties. The central concept of this paper, the
exchange property, was mentioned in the introduction. We now formu-
late this notion more precisely.
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DEFINITION 3.1. Given a cardinal m, an algebra B is said to
have the m-exchange property if for any algebra A containing B as
a subalgebra, and for any subalgebras C and Ό{ (i e I) of A, where
the cardinal of I does not exceed m, the condition

implies that there exist subalgebras E{ £ Z^ (i e I) such that

A = B xUEi .
iei

We say that B has the exchange property if it has the m-exchange
property for every cardinal m. We say that B has the finite ex-
change property if it has the m-exchange property for every finite
cardinal m.

It would be of some interest to know whether, for two given
cardinals m and n with 1 < m < n, the m-exchange property implies
the ^-exchange property. It will be shown later in this section that
this is the case whenever n is finite, whence it follows that the 2-ex-
change property implies the finite exchange property. In all other
cases the answer is unknown. However, since every algebra that is
known to have the 2-exchange property is also known to have the
exchange property, this question is not crucial at the present.

This section will be devoted to a series of lemmas involving or
relating to the exchange properties that will be used in the subsequent
sections

DEFINITION 3.2. A congruence relation Θ over an algebra A is
said to be consistent with a decomposition

of A if, for all x,yeA and iei,

xθy implies f

where f{ is the projection of A onto Bt induced by the given de-
composition.

If A is a group, then the congruence relation θ that corresponds
to a normal subgroup N of A is consistent with the above decomposition
of A if and only if
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For an arbitrary algebra A, a congruence relation Θ over A is easily
seen to be consistent with a given decomposition of A if and only if
θ is generated (in an obvious sense that need not be made more precise
here) by its restrictions to the factors in the decomposition.

LEMMA 3.3. Suppose the congruence relation θ over the algebra
A is consistent with the decomposition

of A. Then

A/θ = Π (BJΘ) .
%ei

More generally, for any system of subalgebras J5 £Ξ B{ (ie I),

Π Bi) θ - Π (B'JΘ) .
iei / / iei

Proof. For each i e I let f{ be the projection of A onto Bi induced
by the given decomposition of A. The consistency of θ is equivalent
to the assertion that for each iei there exists a map gι of A/θ onto
BJΘ such that g^x/θ) = fi(x)fθ for all xeA. It is obvious that g{ is-
a homomorphism. For each x e A,

and therefore

Φ - Σ (A(χ)/θ) = Σ 9i(Φ)
i iiei

Finally, if i and j are distinct members of /, then for all x e Ar

g^jix/β) = fifj(x)/θ = 0/0. Hence the first part of the conclusion
follows by 2.5. The second part of conclusion follows from the first
part together with the observation that the algebra

Π Bl
iei

consists of all elements

( Σ ) / Σ ( ^ ) ,
\iei / / iei

associated with finitely non-zero systems ^ e 5 t

: ( ie/) .

LEMMA 3.4. Suppose the congruence relation θ over the algebra.
A is consistent with the decompositions
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A = BxC=t[Di
iei

of A, and suppose the restriction of θ to B is the identity relation*
If, for each iei, Et is a subalgebra of DJΘ, and if

A/θ = B/θ xJlEi,

then there exist subalgebras E{ ^D{(ie I) such that E{ = EJΘ for all
iei and

iei

Proof. For each i e I let ft be the projection of A onto Dt induced
by the second of the two given decompositions of A. Letting

(1) A' = Bc x C ,

we infer from 2.18 that

( 2) A' - Π Dl where D[ = A! n D,(ie I) .
iei

Obviously (B/Θ)c = Bc/Θ, since the restriction of θ to B is the identity
relation. It therefore follows by (1), (2), 3.3 and 2.19 that

(3) A'/θ = BG/Θ x C/θ = Π (Dl/Θ) = (BG/Θ) xΐlEi.
iei iei

Next observe that

(4) Dl/Θ - (A'/θ) Π (DJΘ) .

To prove this we use the fact that

A/θ = (B/θ) x (C/θ) = U(DJΘ)

and that

A'/θ = (Be/Θ) x (C/θ) ,

and we infer by 2.18 that

(5) A'/θ = Π ((A'/θ) Π (DJΘ)) .
iei

Since in (4) the left hand side is obviously included in the right hand
side, the equality follows from (3) and (5) with the aid of 2.4 (ii).

It follows from (3) and (4), together with the hypothesis E{ S DJΘf

that

( 6 ) EiS Dl/Θ .
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Letting

E, = {x I x e A' and α/0 e .£?<} ,

we see that E{ is a subalgebra of Dl, and we infer from (6) that

<7) E^

From the fact that Dl is a subtractive subalgebra of A! and that JŜ
is a subtractive subalgebra of A'jθ it readily follows that E{ is a sub-
tractive subalgebra of A'. Consequently,

is also a subtractive subalgebra of A!. Furthermore, if beBc ft E,
then

b/θ e (Bc/Θ) n (E/θ) = {0/0} ,

and therefore 6 = 0. Thus Bc f) E = {0}, and we infer by 2.14 (ii) that
the direct product Bc x E exists, and is a subalgebra of Ar.

To complete the proof it suffices to show that Dr

k^BG x E for
every kel. Consider an element xeD!

k. By (3) and (7) there exist
an element be Bc and a finitely nonzero system of elements e{ e Eι
such that

xθb + Σ β<

'There exists an element beBG such that 6 + 6 = 0. Hence

6 + α?0 Σ e«

^Consequently /Λ(6) + xθek and /^δ) = /<(& + x)θei whenever k Φ iel.
Inasmuch as

iei

we infer that fk(b) + x eEk and that f^b) eEt whenever k Φ iel.
Thus

and hence

as was to be shown.

LEMMA 3.5. If B is a factor of an algebra A, then there exists



REFINEMENTS FOR INFINITE DIRECT DECOMPOSITIONS 811

a unique congruence relation Θ over A with the property that if C
is any subalgebra of A with A = B x C, and if g is the projection
of A onto C induced by this decomposition, then for all x,yeA the
•conditions xθy and g(x) = g{y) are equivalent.

Proof. Since the projection g of A onto C induced by the de-
composition A — B x C is a homomorphism of A onto C, the condition

xθy if and only if g(x) — g(y)

defines a congruence relation θ over A. To complete the proof it
therefore suffices to show that for any other decomposition A = B x C,
and the induced projection gf of A onto C, the conditions g(x) = g(y)
and g'{x) = #'(τ/) are equivalent. To see that this is true we simply
observe that for all xeA, g\x) = gfg(x) and g(x) = ##'(#). In fact,
there exists δ e B such that a? = b + #(x); hence

g'(x) = fjr'(δ) + flWa?) = g'g(x) .

The second formula is proved similarly

DEFINITION 3.6. If B is a factor of an algebra A, then the
congruence relation θ characterized by the conditions in Lemma 3.5
is called the congruence relation over A induced by B.

COROLLARY 3.7. Suppose B and C are subalgebras of an algebra
A such that

( i ) A = Bx C ,

and suppose θ is the congruence relation over A induced by B. Then
•0/0 = B, and the restriction of θ to C is the identity relation over
C. Furthermore, θ is consistent with any decomposition of A that
is a refinement of the decomposition (i).

LEMMA 3.8. // B, C, D{ (i e I) and E are subalgebras of an algebra
A such that

and if θ is the congruence relation over A induced by E, then for
any subalgebras F i g f l ^ i e l ) the condition

(ϋ) A/θ = (B/θ)x]I(FJΘ)
iei

implies that
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(iii) A = Bx]JFixE.

Proof. Since E/θ is the one-element algebra {0/θ}, we have

A/θ = (B/θ) x Π (FJΘ) x (E/θ) .
iei

Inasmuch as the restriction of θ to B is the identity relation over
B, we infer by 3.4 that there exist subalgebras F( QD{(ie I) and
Er S E such that

A = 5 x Π Fi x £"

and such that 2̂ /0 = 2*7/0 for all iei. Since the restriction of 0 to
2?< is the identity relation over Di9 this last condition implies that
Fl = 2^, and by the modular law we have

E=E'xE" where E" = EΪ\(B X ΐ[ Ft) .
\ iei J

If x e E", then a? = y + z for some y e B and z e Π e/ J^ Hence
y/θ + z/θ = x/θ = 0/6>, and it follows by (ii) that y/θ = z/θ = 0/ .̂ Re-
calling that the restrictions of θ to B and to ILei Ft are the identity
relations over these algebras we infer that y = z = 0, hence x = 0.
Thus J0" = {0}, £7' - £7, and (iii) holds.

COROLLARY 3.9. // B, C, D{ (i e I) and E are subalgebras of an
algebra A with

iei

and if B has the m-exchange property, where m is the cardinal of
I, then there exist subalgebras F{ QDi(ie I) such that

A = B x Π Fi x E .
iei

LEMMA 3.10. Suppose m is a cardinal and n is a positive
integer, and suppose Bo, Bly •••,!?« are subalgebras of an algebra B
with B = Bo x Bλ x x Bn. Then B has the m-exchange property
if and only if each of the algebras Bk(k = 0, 1, , n) has the m-ex-
change property.

Proof. It suffices to consider the case n = 1. First suppose Bo

and J5X have the m-exchange property. If A is an algebra that contains
B as a subalgebra, if C and Ό{ (i e I) are subalgebras of A with

(1) A = BoxB1xC=τiDi,
iei
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and if the cardinal of I does not exceed m, then there exist subalgebras
EiSDi(ίeI) such that

From this and the first decomposition in (1) it follows by 3.9 that
there exist subalgebras F{ ^E{(ie I) such that

A = B o x B 1 x U F i .
iei

Thus B has the m-exchange property.
Now suppose B has the m-exchange property. Consider an algebra

A containing Bo as a subalgebra, and subalgebras C, D{ (i e I) with

and assume that the cardinal of I does not exceed m. Replacing the
given algebras, if necessary, by isomorphic copies, we may assume
that there exists an algebra A! such that both A and Bx are sub-
algebras of A', and such that A' = A x Blm Then

If m is infinite, then we can apply the m-exchange property to these
two decompositions, but in order to accommodate also the finite cases
we choose an element feel, and let Γ = I — {k} and E = Bx x Dk.
Then

iei'

Hence there exist subalgebras EfΊΞ=E and Dl SDt(ie /') such that

(2 ) Af = B x E' x Π Dl .
iei'

Since B x E' is a factor of A', and hence a subtractive subalgebra of
A\ and since BξΞ=B x E'ξ^B x Dk, it follows from the modular law
that B x E' = B x Dί where D'k = (B x £") n A Substituting this
into (2) we obtain

Af = B xJlDl .
iei

Inasmuch as

Af = Bxx A = B1x (Box]Ji

and
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we conclude by 2.4 that

A - ΰ o x Π A ; .
iei

Thus Bo has the ra-exchange property.

