WAVE OPERATORS AND UNITARY EQUIVALENCE

Tosio Kato

This paper is concerned with the wave operators $W_{\pm}=$ $W_{\pm}(H_1, H_0)$ associated with a pair H_0, H_1 of selfadjoint operators. Let (M) be the set of all real-valued functions ϕ on reals such that the interval $(-\infty, \infty)$ has a partition into a finite number of open intervals I_k and their end points with the following properties: on each I_k , ϕ is continuously differentiable, $\phi' \neq 0$ and ϕ' is locally of bounded variation. Theorem 1 states that, if $H_1 = H_0 + V$ where V is in the trace class T, then $W'_{\pm} \pm W_{\pm}(\phi(H_1), \phi(H_0))$ exist and are complete for any $\phi \in (M)$; moreover, M'_{\pm} are "piecewise equal" to W_{\pm} (in the sense to be specified in text). Theorem 2 strengthens Theorem 1 by replacing the above assumption by the condition that $\psi_n(H_1) = \psi_n(H_0) + V_n$, $V_n \in T$, where $\psi_n \in (M)$ and ψ_n is univalent on (-n, n) for $n = 1, 2, 3, \ldots$ As corollaries we obtain many useful sufficient conditions for the existence and completeness of wave operators.

1. Introduction. The present paper is a continuation of earlier papers of the author on the theory of wave and scattering operators and the related theory of unitary equivalence of selfadjoint operators.

We begin with a brief review of relevant definitions and known results (see Kato [4, 5] and Kuroda [6]), adding some new definitions for convenience. Let \mathfrak{P} be a Hilbert space and let H be a selfadjoint operator in \mathfrak{P} with the spectral representation $H = \int \lambda dE(\lambda)$. A vector $u \in \mathfrak{P}$ is absolutely continuous (singular) with respect to H if $(E(\lambda)u,u)$ is absolutely continuous (singular) in λ (with respect to the Lebesgue measure). The set of all $u \in \mathfrak{P}$ which are absolutely continuous (singular) with respect to H forms a subspace of \mathfrak{P} , which we call the absolutely continuous (singular) subspace with respect to H and denote by $\mathfrak{P}_{ac}(\mathfrak{P}_s)$. These two subspaces are orthogonal complements to each other and reduce H. The part of H in $\mathfrak{P}_{ac}(\mathfrak{P}_s)$ is called the absolutely continuous (singular) part of H and is denoted by $H_{ac}(H_s)$

Let H_j , j=0,1, be two selfadjoint operators in $\mathfrak D$ with the spectral representation $H_j=\int \lambda dE_j(\lambda)$, and let P_j be the projection on the absolutely continuous subspace $\mathfrak D_{j,ac}$ with respect to H_j . If one or both of the strong limits

$$(~1.1~) \hspace{1cm} W_{\pm} = \, W_{\pm}(H_{\scriptscriptstyle 1},\, H_{\scriptscriptstyle 0}) = s - \lim_{t
ightarrow \pm \infty} \exp{(it H_{\scriptscriptstyle 1})} \exp{(-it H_{\scriptscriptstyle 0})} P_{\scriptscriptstyle 0}$$

exist(s), it is (they are) called the (generalized) wave operator(s).

Received January 8, 1964. This work was sponsored (in part) by Office of Naval Research Contract 222 (62).

 W_+ is, whenever it exists, a partial isometry on \mathfrak{D} with initial set $\mathfrak{D}_{0,ac}$ and final set \mathfrak{M}_+ contained in $\mathfrak{D}_{1,ac}$. \mathfrak{M}_+ reduces H_1 , and the part of H_1 in \mathfrak{M}_+ is unitarily equivalent to $H_{0,ac}$, with

(1.2)
$$E_1(\lambda)W_+ = W_+E_0(\lambda)$$
, $-\infty < \lambda < +\infty$

The wave operator W_+ will be said to be *complete* if the final set \mathfrak{M}_+ coincides with $\mathfrak{H}_{1,ac}$.

 W_+ has the property that, whenever $W_+(H_1, H_0)$ and $W_+(H_2, H_1)$ exist, then $W_+(H_2, H_0)$ exists and is equal to $W_+(H_2, H_1)W_+(H_1, H_0)$. If both $W_+(H_1, H_0)$ and $W_+(H_0, H_1)$ exist, then they are complete and are the adjoints to each other.

Similar results hold for W_{+} replaced by W_{-} .

