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ON AN EXTENSION OF THE
PICARD-VESSIOT THEORY

H. F. KREIMER

In previous papers, the author has extended the Galois
correspondences between differential Picard-Vessiot extensions
and algebraic matrix groups to Picard-Vessiot extensions of a
wider class of fields with operators, the so-called 1/-fields.
In this paper, }M-field extensions which generalize extensions
by integrals and by exponentials of integrals are studied.

These fields are found to be simple field extensions and
their structure in the case that the extension is algebraic is
investigated. Under suitable restrictions on the fields of con-
stants, the }-Galois groups of these fields are shown to be
commutative, Criteria are established for such solution fields
to be P-V extensions of M-fields of difference and differential
type. An extension obtained by a finite sequence of algebraic
extensions, extensions by integrals, and extensions by expo-
nentials of integrals, is called a generalized Liouville extension.
It is demonstrated that if the connected component of the
identity element in the 1/-Galois group of a regular P-V
extension is a solvable group, then the P-V extension is a
generalized Liouville extension, and if a P-V extension is
contained in a generalized Liouville extension then the con-
nected component of the identity element in the }M-Galois group
of the P-V extension is solvable,

1, Terminology and notation are briefly considered in §2, and a
preliminary result on the constants of an algebraic M-extension of an
M-field is obtained. The structure of solution fields analogous to
extensions by integrals and ecriteria for the existence of P-V exten-
sions of this type are determined in § 3, and a similar study of solu-
tion fields analogous to extensions by exponentials of integrals is made
in §4. In §5, generalized Liouville extensions are defined, and solva-
bility of the Galois group of a P-V extension is interpreted in terms
of imbedding the extension in a generalized Liouville extension.

2. M-rings. The terminology and notaion of this paper are the
same as in [6] and [7]. Let C be an associative, commutative co-
algebra with identity over a ring W, which is freely generated as a
W-module by a set M. If w-—w is a homomorphism of W into a
ring S, let C° be the S-module obtained from the W-module C by
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inverse transfer of the basic ring to S. If o is a homomorphism of
a ring R into the algebra (C5)* = Homg (C?, S); then for every me M
there is 2 mapping a¢ — a°(m) of R into S, which will also be denoted
by m, and the set of these mappings will be called an M-system of
mappings of R into S. Let m — >, vex Zmas® @ », Where me M,
Zunp € W, and 2,,, = 0 except for a firite number of elements n and p
in M, be the coproduct mapping of C into C®,C; if a,bc R and
me M, (¢ + bym = am + bm and (ab)ym = 3}, vren Zumplan)(bp). An M-
ring is a ring together with an M-system of mappings of the ring
into itself. An M-ring of difference type is an M-ring in which the
M-system of mappings consists of homomorphisms, and an M-ring of
differential type is an M-ring in which the M-system of mappings
consists of the identity automorphism and higher derivations of rank
one or greater.

An element ¢ of an M-ring R is a constant if (ca) = c-a® for
every a€ K. The following are equivalent:

(1) ¢ is a constant of R,

(2) c¢>=c¢-1°,

(3) (ca)ym = c(am) for every a€ R and me M,

(4) cem = c(Im) for every me M.
The constants of R form a subring of R which contains the identity
element of R and this subring will be denoted by E,. Suppose b, de R
and d is a unit in R, then bd~'e R, if, and only if, d(bm) = b(dm) for
every m€ M. Consequently, if R is a field, so is R,.

(2.1) LEMMA. Let K be an M-field which is an M-extension of
an M-field L. If K is an algebraic extension of L, then K, is an
algebraic extension of L,.

Proof. Suppose de K, and f(x) = 2" + a;_ & + «-« + ax + q,
is the irreducible, monic polonomial over L for which d is a root. If
me M, 0=(f(d))m=(fm)(d), where (fm)(x)=Am)x"+(a,_m)a* '+« +
(am)x + aym. But then (fm)(x) must be a multiple of f(x), thus
(fm)(z) = Am) f(x) and a,m = Am)a, for 0 = a < h — 1. Therefore,
aw€ L, for 0 < a =< h —1 and d is algebraic over L..

Let S'(M) be the free semi-group with identity generated by the
set M. Operations by elements of S’(M) on an M-ring R are defined
as follows: the identity element of S’(M) operates on R as the identity
automorphism of R, and any other element of S’(M) operates on R
as the resultant of the operations on R by its factors. If % is a
positive integer, 7, 7y, +++, 7, are h elements of R, and s, s, *-,s,
are h elements of S’(M); denote by W(r,, 7y *++, T4} Si, Sy =+, S;) the
determinant:
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An M-field K which is an M-extension of an M-field L is a solu-
tion field over L if there exists a positive integer i and % elements
kyky -+, k, of K, such that K= Lk, k,, -+, k,> and, for some
choice of h elements t,, t,, + -+, ¢, in S'(M), Wk, by, ~+-,Fs; 6,80, ¢+, 8,) =
W, # 0 while W Wk, ks, <+, ku; ty, <+, tay, tus, =+ *, ty, t) € L for
l=a=hand t=1 or t=tgm,meM and 1 =B =h. The set of
elements k&, k,, ---, k, is a fundamental set for K over L. K is a
Picard-Vessiot extension of the M-field L if K is a solution field over
L and, additionally, K, = L, and L, is an algebraically closed field.