LEMMA 3.11. // an algebra B has the 2-exchange property, then
B has the finite exchange property.

Proof. It suffices to show, for an arbitrary integer m > 1, that
if B has the m-exchange property, then B has the (m + l)-exchange
property. Assuming that

A = BxC = DoxD1x ••• x Dm ,

let E = A x A x x jDm_1# Then A = 5 x C - # x Dn, and since
I? has the 2-exchange property, there exist algebras E'ξ=E and D4 S A»
.such that A = B x E' x DL Letting

E" = E(\(BxDL) and D^ = Dmf)(B x E') ,

we infer by the modular law that E = E' x E" and Dm = Dix D^.
From the decompositions

A = Bx(s 'xz) ; ) = (E" x D::) X (E* X DD

we see by 2.19 that E" is isomorphic to a factor of -B. Consequently
E" has the m-exchange property by 3.10. Since

E = Ef x E" = Do x A x . . . x A»-i,

it therefore follows that there exist subalgebras D/S A> i = 0,1, ,
m — 1, such that

E = E" x Dl x Dl x . . . x A U .

Inasmuch as E"QB x A ^ # " X (£" x ί>m), and application of the
modular law yields

B x DL = E" x Em where E'" = (B x D'm) f] {Ef x Dm) ,

and we conclude that

A - E' x E" x E"f = E x Em = A' x A' x x Z?i-i x £"' X £""

= B x Di x D! x ••• x A!* .

Thus JB has the (m + l)-exchange property, as was to be shown.
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LEMMA 3.12. Suppose m is a cardinal greater than 1, and
suppose B is an algebra whose center is generated by a set whose
cardinal does not exceed m. If B has the m-exchange property, then
B has the exchange property.

Proof. Assuming that

A=SxC=ΠA,
iei

write

Dj = Π A for J S J .
iej

Then there exists as set Jfii" such that B°^DJf and such that J is.
finite if m is finite, and the cardinal of J is at most m if m is infinite.
By hypothesis (and by 3.11 in case m is finite), there exist subalgebra&
EiS A for all ieJ and a subalgebra F of A - J such that

Letting E{ -- Fn A for iei — J, we shall show that

ί 1) i*7 = TT 77

whence it follows that

Given a e F, there exists a finitely non-zero system of elements
dieDi(ieI — J) such t h a t

a = Σ ^i •

Considering a fixed index kel — J, we can find elements 6 e 5 , e{e E{

(ie J) and feF such t h a t

( 2 ) dk = b + ^ei+f.

By 2.17, beBc, hence beDj. Consequently the element

(3) x = b +

belongs to A But the elements d*. and / belong to the subtract!ve
subalgebra A - J of A, and it follows by (2) and (3) that x e A - J -
Thus x = 0, cί/c = /, and dkeF Γ\Dk = •#*• Since this last formula holdŝ
for all ke I — J, we conclude that

ae Π #< .
iei-J
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From this (1) easily follows.

4» Direct decompositions with countably many factors. The next
theorem and its simple proof are included primarily in order to show
why a similar argument fails to apply when we drop the assumption
that the set / be finite.

THEOREM 4.1. / / the algebra A has the m-exchange property
(where m is some cardinal), and if

where the set I is finite and the cardinal of J does not exceed m,
then these two direct decompositions of A have centrally isomorphic
refinements.

Proof. For notational convenience we assume that I consists of
the integers 0,1, , n. By 3.10, BOf Bly , Bn have the m-exchange
property, and by successive applications of 3.9 we obtain, for each
j e J, a sequence of subalgebras

such that

A = Bo x . x Bi x Π C i (i = 0,1, , n) .

Since all the subalgebras C[,j are factors of A, it follows by the
modular law that subalgebras Ci,j(i = 0, , n, j e J) exist such that
for each j e J,

Cj = Co',, x C0,y , and C _ w = C'itj x Citj (i = 1, , n) .

Consequently

Cj^nC^j (jeJ)

and

A=]JBiX Π TlCij (p = 0,1, ...,w + 1) .

comparing the two decompositions obtained from this last formula by
taking two successive values of p, p — k and p = k + 1, we infer by
2.20 that
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and we conclude that Bk has a decomposition

Bk = U Bk)j with Bktj ^c Ckt, all je J .

Attempting to extend the above argument to the case when both
I and J are infinite, one encounters difficulty in connection with the
"passage through limits." For instance, in the simplest case, where /
is the set of all natural numbers, the above process yields subalgebras
Ci,, ,C'i,j(i = 0,l •• , i e J ) with

Cj = C;,< x Π Ckfj and Bk =c Π Ck,, ,
ί^k jej

but it may happen that the direct product

π ci9i
i<oo

is a proper subalgebra of C3 . It is not known how this difficulty can
be overcome in general, but we will show how it can be avoided in
certain situations. For the case when I and J are denumerable, this
is done below by a simple argument involving a diagonal process.

Observe that in the proof of 4.1 we did not make direct use of
the fact that A has the m-exchange property, but applied this property
to the factors B{. Because of the finiteness of I this distinction is
immaterial here, but in later results a significant generalization is
obtained by assuming the exchange properties for the factors in some
decomposition (or decompositions) rather than for the whole algebra.
Incidentally, 4.1 could actually be generalized by observing that no
use is made of the fact that Bn has the m-exchange property.

THEOREM 4.2. // an algebra A has two direct decompositions
with countably many factors,

{i) A = Bo x Bλ x B2 x = Co x d x C2 x ,

where all the factors B{ and Cό have the ^-exchange property, then
these two direct decompositions have centrally isomorphic refinements.

Proof. Since Bo has the ^-exchange property, there exist sub-
algebras CO,;, Co',; with Cj = CQJ x Co,; for j = 0,1, 2, such that

( 1 ) A. = JDQ X Go,o X Oo,i X Co,2 X ,

and from this it follows by 2.20 that

( 2 ) BO=CCO,O x Co* x C0)2 x . . . .

The factor Cf

OtO of Co has the ^-exchange property by 3.10. Applying
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3.9 to (1) and the first decomposition in (i) we obtain subalgebras.
Bi.o, B'ί}0 with Bi = Bi)0 x B'itϋ for i = 0,1, 2, such that

( 3 ) A = Box do x B[Λ x BJ.0 x B[Λ x ,

and it follows, again by 2.20, that

Go,o = -^>l,0 X -^2,0 ^ -^3,0 X * ' *

Now, using the fact that B'lt0 has the ̂ -exchange property, we apply
3.9 to (3) and (1). This yields subalgebras Cltj9 C[tS with C'Oti =
Cltj x Cί,y for i = 1, 2, 3, such that

( 4 ) A = Bo x CO'* x Sί,o x Cίtl x Cί,2 x Cί,3 x ,

JB;,0 = C Cifl x clti x Ci,s x .

Next, from (4) and (3) we obtain subalgebras BiΛ, B\Λ with B\Λ =
jBίa x J5-,! for i = 2, 3, such that

A = £ 0 x C5,o x B'1>0 x CJfl x B'2fl x Bίa X JB4',I x ,

CίΛ=
cB2Λ x 5 3 ) 1 x B 4 > 1 x ••• .

Continuing in this manner we obtain subalgebras Biih B'itύ for i > j
and C<fy for ί ^ j such that the following four conditions hold for
i = 1, 2, 3, and i = 0,1, 2, :

( 5 ) £, = BiΛ x £ ί a x x Bi,^ x 5 ^ - ! ,

( 6 ) Cj = C0>j x C l f i x x Cu x C} f i ,

( 7 ) 5 ^ ^ c C i f ί x Citi+1 x C,,ί+2 x ,

( 8 ) C j , y =cBj+1)j x - B y + 2 , j x - ί? i+3, i x ••• .

From (2), (7) and (8) we infer that there exist algebras Bifj for i ^ §
and d,j for i > j such that

( 9 ) Bitj~
cCid for i , i = 0,1,2, . . . ,

(10) Bo = BQ>0 x 50,! x B0t2 x ,

(11) BJ,^ = Biti x B ί ) ί + 1 x B ΐ > ί + 2 x . . . for ΐ = 1, 2, 3, ,

(12) C'3ij - Cj+1>j x C i + 2 > i x C i+3,, x . . . for j = 0,1, 2 .

Together with (5) and (6) the last three formulas yield

Bi = B ί f 0 x J5 ί a x β i ) 2 x ,

KSJ z=: y^o,j X Oi,j X O 2,j X

Thus the two original decompositions oΐ A have the refinements
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A = Π Π Biti = Π Π C(,j ,
i<°° j<oo i<oo j<oo

and according to (9) these are centrally isomorphic.

5 Decompositions into indecomposable factors* In order to prove
the existence of centrally isomorphic refinements for two decompositions
with countably many factors we had to assume that all the factors
involved had the fc^-exchange property. In proving that two decom-
positions with indecomposable factors are centrally isomorphic we can
get by with a much weaker assumption. This is due to the next two
lemmas.

LEMMA 5.1. // an indecomposable algebra B has the 2-exchange
property, then B has the exchange property.

Proof. Suppose

iei

Since each element of A is contained in the product of finitely many
factors Di9 there exists a finite subset J of I such that

( l ) 5 n Π A * { 0 } .
iβJ

Letting

we have

= Π A ,
ίei—J

Π
iβJ

By 3.11 B has the finite exchange property, and there therefore exist
subalgebras D ^Di(ίe J) and E'ξ^E such that

By the modular law we can find subalgebras D" with A = A' x A"
for ieJ, and E" with E = E' x E". By 2.20,

B ~ Π A" x E" .

But as B is indecomposable, only one of the factors in this last product
can be different from {0}. This cannot be the factor E", for then we
would have Ό[ — A for all ί e j , and the product in (2) could not exist
because of (1). Thus E" = {0}, Ef = E, and letting D{ = A for all
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iei — J we have

A = B x Π Dί .
iei

LEMMA 5.2. // an algebra A is a direct product of subalgebras
all of which have the 2-exchange property, then every indecomposable
factor of A has the exchange property.

Proof. Suppose

iei

where B is indecomposable and the algebras Ό{ have the 2-exchange
property. By 5.1 it suffices to show that B has the 2-exchange prop-
erty. As in the preceding proof, we choose a finite subset J of I
with

( 1 )

By 3.10 the algebra

B nπ
ίeJ

E =

A Φ {0}.

ΠA
ί€J

has the 2-exchange property, and there therefore exist subalgebras
Bf S B and C'QC such that

A - E x B' x C .