If H_1-H_0 is small in the sense that $H_1=H_0+V$ with V belonging to the trace class T of operators on \mathfrak{F} , then both $W_\pm(H_1,\ H_0)$ exist and are complete. The main purpose of the present paper is to prove some generalizations of this theorem, which involve what we shall call the *principle of invariance of wave operators*. Roughly speaking, this principle asserts that the wave operators $W_\pm(\phi(H_1),\phi(H_0))$ exist for an "arbitrary" function ϕ and are independent of ϕ for a wide class of functions ϕ . Its precise formulation is given in Theorems 1 and 2 proved below.

The proof of these theorems is rather simple, depending essentially on a single inequality proved in a previous paper (Kato [5]). It will be noted that Theorem 2 contains as special cases most of the sufficient conditions for the existence and completeness of wave operators obtained in recent years (see Kuroda [6, 7], Birman [1, 2], Birman-Krein [3].

2. Principle of invariance of wave operators. Consider the wave operators $W_{\pm}(\phi(H_1), (\phi(H_0)))$ where ϕ is a real-valued, Borel measurable function on $(-\infty, +\infty)$. The principle of invariance asserts that these wave operators do not denoted on ϕ . Of course certain restrictions must be imposed on ϕ and on the relation between H_0 and H_1 To this end it is convenient to introduce a certain class of functions.

DEFINITION. A real-valued function ϕ on $(-\infty, +\infty)$ is said to be of class (M) if the whole interval $(-\infty, +\infty)$ has a partition into a finite number of open intervals I_k , $k=1, \dots, r$, and their end points with the following properties: on each I_k , ϕ is strictly monotone and differentiable, with the derivative ϕ' continuous, $\phi' \neq 0$ and (locally) of bounded variation. $\{I_k\}$ will be called a system of intervals associated with ϕ (such a system is not unique).

Theorem 1. Let H_0 , H_1 be selfadjoint operators such that $H_1 =$

 H_0+V with $V\in \mathbf{T}$. If ϕ is of class (M), ${W'}_{\pm}=W_{\pm}(\phi(H_1),\phi(H_0))$ exist and are complete. Furthermore, ${W'}_{\pm}$ are "piecewise equal" either to $W_{\pm}=W_{\pm}(H_1,H_0)$ or to W_{\mp} , in the sense that

$$(W'_{\pm} - W_{\pm})E_0(I_k) = 0$$
 or $(W'_{\pm} - W_{\mp})E_0(I_k) = 0, k = 1, \dots, r$,

according as ϕ is increasing or decreasing on I_k . In particular, $W'_{\pm} = W_{\pm}(W'_{\pm} = W_{\mp})$ if ϕ is increasing (decreasing) in each I_k , $k = 1, \dots, r$. (Here $\{I_k\}$ is a system of intervals associated with $\phi \in (M)$ and $E_0(I) = E_0(\beta - 0) - E_0(\alpha)$ if $I = (\alpha, \beta)$.)

Proof. It is known (see Kato [5]) that W_{\pm} exist under the assumptions of the theorem.

We take a fixed I_k and assume that ϕ is increasing on I_k . We use the inequality (2.9) of the paper cited, which reduces for s=0 to

$$egin{align} (\ 2.1\) & ||\ (W_+ - 1)x\ || \le (8\pi m^2\ ||\ V\ ||_1)^{1/4} \ & imes \left(\int_0^{+\infty} \!\!||\ |\ V\ |^{1/2} \exp\left(-itH_0
ight)\!x\ ||^2\ dt
ight)^{1/4} \ , \end{array}$$

where $x \in \mathfrak{H}_{0,ac}$ is subjected to the condition that $d(E_0(\lambda)x, x)/d\lambda \leq m^2$ almost everywhere. Here |V| is the nonnegative square roof of V^2 and $||V||_1$ denotes the trace norm of V, which is finite by assumption.

Now let $u \in \mathfrak{F}_{0,ac}$ be such that $E_0(I_k)u = u$ and $d(E_0(\lambda)u,u)/d\lambda \leq m^2$. We note that such u with finite m^2 form a dense subset of $E_0(I_k)\mathfrak{F}_{0,ac} = E_0(I_k)P_0\mathfrak{F}$ (see a similar proposition in loc. cit. when I_k is the whole interval). If we set $x = \exp{(-is\phi(H_0))u}$, we have $(E_0(\lambda)x, x) = (E_0(\lambda)u, u)$ so that the assumptions on x stated above are satisfied. Hence (2.1) gives

$$(\; 2.2 \,) \hspace{1cm} || \, (W_+ - 1) \exp{(- \, i s \phi(H_{\scriptscriptstyle 0}))} u \, || \leq (8 \pi m^2 \, || \, V \, ||_{\scriptscriptstyle 1})^{\scriptscriptstyle 1/4} \eta(s)^{\scriptscriptstyle 1/4}$$
 ,