3. Extensions by integrals.

(8.1) TurEoOREM. Let K,L and L, be M-fields such that K 1s
an M-extension of L and L 1s an M-extension of L, and assume
there exists ke K such that km — (Im)k = a, € L, for every me M.

(1) L<k> s a solution field over L.

(i) If K, = L<Lk),, then L{ky is invariant wunder M-automor-
phisms of K over L; and, vf L<{<k), = L,, then the M-Galois group
of L{k> over L 1is commutative.

(iil) As abstract fields, L{k> is a simple extension of L by
adjunction of the element k.

(iv) ILky, = L, if, and only if, L{k}, = L,.

(v) Ifk is algebraic over L but k¢ L and L{k>, = (L,),, L 1s
a field of characteristic p +0 and k is a root of an irreducible
polynomial over L of the form x** + ¢,_x?" " 4 «oo 4+ 2% + cx + b,
where h is a positive integer, c,€ (L), for 0 =a=h —1, and b, —
(Am)be L, for every me M.

(vi) If L is a field of characteristic zero and k is transcendental
over L then L{k>, = L, if, and only if, there does mot exist be L
such that bm — (Am)b = a,, for every me M.

(vii) If L<LkY is a P-V extension, such an extension is unique.

Proof. (i) If L<k)= L, then L<{k) is trivially a solution field
over L with fundamental set consisting of 1. Therefore, assume k£ ¢ L.
If @, =0 for every me M, then ke K, and L<{k)> is a solution field

over L with fundamental set consisting of k. If there exists ne M

such that a, +# 0, then the determinant ’117@ lcl:@’ = a, # 0 while 1 and

I are solutions of the equations zm = a,a;%(xn) + (Am) — (An)a,a;)x
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and (xn)m = (a,m + >, )a; (@n) + (An)m — An)a,m)a;* — An)a,* 3,0
where >, = Sirex Zuer(An))a,, for every me M. It is then readily
established that L{k) is a solution field over L with fundamental set
consisting of 1 and k.

(ii) An M-isomorphism ¢ of L<{k> over L into K is completely
determined by its action on k, and (ke — kym = (km)p — km =
(@, + Am)k)p — a,, — Am)k = (Im)(kp — k) for every me M. There-
fore kp — ke K, or kp = k + ¢ for some constant c¢. If K, = L<{k),,
then L<k)> is invariant under M-automorphisms of K over L; and, if
ILky, = L,, then the M-Galois group of L<{k)> over L is isomorphic to
a subgroup of the additive group of constants of L.

(iii) The subring L[k]< K of polynomials over L in k is an M-
subring of K, and L<k) is simply the field of fractions of L[k] in K.
(See Corollary (4.2) of [6]).

(iv) If I<Lk), = L, then certainly L{k}, = L,. If k is algebraic
over L, then L<{ky = L[k] = L{k} and the converse is true. Let & be
transcendental over L. An element of L<{k> may be represented as
the ratio of a polynomial f (k)€ L[k] and a monic polynomial g(k)e L[k].
Suppose f(k)-(g(k))™e K, and is expressed in lowest terms, i.e., f(k)
and g(k) are relatively prime. Then ¢g(k)-((f(k))ym) = f(k)-((g(k))m)
for every me M; and, were (9(k)ym = (Im)-g(k) for some m e M, then
S E)-(g(k))™ = ((f(k))ym — (Am) f(k))- (9(k))m — (Lm)g(k))~". This last is
impossible since the degree of (g(k))m — (Am)g(k) is less than the degree
of g(k). Thus (g(k))m = (Im)g(k) and (f(k))ym = (Im)f(k) for every
m e M, consequently f(k), g(k)e L{k},. Therefore, if L{k}, = L,, then
S(k)-(g(k))~ e L,.