By the modular law, Bf is a factor of B, and because Bf n E — {0} Φ
Bf)E, we have Bf Φ B. Therefore B' = {0}. Thus A - B x C -
i£ x C". Again by the modular law, C = C ' x ( C ί l !£')> a n d using
2.20 we infer that E = B x (C f\ Ef). Thus £ is isomorphic to a factor
of E, and therefore has the 2-exchange property by 3.10.

THEOREM 5.3. // an algebra A is a direct product of subalgebras
all of which have the 2-exchange property, then any two direct de-
compositions of A into indecomposable factors are centrally isomorphic.

Proof. Suppose

where all the factors B{ and C, are indecomposable and therefore, by
5.2, have the exchange property. For 7 ' g l and J' ^J let

B(Γ) =IlBi and C{J') - Π Cy ,
iei' ieJ'
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and recall that, by 3.10, B(Γ) and C(J') have the exchange property
whenever the sets Γ and J' are finite. In particular, it follows from
this and the indecomposability of the factors C3- that if Γ is any finite
subset of /, then A = B{Γ) x C(J — J') for some subset J' of J. More-
over, since B(Γ) ~c C(J'), we see with the aid of 4.1 that Jf must
also be finite and that, in fact, there must exist a one-to-one map φ
of / ' onto J' such that Bt =G Cφ{i) for all ieΓ. Similarly, for each
finite subset Jf of J there exists a one-to-one map ψ of J ' into I such
that Cj ~GBψ{j) whenever j eJ'.

F o r kel l e t

Ik = {i I i e I and B{ ~c Bk} , Jk = {j | j e J and C3 = c Bk} .

From the above considerations we see that each member of J must
belong to at least one set Jk, and that if Jk is finite, then Ik must
have at least as many elements as Jk. To complete the proof it suffices
to show that this last statement also holds when Jk is infinite. To
prove this we consider, for each iel, the set Nζ of all elements j eJ
such that A = J3; x C(J — {j})9 and show that

(1) Ni is finite for each i e l ,

( 2 ) UN^Jk.

From this our assertion follows, for since Jk is assumed to be infinite,
(1) and (2) show that the number of elements in Jk cannot exceed the
number of distinct sets JV̂  with ielk, and hence cannot be larger than
the number of elements in Ik.

Considering a fixed element iel, choose a finite subset Jf of J
such that Bi Π C(Jf) Φ {0}. Then the direct product Bi x C(J - {j})
fails to exist whenever j eJ — J', and Ni must therefore be a subset
of J ' . Thus Ni is finite.

Considering a fixed element j e Jfc, choose a finite subset / ' of /
such that Cj (Ί B(Γ) Φ {0}. Then there exists a finite subset J ' of J
such that A - 5(Γ) x C(J - Jf). Observing that j e J ' , let J " =
J ' — {i) and apply 3.9 to the direct decompositions

A - C{J") x Cj x C(J - J') - Π -B< x C(J - J') .
%eif

T h i s y i e l d s a n d e l e m e n t ieΓ s u c h t h a t

A - C(J") x B,x C(J - J1) = BtX C(J - {j}) ,

and therefore j e Ni% Since j e Jk and Cj =c Bit we have ί e /^. Thus

(2) holds, and the proof is complete.
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6* Factors with countably generated centers: Preliminary lemmas*
As a result of Lemma 6.3 below the isomorphic refinement problem for
algebras

A = Π A ,
iei

where the factors B{ have countably generated centers, reduces to the
special case where I is countable, and A itself therefore has a countably
generated center.

LEMMA 6.1. If B, C and Di(iel) are subalgebras of an algebra
A such that

A^BxC^UDi and BG = Π (BG Π A) ,
iei iei

then there exist subalgebras Et(ieI) such that B c n A ^ ^ = A and

A - C x Π Et .
iei

Proof. By 2.16,

Ac = Bc x Cc = U Dt ,
iei

and since each B° n A is a factor of Ac and a subalgebra of A% it
follows from the modular law that there exist subalgebras D[ with
Ac = (Bc ΓΊ A) x A' for all iei. Thus

and it follows from 2.19 and 2.18 that

BxCc = BxΐlDΪ = ΐ[ A"
iei iei

where A" ~ (B x Cc) Π A for all iei. Again using the modular law
we infer that, for each iei, D" = D[ x Ei where

Consequently

( 1 )

Observing that

Bc x Cc

B x

= B° x

A"

\%ei

n(J

= Π

«)

A'xΠ

C = ( Π i
\iei / Vie/
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and that

( )
iei iei \iei

we see with the aid of 2.4 that

\iei

Consequently

\iei

According to 2.14 this implies that the direct product

Π
iei

exists. Furthermore, A' contains B° x Cc, and therefore contains all
the algebras Ό[. Hence it follows by (1) and (2) that B x C c g i ' .
The opposite inclusion also holds, since all the algebras E{ are contained
in B x Cc. Thus A' = B x CG. Together with (2) and 2.19 this yields
the desired conclusion,

LEMMA 6.2. Suppose Bt(ie I), Cj(j eJ) and D are subalgebras
of an algebra A such that

( i ) A = UB{ xD=πC3 xD,
iei jej

and suppose B\ is countably generated for each iei. If kel, then
there exist a countable set KξΞ=I with ke K and subalgebras F3 S Cj
(jeJ) such that

(ϋ) A = Π BtXUFjXD,
iei-κ jej

(iii) Π Bi x D° = Π Fs' x D' .
%eκ jeJ

Proof. Since Bc

k is countably generated there exist countably
generated subalgebras E^^QiJ eJ) such that Ejt0 = {0} for all but
countably many j e J and such that

BiSUESf0 x Dc .
jej

Since the algebra
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777 T T 777

*o = 1 1 J^jfo

is countably generated, there exists a countable subset Ix of J such
that fce/i and

777 f~ I I ~DC \y ~Γ\ C

Again, since the algebra

l = 11 i>t

is countable generated, there exist countably generated subalgebras
EjΛ £ C; (i e J) such that JE7y,0 £ Ejtl £ C, for all j e J, EjΛ = {0} for all
but countably many j e /, and

Continuing in this manner we obtain an ascending sequence of
countable sets Jo = {&} £ ii £ /a S £ / and, for each j e J, an ascend-
ing sequence of subalgebras Eίt0 £ Ejtl £ 2£ i)2£ g C such that

Π ί ί g Π #i,» x -DCS Π Bl x D c

for n = 0,1, 2, . Letting K = /0U/iU and £?y = ^ . O U ^ M U *

for all j eJ Tfre therefore have

(1) n Bl x Dc = ΐ[ Ej x Dc .

Letting θ be the congruence relation over A induced by D we
have

=(C π_, *')A)x (Ca B)IΘ)=

by 3.3 and 3.7. Letting

we see by (1) that

A = Π (̂ /<?) ,

and it readily follows that JS?^ = i n (C,/^) for all je J. We there-
fore infer by 6.1 that there exist subalgebras Fj(jeJ) with 2£, £
2̂ - £ Cj such that

- (( π ^
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and we conclude by 3.8 that (ii) holds. Finally, Es £ F for all j e J,
so that by (1)

Π ΰ x ΰ c S Π Ff x D°

Since, by (i) and (ii),

Ac = Π Bl x Π Bl x f l c = Π 5 ί x Π ί ί X ΰ f i ,
iei-κ %eκ iei-κ jβJ

we conclude with the aid of 2.4 that (iii) holds.

LEMMA 6.3. If B^iel) and Cj(jeJ) are subalgebras of an
algebra A such that

A = Π Bζ - Π Cj ,
iei jβJ

and if Bl is countably generated for each iei, then there exist a
(possibly transfinite) sequence of countable pairwise disjoint subsets
I* (oc < λ) of I and subalgebras CjyCύ £ Cj (j eJ,ac<X) of A such that
I = U<χ<λ la &ndy for all β <Ξ λ,

A = Π Π S i X Π Π CJtΛ .
β^cύ<λieia jeJa<β

Proof. Letting Uβ = \Ja<β Iω> we can write this last formula in
the form

(1) A= Π B{x Π ΠC,>.
iei-Uβ jej a<β

Since this condition involves only sets Ia and algebras CjtCύ with a < /3,
it can be used as an induction hypothesis. To secure the convergence
of our construction process we impose as a second induction hypothesis
the condition

(2) Π BtQU Π C Λ β .
ieUβ jeJa><β

First observe that this last condition does in fact permit the
passage through the limit ordinals. More precisely, suppose η is a
limit ordinal, and suppose the sets /* and algebras CjtCύ have been
chosen for all a < η in such a way that (1) and (2) hold for all β < rj.
We wish to show that in this case (1) and (2) also hold for β = f].
From the fact that the condition (2) holds for β < rj it follows that
this condition also holds for β — Ύ]. Furthermore, since the direct
product

Π Bi x Π Π CitΛ
iei-uv jeJcύ<β

exists for all β < V, we readily see that the direct product

A' = Π B<x Π ΠC;,«
ίei—u-η j&j ω<v
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also exists. In order to prove that A! = A, and hence that (1) holds
for β = 7)9 it suffices to show that BhgA! whenever he Uv. For each
such index h there exists an ordinal 7 < V with ft, e Uy. Using (1)
with β = 7, (2) with /9 = 97, and 2.19 we conclude that

Bhs π s? x π 54 = π Bixnπ. cjtΛ
iei-Uy ieVy iEI-Uy JβJ Oύ<y

S Π Blx Π Π C Λ . S A ' .
iei—ZΓη jej a<v

Now consider an arbitrary ordinal 7] and suppose the sets Ia and
algebras C/,α £ C, (i e J) have been defined for all a < 37 in such a way
that (1) and (2) hold whenever /9 ̂  η. If Uv = I, then we take λ == 37.
Assuming that Uv Φ I, let

A = II A.,

For each j e J, DjtV is a factor of A and a subalgebra of C,, hence
Cy = I>if, x Cj, η for some subalgebra C) v. It follows that

A - π Bi x A = π σ; Ί x A .
iei-Uγj jeJ

Choosing kel — Uv we infer by 6.2 that there exist a countable set
Z, with keIηSl — Uv and subalgebras Cj,vS=C'jV(jeJ) such that

( 3) A = Π Bi x Π C M x A = Π 5 4 x Π Π Cj,a ,

(4) Π B? x A' = Π C?., x A

Here, in accordance with our earlier notation,

uv+1 = u L= uvuiv.

By (3), (1) holds for β = η + 1, and from (4) and the fact that (2)
holds for β = η we infer that (2) holds for β = 97 + 1.