$$egin{align} \eta(s) &= \int_0^{+\infty} &|| \mid V \mid^{1/2} \exp{(-itH_0 - is\phi(H_0))u} \mid|^2 dt \ &= \sum_{n=1}^{\infty} &| \ c_n \mid \int_0^{+\infty} &| \exp{(-itH_0 - is\phi(H_0))u}, f_n) \mid^2 dt \ , \end{split}$$

where $\{f_n\}$ is a complete orthonormal system of eigenvectors of V and the c_n are the associated eigenvalues.

The integrals on the right of (2.3) have the form (A1) of Appendix, where $w(\lambda)$ is to be replaced by $d(E_0(\lambda)u, f_n)/d\lambda$ which belongs to $L^2(I_k)$ with L^2 -norm not exceeding m (see loc. cit.). Therefore, each term on the right of (2.3) tends to 0 for $s \to +\infty$ (Lemma A3, Appendix). On the other hand, the series on the right of (2.3) is majorized by the convergent series $2\pi m^2 \sum |c_n| = 2\pi m^2 ||V||_1$. Hence $\eta(s) \to 0$ for $s \to +\infty$ and the left member of (2.2) must tend to 0 for $s \to +\infty$. Since $(W_+ - 1) \exp(-it\phi(H_0))$ is uniformly bounded and the set of u

with the above properties is dense in $E_0(I_k)P_0$ as remarked above, it follows that $(W_+-1)\exp{(-is\phi(H_0))}P_0E_0(I_k) \to 0$ strongly for $s \to +\infty$. But we have $W_+\exp{(-is\phi(H_0))}=\exp{(-is\phi(H_1))}W_+$ by (1.2). On multiplying the above result from the left with $\exp{(is\phi(H_1))}$, we thus obtain

$$\begin{array}{ll} (\ 2.4\) & s - \lim\sup_{s \to +\infty} \left(is\phi(H_{\scriptscriptstyle 1}) \right) \exp\left(-is\phi(H_{\scriptscriptstyle 0}) \right) P_{\scriptscriptstyle 0} E_{\scriptscriptstyle 0}(I_{\scriptscriptstyle k}) \\ & = W_{\scriptscriptstyle +} P_{\scriptscriptstyle 0} E_{\scriptscriptstyle 0}(I_{\scriptscriptstyle k}) = W_{\scriptscriptstyle +} E_{\scriptscriptstyle 0}(I_{\scriptscriptstyle k}) & \text{if ϕ is increasing on $I_{\scriptscriptstyle k}$.} \end{array}$$

Similarly we can show that

$$(2.4')$$
 $s-\limsup_{s o +\infty}(is\phi(H_{\scriptscriptstyle 1}))\exp{(-is\phi(H_{\scriptscriptstyle 0}))}P_{\scriptscriptstyle 0}E_{\scriptscriptstyle 0}(I_{\scriptscriptstyle k})=W_{\scriptscriptstyle -}E_{\scriptscriptstyle 0}(I_{\scriptscriptstyle k})$ if ϕ is decreasing on $I_{\scriptscriptstyle k}.$

Since $P_0E_0(\lambda)$ is continuous in λ , we have $\sum_k P_0E_0(I_k)=P_0$. Adding (2.4) or (2.4') for $k=1,\cdots,r$, we thus arrive at the result

(2.5)
$$s - \lim_{s \to +\infty} \exp{(is\phi(H_{\scriptscriptstyle 1}))} \exp{(-is\phi(H_{\scriptscriptstyle 0}))} P_{\scriptscriptstyle 0} = \sum_{k=1}^r W_{(\pm)} E_{\scriptscriptstyle 0}(I_k)$$
 ,

where $W_{(\pm)}$ means that $W_+(W_-)$ should be taken if ϕ is increasing (decreasing) on I_k .

- (2.5) shows that the wave operator $W_+(\phi(H_1), \phi(H_0))$ exists and is equal to the right member; it should be noted that the absolutely continuous subspace for $\phi(H_0)$ is identical with $\mathfrak{H}_{0,ac} = P_0\mathfrak{H}$ (Lemma A5, Appendix). Similar results hold for $W_-(\phi(H_1), \phi(H_0))$; we have only to take the opposite choice for $W_{(\pm)}$ in (2.5). These wave operators are complete since they also exist when H_0 and H_1 are exchanged.
- 3. Generalization. Let us consider a question which is in a sense converse to Theorem 1. Suppose $\psi(H_1) \psi(H_0)$ belongs to T for some function ψ ; then do the wave operators $W_{\pm}(H_1, H_0)$ exist?