(v) Suppose k is algebraic over L. If L[y] is the ring of poly-
nomials over L in an indeterminate y, determined as an M-extension
of L by setting ym = a, + (Im)y for every m e M; there is a canonical
M-homomorphism % of L[y] over L into K such that y?=F%k. Let I
be the kernel of %, and let f(y) be the monic polynomial which gener-
ates I, i.e., the minimal polynomial for % over L. Because I is an
M-ideal, (f(y))m must be a multiple of f(y) and computation shows
that (f(y))m = (Am) f(y), for every me M. Therefore f(y)e L{yl..
Suppose ILk>,= L, and g(y)e L|y].. Then g¢g(k)e L<k), = L,, say
g(k) = ¢, and k is a root of g(y) — ¢. Therefore g(y) — ¢ is a multiple
of f(y) and, if g(y) has positive degree, it is not less than the degree
of f(y). Subsequently assume only that L[y], contains polynomials of
positive degree, and f(y) is such a polynomial of least positive degree.
If de L,, (y + dym = (Am)(y + d) + a,, and (f(y + d))m = (Am) f(y + d)
for every m € M. Therefore f(y + d) and f(y + d) — f(y) are elements
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of L[y],. The degree of f(y + d) — f(y) is less than the degree of
f(y) and, therefore, cannot be positive. Thus f(y + d) — f(y) =
JF(d) — f(0); but this identity can be valid only if f(y) is a polynomial
of degree not greater than one, or L is a field of characteristic p = 0
and f(y) = b+ S\ c.y*®, where h is a nonnegative integer and b
and ¢,, 0 < a = h, are elements of L. If p is the representation of
Lly] in (C¥)* agsociated with the M-system of mappings on L[y],
then %* = a + y-1° where a is that element of (C*™)* such that a(m) =
a, for every me M. If L is a field of characteristic p = 0 and f(y) =
b+ Sk ocay?®, then f(y)-1° = (f(y))F = b + i, char® + Sk y*®-ch.
Therefore ¢,-1° = ¢%, and c,c¢ L, for 0 < a < h and, if ¢, (L), for
0 =< a = h, then bm — (Im)b = —>%_; (csar*)(m) € L, for every me M.
The assertion in (v) is now immediate.

(vi) Suppose L is a field of characteristic zero and k is transcen-
dental over L. If L<Lk), #+ L,, then L{k}, + L, and there is a poly-
nomial over L in k of positive degree which belongs to L{k},. Let
S(k) be such a polynomial of least degree. By the argument in part
(v), the degree of f(k) is one. Then f(k) generates a prime M-ideal
Iin L{k} and L{k}/I is M-isomorphic to L. If b is the imageof k + I
under such an M-isomorphism, then dm — (1m)b = a,, for every mc M.
Conversely, if there exists be L such that bm — (lm)b = a,, for every
me M, then k — be L{k}, and L<k), + L,.

(vil) Let L<k> be a P-V extension of L and let L{k"> be a second
P-V extension of L such that k'm — (lm)k' = a, for every me M.
If k and k' are transcendental over L, there is an isomorphism ¢ of
L<{ky over L onto L<{k"> such that k* = k' and o is an M-isomorphism.
Suppose k is algebraic over L and either %’ is transcendental over L
or algebraic over L but of degree over L not less than the algebraic
degree of k& over L. If f(x) is the monic minimal polynomial for k
over L, then f(k')e Ik, = L, by the argument in part (v); say
f(ky=d. Then k" is a root of f(x) — d and k' is algebraic over L
with the same degree over L as k. If the degree of k over L is one,
then I<k)> = L = Lk"y. If the degree of k over L is greater than
one, then L 1is a field of characteristic p =0 and f(x) = x*" +
Cp 2?4 oo 4o 4 "2 4+ b where o is a positive integer and ¢, € L,
for 0 =a=<h —1. Let ¢ be a root in the algebraically closed field
L, of x4 ¢,_jx?"" 4 «++ +ca® + cx + d. Then f(K + ¢) = f(K)
—d =0 and there is an isomorphism ¢ of L<{k)> over L onto L{k">
such that k=% + c. ¢ is an M-isomorphism.

(3.2) COROLLARY. Let L be an M-field of characteristic zero
such that L, is algebraically closed, and let a,, me M, be elements
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of L. There exists a P-V extension L{k)> of L such that km —
(Im)k = a,, for every mec M if, and only if (1) there exists an element
be L such that bm — (Im)b = a, for every me M, im which case
Ly = L, or (2) if Lly] is the ring of polynomials over L in an
ndeterminate y, determined as an M-extension of L by setting ym =
a, + (Im)y for me M, and L(y) is the field of fractions of Lly],
then there is a structure of an M-field on L(y) such that L(y) is an
M-extension of Lly], in which case L{ky and L(y) are M-isomorphic.

Proof. If there exists be L such that dbm — (Im)b = a,, for every
me M, set k=0>b to obtain a trivial P-V extension of L. If there
does not exist be L such that bm — (Im)b = a,, for every me M, but
there is a structure of an M-field on L(y) such that L(y) is an M-
extension of L[y]; then L(y), = L, by part (vi) of Theorem (3.1) and,
setting k =y, L<k> = L(y) is a P-V extension of L. The converse
is immediate from parts (iii) and (v) of Theorem (3.1).

If L is an M-field of differential type and of characteristic zero
such that L, is algebraically closed, Corollary (8.2) may be applied to
establish the existence of P-V extensions by adjunction of integrals.

(3.3) COROLLARY. Let L be an M-field of difference type such
that L, is algebraically closed, and let a,, me M, be elements of L.
There exists a P-V extension L<{k) of L such that km — k = a,, for
every me M f, and only vf, the characteristic ts 0 or the following
condition is fulfilled when the characteristic 1s p # 0: that there do
not exist a mnomnegative integer h, c¢,€ L, for 0 £ a < h, and be L,
such that bm — b + SM_c(a,)*® = d,e L, for every me M, where
{d,,lme M} is a finite set mot equal to {0}.

