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CONCERNING PERIODIC SUBADDITIVE FUNCTIONS
R. F. JoLLy

The author investigates those subsets M of the complex
plane with the group property that 1/ is closed with respect
to complex multiplication. In particular if I/ is closed, bounded
and has for its boundary a curve given in polar form by
o(0) = r(0) exp (i6) where r is a positive continuous function
with period 2z, then r is characterized by these requirements,
together with the additional condition that » be submulti-
plicative., If f(x) = — log r(x), the corresponding conditions
on f are: f is a continuous nonnegative subadditive function
with period 2x.

Some relations between the roots (zeros) and periods of
subadditive functions are discussed and in particular, it is
shown that: if f is a continuous subadditive function not
identically zero, with period 1 and with a root ¢ (i.e., f(¢c) =
0), then ¢ is a rational number m/n (in lowest terms), f(0) =
0 and f has period 1/n.

For each positive number ¢ and function f on the set of
all numbers, a type of polygonal approximation P(c, f) is
defined such that if f is continuous, lim P(c, f) = f uniformly
over every bounded number set as ¢ — 0. If f is subadditive,
P(c, f)is subadditive. The subadditive P(c, f) are characterized
in terms of their slopes. Since a change of scale does not
affect the subadditive property, the author studies functions
with period 1 rather than theose with period 2z. For each
positive integer %, the collection K, of all functions P(1/n, f)
for all continuous subadditive functions f with period 1, is
shown to have a finite basis. In fact, K, forms a function
cone with finitely many extremal elements (the basis), While
an explicit representation is not given, the proof shows how
these extremal elements may be constructed.

Several examples are given to illustrate some pathological
cases, The methods of this paper may easily be applied to
the solution of certain other functional inequalities with cor-
responding restrictions,

1. Introduction. The statement that M is a G-set means that M
is a point set in the complex plane such that if P isin M and @ is in M,
then the product PQ is in M, i.e., M has the group property that it is
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closed with respect to multiplication. For example, the set of all points®
z such that |z| < 1 is a G-set; for each number k, the intersection of
the interiors of the circles with radius (1 + %*Y* and centers 4k and
—1tk is a G-set; and the union of the coordinate axes is a G-set which
contains no domain (§ 6). The statement that M is a simple G-set
means that M is a G-set which is closed, bounded and which has for
its boundary a curve given in polar form by p(d) = r(0) exp (6) where
r is a positive continuous function of period 27. The function » is
completely characterized by these requirements together with the ad-
ditional condition that for each number x and number y, 7(x)r (y) =
r(x + y). If f(x) = — log r(x), the corresponding conditions on f are:
f is continuous, nonnegative and of period 27 and moreover, for each
number & and number y, f(x + y) = f(x) + f(y). Hence, the deter-
mination of all simple G-sets resolves itself into the problem of the
determination of all continuous nonnegative subadditive functions with
period 27 (§ 2).

For each number p, let F, denote the collection of all functions
f which are subadditive on the set of all numbers and which have
the property that if x is a number, f(x + p) = f(x). Let F denote
the collection of all continuous functions in F,. The statement that
¢ is a root of f means f(c) = 0. An anchored function is one with
zero for a root. In §3, some relationships are shown between the
roots and periods of subadditive functions. In particular, it is shown
that if f is a function in F not identically zero and ¢ is a root of f,
then ¢ is a rational number m/» (in lowest terms) and f is an anchored
function with period 1/n (Theorem 5).

Since a change of scale does not affect the subadditive property
(Lemma 3), we study the functions in F), instead of those in F},. and
thereby simplify the notation. For each positive number ¢ and func-
tion f on the set of all numbers, a type of polygonal approximation
P(c, f) is defined (§ 4) such that if f is continuous, lim,., P(c, f) = f
uniformly over every bounded number set. These polygonal approxi-
mations to functions in F, are themselves in F;, (Theorem 6) and are
characterized in terms of their slopes (Theorem 7). It is then shown
that for each positive integer m, the collection K, of all functions
P(@/n, f) for all functions f in F, has a finite basis in the sense that
there is an integer M(n) and a sequence «, of M(n) elements of K,
such that a function g belongs to K, if, and only if, g is the sum of
a linear combination of the functions of «, with nonnegative coefficients
(Theorem 9). These polygonal subadditive functions are then used to
characterize F' as the collection to which f belongs if, and only if, f

1 In this paper, the word number shall be used to denote a real number and
the word point shall mean a point of the complex plane.
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can be approximated uniformly by linear combinations of the functions
of a,, a,, «,, --- with nonnegative coefficients.