The answer to this question is quite simple if ψ is of class (M) and, in addition, univalent. Then the inverse function exists, with domain Δ consisting of a finite number of open intervals and a finite number of points. This inverse function can be extended to a function $\hat{\psi}$ of class (M) by setting, for example, $\hat{\psi}(\lambda) = \lambda$ on the complement of Δ . Therefore, $W_{\pm}(H_1, H_0) = W_{\pm}(\hat{\psi}(\psi(H_1)), \hat{\psi}(H_0))$) exist and are complete by Theorem 1.

If ψ is not univalent, we do not know whether the same resalts hold. But we can show that this is true if there is an approximate univalent sequence $\{\psi_n\}$ of functions of class (M) such that $\psi_n(H_1) - \psi_n(H_0) \in T$. We call $\{\psi_n\}$ an approximate univalent sequence if ψ_n is univalent on (-n, n), $n = 1, 2, \cdots$

More generally, we can prove

Theorem 2. Let H_0 , H_1 be selfadjoint and let there exist an approximate univalent sequence $\{\psi_n\}$ of functions of class (M) such that $\psi_n(H_1) = \psi_n(H_0) + V_n$ with $V_n \in T$, $n = 1, 2, \cdots$ Then, for any $\phi \in (M)$, the wave operators $W'_{\pm} = W_{\pm}(\phi(H_1), \phi(H_0))$ exist and are complete. In particular, $W_{\pm} = W_{\pm}(H_1, H_0)$ exist and are complete. W'_{\pm} are piecewise equal either to W_{\pm} or to W_{\mp} in the sense stated in Theorem 1.

Proof. I. The restriction of ψ_n to (-n, n) has inverse function, which can be extended to a $\hat{\psi}_n \in (M)$ in the same way as above.

Set $\phi_n = \phi \circ \hat{\psi}_n \circ \psi_n$; then $\phi_n(\lambda) = \phi(\lambda)$ for $\lambda \in (-n, n)$, and $\phi_n \in (M)$ by Lemma A4 (Appendix). We define the following selfadjoint operators, all functions of H_j , j = 0, 1:

Since $K_{nj}=(\phi\circ\hat{\psi}_n)(L_{nj})$ by operational calculus (see Stone [8], Theorem 6.9), where $\phi\circ\hat{\psi}_n\in(M)$ and $L_{n1}=L_{n0}+V_n,\,V_n\in T$, it follows from Theorem 1 that $W'_{n\pm}=W_{\pm}(K_{n1},\,K_{n0})$ exist and are complete.

II. For any function ψ of class (M), $\psi(\pm\infty) = \lim_{\lambda \to \pm\infty} \psi(\lambda)$ exist (the values $\pm\infty$ being permitted for these limits). Thus $\phi_n(\pm\infty)$ and $(\hat{\psi}_n \circ \psi_n)(\pm\infty)$ exist. By replacing $\{\phi_n\}$ by a suitable subsequence (and correspondingly for $\{\psi_n\}$ and $\{\hat{\psi}_n\}$), we may assume that $\alpha_{\pm} \lim_{n\to\infty} \phi_n(\pm\infty)$ and $\beta_{\pm} = \lim_{n\to\infty} (\hat{\psi}_n \circ \psi_n)(\pm\infty)$ exist $(\pm\infty)$ being permitted for these limits).

Let J be an open interval such that α_{\pm} and $\phi(\pm\infty)$ are exterior to J, and let $S=\phi^{-1}(J)$, $S_n=\phi_n^{-1}(J)$. S and S_n are unions of a finite number of open intervals and of points. Since $K_j\phi(H_j)$ and $K_{n_j}=\phi_n(H_j)$, we have (we denote by $E_j(S)$ the spectral measure determined from $\{E_j(\lambda)\}$)

$$(3.2) F_j(J) = E_j(S) , F_{nj}(J) = E_j(S_n) , j = 0, 1.$$

S is bounded since $\phi(\pm \infty)$ are exterior to J. Similarly, S_n is bounded if n is sufficiently large, since α_{\pm} are exterior to J.