Proof. Let L[y] and L(y) be as in Corollary (3.2). The M-system
of mappings on L[y] consists of isomorphisms and these can be extended
to L(y), so that L(y) is an M-field which is an M-extension of L[y].
Because of Corollary (3.2), only the case when L is a field of charac-
teristic p # 0 need be considered. If L[y], = L., then L(y), = L, by
part (iv) of Theorem (3.1) and, setting y =k, L<{k> = L(y) is the
desired P-V extension of L. If there exists an irreducible polynomial
in L|y], of positive degree, this polynomial generates a proper prime
M-ideal I in L[y). The M-field L[y]/I is an algebraic extension of L
and (L{y)/I), = L, by Lemma (1.1), since L, is algebraically closed.
Setting k =y + I, L<k> = L|y]/I is the desired P-V extension of L.
Therefore, assume that there exist polynomials of positive degree in
Lly].,, let f(y) be such a polynomial of least positive degree, but
assume f(y) is reducible. Analyzing f(y) as in the proof of part (v)
of Theorem (3.1), f(y) must have the form f(y) = b" + >.i., ciy?® where
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7 is a nonnegative integer and c¢,c L, for 0 < a =< ¢. Let g(y) be an
irreducible monic polynomial which divides f(y), and let { be a root
of g(y) in a splitting field for f(y) over L. The roots of f(y) are the
elements { + ¢ where ¢ is a root of f(y) — b’ and lies in the algebrai-
cally closed field L,. The roots of g(y) are those elements { 4+ e where
¢ is a root of ¢g({ + y). Let ¢ and ¢ be roots of g({ + ¥); thereis an
automorphism of the splitting field of f(y) over L which maps { to
{ + ¢ and its inverse maps { +etol + ¢ —¢€. Theng({l +e—¢)=0,
e — ¢ is again a root of g({ + ¥), and the roots of ¢g({ + y) form an
additive subgroup of L,. Therefore g({ + ) must be a p-polynomial
over L, say g(C 4+ y) = Sk ,c.y»® where h is a nonnegative integer
and c,e L, for 0 = a =< h; and g(y) = g(C + (¥ — {)) must have the
form g(y) = b + >\_,c.y*®. Any irreducible monic polynomial which
divides f(y) will have the form g¢(y + ¢) where ¢ is a root in L, of
Sy =0, It meM; (f(y)m = fy), (gW)m =gy + ¢,) = 9¥) + d,,
and bm + S, c.(a,)*™ = b+ d,, where d,, = g(e,) —be L, and e, is
a root of f(y) — b’. Since g(y) is a proper factor of f(y), g(¥) ¢ Lly],
and d, = 0 for some me M.

Conversely, assume there exist a nonnegative integer h, ¢,c L, for
0=a=h, and be L, such that dbm — b + St ,c.(a,)® =d,c L, for
every m < M, where {d,|me M} is a finite set not equal to {0}. Let
E be the additive subgroup of L, generated by {d,. | me M}, let g(y) =
b+ Shocay, let f(y) = Il.en (¥ + €), and let f(y) = flg(y)). Sf(y)
will be a p-polynomial over L,, i.e. f(y) will be a finite linear combina-
tion over L, of monomials y»®, 8 a nonnegative integer; f(y) will have
the form f(y) = b + S.i_,c.y*® where ¢ is a nonnegative integer and
c,e L, for 0 < a < %; and f(y)€ L[y].. If the desired P-V extension
L{ky existed, f(k) would be an element of L<{k)>, = L,. If ¢ is a root
in L, of f(y) — b + f(k), then f(k + ¢) = 0 and some factor g(k + ¢) +
¢=0. But then 0=(g9k+¢)+em=gk+c¢)+e+d,=4d, for
every m € M, contrary to the assumption that {d, |me M} = {0}.

(3.4) COROLLARY. Let L be an M-field such that the M-system
of mappings on L consists of the identity automorphism m, and
wnfinite higher derivations and L, is algebraically closed. If a,, me M
and m # m, are elements of L, there exists a P-V extension of
differential type L{kY of L such that km = a,, for every me M, m - m,.

Proof. Let a,, =0, and let L[y] and L(y) be as in Corollary
(3.2). The M-system of mappings on L[y] consists of the identity
automorphism m, and infinite higher derivations, and these can be
extended to L(y) so that L(y) is an M-field of differential type which
is an M-extension of L[y]. By repetition of the argument in the
beginning of the proof of Corollary (3.3), only the case when L is a
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field of characteristic p = 0 and L[y]. contains polynomials of positive
degree need be considered. Let f(y)e€ L[y]. be a polynomial of positive
degree, and let ¢g(y) be an irreducible factor of f(y), say f(y) =
a(y)-(g(y))"** where h is a positive integer not divisible by p, ¢ is a
nonnegative integer, and ¢(y) is not divisible by g(y). Let {D,,D,,D,, - --}
be an infinite higher derivation on L[y] contained in the M-system of
mappings on Lly]. If D, = m, (9(¥))D, = g(y). Let j be a positive
integer and assume that (g(y))D, is a multiple of g¢g(y) for 0 < a < J.
Observe that (g(y))”’D, = 0 for every positive integer & which is not
divisible by p* and (9(¥))*'D,.,; = ((9(y))D,)” for every nonnegative
integer «. Then 0 = (f(y))D,.,; which is equal to a sum of terms
divisible by (g(¥))**" plus the term hq(y)-(g(y)" " -((9(y))D,)*, and
(9(y))D; must be divisible by g(y). Consequently g(y) generates a pro-
per prime M-ideal I in L|y], L[y]/I is an algebraic extension of L
and, setting k =y + I, L<{k> = L[y]/I is the desired P-V extension
of L.