There are simple G-sets which are not convex and in fact, which
have no tangent at any point (Theorem 12). Some other examples,
which show the difficulty in obtaining nontrivial characterizations of
G-sets, are given in § 6. One example is a countable G-set dense in
the plane.

2. Boundaries of simple G-sets. Throughout this section, assume
that = is a positive continuous function with period 27 and let D
denote the closed and bounded set with boundary z = 7(0) exp (46).

THEOREM 1. The following two statements are equivalent:
(i) D is a simple G-set.
(i) For each number a and each number B, r(a)r(B) = r(a + B).

Proof. To show that statement (ii) implies statement (i), let P =
cexp (i) and Q = d exp (18) where 0 = c < r(), 0 =d < r(B) and
r(@)r(B) < r(a + B). Hence PQ = cd exp (i(e + B)) and PQ is in D.

To show that statement (i) implies statement (ii), assume (i) and
r(@)r(B) > r(a + B). Let P = (r(a) — d)exp (ta) and @ = (r(8) — 9)
exp (18) where 0 = [r(a)r(8) — r(a + B)|/[r(a) + r(8)] > 0. Note that
r(@) — 6 = [r(a) + r(a + B)]/[r(a) + r(8)] > 0. Therefore P is in D.
Likewise 7(B) — ¢ = [r*(8) + r(a + PB)]/r(a) + r(B)] and Q is in D.
Since Pis in D and Q is in D. PQ is in D. Therefore r(a + 8) >
(r(@) — 8) (r(8) — &) but (r(a) —0) (r(B) — 0) > r(@)r(B) — d (r(a) +
r(B)) = r(a + B). This is a contradiction.

THEOREM 2. Suppose that D ts a G-set. Then the following
two statements are equivalent:

(i) Each point of D is the product of two points of D.

(i) »(0) = 1.

Proof. r is continuous and has period 27, therefore there is a
number 0 < w < 27 such that for any number «, r(a) < r(w). Since
r}(w) = rCw) =< r(w), r(w) < 1.

To show that statement (ii) implies statement (i), suppose Z = d
exp () where 0 = d < r(«). From the preceding d < r(a) < r(w) =
1, hence d < (1/2) 1+ d)< 1 and 2d/(1+d)<1. Let W= (1/2) (1 +d)
exp (1) and U = 2d/(1 + d). Then Z = WU.

To show that statement (i) implies statement (ii), assume (i) is
true. Let us first show that »(w) = 1. Suppose r(w) < 1. Let Z =
1/2) [r(w) + r*(w)] exp (tw). By (i) there is a point W = cexp (i)
and a point U = dexp(tB8) where 0 < c < r(@), 0 =d < r(B) and Z =
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WU. Notethat 0 < c¢ < r(a) < r(w)and 0 < d < r(8) < r(w). There-
fore cd < r(w) < (1/2) [r(w) + r*(w)] < r(w). Hence Z #* WU which
is a contradiction. Therefore r(w) = 1.

Since 1 = r(w)r(kw) = r((k + D)w) < r(w) = 1 when r(kw) =1, it
follows by induction that if » is a positive integer, r(nw) = 1.

Since r is continuous and periodic, 7 is uniformly continuous.
Suppose € > 0. Then there is a number 6 > 0 such thatif |z —y| <
9, |r(x) — r(y)| < e. For infinitely many positive integers m and =,
[(w/2r) — (m/n)] < n* < §/(2mn). For such integers m and n, |r(nw) —
r2rm)| < e, r(nw) = 1 (previously proven) and r(2rm) = 7(0) (r has
period 27). Hence, 1 — 7(0) < e. Therefore r(0) = 1.

THEOREM 3. If g is a continuous periodic submultiplicative
function, either g is a positive function or g = 0.