Take an n so large that S_n is bounded and $S \subset (-n, n)$. Since $\phi_n(\lambda) = \phi(\lambda)$ for $\lambda \in (-n, n)$, we have $S = (-n, n) \cap S_n$. Further take an m > n such that $S_n \subset (-m, m)$. We have $S = (-m, m) \cap S_m$ as above, so that $S_m \cap S_n = S_m \cap (-m, m) \cap S_n = S \cap S_n = S$. Hence

$$(3.3)$$
 $F_{nj}(J)F_{mj}(J) = F_{j}(S_{n})E_{j}(S_{m}) \ = E_{j}(S_{n}\cap S_{m}) = E_{j}(S) = F_{j}(J)$.

III. Now we have, for any $u \in \mathfrak{H}_{\scriptscriptstyle 0,ac} = P_{\scriptscriptstyle 0} \mathfrak{H}$,

$$\begin{array}{ll} (\ 3.4\) & \exp\left(itK_{n1}\right)(1-F_{n1}(J))\exp\left(-itK_{n0}\right)P_{0}F_{0}(J) \\ & = (1-F_{n1}(J))\exp\left(itK_{n1}\right)\exp\left(-itK_{n0}\right)P_{0}F_{0}(J) \\ & \to (1-F_{n1}(J))W'_{n+}F_{0}(J) & \text{strongly for } t \to +\infty \end{array}.$$

Since $(1-F_{n1}(J))W'_{n+}=W'_{n+}(1-F_{n0}(J))$ by (1.2) applied to W'_{n+} , and since $F_0(J) \leq F_{n0}(J)$ by (3.3), the last member of (3.4) vanishes. On the other hand $\exp{(-itK_{n0})F_0(J)}=\exp{(-itK_0)F_0(J)}$ since $\phi_n(\lambda)=\phi(\lambda)$ for $\lambda\in(-n,n)$ and $F_0(J)=E_0(S)\leq E_0((-n,n))$. On multiplying (3.4) from the left by $\exp{(-itK_{n1})}$, we thus obtain

$$(3.5)$$
 $s - \lim_{t \to +\infty} (1 - F_{n1}(J)) \exp(-itK_0) P_0 F_0(J) = 0$.

The same is true when n is replaced by the m > n considered above. Now multiply the latter from the left by $F_{n1}(J)$ and add to (3.5). In view of (3.3), we then obtain

$$(\,3.6\,)$$
 $s-\lim_{t o +\infty}(1-F_{\scriptscriptstyle 1}\!(J))\exp{(-\,itK_{\scriptscriptstyle 0})}P_{\scriptscriptstyle 0}F_{\scriptscriptstyle 0}\!(J)=0$,

Multiply again (3.6) from the left by $\exp(itK_1)$; then

$$\begin{array}{ll} (\ 3.7\) & s - \lim_{t \to +\infty} \exp\left(itK_{\scriptscriptstyle 1}\right) \exp\left(-itK_{\scriptscriptstyle 0}\right) P_{\scriptscriptstyle 0} F_{\scriptscriptstyle 0}(J) \\ \\ &= s - \lim_{t \to +\infty} F_{\scriptscriptstyle 1}(J) \exp\left(itK_{\scriptscriptstyle n1}\right) \exp\left(-itK_{\scriptscriptstyle n0}\right) P_{\scriptscriptstyle 0} F_{\scriptscriptstyle 0}(J) \\ \\ &= F_{\scriptscriptstyle 1}(J) W'_{n+} F_{\scriptscriptstyle 0}(J) \ , \end{array}$$

where we have again used the relation

$$\exp(-itK_0)F_0(J) = \exp(-itK_{n0})F_0(J)$$

and similarly $\exp(itK_1)F_1(J) = \exp(itK_{n_1})F_1(J) = F_1(J)\exp(itK_{n_1})$.

(3.7) shows that $\lim_{t\to +\infty} \exp{(itK_1)} \exp{(-itK_0)}u$ exists and is equal to $F_1(J)W'_{n-}u$ whenever u belongs to $P_0F_0(J)$, where J is any interval with the four points α_{\pm} and $\phi(\pm\infty)$ in its exterior. Since such u forms a dense set in P_0 , the existence of $W'_+ = W_+(K_1, K_0)$ has been proved. The existence of W'_- can be proved in the same way. Since K_0 and K_1 can be exchanged, all these wave operators are complete.

Incidentally, it follows from (3.7) that $W'_{+}u = F_{1}(J)W'_{n+}u$ for $u \in P_{0}F_{0}(J)$ \mathfrak{D} . But $||W'_{+}u|| = ||u|| = ||W'_{n+}u||$ since W'_{+} and W'_{+n} are isometric on P_{0} \mathfrak{D} . Since $F_{1}(J)$ is a projection, we must have $W'_{+}u = W'_{n+}u$. Similar result holds for W'_{-} . Thus

$$(3.8) (W'_{\pm} - W'_{n\pm})F_0(J) = 0.$$

Note that this is true for sufficiently large n (depending on J).