4. Extensions by exponentials of integrals.

(4.1) TaEOREM. Let K, L, and L, be M-fields such that K is an
M-extension of L and L is an M-extenston of L, and assume there
exists a monzero ke K such that km = a,k, where a, € L, for every
me M.

(i) IL<Lk> is a solution field over L.

(ii) If K, = LLk),, then L{k) is invariant under M-automor-
phisms of K over L; and, vf L<{k), = L,, then the M-Galois group
of LLk> over L is commutative.

(iii) As abstract fields, L<{k> is a simple extension of L by
adjunction of the element k. :

(iv) L<Lky, = L, if, and only +f, L{k}, = L,.

(v) If Ek s algebraic over L and L<k), = L,, then k is a root
of an irreducible polynomial over L of the form x* + b, where h is
a positive integer, b = 0 and (bm)b=e€ L, for every me M.

(vi) If L<k)> ts a P-V extension, such an extension is umique.

Proof. (i) It is easily verified that L{k) is a solution field over
L with fundamental set consisting of k.

(ii) An M-isomorphism ¢ of I<k) into K is completely deter-
mined by its action on k, and k((kp)m) = k((km)p) = k((a,.k)p) =
(a,k)-(kp) = (kp)-(km) for every me M. Therefore (kp)k~™c K, or
ko = ck for some nonzero constant c¢. If K, = Lk}, then L<{k) is
invariant under M-automorphisms of K over L; and, if L<{k)>, = L,,
then the M-Galois group of L{k> over L is isomorphic to a subgroup
of the multiplicative group of nonzero constants of L.
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(iii) The argument is the same as in part (iii) of Theorem (3.1).

(iv) If I<Lk>, = L, then certainly L{k}, = L,. If k is algebraic
over L, then L{k> = L[k] = L{k} and the converse is true. Let k be
transcendental over L. An element of L<k)> may be represented as
the ratio of a polynomial f(k) € L[k] and a nonzero polynomial g(k) e L[k]
with either f(0) =1 or ¢(0) = 1. Suppose f(k)-(g(k)) e K, and is
expressed in lowest terms. Then g(k)-((f(k)m) = f(k)-((g(k))m) for
every me M; and, were (g(k))m = (Im)g(k) for some me M, then
(k) (g(k)™ = (f(B)m — (Im) f(k))-((g(k))m — (Im)g(k))™". This last is
impossible, since it follows from the equations f(0):((g(0))m — (Lm)g(0))=
9(0)-((f(0))m — (Im) f(0)) = 0 that (f(k))m — (Im)f(k) and (g(k))m —
(Im)g(k) are both divisible by k. Thus (g(k))m = (Am)g(k) and (f(k))m =
(Im) f(k) for every me M, consequently f(k), g(k)e L{k},. Therefore,
if L{k}, = L, then f(k)-(g(k))™*€ L,.

(v) Suppose k is algebraic over L. If L[y] is the ring of poly-
nomials over L in an indeterminate y, determined as an M-extension
of L by setting ym = a,y for every m € M; there is a canonical M-
homomorphism 7 of L|y] over L into K such that y” = k. Let I be
the kernel of 7. Since £k # 0, y¢ I. Let f(y) be a polynomial such
that f(y) generates I and f(0) = 1. Because [ is an M-ideal, (f(y))m
must be a multiple of f(y) and computation shows that (f(y))m =
(Im) f(y), for every me M. Therefore f(y)<€ Lly].. Suppose L<kD, = L,
and g¢g(y)e L{yl.. Then g(k)e L<{ky, = L., say gk)=c, and k is a
root of ¢g(y) — c. Therefore g(y) — ¢ is a multiple of f(y) and if g(y)
has positive degree, it is not less than the degree of f(y). Subsequently
assume only that L[y], contains polynomials of positive degree, and
Sf(y) is such a polynomial of least positive degree. If b7y" is the
highest term of f(y) and m € M, then the identity (f(y))m = (Im)f(y)
implies (b~*y"ym = (Am)b~y*. Therefore b'y" and f(y) — b~y" are ele-
ments of L[y],. The degree of f(y) — b~'y" is less than the degree of
f(y) and, therefore, cannot be positive. Thus f(y) — b~y" = f(0) =
ceL, or f(y)="b"y" +e¢. Since b "< Llyl,, bly"m) = y*(bm) or
Om)b™ = (y"m)y~*e L, for every me M. The assertion in (v) is now
immediate.