Since all the sets I* are nonempty, there must exist an ordinal λ
such that £7λ = 7, and the corresponding sets I* and algebras Cjtω

(a < λ, j e J) clearly have the properties required by the lemma.

7Φ Factors with countably generated centers: Fundamental theo-
rem , We are now ready to prove the fundamental theorem relating
the exchange property to the isomorphic refinement property.

THEOREM 7.1. If an algebra A is a direct product of subalgebras
each of which has the exchange property and has a countably gener-
ated center, then any two direct decompositions of A have centrally
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isomorphic refinements.

Proof. Suppose

where, for each iel, B{ has the exchange property and B? is countably
generated. Since every factor of B{ (and hence every algebra isomorphic
to such a factor) has the exchange property and has a countably gen-
erated center, it is enough to show that the decomposition (1) and any
other decomposition

(2) A = Π Cj
jeJ

have centrally isomorphic refinements.

Consider first the case when I is countable. For convenience
suppose I consists of the integers 0,1, 2, •••. In this case the center
of A is generated by a countable set

Z= {a0falfa2f ...} .

We shall construct an increasing sequence of finite subsets I09 Ilf I2,
of I and, for each j e J, two sequences of subalgebras Djt0, Djtl, Dj>2,
and JD/O = Cj, D'fl, D't2, such that the following conditions hold for
fc = 0,1,2, . . . :

( 3 ) kelk.

(4 ) D;,k = Dj>k x D; k+1 for all jeJ.

( 5 ) A= IJBiX Π A *κ.

( 6) ak e Π Π DjΛ .

By (2) there exists a finitely nonzero system of elements c' >0 e Cj
(j eJ) such that

ao — Σ ci,o >
jeJ

and by (1) there exists a finite subset Io of / such that 0 e Io and such
that all the elements c) 0 belong to the algebra

iei0

Since B[ has the exchange property, there exist subalgebras D Λ S Cj
(jeJ) such that (5) holds for k = 0, and letting
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Π

for all j e J, we see that (4) and (6) also hold for k = 0. In the case
of (6) this is true because c)Λ e Cd f] Bf

Q £ A,o for all j e J.

Now consider an integer n > 0, and assume that the finite sub-

sets 70 £ 72 £ £ 7W_! of 7 and the subalgebras A,o» AM> *" * > A,n-i>

Djt0 = Cί9Djtlf •••fDjtn(jeJ) have been so chosen that (3)~(6) hold

for & = 0,1, , w — 1. For each j eJ we have have

7 — I X 7* fe ^ ^ ΐ n 9

and there exist finitely non-zero systems of elements

(7) cy.. e Π A.* and Cj,neD;,n (jeJ)
k<n

such that

Thero exists a finite subset In of 7 such that 7W_X £ 7% and ne In, and
such that all the elements cj ,n belong to the algebra

Since B'n has the exchange property, and since

there exist subalgebras Dj>n+1 £ D'jt% (j e J) such that (5) holds with
k ~ n, and letting

π
for all i e J, we see that (4) and (6) also hold for Jc = n. In the case
of (6) this is true because of the first formula in (7) and because of
the fact that c'j>n e A\» Π B'n £ A,» f° r all j e J. Thus we see that the
sets Ik and algebras A,* a n ( i A*,* c a n be so chosen that (3)-(6) hold
for fc = 0, 1,2, •••.

It follows from (4) that the direct products

C ? = Π A . * ( i e J ) and A ^ Π Q

exist, and from (6) we infer that AC£A*. Moreover, for any natural
number w,

A = Π Π A.* x Π A'. i



REFINEMENTS FOR INFINITE DIRECT DECOMPOSITIONS 829

and using this together with (3) and (5) we see by 2.19 that

5.S Π B< x (Π A'..T - Π Π A'.* x (Π A'..V S A* .
iβln \j€J / 3βJ k^n \j€J /

Consequently A* = A, and we infer by 2.4 that C* = Cj for all j e J.
From (4) and (5) we see that

A = Π B{ x Π A . , x Π Dj,n+ι

= Π B{x Π Bί x Π DL+i ,

whence it follows that

Π B< =ΰ Π A .

Consequently, by 4.1, there exist subalgebras Bifj and Citj9 (ί e In — In-19

j e J) such that

Bi - Π BitS for all i e l n - In^ ,
jej

A,.= Π Cίfi forallieJ,

Bitj ^ c C i f i for all ίeln — Jw_! and i e J .

Inasmuch as this holds for every natural number n (with I-τ = 0 ) ,
we conclude that

A - Π Π £ ί f i = Π Π C i f i ,
ieijej iei jej

and that these two decompositions of A are centrally isomorphic and
are refinements of the decompositions (1) and (2), respectively.

We now drop the assumption that I is denumerable. By 6.3 there
exist a sequence of countable, pairwise disjoint subsets Ia (a < λ) of 7,
and for each j e J a sequence of subalgebras DjtΛ (a < λ) of Cs such
that I — U*<λ la and

(8) A = Π ILB* x Π Π A,-

for all /9 ̂  λ. For /3 = λ this yields

A = Π Π A,- ,

and using 2.4 we infer that

Cs = Π A,* for all i e J .
Cύ<λ

Taking in (8) two successive values for β, say β = 7 and /5 = 7 + 1,
and comparing the resulting formulas, we see that
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(9) Π£ ( s ΠA.*.
ieiy jβJ

Since Iy is countable, it follows from the first part of the proof that
the two decompositions in (9) have centrally isomorphic refinements,
and inasmuch as this holds for every 7 < λ, we conclude that the de-
compositions (1) and (2) have centrally isomorphic refinements.

The preceding theorem can also be stated in the following,
apparently more general, form.

THEOREM 7.2. // an algebra A has two direct decompositions,

such that each of the factors B{ (i e I) has a countably generated center
and each of the factors Cj(j eJ) has the ̂ 0-exchange property, then
any two direct decompositions of A have centrally isomorphic re-
finements.

Proof. Choosing the ordinal λ, subsets I* (a < λ) of /, and sub-
algebras CjfCύ (j e J, a < λ) according to 6.3, we have

(1) Ci = Π CStU for each jeJ,

( 2 ) Π Bi =c Π Cj>a for each a < λ .

Since, by hypothesis, each of the sets Ia is countable, the first direct
product in (2) has a countably generated center, and hence so does the
second product. Consequently each of the factors Cjta has a countably
generated center. Furthermore, by (1) and 3.10, each of the algebras
Cj,Λ has the ̂ -exchange property. Hence, by 3.12, all the algebras
Cj,# have the exchange property. Since

A = Π Π Cj>a ,

the conclusion now follows from 7.1.

8. Sufficient conditions for an algebra to have the m-exchange
property. So far we have been primarily concerned with consequences
of the exchange property, but in the remainder of this paper we shall
investigate conditions that imply that a given algebra has the exchange
property. In the present section it will be shown that this problem
reduces to considerations that involve only abelian algebras.

THEOREM 8.1. For any cardinal m, if the center of an algebra
B has the m-exchange property, then B has the m-ewchange property.
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Proof. Suppose

A = BxC=nDit
iei

where the cardinal of / is at most m. Then by 2.18,

Bc x C = Π A'
iei

where D[ = (BG x C) Π A for each iei. Hence there exist subalgebras
Ei S A' (i e I) such that

Bc x C = BG x Π Ei ,

and we conclude by 2.19 that

A - £ x Π Ei .
tei

THEOREM 8.2. For any cardinal m, in order for an algebra B
to have the m-exchange property it is sufficient (and obviously neces-
sary) that the following condition be satisfied: For any algebra A
containing B as a factor, and for any subalgebras C and D{ (i e I)
of A, if

A-ΰxC-ΠA,
iei

if the cardinal of I does not exceed m, and if each of the algebras
Di (i e I) is isomorphic to a subalgebra of B, then there exist sub-
algebras E{ ξΞ:Di(ie I) such that

A^Bx Π A .
iei

Proof. Assume that the above condition is satisfied. Suppose

( i ) A = BxC=UDi9

iei

where the cardinal of / does not exceed m. Let / and g be the
projections of A onto B and C induced by the first decomposition of
A, and for i e I let hi be the projection of A onto A induced by the
second decomposition.

Let Θ be the congruence relation over A defined by the condition
that, for all x, y e A,

xθy if a n d only if fh{(x) = fh{(y) w h e n e v e r i e i .

We shall show that

(1) θ is consistent with the decompositions (i) of A .
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(2) The restriction of Θ to B is the identity relation over B .

Suppose x, y e A and xθy. Then

Σ
iei

In particular f{x)θf(y). Moreover, this shows t h a t for x,y eB the
condition α?0y implies t h a t x — f(x) = / ( # ) — 2/, so t h a t (2) holds.
Again assuming t h a t xθy, if k e I then

f h i h k ( x ) = 0 = f h i h k ( y ) w h e n e v e r k Φ i e l ,

fhkhk(x) - /%*(&) - /^(y) - M ( ϊ ) ,

so that hk(x)θhk(y). From the equations

/Λ*/(«) + fhkg(x) = fhk(f(x) + g(x)) - fhk(x) - /Λ4(tf)

= fh(f(y) + 0(y)) = fhkf(y) + fh

we infer that

( 3 ) hfhjix) + hfhgix) - KfhJiy) + h{fhkg{y)

for all i, ke I. Since /(cc) — /(#), we have

hifhkf(x) - h

for all i, ke I, and \t i Φ k, then this element belongs to Ac. There-
fore, by (3),

( 4 ) hifhkg(x) = hifhkg(y) w h e n e v e r i,kel a n d i Φ k .

Considering now a fixed index ίel, observe that

Σ hJhMx) - hj(Σ hkg(x)) = hjg(x) - ^(0) = 0 ,
kei \kei /

with the corresponding formula holding with x replaced by y. Hence,
in particular,

Σ hfhkg(x) =

Furthermore, all the summands in these two sums belong to Ac because
fhkg(x) and fhkg(y) always belong to A\ Since, by (4),

Σ hfhkg(x) = Σ hfhMy) ,
1

this implies that
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Thus in (4) we can omit the condition that i Φ k, and we conclude
that, for all k e 7,

fhkg(x) = Σ hfhkg(x) = Σ hfhkg(y) - fhkg(y) ,
iei iei

so that g(x)θg(y). This completes the proof of (1).
From (1) it follows that

A/θ = (B/θ) x (C/θ) = Π (A/*)
iei

Notice that if k e I and x,y e Dk, then the conditions xθy and f(x) =
f(y) are equivalent, and therefore the mapping

x/θ-+f(x) (xeDk)

is an isomorphism of DJΘ into B. Since B = Bjθ, it follows that there
exist subalgebras E^ DJΘ (iei) such that

A/θ = (B/θ) x Π l ,
iei

Consequently, by 3.4 there exist subalgebras Eiξ^D^ίel) such that

Because of 8.1, we may apply the criterion in 8.2 to BG in place
of B, and thus consider decompositions

ΠA
iei

where the algebras A &re isomorphic to subalgebras of Bc. However,
the algebras A need not be central subalgebras of A, and A there-
fore is not necessarily abelian. We shall now show that it is actually
sufficient to consider the case when A is abelian, in which case the
factors C and A (̂  e I) oί A are of course also abelian.