IV. To prove the piecewise equality of W'_{\pm} and W_{\pm} or W_{\mp} , let I_k be one of the intervals associated with $\phi \in (M)$. We may assume

that $\phi'>0$ on I_k ; we have to show that $(W'_{\pm}-W_{\pm})E_0(I_k)=0$. For this it suffices to show that $(W'_{\pm}-W_{\pm})E_0(I)=0$ for any finite sub-interval I of I_k ; we may further assume that β_{\pm} are exterior to I and α_{\pm} , $\phi(\pm\infty)$ are exterior to the interval $\phi(I)$.

We set $J = \phi(I)$ and apply the preceding results to J. Since $S = \phi^{-1}(J) \supset I$, we have $E_i(I) \leq E_i(S) = F_i(J)$ and hence by (3.8)

$$(3.9) (W'_{\pm} - W'_{n\pm})E_0(I) = 0$$

for sufficiently larg n.

We have similar results when $\phi(\lambda)$ is replaced by the identity function λ (since β_{\pm} and $\pm \infty$ are exterior to I). Then ${W'}_{\pm}$, ${W'}_{n\pm}$ are to be replaced respectively by $W_{\pm} = W_{\pm}(H_{\rm l}, H_{\rm 0})$ and $W_{n\pm} = W_{\pm}(H_{\rm nl}, H_{\rm n0})$. Thus

$$(3.10) (W_{\pm} - W_{n\pm})E_0(I) = 0$$

for sufficiently large n.

We may assume that n is so large that $I \subset (-n,n)$. I can be expressed as the union of a finite number of subintervals \mathcal{L}_p (and a finite number of points) in each of which ψ_n is monotonic. Then $\hat{\psi}_n$ is monotonic on $\mathcal{L}_p = \psi_n(\mathcal{L}_p)$ since ψ_n is univalent on (-n,n). $\phi \circ \hat{\psi}_n$ is also monotonic on $\mathcal{L}_p = \psi_n(\mathcal{L}_p)$ since $\phi' > 0$ on $\hat{\psi}_n(\mathcal{L}_p) = \mathcal{L}_p$; it is increasing or decreasing with $\hat{\psi}_n$. Since $K_{nj} = (\phi \circ \hat{\psi}_n)(L_{nj})$, $H_{nj} = \hat{\psi}_n(L_{nj})$ and $L_{n1} = L_{n0} + V_n$, $V_n \in T$, it follows from Theorem 1 that $(W'_{n\pm} - W_{n\pm})E_0(\mathcal{L}_p) = 0$; note that $E_0(\mathcal{L}_p) \leq E_0(\psi_n^{-1}(\mathcal{L}_p)) = G_0(\mathcal{L}_p)$ where $\{G_0(\lambda)\}$ is the resolution of the identity for $L_{n0} = \psi_n(H_0)$. Adding the results obtained for $p = 1, 2, \cdots$, we have

$$(3.11) (W'_{n\pm} - W_{n\pm})E_0(I) = 0.$$

The desired result $(W'_{\pm} - W_{\pm})E_0(I) = 0$ follows from (3.9), (3.10) and (3.11).

- 4. Applications. A number of sufficient conditions for the existence and completeness of wave operators can be deduced from Theorem 1 or 2. We shall mention only a few.
- (a) Let neither H_0 nor H_1 have the eigenvalue 0. If $H_1^{-p} = H_0^{-p} + V$ with $V \in T$ for some odd integer p, then $W_{\pm}(\phi(H_1), \phi(H_0))$ exist and are complete for any $\phi \in (M)$.

The proof follows by applying Theorem 2 with $\psi_n = \psi$ (independent of n) where $\psi(\lambda) = \lambda^{-p}$ for $\lambda \neq 0$ and $\psi(0) = 0$.

(b) In (a) we may allow even integers p if we assume in addition

that H_0 and H_1 are nonnegative.

In this case we need only to replace the above ψ by $\psi(\lambda) = (\text{sign }\lambda) |\lambda|^{-p}$ for $\lambda \neq 0$.

(c) Let $(H_1 - \zeta)^{-1} - (H_0 - \zeta)^{-1} \in T$ for some nonreal complex number ζ . Then $W_{\pm}(\phi(H_1), \phi(H_0))$ exist and are complete for any $\phi \in (M)$.