(vi) Let L<k> be a P-V extension of L and let L{k"> be a second
P-V extension of L such that ¥’ == 0 and k'm = a, % for every me M.
If & and &' are transcendental over L, there is an isomorphism ¢ of
Lky over L onto L<k"> such that k¥ = k' and ¢ is an M-isomorphism.
Suppose k is algebraic over L and either k' is transcendental over L
or algebraic over L but of degree over L not less than the algebraic
degree of k over L. If #* + b is the minimal polynomial for k over
L, then b7'(k')* + 1e L<k'y, = L, by the argument in part (v); say
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bk +1=d. Then k' is a root of a* + b(1 — d) and d + 1. Let
¢ be a root in the algebraically closed field L, of 2* — (1 — d)™*. Then
(ck')* + b =0 and there is an isomorphism ¢ of L{k)> over L onto
LLE"™y such that k¢ = ck’. ¢ is an M-isomorphism.

(4.2) COROLLARY. Let L be an M-field of difference type such
that L, ts algebraically closed, and let a,, me M, be elements of L.
There exists a P-V extension Lk of L such that k + 0 and km =
a,k for every me M, if and only tf, a, 0 for every me M and
there do not exist positive integers h and 1 and a nonzero be L, such
that bm = c,(a,)*b for every m e M, where ¢, s an ith root of unity
and some ¢, + 1.

Proof. If the desired P-V extension L<{k) exists and me M, m
is an isomorphism on L<k>. Since k +0, km = a,k + 0 and a, # 0.
Therefore assume a,, # 0 for every me M. Let L|y] be the ring of
polynomials over L in an indeterminate ¥, determined as an M-exten-
sion of L by setting ym = a,y for every me M, and let L(y) be the
field of fractions of L[y]. The M-system of mappings on L[y] consists
of isomorphisms and these can be extended to L(y), so that L(y) is
an M-field which is an M-extension of L|y]. If L|y], = L, then
L(y), = L, by part (iv) of Theorem (4.1) and, setting k =y, L<{k) =
L(y) is the desired P-V extension of L. Suppose f(y)#*y is an
irreducible polynomial in L[y], of positive degree. f(y) generates a
proper prime M-ideal I in L[y], L[y]/I is an algebraic extension of L,
y¢ I and, setting k =y + I, L<k) = L|y]/I is the desired P-V exten-
sion of L. Consequently, assume that there exist polynomials of
positive degree in Lly],, let f(y) be such a polynomial of least positive
degree, f(y) may be chosen so that f(0) = 0, but assume f(y) is re-
ducible. Analyzing f(y) as in the proof of part (v) of Theorem (4.1),
f(y) must have the form (b')™'y* + ¢’ where ¢ is a positive integer.
If g(y) is an irreducible factor of f(y) such that g¢(0) = 1, then g(y)
has the form g(y) = b7'y* + 1 where £ is a positive integer, and all
other such factors of f(y) have the form g¢(dy) where d is an <th
root of unity in L,. If melM; (f(y))m = f(y), @)m = g(d,y) =
c;'by* + 1 and bm = ¢,(a,)*d, where ¢, = (d,)™" and d, is an <th
root of unity. Since g(y) is a proper factor of f(y), g(y)¢ L[y]. and
¢, = 1 for some me M.

Conversely, assume there exist positive integers » and % and a
nonzero be L, such that bm = ¢,(a,)*d for every m e M, where ¢, is
an tth root of unity and some ¢, # 1. Let g(y) = b'y" + 1, and let
Sf(y) be the product of the distinct polynomials g(dy) where d is an
h-ith root of unity. f(y) will have the form (b')~y**+1 and f(y) € L[y]..
If the desired P-V extension I<k) existed, f(k) #1 would be an
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element of L<{k>,= L,. If ¢ is a root in L, of y**— (1 — f(k))™7,
then f(ck) = 0 and some factor g(cdk) = 0. But then 0 = (g(cdk))m =
¢ b edk) + 1 =1 — ¢,' for every m e M, contrary to the assumption
that some ¢, # 1.

(4.3) COROLLARY. Let L be an M-field of differential type and
of characteristic zero such that L, 1s algebraically closed. If m,e M
is the identity automorphism on L and a,, me M and m +#+ m,, are
elements of L, there exists a P-V extension of differential type L{k)
of L such that k= 0 and km = a,k for every me M, m # m,.

Proof. Let a,, =1, and let L[y] and L(y) be defined as in the
proof of Corollary (4.2). The M-system of mappings on L[y] consists
of the identity automorphism m, and higher derivations, and these
can be extended to L(y) so that L(y) is an M-field of differential type
which is an M-extension of L[y]. By repetition of the argument in
the beginning of the proof of Corollary (4.2), only the case when
L[y], contains polynomials of positive degree need be considered. Let
f(w)e Lly], be a polynomial of positive degree, choose f(y) so that
f(0) =0, and let g(y) be an irreducible factor of f(y), say f(y) =
q(y)-(g(y))* where h is a positive integer and ¢(y) is not divisible by
9(y). Let {D,} be a higher derivation on L[y] contained in the M-
system of mappings on Lly]. If D,=m, (9(¥)D, = g(y). Let i bea
positive integer not greater than the rank of {D,} and assume that
(g)D, is a multiple of g(y) for 0 =< a < ¢. Then 0= (f(y))D,
which is equal to a sum of terms divisible by (¢(y))* plus the term
hq(y)-(g() - ((9(y))D;), and (9(y))D; must be divisible by g(y). Con-
sequently ¢g(y) generates a proper prime M-ideal I in L|y], L|y]/I is
an algebraic extension of L,y¢I and, setting k=y + I, I<k)=
L[y]/I is the desired P-V extension of L.