Proof. For each number z, 0 = g(x/2) g(x/2) = g(x). Since g is
continuous, either g = 0 or there is some segment containing no root
of g. Suppose a < b and the segment (a, b) contains no root of g. If
a<x<band n >0, then na < nx < nb and if g(kx) = 0 and g(x) #=
0, then 0 < g(x)g(kx) < g((k + 1)x). It follows by induction that for
every positive integer n, the segment (na, nb) contains no root of g.
Since g has period p, for some positive number », and there is a
positive integer N such that N(b — a) > p, there is no root of g and
hence g is positive.

THEOREM 4. Suppose f and g are functions such that f = — log
g. Then the following two statements are equivalent:

(i) g ts positive and submultiplicative.

(ii) f s subadditive.
The proof is omitted.

3. Roots and periods of subadditive functions. Let us now
show how the roots of subadditive functions are related to their periods
and in particular, what happens in the continuous case.

Note that if p and —p are both roots of the function f of F,,
then f is an anchored function with period . This is shown by the
inequalities

O=f@®=rf®+70)=50)=f(p—p) =S+ f(—p)=0
f@=f@+p—p)=f@+p+ f(—p) = fl®)+ f)=f().

On the other hand, the example

flx)y=1{1, if ¢ = 7w/2; |sinx|, if 7/2 < }
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shows that a continuous element of F, may have infinitely many roots
without being either anchored or periodic. However, if f is a non-
negative continuous element of F, with both a positive and negative
root, then f is anchored and periodic. This is easily shown by letting
p and ¢ denote respectively the smallest positive and largest negative
roots of f (these obviously exist). But ¢ <p+q¢<p and 0 = f(p +
9 = f(p) + f(@ =0. Hence f(p+ ¢ =0and p+q=0.

THEOREM 5. Suppose f is in F and ¢ 18 a number different
Jrom 0 such that f(c) = 0. Then

(i) f 1s anchored;

(ii) if ¢ ts wrrational, f = 0;

(i) 4f ¢ 1is a rational number min (in lowest terms), then f
has period 1/n.

Proof. First we show that there is no number x such that f(x)<0.
Suppose there were such an x. Then f(0 4 0) =< £(0) 4 f(0) implies
0 = f(0). Hence z # 0. Since f((k + D)) = f(») + f(kx), it follows
by induction that f(nz) < nf(x) for every positive integer n. As f
is continuous and periodie, there is a number M such that if w is a
number, | f(w)| < M. Let m denote an integer greater than M/| f(x)|.
Therefore m | f(x)| > M but if f(x)<0, | f(mx)|= — f(mxr) = —
mf(x) = m | f(x)| which is a contradiction.

Since f has period 1, assume 0 < ¢ < 1. It was previously shown
that f is nonnegative and if % is a positive integer, f(nx) = nf(x).
Hence f(nc) = 0 for every positive integer m. Following the line of
argument used in Theorem 2, the fact that f is uniformly continuous
may now be used to show that f(0) =0 and therefore f is anchored.

To show (ii), assume ¢ is irrational and f= 0. Again following
a line of argument used in Theorem 2, the fact that the multiples of
¢ modulo 1 are dense in the interval [0, 1] gives a contradiction since
J is continuous, has period 1 and f(nc) = 0 for every positive integer
N

To show (iii), assume ¢ is the rational number m/n in lowest
positive terms. There exists an integer k¥ and an integer p such that
km — np = 1. Hence km/n = (1 + np) = p + 1/n and 0 = f(km/n) =
S + 1/n) = f(1/n). For each number w, f(w + 1/n) = f(w) + F(1/
n) = f(w). Therefore it follows by induction that for every number
« and positive integer s, f(x + s/n) = f(z + Ln) < f(x). But if s =
n, f(x) = f@+ n/n) < f@+ 1/n) = f(x). Therefore f has period 1/x%.

4. Certain polygonal approximations to subadditive functions.
Let us start with some elementary properties of subadditive functions
and follow this with a definition and some properties of a certain type
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of polygonal funection.

LEMMA 1. Ifa>0,0>0, f is wn F, and g ts in F,, then
af + bg is in F,.

LEMMA 2. If for each positive integer mw, f, %s in F, and g is
a function such that for each mumber x, f,(x) converges to g(x), then
g ts in F,.

LemMA 3. If ¢ is a number, f is in F,, and g is the function
such that for every number x, g(x) = f(cx), then g is in F,.

Proofs to Lemmas 1, 2 and 3 may be found in [3, Chap. VII].