For the proof we first note that, if the assumption is true for some $\zeta=\zeta_0$, then it is true also for all nonreal ζ . This can be seen first for $|\zeta-\zeta_0|<|\operatorname{Im}\zeta_0|$ by considering the Neumann series for the resolvents. The result can then be extended to all ζ of the half-plane $(\operatorname{Im}\zeta)(\operatorname{Im}\zeta_0)>0$ by a standard procedure. The other half-plane can be taken care of by considering the adjoints.

Set now $\psi_n(\lambda) = -i[(n-i\lambda)^{-1} - (n+i\lambda)^{-1}] = 2\lambda(n^2 + \lambda^2)^{-1}$. It follows from the above remark that $\psi_n(H_1) - \psi_n(H_0) \in \mathbf{T}$. But it is easy to see that $\{\psi_n\}$ is an approximate univalent sequence of functions of class (M). Hence the proposition follows by Theorem 2.

(b) It should be remarked that the existence of $W_{\pm}(\phi(H_1), \phi(H_0))$ implies the existence of

$$s-\lim_{n o\pm\infty}U_{_{1}}^{n}U_{_{0}}^{-n}=\ W_{\pm}(H_{_{1}},\,H_{_{0}})$$
 ,

where $U_j=(H_j-i)(H_j+i)^{-1}$ is the Cayley transform of H_j . In fact, $U_j=\exp{(i\phi(H_j))}$ where $\phi(\lambda)=-2$ arccot λ , and ϕ belongs to (M), being strictly increasing on $(-\infty, +\infty)$.

Appendix. We prove here some lemmas which are used in the text.

LEMMA A1. Let f, g be complex-valued, continuous functions on a closed interval [a,b]. Let f be of bounded variation with total variation V_f . Let $G(\lambda) = \int_a^\lambda g(\lambda) d\lambda$ and let $M_G = \max |G(\lambda)|$, $M_f = \max |f(\lambda)|$. Then $\left|\int_a^b f(\lambda)g(\lambda)d\lambda\right| \leq (M_f + V_f)M_G$.

The proof is simple and will be omitted.

LEMMA A2. Let ϕ be a real-valued differentiable function on [a,b] such that the derivative ϕ' is continuous, positive and of bounded variation. We have for any t,s>0

$$\left|\int_a^b \exp{(it\lambda-is\phi(\lambda))}d\lambda
ight| \leq rac{2(c+V_{\phi'})}{c(t+cs)}$$
 ,

where $c = \min \phi'(\lambda) > 0$ and $V_{\phi'}$ is the total variation of ϕ' .

Proof. The integral in question is equal to

$$\int_a^b i(t+s\phi'(\lambda))^{-1}(d/d\lambda) \exp{(-it\lambda-is\phi(\lambda))}d\lambda$$
 .

We apply Lemma A1 to estimate this integral, setting $f(\lambda)=i(t+s\phi'(\lambda))^{-1}$ and $g(\lambda)=(d/d\lambda)\exp{(-it\lambda-is\phi(\lambda))}$. Then $M_f=(t+cs)^{-1}$, $M_G\leq 2$ and it is easily seen that $V_f\leq s\,V_{\phi'}/(t+cs)^2\leq V_{\phi'}/c(t+cs)$. This proves the desired inequality.

LEMMA A3. Let ϕ be of class (M) with an associated system of of intervals $\{I_k\}$ (see definition in text). For a fixed k, let $w \in L^2(I_k)$. If ϕ is increasing on I_k , we have

(A1)
$$\int_{0}^{+\infty} dt \left| \int_{-\infty}^{+\infty} \exp\left(-it\lambda - is\phi(\lambda)\right) w(\lambda) d\lambda \right|^{2} \longrightarrow 0 , \quad s \to +\infty.$$

If
$$\phi$$
 is decreasing on $I_{k'}$ (A1) is true if $\int_0^+ \infty dt$ is relpaced by $\int_{-\infty}^0 dt$.

Proof. We may assume that $w \in L^2(-\infty, +\infty)$, on setting $w(\lambda) = 0$ for λ outside I_k . Let H be the selfadjoint operator $Hu(\lambda) = \lambda u(\lambda)$ acting in $L^2(-\infty, +\infty)$, and let U be the unitary operator defined by the Fourier transformation. The inner integral of (A1) represents the function $(U \exp(-is\phi(H))w(t))$, and the left member of (A1) is equal to $||EU \exp(-is\phi(H))w||^2$, where E is the projection of $L^2(-\infty, +\infty)$ onto the subspace consisting of all functions that vanish on $(-\infty, 0)$. Thus (A1) is equivalent to that $EU \exp(-is\phi(H))w \to 0$, $s \to +\infty$. Since $EU \exp(-is\phi(H))$ is uniformly bounded with norm ≤ 1 , it suffices to prove (A1) for all w belonging to a fundamental subset of $L^2(I_k)$. Thus we may restrict ourselves to considering only characteristic functions w of closed finite subintervals [a, b] of I_k .