(4.4) COROLLARY. Let L be an M-field, such that the M-system
of mappings on L consists of the tdentity automorphism m, and
wfinite higher derivations and L, is algebraically closed. If a,,
me M and m %= m,, are elements of L, there exists a P-V extension
of differential type L{k) of L such that k +0 and km = a,k for
every me M, m #+ m,.

Proof. Because of Corollary (4.3), only the case where L is a
field of characteristic p # 0 need be considered. Let a, = 1, and let
L[y] and L(y) be defined as in the proof of Corollary (4.2). The argu-
ment is then analogous to the proof of Corollary (3.4).
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5. Generalized Liouville extensions.

(5.1) DEFINITION. An M-field K which is an M-extension of an
M-field L is a generalized Liouville extension of L if there exists a
positive integer ¢ and ¢ + 1 intermediate M-subfields of K, L =
Ly &L, & -+ &L, =K, such that for each integer «, 1< a =1,
there exists ke L, such that L, = L,_<k)> and

(1) L, is an algebraic extension of L,_,, or

(2) km — (Um)k =a,c L,_, for every me M, or

(3) km = a,k where a,€ L,_, for every me M.

If L is an M-subfield of an M-field K, let Ax(L) denote the M-
Galois group of K over L. If G is a subgroup of Ax(L), let I(G)
denote the set of all elements of K left fixed by the automorphisms in
G; I(G) is an M-subfield of K and L S I(G) & K. Suppose K is a
solution field over an M-field L such that K, = L, and k, k,, -+ -, k;
is a fundamental set for K over L. If @e A (L), then k,p =
Sy Caphp, 1 = a0 = J, where (Cup)icap<; 1S @ matrix over K, = L,, by
Theorem (3.2) of [7]. The structure of Ax(L) may be determined
analogously to the analysis of the differential Galois group presented
in Kaplansky’s An Introduction to Differential Algebra®. The results
needed in the sequel will be summarized here. Ag(L) is an algebraic
matrix group over L, and the algebraic subgroups of A, (L) are the
subgroups Ax(L’) where L’ is an intermediate M-subfield of K, L &
L' S K. If H is the connected component of the identity element of
Ax(L), then H is an algebraic subgroup of finite index in Ax(L).
Therefore H = A (L) where L = I(H) and L is a finite dimensional
algebraic extension of I(A.(L)). Moreover, L is algebraically closed in
K. Indeed, if ke K is algebraic over L, then Ag(L<k)) is an algebraic
subgroup of finite index in H since the left cosets of H mod Ax(L<{k))
are in one-to-one correspondence with the distinct images of %k under
the automorphisms in H. Because H is connected, Ax(L{k)>) = H and
ke L.

(5.2) THEOREM. Let K be a P-V extemsion of an M-field L.
If the conmected component of the identity element im Ax(L) is a
solvable group, then K is a generalized Liouville extension of I(Ax(L)).

Proof. Let H be the connected component of the identity element
in Ag(L) and let L = I(H). L is a finite dimensional algebraic exten-
sion of I(Ax(L)). Since H is a connected, solvable algebraic matrix
group over the algebraically closed field L,, a fundamental set k,, k,, - - -,
k; for K over L may be chosen so that the M-automorphisms of H
are represented by triangular matrices, say k.p = >i_o Cup(@)-ks for
pe H and 1 < a < 7, where the coefficients c.p(p)e L,. If me M and
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@€ H, then ((k;m)k;")p = ((k;p)m)(k;p)™ = ((¢;i(@)+ (km))(c;i(@)-F;)™ =
(kym)k;* and (k;m)k;*e L. Thus kym = a,k; where a,€ L for every
meM. If meM and pec H, let ki (m)= (kki)m — (Am)k,k;' and
Cha(p) = Cop(@)+(C;5(p))™ for a = B=j—1 and 1=a=<j—1; then

(e m))p = ((kup)o;0)~ym — (m)(Feup) ;)
= ; Cap(P)* (€55(@)) (k7Y — (Lm)legh7")

= S5 cla(p)Iixm)

By Theorem (3.2) of [7], K is finitely generated as an abstract field
over L 2 L; therefore every intermediate subfield is also finitely gener-
ated over L. Consequently, if L’ is the M-subfield of K generated
over L by the kl(m), me M and 1 < a £ j — 1, then there are finitely
many me M such that L’ is generated as an M-field over L by the
ki (m) for these m and 1 < a« < j — 1. By induction on j, it may be
assumed that L’ is a generalized Liouville extension of I{Ax(L)). Since
(ko Yym — (Im)kk;* = ki(m)e L' for every me M and 1= a<j—1
while k;m = a,k; where a,, € L = L’ for every me M, it follows that
K is a generalized Liouville extension of I(A,(L)).