THEOREM 8.3. For any cardinal m, in order for an algebra B
to have the m-exchange property it is sufficient that the following
condition be satisfied: For any abelian algebra A containing BG as
a factor, and for any subalgebras C and Di (i e I) of A, if

( i ) A = I ? c x C = Π A ,
iei

if the cardinal of I does not exceed m, and if each of the algebras
Di (i e I) is isomorphic to a subalgebra of BG, then there exist sub-
algebras Ei ^D{(ie I) such that



834 PETER CRAWLEY AND BJARNI JONSSON

(ϋ) A = Bc xUEi -
iei

Proof. By 8.1 it suffices to show that Bc has the m-exchange
property, and by 8.2 it is therefore enough to show that the condition
in our theorem implies the property obtained from it by deleting the
word "abelian." Assume therefore that (i) holds, that the cardinal of
I does not exceed m, and that each of the algebras D{ (ί e I) is iso-
morphic to a subalgebra of Bc. Under the operation + each of the
algebras Ό{ is therefore a commutative cancellation semigroup, and
hence so is A. Consequently A can be embedded in an Abelian group
A in such a way that each element of A is the difference of two
elements of A. This extension of A is unique up to isomorphism.
Furthermore, there is a unique way of extending the operations
Ft(teT) to A in such a way that the resulting algebra is abelian:
If ak == a'k — a" with akf a" eA for k = 0,1, , ρ{t) — 1, then we let

Ft(a0, al9 , a**)-!) = Ft(a'o, α{, , ar

p{t)^) - Ft(a'Q', a[', , α ^ ) .

That this definition is unambiguous and actually does yield an abelian
algebra is an easy consequence of the fact that the equation

Ft(x0 + y0, xx + yl9 , xp{t)^ + yPit)+i)

= Ft(x0, xlf , xP{t)-J + Ft(yQ, yu , ypW-i)

holds whenever the elements xk, yk(k = 0, 1, , p(t) — 1) belong to A.
For any subalgebra X of A let X be the smallest abelian subalgebra

of A that contains X. Then X consists of all elements of the form
x — %' with x, x' e X. It is easy to check the condition

implies that

In particular, since BG = B\

A = Bc x C =r Π A .
iei

For each i e /, A is isomorphic to a subalgebra of Bc, and the same
is therefore true of A Hence, by hypothesis, there exist subalgebras
Fi ξΞ:Di(ie I) such that

A = β c x Π Ft .
iei

Given an element α e i , there exist an element beBc and a finitely
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nonzero system of elements f{ eFt(ie I) such that

Since — be A, the element

belongs to A, and there exists a finitely nonzero system of elements
diβDiiiel) such that

a — b = Σ »̂

Inasmuch as d^/i e A for all i e /, we infer that d{ = f{ e D{ f] F{ for
all iei, and therefore

α - 6 + Σ ^i e J5C x Π (A Π ̂ )
16/ *6/

It is now easy to show that (ii) holds with Ei = D{ n i^ for all iei.

9* Factors with central chain conditions* In this section we will
show that algebras satisfying certain central chain conditions have the
exchange property and have countably generated centers, and these
results will be applied to obtain the principal isomorphic refinement
theorem for general algebras. The chain conditions involved are made
precise in the following two definitions.

DEFINITION 9.1. An algebra A is said to satisfy the minimal
condition if every nonempty family of subtractive subalgebras of A
has a minimal member. Similarly, A satisfies the maximal condition
if every nonempty family of subtractive subalgebras has a maximal
member.

DEFINITION 9.2. An algebra A is said to satisfy the local maximal
condition if every finitely generated subtractive subalgebra of A
satisfies the maximal condition.

It should be noted that the minimal and (local) maximal conditions
as defined above involve only subtractive subalgebras of an algebra A.
In particular, since the subtractive subalgebras of an operator group
are precisely its admissible subgroups, for groups the minimal and
maximal conditions as defined in 9.1 and 9.2 are just the usual group-
theoretic chain conditions.

The first theorem of this section makes use of the following lemma
which is a consequence of the results of Baer [1].
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LEMMA 9.3. ([1]; Theorem D p. 96 and Theorem 3 p. 93)5 Let G
be an operator group which satisfies the minimal and local maximal
conditions. IfG = BxC = DxE where B is indecomposable, then
there exist factors D'QD and Ef^E such that G = B x D' x Ef.

Suppose now that A is an abelian algebra with auxiliary operations
Ft(teT). For each teT and each k < p(t) define the unary operation
Fk.t by

Fktt(a) = Ft(0, . . . , 0, α, 0, , 0) for all a e A .

fcth

Since A is abelian, it follows t h a t for each teT and elements

a0, •• , α p ( ί , _ 1 e A we have

Ft(a0, •• , α p U M ) = Σ Fkft(ak) .
k<P(t)

Consequently the (subtractive) subalgebras of A and the direct decom-
positions of A remain unchanged if we replace the operations Ft (t e T)
by the operations Fk,t (k < p(t), t e T). Moreover, this new system so
obtained is obviously an abelian operator group. Hence the following
lemma is immediate by 9.3.

LEMMA 9.4. If A is an abelian algebra which satisfies the
minimal condition and the local maximal condition, and if A =
B x C = D x E where B is indecomposable, then there exist factors

and E'<^E such that A = B x D' x E'.

THEOREM 9.5. If the center Bc of an algebra B satisfies the
minimal condition and the local maximal condition, then B has the
exchange property.

Proof. By 8.1 we may assume that B = Bc. Since B satisfies
the minimal condition, it is a direct product of finitely many inde-
composable subalgebras, and therefore by 3.10 and 5.1 it is sufficient
to show that B has the 2-exchange property.

Consider an abelian algebra A containing B as a subalgebra, and
algebras C, Do and A such that Do and A are isomorphic to subalgebras
of B and such that A = B x C = Do x A Then both Do and A
satisfy the minimal and local maximal conditions, and it readily follows
that the same is true of A. Therefore by 9.4 there exist subalgebras
Eo £ A and Eλ £ A such that A = B x Eo x Elf and we conclude by
8.3 that B has the exchange property.

5 See also Specht [8], pp. 250, 259 and 260.
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In order to apply the preceding theorem in conjunction with 7.1,
we must further show that under the given hypothesis Bc is countably
generated. This observation is based on the following lattice-theoretic
lemma. The terminology and simple facts from lattice theory used
below can be found in Birkhoff [3].

LEMMA 9.6. // L is an upper continuous modular lattice, if
every decreasing sequence of elements of L is countable, and if every
element of L is a join of finite dimensional elements, then every
element of L is a join of countably many finite dimensional elements.

Proof. First consider an element a e L that is a join of atoms.
Then there exists an independence sequence pQ, pu , pζ, (ξ < λ)
of atoms of L such that

α = <§ P* "
Since the elements

Σ Pi (v < λ)

form a strictly decreasing sequence, λ must be countable, and there-
fore a is the join of countably many atoms.

Now consider an arbitrary element a e L. For each n — 1,2,
let Pn be the set of all the elements x e L with x ^ a whose dimension
does not exceed n, and let an = Σ Pn Then

a = Σ an
n<oo

By the first part of the proof there is a countable set Qλ S Pi such
that aλ = Σ βi Suppose n > 1 and x e Pn. Then either x <£ an^x or
x + αw_! covers an^u since each member of Pn — Pn^ covers at least
one member of Pn-λ. Consequently an is the join of atoms in the
quotient sublattice a\an^Ύ. Since the hypothesis of the lemma is
satisfied with L replaced by this sublattice, we again use the first
part of the proof to infer that

an = αw_! + Σ Qn

where Qn is a countable subset of Pn — Pw_-1# It follows that each an

is a join of countably many finite dimensional elements, and therefore
a is also a join of countably many such element.

COROLLARY 9.7. // B is an abelian algebra that satisfies the
minimal condition and the local maximal condition, then B is counta-
bly generated.
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Proof. The lattice L of all subtractive subalgebras of B is modular
and upper continuous, and, by hypothesis, every decreasing sequence
of elements of L is finite. Also, if C is a finitely generated subtractive
subalgebra of B, then the lattice L(C) of all subtractive subalgebras
of C satisfies the double chain condition. Consequently L(C) is finite
dimensional, i.e., C is a finite dimensional element of L. Since every
subtractive subalgebra of B is the lattice join of finitely generated
subtractive subalgebras, L satisfies the hypothesis of 9.6. Hence B is
the lattice join of countably many finite dimensional elements of L;
equivalently, B is generated by the set-union of countably many sub-
tractive subalgebras C such that L(C) is finite dimensional. But if
L(C) is finite dimensional, then C is clearly finitely generated. Thus
it follows that B is countably generated.

Combining 9.5, 9.7 and 7.1 we obtain our principal isomorphic
refinement theorem for algebras with auxiliary operations.

THEOREM 9.8. // an algebra A has a direct decomposition

such that, for each ie I, B\ satisfies the minimal condition and the
local maximal condition, then any two direct decompositions of A
have centrally isomorphic refinements.

10. Lemmas on abelian groups* When applied to algebras with-
out auxiliary operations Ft, Theorem 9.8 can be stated in the following
equivalent form: If a binary algebra A is a direct product of sub-
algebras Bi (i G /) such that, for each iel, B\ is a direct product of
finitely many primary cyclic and quasi-cyclic groups, then any two
direct decompositions of A have centrally isomorphic refinements.
For every abelian group satisfied the local maximal condition, and the
condition imposed on the abelian groups Bi above is equivalent to the
assertion that they satisfy the minimal condition. In the next section
we shall obtain a result that is considerably more general than the
one stated above. Here we list a number of known results and prove
five lemmas concerning abelian groups that will be used in the proof
of this more general theorem.

If G is an abelian group and n is an integer, then the subgroups
nG and G[n] are defined by

nG — {nx I x e G} ,

G[n] = {x I x e G and nx = 0} .