DEFINITION. For each positive number ¢ and function f defined
on the set of all numbers, let P(c, f) denote the function % such that
(i) if » is a positive integer and nc — ¢ < 2 < ne, then h(x) = m,(x —
ne) + f(ne) where m, =[f(nc) — f(nec —c¢)]/e and (i) if k is a
negative integer and k¢ =< « < k¢ + ¢, then A(x)= — m(x—kc)+ f(kc)
where m, = — [f (ke + ¢) — f(ke)]/c. Also let m, = f(0)/c.

DEFINITION. For each function 7 defined on the set of all numbers,
let h* denote the transformation from the set of all ordered number
pairs into a number set such that for every ordered number pair (z,
), ¥z, y) = h(x) + h(y) — bz + y).

THEOREM 6. If f is in F, and ¢ s & number then P(c, f) is in.
F,.

This theorem is equivalent to Theorem 8 of [2].

NoTATION. When n is negative, let

n 0 In|
DL My =3, My = 3, M_p .
p=0 = =0

P=n

THEOREM 7. If f is a function defined on the set of all numbers
and ¢ is a positive number, then P(c, f) is in F, if, and only if,
for every integer m and integer k,

3
+
=

my

IA

n k
Z mp + Z mP M
P»=0 P=0

=
I}
o

Proof. For each positive integer =, m, = [f(nc) — f(nc — c)]/e.
Hence e¢m, = f(nc) — f(ne — ¢) and f(ne) = em, + f(nc —¢). It fol-
lows by induction that
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flne) = ¢ ,,Z: m, + f(0) = ¢ pzi;o m, .

For each negative integer k, m, = — [ f(ke + ¢) — f(kc)]/c. Hence

emy, = — f(ke + ¢) + f(ke) and f(kc) = em, + f(ke + ¢). It follows
by induction that

fke)= cgkmp + f(0) = céomp .

In the proof of Theorem 6, it is shown that P(c, f) is in F} if,
and only if, for every integer n and integer k, f(nc) + f(ke) — f((n +
k)c) = 0. Hence the theorem follows.

This theorem can be used to derive several of the well-known
theorems concerning the rate of growth of subadditive functions.
Notice that one could easily restrict the domain of f to the positive
or negative numbers. Note also the obvious fact that if f has period
ne, then > m, = 0.

THEOREM 8. If f ts a function defined on the set of all numbers
and {c,} s a number sequence converging to 0 such that {P(c,, f)}
converges pointwise to f, then f is in F, if, and only if, Ple,, f) s
wm Fy for every positive integer m.

Proof. From Theorem 6, it follows that if fis in F, and » is a
positive integer, then P(c,, f) is in F,.

Under the hypothesis of the theorem, if P(c,, f) is in Fj for
every positive integer %, then by Lemma 2, f is in F.

5. Periodic polygonal subadditive functions. A type of polygo-
nal approximation to elements of F is described and these are shown
to have a finite basis. In fact, these polygonal approximations (for a
fixed n) form a function cone with finitely many extremal elements
(the basis). While an explicit representation is not given, the proof
of Theorem 9 shows how these extremal elements may be constructed.

THEOREM 9. For each positive integer m, there is an integer
M(n) and a finite sequence {a,,} with M(n) terms such that

(1) 1f pis an integer and 1 < p < M(n), then for some function
fm F, a, = P(1/n, ) and

(1) if g s in F and h is the function P(1/n, g), then there is
a sequence {a,} of nonnegative numbers such that h = >¥% a,q,, .

Proof. Suppose % is a positive integer. Let F’ denote the col-
lection to which % belongs if, and only if, there is a function f in F
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such that » = P(1/n, f). Note that if 2 is in F”, h is continuous,
hr(1 4+ p/n) = fA + p/n) = f(p/n) = h(p/n) for each integer p and hence,
h has period 1. By Lemma 1, if ¢ =0, g is in F’, and A is in F",
then ag + h is in F’. It follows by induction that any linear combi-
nation with nonnegative coefficients of functions in F” is itself in F”.