Assume that ϕ is increasing on I_k . If we denote by $v_s(t)$ the inner integral of (A1) for the characteristic function w of $[a,b] \subset I_k$, we have by Lemma A2

$$|v_{\mathfrak{s}}(t)| \leq rac{2(c + V_{\phi'})}{c(t + cs)} \; ext{ so that } \int_{\mathfrak{0}}^{+\infty} |v_{\mathfrak{s}}(t)|^2 dt \leq rac{4(c + V_{\phi'})^2}{c^3 s} \longrightarrow 0$$

for $s \to +\infty$, where c is the minimum of $\phi'(\lambda)$ on [a,b] and $V_{\phi'}$ is the total variation of ϕ' on [a,b]. A similar proof applies to the case $\phi' < 0$ on I_k , with $\int_0^{+\infty} dt$ replaced by $\int_{-\infty}^0 dt$.

LEMMA A4. Let ϕ , ψ be of class (M). Then the composed function $\phi \circ \psi$ also belongs to (M), and there exists a system of intervals associated with $\phi \circ \psi$ such that, in each interval of the system, both ψ and $\phi \circ \psi$ are monotonic.

Proof. Let $\{I_k\}$ and $\{J_h\}$ be systems of intervals associated with ϕ and ψ , respectively. For each h, ψ maps J_h one-to-one onto an open interval J'_h . Let J_{kh} be the inverse image under this map of $J'_h \cap h_k$. Obviously all J_{kh} are open and mutually disjoint, and cover the whole interval $(-\infty, +\infty)$ except for a finite number of points. It is easy to see that $\phi \circ \psi$ is monotonic and continuously differentiable on each J_{kh} , with $(\phi \circ \psi)'(\lambda) = \phi'(\psi(\lambda))\psi'(\lambda)$. Furthermore, $(\phi \circ \psi)'$ is locally of bounded variation on J_{kh} , for the same is true with ϕ' and ψ' by assumption. The intervals J_{kh} form a system stated in the lemma.

LEMMA A5. Let ϕ be of class (M). For any selfadjoint operator H, the absolutely continuous subspace for $\phi(H)$ is identical with the absolutely continuous subspace for H.

Proof. Let $H=\int \lambda dE(\lambda), \, \phi(H)=\int \lambda dF(\lambda)$ be the spectral representations of the operators considered. We denote by $E(S), \, F(S)$ the spectral measures constructed from $\{E(\lambda)\}, \, \{F(\lambda)\}, \, \text{respectively.}$ For any Borel subsets S of the real line, we have $F(S)=E(\phi^{-1}(S))$. If |S|=0 (we denote by |S| the Lebesgue measure of S), then $|\phi^{-1}(S)|=0$ by the properties of $\phi\in (M)$, so that F(S)u=0 if u is absolutely continuous with respect to H. On the other hand, $F(\phi(S))=E(\phi^{-1}(\phi(S)))\geq E(S)$. If |S|=0, we have $|\phi(S)|=0$ so that $||E(S)u||\leq ||F(\phi(S))u||=0$ if u is absolutely continuous with respect to $\phi(H)$. This proves the lemma.

BIBLIOGRAPHY

- 1. M. Sh. Birman, On the conditions for the existence of wave operators, Doklady Akad. Nauk USSR 143 (1962), 506-509.
- 2. _____, A test for the existence of wave operators, Doklady Akad. Nauk USSR 147 (1962), 1008-1009.
- 3. M. Sh. Birman, and M.G. Krein, On the theory of wave and scattering operators, Doklady Akad. Nauk USSR 144 (1962), 475-478.
- 4. T. Kato, On finite-dimensional perturbations of self-adjoint operators, J. Math. Soc. Japan 9 (1957), 239-249.
- 5. ———, Perturbation of continuous spectra by trace class operators, Proc. Japan Acad. 33 (1957), 260-264.
- 6. S. T. Kuroda, On the existence and the unitary property of the scattering operators, Nuovo Cimento 12 (1959), 431-454.
- 7. ———, Perturbation of continuous spectra by unbounded operators, I and II, J. Math. Soc. Japan 11 (1959), 247-262; 12 (1960), 243-257.
- 8. M. H. Stone, Linear transformations in Hilbert space and their applications to analysis, AMS Colloq. Publ., 1932.