In connection with this theorem, it should be noted that I(Ax(L)) =
L if K is a regular field extention of L. If K is an M-field of dif-
ferential type, then I(Ax(L)) = L provided only that K is a separable
field extension of L.

(5.3) LEMMA. Let K', K, L' and L be M-fields such that K' s
an M-extension of L, K and L' are M-subfields of K' and contain
L, and K' 1s generated by its subfields K and L'.

(i) If K is a solution field over L, K' is a solution field over
L' and a fundamental set for K over L is a fundamental set for
K’ over L'.

(i) If K and L' are linearly disjoint over L, there is a canonical
ssomorphism of Ax(L) into Ax(L'). Moreover, if K is a solution
field over L, K,= L., K] = L, and Ax(L) and Ax.(L') are represented
by matrices with respect to the same fundamental set for K over L
and K’ over L’; then this canonical tsomorphism 1s the tdentity map
on matrices.

Proof. (i) The verification is immediate from the definition of
solution field.

(ii)) If K and L’ are linearly disjoint over L, automorphisms of
K over L extend uniquely to automorphisms of K’ over L' and M-
automorphisms of K over L extend to M-automorphisms of K’ over
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L’, yielding an isomorphism of A,(L) into Ag.(L’). The remaining
assertion is immediate.
The converse of theorem (5.2) is a consequence of

(5.4) THEOREM. If K’ is a generalized Liouville extension of
an M-field L and K is an intermediate M-subfield of K' such that
K is a P-V extension of L, then the connected component of the
iwdentity element in Ag(L) is a solvable group.

Proof. By Corollary (2.3) of [7], K and K. are linearly disjoint
over K, = L, whence K and L(K.) are linearly disjoint over L. By
Lemma (5.3), K(K;) is a solution field over L(K.); and there is a
matrix representation for the algebraic group Ax(L) over L,, a matrix
representation for the algebraic group Agx,(L(K!)) over K. 2 L,, and
a canonical isomorphism of Ax(L) into Agx,(L(K;)) which is the identity
map on matrices. If H is the connected component of the identity
element in Ag(L), then H 1is an irreducible component of Ax(L)
and its image in Agy(L(K/)) is irreducible, hence connected, since
L, is algebraically closed. Therefore H is mapped into the connected
component of the identity element in Ag,(L(K.)), and it will suffice
to prove the theorem under the assumptions that K is merely a solu-
tion field over L but K] = L,.

Let L=L, S L, S -+ &L, = K' be as in definition (5.1), and let
ke L, be such that L, = L{k> and

(1) L, is an algebraic extension of L, or

(2) km — (Im)k = a, e L for every me M, or

(3) km = a,k where a,c L, for every me M.

Be induction on %, it may be assumed that the connected component
of the identity element in Ag.(L,) is solvable. Let L = I(H), where
again H denotes the connected component of the identity element in
AL). K is a regular extension of L, since L is algebraically closed
in K and L is the fixed field of a group of automorphisms of K whence
K is a separable extension of L. If L, is an algebraic extension of
L, then L<{k) is an algebraic extension of L and K and L<{k) are
linearly disjoint over L. The canonical isomorphism of H = A.(L) into
Ago(LLED) given by lemma (5.3) must map H into the connected com-
ponent of the identity element in Az, (L,), whence H is solvable.

Assume L, is not an algebraic extension of L. If %k is transcen-
dental over K, then L, = L(k) and K<k) = K(k) by Theorems (3.1)
and (4.1). K and L, are linearly disjoint over L, so again there is a
canonical isomorphism of H into the connected component of the iden-
tity element in Ag,,(L,) and H is solvable. Suppose k is algebraic
over K. If km = a,k where a, < L for every me M, then k" +b =10
where £ is a positive integer, be K and again (bm)b~'e L for every
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me M. If km — (Im)k = a,,€ L for every me M, then L is a field
of characteristic p = 0 and k** + ¢, k** '+ --- +ck® +ck+b=0
where I is a positive integer, c,c K,= L, for 0=a<h—1, be K
and again bm — (lm)be L for every me M. In either case L<b) is
invariant under the automorphisms in Ax (L) and A;,(L) is commuta-
tive, by Theorems (3.1) and (4.1). Therefore, AL(L<b>) is an invariant
subgroup of Ax (L) and the factor group, which is isomorphic to a
subgroup of A;. (L), is commutative. L, is an algebraic extension of
L<{b)> and, by a preceding argument, the connected component of the
identity element in Ax(L<b)) is canonically isomorphic to a subgroup
of the connected component of the identity element in A, (L,) and is
solvable. Therefore H, the connected component of the identity ele-
ment in Ag(L), is solvable by Lemma (4.9) of [3].
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