As usual, we say that an abelian group G is divisible if nG = G for
every integer n Φ 0, and we say that G is of bounded order if there
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exists an integer n φ 0 such that nG = {0}. An abelian group is said
to be reduced if it has no nonzero divisible subgroup, and by the
reduced part of an abelian group G we mean the quotient group G/D
where D is the maximal divisible subgroup of G. If X is a subset
of a group G, then [X] denotes the subgroup of G generated by X;
in particular, if x e G, then the cyclic subgroup of G generated by x
is denoted by [x].

Let G be an abelian p-group (p some prime). By the height of
an element x e G we mean the largest integer r such that x e prG, if
a largest such integer r exists, otherwise the height of x is co. Thus
height x — co if x e pnG for n = 1, 2, , and height x = r < co if
a? e prG but x £ pr+1G. Obviously the zero element of G has infinite
height; if this is the only element in G of infinite height, then we
say that G has no elements of infinite height. Thus G has no ele-
ments of infinite height if and only if ΓL<oo PnG = {0}.

If G is an abelian p-group with no elements of infinite height,
then a topology can be introduced in G by taking as a neighborhood
basis for 0 the subgroup pnG(n = 1, 2, •••). This topology is called
the p-adic topology of G. G can be completed in its p-adic topology,
and the torsion subgroup G of the topological completion of G is also
an abelian p-group without elements of infinite height.6

An abelian p-group G is said to be torsion-complete if G has no
elements of infinite height, and G is equal to the torsion subgroup of
the topological completion of G, G = G. Alternatively, G is torsion-
complete if and only if G has no elements of infinite height, and every
Cauchy sequence {#*}*<«» of G, for which the orders of the elements
xk are bounded, converges to a limit in G.7 For convenience we will
call a Cauchy sequence {xk}k<oo9 for which the orders of the xk are
bounded, a bounded Cauchy sequence.

An explicit representation of torsion-complete abelian p-groups can
be given as follows. Let Ul9 U2, C/3, be a sequence of p-groups
such that Un is a direct product of cyclic groups of order pn for each
n — 1, 2, •••. Let Γ be the Cartesian product of the groups £7i, ϊ/2,
UZ1 , that is, JH is the set of all functions / defined on the positive
integers such that f(n) e Unj with addition defined component-wise.
Then the torsion subgroup of Γ is torsion-complete. Conversely, if G
is a torsion-complete abelian p-group, then there exists a sequence of

6 This is essentially given by Kaplansky [7], p. 50.
7 Fuchs [5], p. 114, calls these groups closed. However, we have adopted the

terminology of Kaplansky [7], p. 54, in order to remain consistent with topological
terminology. Fuchs' definition of Cauchy sequence also differs somewhat from ours in
that he requires a Cauchy sequence to be bounded and converge at a specified rate.
Again we have followed Kaplansky [7] in using the usual topological concept of Cauchy
Sequence,
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groups Ulf Z72, ?73, , where Un is a direct product of cyclic groups
of order pn for each n = 1, 2, •••, such that G is isomorphic to the
torsion subgroup of the Cartesian product of U19 Z72, U3, ,8 In par-
ticular, every primary abelian group of bounded order is torsion-
complete, and every countable torsion-complete primary abelian group
is necessarily of bounded order.

By a pure subgroup of an abelian p-group G we mean a subgroup
S of G such that S Π PnG = pnS for all n = 1, 2, . It is easily
seen that the p-adic topology of a pure subgroup of an abelian p-group
G with no elements of infinite height is the same as the topology
induced by the p-adic topology of G. A subgroup U of a p-group G
is called a basic subgroup if U has the following properties:

( i ) U is a direct product of cyclic groups;
(ii) U is a pure subgroup of G;
(iii) the quotient group G/U is divisible. A subset XQG is

independent if the subgroup [X] generated by X is the direct product
of the cyclic subgroups [x] generated by the elements x e X. If in
addition, [X] is a pure subgroup of G, then X is called a pttrβ ΐmϊe-
pendent subset.

The following ten lemmas are well known; proofs and references
to the original sources can be found in Fuchs [5] as indicated in each
case.

LEMMA 10.1. ([5], p. 62) / / a subgroup S of an abelian group
G is divisible, then S is a factor of G.

LEMMA 10.2. ([5], p. 64) A divisible abelian group is a direct
product of subgroups each of which is isomorphic to either the additive
group of rationals or a primary quasi-cyclic group.

LEMMA 10.3. ([5], p. 78) If S is a subgroup of an abelian p-
group G, and if every element of S[p] has the same height in S as
it does in G, i.e., if S[p] Π PnG = S[p] Π PnS(n = 1, 2, •), then S is
a pure subgroup of G.

LEMMA 10.4. ([5], p. 78) IfSisa pure subgroup of an abelian
p-group G9 and if S[p] = G[p], then S = G.

LEMMA 10.5. ([5], p. 97) A subgroup U of a primary abelian
group G is a basic subgroup if and only if U is generated by a
maximal pure independent subset of G.

LEMMA 10.6. ([5], pp. 98 and 104) A primary abelian group G

8 Fuchs [5], p. 114.
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has at least one basic subgroup, and all the basic subgroups of G are
isomorphic.

LEMMA 10.7. ([5], p. 104) // a primary abelian group G is of
bounded order, then the only basic subgroup of G is G itself.

LEMMA 10.8. ([5], pp. 98-99) Let G be an abelian p-group, and
suppose that a subgroup U is a direct product U = U1 x U2 x Uz x ,
where Un is a direct product of cyclic groups of order pn for each
n = 1, 2, . Then the following conditions are equivalent:

( i ) U is a basic subgroup of G;
(ii) G = Ux x x Un x [pnGV \Jk>n Uk] for each n = 1, 2, •;
(iii) Ux x x Un is a maximal factor of G of bounded order

pn for each n = 1, 2, .

LEMMA 10.9. ([5], p. 112) If G is a primary abelian group
with no elements of infinite height, then there exists a torsion-complete
primary abelian group containing G as a pure subgroup.

LEMMA 10.10. ([5], p. 117) If S is a pure subgroup of a primary
abelian group G, and if S itself is torsion-complete, then S is a
factor of G.

LEMMA 10.11. If U = V x W is a basic subgroup of an abelian
p-group G, and if V is of bounded order, then there is a subgroup
H of G such that G = V x H and W^ H.

Proof. Since U is a direct product of cyclic p-groups, there is
an integer m such that

V=Vλx . . . χVm and W = W1 x x Wm x W'm ,

where Vk and Wk are direct products of cyclic groups of order pk (k —
1, , m), and W'm is a direct product of cyclic groups of orders greater
than pm. Then

U=(V1xWd x ••• x(Vmx WJx WL,

and hence by 10.8,

G = VxW1x ••• xWmx [pmG U WL] .

Consequently the subgroup H = [pmG U W) has the required properties.

LEMMA 10.12. If X is a maximal pure independent subset of an
abelian p-group G, and if Y is a pure independent subset of G, then
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there exists a maximal pure independent subset Z of G such that

Proof. By Zorn's Lemma there exists a pure independent subset
Z of G which is maximal with respect to the property YξΞ:ZQX{jY.
Suppose Z is not a maximal pure independent subset of G. Then there
exists a maximal pure independent subset Zf such that Z<cZ'. Choose
any deZ' - Z. If the order of d is pn, let

Xn = {x I x e X and pnx = 0} .

By 10.5 and 10.11 there exist subgroups Ho and Hλ of G such that
ZQHQ and

G = [d] x Ho = fζ x Π [a] .
χexw

Then there exist an element e e Hx and a finite subset {xQ, , a?w_i} S
Xn such that

d G [e] x [£0] x x [ a ^ J .

Observe that if u e G is an element of order at most pn such that
pn~xu $ Ho, then u has order exactly pn, and [u] Π -Ho = {0}; therefore,
as JHΓ0 has index pn in (?, we must have G = [u] x Ho. Consequently,
since Hx contains no factor of order pn by 10.8 (iii), it follows that
pn-λe e £T0. On the other hand, since pn~λd <£ Ho, there exists k < m
such that pn~λxk € Ho. But then G = [xk] x Ho, and this implies that
ZU{xk} is a pure subset of G with Y^ZczZ\J{xk}^Xl]Y. Since
this contradicts the choice of Z, it follows that Z is a maximal pure
independent subset of (?.

Consider now a torsion-complete primary abelian group G and a
pure subgroup S of (?. Define S to be the subgroup consisting of all
those elements xeG which are limits in G of bounded Cauchy sequences
of S. It is easy to see, and is implicit in the proof of the next lemma,
that S is just the topological closure of S in G. Moreover, if T is a
pure torsion-complete subgroup of G containing S, then J Γ 3 S ; in
particular if S itself is torsion-complete, then S = S.

LEMMA 10.13. If S is a pure subgroup of a torsion-complete
abelian p-group G, then S is a pure torsion-complete subgroup of G.

Proof. First observe that if {sk}k<oo is a Cauchy sequence of S
converging to an element x, and if pmx — 0, then there is a bounded
Cauchy sequence {tk}k<oo of S which converges to x such that pmtk = 0
for all k. By picking an appropriate subsequence, if necessary, we
may assume that
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x - skepkG (fc = 1, 2, •••)

Since pmx = 0, we have pmsk e pk+mG. Thus, since S is pure, there is
an element s[e S such that pmsk = pk+ms'k for each k = 1, 2, . Let
tk = sk - pks'k (fc = 1, 2, •). Then clearly pmtk = 0, and

x - tk = (x - sk) + pksf

k e pkG (fc = 1, 2, •) ,

i.e., {ίj/c<oo is a bounded Cauchy sequence of S, bounded by pm, which
converges to x.

Let {xk}k<co be a bounded Cauchy sequence of S. Since G is
torsion-complete, there is an element xeG which is the limit of {#*}*,<• <»
in G. By picking an appropriate subsequence, if necessary, we may
assume that

x-xkepkG (fc = l , 2 , •••)•

Since {xk}k<oo is bounded, there is an integer m such that pmxk = 0
(fc = 1, 2, •). Moreover, since each xk e S, there are Cauchy sequences
{β*,»}n<~ such that {sk,n}n<oo converges to xk for each k = 1, 2, . And,
as observed above, we can choose the sk,n such that

Pmsk,n = 0 and xk — skyn e pnG

for all n, k — 1, 2, . Let ίΛ — sfcfΛ. Then

x - tk = {x - xk) + {xk - sk>k) e pkG ,

and hence {tk}k<oo is a bounded Cauchy sequence of S which converges
to x. Therefore xeS, and S is torsion-complete.