Let Z, denote the collection of all points (p/n, k/n) for p =1, 2,
3,+-,mand k=1, 2, 3,---,n. For each & in F’', h*(x +1,y) =
h*(x, y + 1) = h*(x, y). Making use of part of the proof of Theorem
6, h* is nonnegative if, and only if, A* is nonnegative at every point
of Z,. Each point (p/n, k/n) of Z, such that h*(p/n, k/n) =0, is
called a zero of h*. If h is in F', h is said to be fundamental only
if for each function g in F”’ such that 2 — g is in F", there is a non-
negative number ¢ such that g = ch.

Let us now show that when % is in F”, the statement that h* =
0 is equivalent to the statement that ~ =0. If =0, then A* = 0.
Suppose 2* = 0. Then for every number z, h(2x) = 2h(x). Therefore
by induction A(x) = (2x)/2 = .- = h(n2")/2" for every positive integer
n. Since h is continuous and periodic, there is a number B such that
for any number w, | A(w) | < B. As 0 < h(x) < B/2" for every positive
integer n, h = 0.

Next let us show that if f is in F” and g is in F’ then the
statement that f* = g* is equivalent to the statement that f=g¢g. If
f=g,then f*=9g* Iff*=g*andh=f—g, then h* = (f — g)* =
f*—g*=0 but from the preceding # =0 and hence f=g.

Next let us show that the function % in F” is fundamental if, and
only if, it is true that if ¢ is in F"’ and every zero of i* is a zero of
g*, then every zero of g* is a zero of h*.

Case 1. Suppose & is not fundamental. Then there is a function
g in F such that » — g is in F’; yet there is no nonnegative number
¢ such that ¢ = ch. Note that there is no zero z of h* which is not
a zero of g* as (h — g)* would be negative at z, which is impossible
by a previous result. There is a least upper bound ¢ of all numbers
d such that » — dg isin F’. By Lemma 2, h —¢g is in F', h — ¢g #
0 by assumption. If A* — cg* is positive at every point z of Z, which
is not a zero of h*, then there is a number d > ¢ such that 2* — dg*
is positive at every such point z, which would contradict the fact that
¢ is the largest number such that A — c¢g is in F’. Hence h — cg is
a function such that every zero of h* is a zero of (A — cg)* but some
zero of (h — cg)* is not a zero of h*. Note that since Z, is finite, it
now follows by induction that there is some fundamental function f
such that every zero of h* is a zero of f*. For each & in F’ such
that A* has a zero, let Z, denote the set to which z belongs only if
z is a zero of h*.
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Case 2. Suppose g is in F', g # 0 and Z, is a proper subset of
Z,. There is a positive number ¢ such that the product of ¢ and the
maximum value of g* on Z, is less than the smallest positive value of
h* on Z,. Therefore h* — cg* is nonnegative at each point of Z;
consequently A — ¢g is in F’. But if ~ — dg is in F” for some number
d, then, as there is some zero z of g¢g* which is not a zero of 2%,
h* — dg* is positive at z and h — dg = 0. Therefore % is not founda-
mental.

Let C denote the collection to which f belongs only if fis a
fundamental function such that 37, f(p/n) = 1. For each function
h in F except 0, there is a function f in C such that Z, (if it exists)
is a subset of Z;. If fis a fundamental function and g is a funda-
mental function such that Z, = Z, then by a previous argument, there
is a positive number ¢ such that f= cg. Therefore if f and g are
fundamental functions in C, Z,; = Z, and neither is a subset of the
other. Since Z, is finite, C is finite. Let M(n) denote the number
of functions in C and arrange these functions in a sequence {«,,}.

It has been previously shown that any linear combination with
nonnegative coefficients of elements of F'is itself an element of F.
Hence there remains only to show that every element 2 of F” can be
represented as a linear combination with nonnegative coefficients of
the functions {«,,}. Let h, = a,,, where a, is the largest number ¢
such that 2 — ca,, is in F’. For each positive integer p < M(n), let
hy = hp_y + ay,, where a, is the largest number ¢ such that » — h,_, —
ca,, is in F'.

M(n)
By = IZ{ Aplyp -

Let

M(n)

g:h—‘hmn):h—;%am-

Unless g = 0 there is an integer % such that Z, is a subset of Loy,
There is a largest number d such that g — de,, is in F'. h, = h;_, +
o, where a, is the largest number ¢ such that A — h,_, — ca,, is
in F'. But if ¢ — da,, is in F’, then (b — h,_, — ca,;,) — da,, is in
F'’ which is a contradiction. Therefore g = 0.