To see that S is pure, let x e S, and suppose that x e prG. Then
there is a bounded Cauchy sequence {sk}k<oo of S such that

x — ske pkG

and hence that

sk+1 - sk e pkG

for all k = 1, 2, . Consequently s r + 1 e ^ G , and therefore, since S is
pure, there exist elements txeS and sk e S (k — 1, 2, •) such that

# % = sr+1 , and sfc+1 — sk = p^s^ for all fc = 1, 2, .

Define elements ίfc e S(fc = 1, 2, •) recursively by ίΛ+1 = ίfc + pks'r+k.
Then clearly {ίJfc}fc<βo is a bounded Cauchy sequence of S which converges
to a limit teS. Moreover, if prtk = sr+A;, then

hence j>rίΛ = sr+k for all fc = 1, 2, . I t follows that prt = OJ, whence
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x e prS. Thus S is a pure subgroup of G.

COROLLARY 10.14. If U is a basic subgroup of a torsion-complete
primary abelian group G, then Ό = G.

Proof. By 10.10, 10.8 and 10.13.

LEMMA 10.15. IfR = SxTisa pure subgroup of a torsion-
complete abelian p-group G, then R = S x T.

Proof. Suppose xeS ΠT and x Φ 0. Then there are bounded
Cauchy sequences {«*.}* <~ and {tk}k<oo of S and T, respectively, such
that

x — sk, x — tk e pkG (k = 1, 2, •) .

Since x Φ 0, x has height r for some integer r. It follows that sk and
tk must also have height r for each k > r . And, as sk eS,tke T, and
R = S x T is a pure subgroup of G, it readily follows that sk — tfc

has height r for each k > r. But this is a contradiction since

sk-tk = (x- tk) - (x - sΛ) e pfeG (fc > r) .

Consequently S Π T — {0}. On the other hand, if {̂ fc}fe<oo is a bounded
Cauchy sequence of R converging to a limit xeR, then {/(&*)}*<«, and
{̂ (̂ &)}fc<«> are bounded Cauchy sequences of S and Γ, respectively, where
/ is the projection of R onto S, and # is the projection of R onto T.
Hence there are elements ueS and v ef which are the limits of
{/0&*)}*<~ a n d M )̂}/fc«x>, respectively. Since

£* = /(&*) + ff(»*) for each fc = 1, 2, ,

it follows that x = u + v, and we conclude that R = S x f.

11 • Exchange and isomorphic refinement theorems for binary
algebras* In the present section conditions are found in order for a
binary algebra B to have the exchange property, and these conditions
are combined with the results of preceeding sections to obtain unique-
ness and isomorphic refinement theorems for binary algebras.

The center Bc of a binary algebra B can be written as a direct
product

B° = P x Q x R

where P is a divisible torsion-free abelian group, Q is a divisible torsion
abelian group, and R is a reduced abelian group. The groups Q and
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P x Q are unique, and P x Q is the maximal divisible subgroup of
BG. Therefore R is isomorphic to the reduced part of Bc. By 3.10,
Bc has the exchange property if and only if each of the factors P, Q
and R has this property. In the case of P the exchange property
readily follows from 8.3 and some elementary properties of vector
spaces. Since a torsion abelian group is uniquely a direct product of
its primary components, it is clear that a torsion abelian group has
the exchange property if and only if each of its primary components
has the exchange property. In the case of divisible primary groups,
and hence for ζ), the exchange property again follows essentially from
vector space properties. As for reduced groups, the main lemma of
this section asserts that a torsion-complete primary abelian group has
the exchange property. Consequently every torsion abelian group with
torsion-complete primary components has the exchange property.

LEMMA 11.1. Every torsion-free divisible abelian group G has
the exchange property.

Proof. Using the criterion of 8.3, suppose

where each of the factors A (i e I) is isomorphic to a subgroup of G.
If A', C and Dl (i e I) are the maximal divisible subgroups of A, C
and A (i e I), respectively, then

A' = G x Cf = Π A '

Furthermore, for each ie I there is a subgroup A ' such that A =
Dl x Dl', and thus

A - A' x Π A" .
iei

Regarding A as a vector space over the field of rational numbers, we
can choose a basis X for G and extend it to a basis Y for A' in such
a way that every element of Y — X belongs to one of the factors A'.
Letting El be the vector space spanned by Dl Γl (Y — X), we conclude
that

A' = Gx]JEl .
iei

Therefore

A = G x Π E{
iei

where E{ = El x Dl' (i e /), and hence G has the exchange property.
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LEMMA 11.2. Every primary abelian group G of bounded order
has the exchange property.

Proof. Suppose

A = GxC=TlDi
iei

where each of the factors A is isomorphic to a subgroup of G. Then
A is a primary abelian group of bounded order. Let Y be a maximal
pure independent subset of Gf and for each i e I let X{ be a maximal
pure independent subset of A Then X = \Jiei X{ is a maximal pure
independent subset of A, and it follows by 10.12 that there exists a
maximal pure independent subset Z of A such that Γ g Z i l U Γ .
By 10.5 and 10.7, A is generated by Z, and G is generated by Y.
Consequently, if E{ is the subgroup generated by the set A Π (Y ~ X)
for each ie I, it follows that

A - G x Π Ei .
iei

Thus G has the exchange property.

LEMMA 11.3. Every divisible abelian p-group G has the exchange
property.

Proof. Suppose

where each A is isomorphic to a subgroup of G. If A', C" and Ώ[ (i e I)
are the maximal divisible subgroups of A, C and A (i € / ) , respectively,
then

A! - G x C x Π A' .

Furthermore, if A" is such that A = A' x A" for each i 6 I, then

A - A' x Π A"
i6/

Clearly

A'b] = G[p] x C'fo] = Π DM ,

and since G[p] is of bounded order p, there exist subgroups Z7<S
(ΐ 6 /) such that

(1) Λ'bl = G[p] x II ϋi
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For each iel there exists a divisible subgroup E of D/ such that
El[p] = Uiy and it follows from (1) that the direct product

iei

exists. Moreover, since A" is divisible, it is a pure subgroup of A',
and using the fact that Ar[p\ S A" we infer by 10.4 that A' = A".
Thus

A = G x Π #»

where I?* = 2?/ x D '9 and G has the exchange property.

LEMMA 11.4. Every torsion-complete abelian p-group G has the
exchange property.

Proof. We first prove that G has the 2-exchange property and
hence the finite exchange property. Thus suppose

A = G x C = A x A

where A and A are isomorphic to subgroups of G. Then A is an
abelian p-group without elements of infinite height, and hence by 10.9
there is a torsion-complete abelian p-group A' containing A as a pure
subgroup. By 10.13 we may assume that A' is the closure of A, A! — A,
and in this case it follows by 10.15 that

Choose maximal pure independent subsets Xo, Xλ and Y of Do, D1 and
G respectively. Then X = XQ U Xx is a maximal pure independent
subset of A, and by 10.12 there is a maximal pure independent subset
Z of A such that Y^ZQXljY. Since every subset of Z generates
a factor of [Z], the subgroups generated by Dof] Z and A Π Z are
pure in A. Let Eo and £Ί be the closures of the subgroups generated
by A Π £ and A n #, respectively. Then by 10.14 and 10.15,

A = GxEoxElm

Since Eo x (G x JSί) 2 A x A S G x #i, we infer from the modular
law that

A x A = (̂ Ό Π (A x A)) x G x E1 = G x (DonEQ) x Eλ.

Therefore E, x (G x (A Π -EΌ)) 2 A x A 3 G x (A Π -EΌ), and a second
application of the modular law yields
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A = A x A = (Et n (A x A)) x G x (A n #0)
= G x ( A n #o) x (A n EX) .

Consequently G has the 2-exchange property.
Now suppose

( 1 ) A = G x C = Π A

where each of the factors A is isomorphic to a subgroup of G. A is
therefore an abelian p-group with no elements of infinite height. For
each i e I let / { be the project of A onto A induced by the second
decomposition in (1). We begin by proving the following statement:

(S) There exist a finite set JξΞ=I and subgroups Go and Gx such
that G — Go x Gl9 Go is of bounded order, and

( 2 )
iβJ

Assume that (S) is false. Then for every finite subset J S l a n d every
decomposition G = Go x Gx where Go is of bounded order, there is an
element x e G^p] and an index ie I — J such that fι{x) Φ 0. Using
this we shall construct a sequence of elements x0, xl9 x2, « e G[p] and
a sequence of indices i19 i2, i3, e I such that the following conditions
hold for every positive integer n:

( 3) height xn > height fi(xn-i) whenever ie I and fi(xn-i) Φ 0

( 4 ) fin(x0) = fin(xd - . . . - fin(xn-d = 0 ^ fin(xn) .

Pick any element x0 e G[p], Suppose the elements x19 • • • ,««€ G[p] and
the indices ilf , im e I have been so chosen that (3) and (4) hold for
n = 1, , m. Then the set

Jm = {i I i € / and fi(xn) Φ 0 for some n ^ m}

is finite, and we can choose a positive integer r such that

r Ξ> height fi(xn) whenever i e Jm, n ^ m and fi(xn) Φ 0

By 10.8, G has a decomposition G = Go x G1 such that pr+1<?0 = {0} and
such that Gλ has no factor of order less that p r + 2 . Therefore there
exists and element xm+1 eGλ[p] and an index im+1 el — Jm such that
fim+1(xm+i) Φ 0. Since the height of xm+1 is necessarily larger than r,
we infer from the choice of r that (3) holds for n = m + 1. Also,
since im + 1 g J m , it follows that (4) also holds with ^ = m + 1. Thus
the existence of the sequences of elements xn e G[p] and of indices
ine I satisfying (3) and (4) follows by induction.

For each m = 0,1, 2, let
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Vm = #0 + * * ' + #m

If m > n, then it follows from (4) that

AJ3/J = fφn) + + fin(xj .

From (8) we infer that the height of fin(xn) is less than the height of
fίn(xk) for fc = w + 1, , m. Consequently

( 5) height fin(ym) = height fin(xn) whenever m > n .

Notice that (3) also implies that the height of xm is at least m.
Therefore

2/m+l - 2/m = #m+l G P™G (m = 0, 1, 2, •) ,

and since each ym has order p, the sequence {2/m}m<oo is a bounded
Cauchy sequence of G which must converge to a limit y eG. Further-
more, for each ίel, the sequence {fi(ym)}m<oo is a bounded Cauchy
sequence of D{ which converges to fi(y). Now fi(y) ~ 0 for all but
finitely many i e I, and therefore there is a positive integer n such
that fin(y) = 0. But the sequence {fin(ym)}m<oo cannot converge to 0,
since according to (5) the heights of the elements fin(y0),fin(yi),
fijy2)9 * a r e bounded. Thus we have a contradiction, and hence (S)
must be true.