THEOREM 10. There is a sequence {«,} of functions in F such
that f belongs to F 4if, and only if, there exists a sequence {g,}
converging untiformly to f such that for each positive integer n,
there is a sequence {a,,} of nonnegative numbers such that g, =
WppOpe

n
=1

Proof. Let {«,} denote a sequence of functions in F such that
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for each positive integer n# and positive integer p =< M(n), there is a
positive integer k such that «, = a,, where «,, is the pth term of
the sequence {«,,} of Theorem 9.

If fis in F, the sequence {D(1/n, f)} converges uniformly to f.
For each positive integer k, there is an integer n(k) and a sequence
{@.p} of nonnegative numbers such that P(1/k, f) = 325 a,u% (by
Theorem 9). Let ¢, = 3% @, if n(k) < m < n(k + 1). Then
{9.} converges uniformly to f.

By using the fact that the sum of two continuous functions with
period 1, is a continuous function with period 1, Lemma 1, and in-
duction, it follows that if for some sequence {a,} of nonnegative
numbers and some integer n, g, = >.%_; @, then ¢ is in F. If {g,}
converges uniformly to f, then f is a continuous function with period
1 and by Lemma 2, f is in F.

6. Some examples and comments. The examples in Theorem 11
are typical of the fundamental anchored polygonal elements in F'; the
example in Theorem 12 shows that some functions in F are patholo-
gical.

THEOREM 11. Suppose 0 < k<1 and f ts the function with
period 1 such that of 02 =<k, fx)=x20 —k)and if k=<2x=1,
f@)=k@ — ). Then f is in F.

This theorem can be shown by computing f*. It is quite easy to
establish that f* = 0.

It follows from Theorem 11 and a well-known characterization of
continuous convex functions on an interval that if = is a positive
integer and f is a nonnegative convex function on [0, 1/n], then f can
be extended to be subadditive with period 1/m. This result should
appear in the Pacific Journal in a paper by Richard Laatsch using
different methods (private communication).

THEOREM 12. There exists a totally nondifferentiable function
n F.

Proof. It follows from Theorem 11 that y = | Aresin (sin 7x) |
represents a function in F. In a different setting and using a different
notation, there is a proof in [1, p. 115] that the function f defined by
S(@) = >in, | Aresin (sin 2"mx) | (m2") is totally nondifferentiable. By
Theorem 10, f is in F.

Notice that the graph of Z = f(0) exp (¢6) forms the boundary of
a simple G-set with no tangent at any point.
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As might be expected, when one considers G-sets which are not
necessarily simple, one finds some very complicated examples. The
following should illustrate this and also, should show some of the
aspects of G-sets.

Suppose M is a point set and M’ is the set to which Z belongs if,
and only if, for some point W of M and number 0=t <1, Z=1tW,
i.e., M’ is the smallest star-shaped set about the origin which covers M.
A slight modification of the argument for Theorem 1 would show that
if M is a G-set, then M’ is a G-set. Moreover, a modification of the
argument for Theorem 2 would show that if M is a G-set, then M is
bounded if, and only if, M is a subset of the unit dise, i.e., if Z is
in M, |Z|= 1.

That the set M’ need not contain a domain can be seen by taking,
for some positive integer n, M to be then nth roots of 1.

Even when M’ is a bounded G-set, there is no requirement that
its boundary be the graph of Z = »(0) exp (¢0) for some positive con-
tinuous function with period 27x. This can be seen by taking M to
be, for some number k == 0, the graph of Z = exp((k + ¢)0) for 0 <
0 < 2rm.

Suppose R is a number set and ¢ is a function defined on R such
that if # is in R and y is in R, then z + y is in R and g(x)g9(y) =
g(x + y). Then if M denotes the set of all points Z = g(x) exp (tx)
for all numbers « in R, M is a G-set. It is well-known that such
sets R, and even that countable sets R, exist along with additive
functions f defined on R which are dense in the plane. If g(x) =
exp (f(x)) then the corresponding set would be dense in the plane.

The methods of this paper may easily be applied to certain other
functional inequalities. For example, analogous theorems hold for the
solutions to f(2x) < 2f(x) and in most cases the arguments do not
need to be changed.
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