Choose J, Go and Gx according to (S). Considering the decom-
position

A = π A x Π A ,
iβJ iei—J

let / be the projection of A onto the factor ILej A, and let G* be
the image of Gx under /. It follows from (2) that / maps Gx iso-
morphically onto G*, and that

(6) G*[p] = Gib]

In particular, G* is torsion-complete. Furthermore, if xeG*[p], then
x = f(χ)> and the height of x in G* is at least as large as the height
of x in Gj. Since G± is a pure subgroup of A, it follows by 10.3 that
G* is a pure subgroup of A. Thus, by 10.10, G* is a factor of A,
and consequently

Π A = G* x i ϊ
<i€J

for some subgroup ϋΓ. By the first part of the proof, G* has the
finite exchange property, and thus there exist subgroups E{gΰ^ie J)
such that
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Therefore

where E{ — A if ie I — J. From (6) and this last decomposition we
see that the direct product

A! = Gλ x Π E< ,
iei

exists. Moreover, if y eG* then there is an element x e G1 such that
y = /(#). Hence x = y + z for some element z e ILe/-j A = ILew •#*,
and we conclude that y = x — zeA'. This shows that G*ξ^A', and
therefore A' = A. Finally, Go is of bounded order and thus has the ex-
change property by 11.2. According to 3.9 we can therefore find
subalgebras F{ QE{(ie I) such that

A = Go x G± x Π Ft = G x Π Fi .
iei iei

Hence G has the exchange property, and the proof of 11.4 is complete.

THEOREM 11.5. If B is a binary algebra such that the reduced
part of Bc is a torsion group each primary component of which is
torsion-complete, then B has the exchange property.

Proof. This is an immediate consequence of 8.1, 11.1, 11.3 and
11.4, together with the introductory remarks of this section.

Combining 11.5 with 4.2, 5.3 and 7.1, respectively, we obtain the
following principal uniqueness and isomorphic refinement theorems for
binary algebras.

THEOREM 11.6. If a binary algebra A has two direct decompo-
sitions with countably many factors,

A = B0xBιxB2x = Co x d x C2 x

where the reduced parts of all the groups B\ and C] are torsion
groups with torsion-complete primary components, then these two
direct decompositions of A have centrally isomorphic refinements.

COROLLARY 11.7. If A is a binary algebra such that the reduced
part of Ac is a torsion group with torsion-complete primary com-
ponents, then any two countable direct decompositions of A have
centrally isomorphic refinements.



REFINEMENTS FOR INFINITE DIRECT DECOMPOSITIONS 851

THEOREM 11.8. // a binary algebra A has a direct decomposition

where, for each iel, the reduced part of B\ is a torsion group with
torsion-complete primary components, then any two direct decom-
positions of A into indecomposable factors are centrally isomorphic.

THEOREM 11.9. // a binary algebra A has a direct decomposition

where, for each iel, B\ is countable and the reduced part of B\ is
a torsion group each primary component of which is of bounded order,
then any two direct decompositions of A have centrally isomorphic
refinements.

A final theorem describes a class of binary algebras with uncountable
centers having the isomorphic refinement property.

THEOREM 11.10. If A is a binary algebra such that the maximal
divisible subgroup of Ac is countable and the reduced part of Ac is
a torsion group each primary component of which is a torsion-com-
plete group with countable basic subgroups, then any two direct
decompositions of A have centrally isomorphic refinements.

Proof. Suppose

(1) A^p^ΠC,.

Since the maximal divisible subgroup of AG is countable and the basic
subgroups of each primary component of the reduced part of A° are
countable, it follows that there exists a countable subset /' of I such
that B\ = {0} for each iel — Γ. The factor ILe/-/' &i has the exchange
property, and hence there are subalgebras D3, D (j e J) such that
Cj = Dj x Dj and

Λ. — 11 Ei X 11 JJj .
iei-v jej

Consequently

( O \ T l D '—' c TT Ί~ίf

*) 1 1 i>» = 1 1 i Λ $
iei-i' jej

and, as ILe/-i' Bl = {0}, we infer by 2.19 that

(3) Π£, = Π A .
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Repeating the argument above for the factor Πί6jA» there is a
countable subset J ' of J such that Ό] = {0} for each j eJ — J', and
there are subalgebras Eif E- (i e Γ) such that B{ = Et x J?/ and

(4) Π Dj~cUE!f
jej-J' ίei'

(5) ΠA - Π ^
jej' iei'

The pairs of decompositions (2) and (4) each have centrally isomorphic
refinements by 11.9, and the decompositions (5) have centrally isomorphic
refinements by 11.7. Therefore the original decompositions (1) have
centrally isomorphic refinements, and the proof is complete.

12, Counterexamples and open problems* This final section con-
tains two examples that yield negative answers to some questions
related to the results in this paper. A number of unsolved problems
suggested by our investigations are also mentioned.

In 3.10 it was shown that if an algebra B is a direct product of
finitely many subalgebras each of which has the exchange property,
then B has the exchange property. The first example shows that this
result cannot be extended to products of infinitely many subalgebras.
In fact, the example shows that if B is an abelian p-group such that

B = B,x B2x B3x . . .
3

where, for k = 1, 2, 3 «, Bk is a cyclic group of order pk, then B
does not have the 2-exchange property. Thus the simplest unbounded
abelian p-group fails to have the exchange property.

Let

A = Π [uk] x Π [vk]
k=-l k = l

where, for k = 1, 2, 3, - - , [uk] and [vk] are cyclic groups of order p*.
Also, let

B - Π [uk + pvk+1] , C = Π [vk] ,
k=l / c = l

A = Π [vk + puk+1], A = Π [%]
k=l A-i

It is easy to check that

A = B x C = A x A ,

and in order to prove that B does not have the 2-exchange property
it is sufficient to show that the assumption that



REFINEMENTS FOR INFINITE DIRECT DECOMPOSITIONS 853

(1) A = BxE1xE2f S ^ A , # 2 S A

leads to a contradiction.
Assume that (1) holds. Since A is a direct product of finite groups,

it and all its direct factors have the unique factorization property.
Inasmuch as C = E± x E2, this implies that for each positive integer
k only one of the groups E1 and E2 has a cyclic factor of order pk.
Observing that

B x E2 S B x A = B x pC ,

we have vA = 6 + pc + e where b e B, ceC, b + pceB x E2f and β e Elm

Using the fact that B x C exists we see that, for r = 1, 2, 3, , k — 1,
the element pr(^/c — 6) = p r f lc + pre has height r, and hence the height
of pre is also r. Since pke = 0, this shows that [β] is a pure subgroup
of Elt and hence a factor of J5Ί, of order pk. Consequently E2 cannot
have a direct factor of order pk, and since this is true for every
positive integer k, we infer that E2 = {0}, and hence 4 = ΰ x £ 1 5 J 8 x A .
But it is easy to see that neither ux nor vλ belongs to B x D19 and
we have thus arrived at a contradiction.

In 8.1 it was shown that if the center of an algebra B has the
exchange property, then B has the exchange property. Our second
example shows that the converse of this result is false. For this
purpose we construct a group B such that

( i ) BG is an infinite cyclic group.

(ii) The commutator subgroup of B equals B, [B, B\ ~ B.

First observe that this does in fact imply that B has the required
properties. In fact, suppose Bc — [u] and let A — BG x C where C = [v]
is also an infinite cyclic group. Also let D1 — [2u + Sv] and D2 = [3u + 5v].
Then A = A xD2. Since Bc x A = -Bc x [3^]^A and Bc x D2 = BG x[5V]ΦA,
we see that Bc does not have the 2-exchange property. On the other
hand, suppose A is any algebra containing B as a subalgebra, and
suppose C and A (ΐ € I) are subalgebras of A such that

Let g and Λi be the projections of A onto C and A induced by these
two direct decompositions of A. Then gh{ maps 5 homomorphically
into the center of C, whence it follows by (ii) that, for each b e B,
ghi(b) = 0 or, equivalently, h{(b) e B. Thus, for each ie I, hi maps B
into B n A, and we infer that

B = Jl(BΓίDi).
iei
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It follows by the modular law that for each iel there exists a sub-
algebra Et S A such that A = (B f] A ) x A , and we conclude that

4 = 5x11^.
iei

Hence B has the exchange property.
In order to construct a group having the properties (i) and (ii)

we proceed as follows. For n — 2, 3, 4, let Hn be the group of all
n by n matrices of determinant 1 over a field of characteristic 0 that
contains a primitive nth root of unity. Then the center of Hn contains
a cyclic group of order n, and the commutator subgroup of Hn equals
Hn. The Cartesian product H of H2, H3, H4, therefore has the
properties that its center contains an infinite cyclic group and that the
commutator subgroup of H is equal to H. We now take for B a free
amalgamated product of two isomorphic copies B1 and B2 of H, with
amalgamated subgroup Z = B1ΓiB2 an infinite cyclic group contained
in the centers of both Bλ and B2. It is known that Bc = B\ Π B\, so
that J5C is in this case the infinite cyclic group Z. Thus (i) holds,
and it is obvious that (ii) is also satisfied.

The most interesting unsolved problem suggested by the results
in this paper is whether in Theorem 7.1 the assumption of countably
generated centers is needed. Specifically, is it true that if an algebra
A is a direct product of subalgebras each of which has the exchange
property, then any two direct decompositions of A have isomorphic
refinements! Even if the answer is negative, one might hope for an
affirmative answer in special cases, such as for groups whose centers
are of bounded order. Of course, if the answer should turn out to
be affirmative, then this would include Theorems 4.2, 5.3 and 7.1 as
special cases.

Another problem concerns the relation of the finite exchange prop-
erty and the exchange property: Is the exchange property always
implied by the finite exchange property! In connection with Theorem
7.1 it would be particularly interesting to know whether for an algebra
B with a countable generated center the finite exchange property
implies the ^0-exchange property (and therefore the exchange property).
It is not hard to show that for such an algebra B the condition

implies that

A = B x Eo x Exx E2x

where each of the factors Ek is a subalgebra of the finite product
Do x A x x Dk, but we do not know whether the factors Ek can
be replaced by subalgebras of the factors Dk.



REFINEMENTS FOR INFINITE DIRECT DECOMPOSITIONS 855

Theorem 8.3 raises the problem of determining those abelian
operator groups that have the exchange property. In this regard the
following question seems particularly relevant: Is it true that if an
abelian operator group satisfies the minimal condition, then it has
the exchange property 1 For ordinary reduced abelian groups the
results in § 11 apply only to groups with no elements of infinite height.
It would be of interest to know whether the class of all reduced
primary abelian groups having the exchange property contains any
groups with (nonzero) elements of infinite height.
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