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DOUBLY STOCHASTIC OPERATORS OBTAINED
FROM POSITIVE OPERATORS

CHARLES HOBBY AND RONALD PYKB

A recent result of Sinkhorn [3] states that for any square
matrix A of positive elements, there exist diagonal matrices
Dι and D2 with positive diagonal elements for which Dι A D2

is doubly stochastic. In the present paper, this result is
generalized to a wide class of positive operators as follows.

Let (Ω9 % λ) be the product space of two probability
measure spaces (βu %u λϊ). Let / denote a measurable
function on (42, SI) for which there exist constants c9C such
that 0 < c ^ / ^ C < o o . Let K be any nonnegative, two-
dimensional real valued continuous function defined on the
open unit square, (0,1) X (0,1), for which the functions K(u, )
and K( ,v) are strictly increasing functions with strict ranges
(0,oo) for each u or v in (0,1). Then there exist functions
h: Ωι -»Eί and g: Ω2 —> EΊ such that

j\x, v) K(h(x), g(y)) dλ2(y) = 1 = ( f(u,y) K(h{u\

almost everywhere — (λ).

Let (Ω, 2ί, λ) be the product space of two probability measure
spaces (Ωi9 %, λ<). Let / denote a measurable function on (Ωf 9X) for
which there exist constants c,C such that

(11) 0<c^f^C< oo .

Let K be any nonnegative, real valued continuous function defined on
the open unit square, (0,1) x (0,1), for which the functions K(u,')
and K( ,v) are strictly increasing functions with strict ranges (0, °o)
for each u or v in (0,1).

In what follows, h and g will denote measurable, real valued,
functions defined on Ωu and Ω2, respectively. Whenever well defined,
set

R(x: Kg) = \ f(x,v) K(h(x), g(v))d7φ)
JΩ2

( 2 ) f

C(y: Kg) = f(u,y) K(h(u), g(y))d\L(u)
hi

for (x,y) e Ω.
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For a fixed choice of h, g we can think of R and C as defining
positive operators. The main result of this paper is that R and C
can be made doubly stochastic by choosing h and g appropriately.
One immediate consequence of this result is a recent theorem of
Sinkhorn [3] on doubly stochastic matrices.

THEOREM. There exist functions h: Ωλ —> (0,1) and g: Ω2 —* (0,1) for
which

( 3 ) R(x:h,g) = l = C(y:h,g),

almost everywhere — (λ).

Proof We shall obtain h and g as the limits of two sequences
of functions, {hn} and {gn}. The hn and gn are defined recursively as
follows.

Set ho(x) = a for all xeΩlf where a is any number in (0,1). If
hn has been defined, let gn be the function defined by the equation
C(y: hn,gn) = 1. That is, gn(y) is the solution of the equation

( 4 ) 1 = \ f(x,y) K(h%(x),gn(y))dUx)
jQi

This solution exists and is unique since C(y: hn,t) is a strictly increasing
continuous function of t with range (0,c>o)# Furthermore, gn is easily
seen to be measurable if hn is measurable (certainly the case for h0),
since {yeΩ2: gn(y) <Ξ ί} = {yeΩ2: C(y: hn,t) ^ 1} and since C(y: hn,t) is
a measurable function of y for each fixed t. By Fubini's theorem

ί R(x: K, gjd\(x) = \ C(y: hn,gn)dX2(y)
JΩJ JΩ2

-j

Thus if R(x: hn,gn) ^ 1 for all x in Ωu then R(x: hn, gn) — 1 almost
everywhere — Xl9 and the proof is complete. If for some xeΩu

R(x: hn, gn) < 1, we define hn+1(x) to be the numbert for t which
R(x: t,gn) — 1. The existence and uniqueness of hn+1(x) follow from
our assumptions on K. We set hn+1(x) = hjx) at every x where
R(x: hn,gn) ^ 1. Just as for gn, we see that hn+1 is measurable (since
gn is measurable).

Let An = {xeΩ1\ R(x: hn,gn) ^ 1}. If for some n ^ 0, X^AJ = 1
we stop our iteration since this implies that R(x: hn,gn) = 1 a.e. — Xu

so we can take hn and gn to be h and g of the theorem. We shall
assume henceforth that X^AJ < 1 for every n.

Observe that hn+1(x) ^ hn(x) for every x, thus

( 6) 1 - C(y: hnygn) S C(y: hn+1,gn) .

Consequently gn+1(y) ^ gn(y) for every y. It follows from this mono-
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tonicity that the limits h = lim^c hn and g — l im^^ gn exist. We
shall now show that this choice of h and g satisfies the theorem.

By our construction, {AJ is a nondecreasmg sequence of sets. Set
A = lim^oo An. Since λ^AJ < 1, the complementary set Ac

n is a set
of positive measure for each n. For x e AG

n, hn(x) = a whence

^ R(x: hnfgn) = [ f(x,

K(a,gn(y))dUv) .
J θ 2

This inequality holds for each n, so one may take limits to obtain

1 S C J Ω K{a,g{y))dX2{y) .

Thus there are positive numbers r and σ such that X2{y e Ω2\ g(y) >̂ r} > σ.
Then for arbitrary n and x e An,

1 > c f K(hn,gn)dX2(y) ^ cσK(hn(x),r) .
jΩo

Hence, by taking limits on n, one obtains 1 ^ cσK(h(x),τ) for each
xe A. Let ί be a number for which 1 — cσK(t,r). Then fe(cc) ̂  ί for
xe A, and /&(#) = ^ for x G AC, whence h(x) ^ /3 = max (#,£) < 1 for
all x G β1# But for all y £ Ω2 and all n,

= ( /(»,!/) K(K(x),gn(y))d\(x)

^ CK(β,gn(y)) ,

thus ^(T/) ^ 7 > 0 where 7 satisfies C"1 = K(β9y).
The import of the above is that the set {(^%(x),

^ ^ 0} is contained in a compact subset of the interior of [0,1] x [0,1],
on which K is continuous, and hence bounded. Therefore, by the
Lebesgue dominated convergence theorem

1 = lim C(y: hn,gn) = ( f(x,y) K(h(x)yg(v))dX1(x)

and

1 = lim R(x: kn+1,gn) = \ f(x,y) K(h(x),g(v))d\(y) ,

for xe A. Moreover

1 rg lim R(x: hn,gn) = f J(x,y) K(h{x),g{y))dX2{y) ,
W->oo J Ω 2

for x $ A. But an inequality here on a set of positive λi-measure is
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impossible by (5), thereby completing the proof.

COROLLARY (Sinkhorn [3]). Let A = (aiS) be an m by m matrix
of positive elements. There exist diagonal matrices Dλ and D2 of
positive diagonal elements for which the matrix DXAD2 is doubly
stochastic.

Proof. In the above theorem let Ωx — Ω2 — {1,2, , m} and let
λj = λ2 be the uniform measure, λ^i}) = 1/m. Set K(u,v) —
uv{l — u)~\l — v)~λ and f(ί,j) — ai3 . By the theorem there exist
functions h and g such that

m-1 Σ aiSh(i)g(3) [1 - Hi)Γ [1 - g(j)]-1 = 1
i l

Σ
3=1

The corollary is then proved if one lets dH = m~1/2[l — h(i)]~ιh{i) and
d2i = m~1/2[l — giiyi^gii) be the diagonal elements of Dλ and D2

respectively.
The above result for symmetric matrices has also been obtained

by Marcus and Newman [1] and Maxfield and Mine [2].
The application which motivated Sinkhorn's theorem was the case

in which A is the matrix of maximum likelihood estimates of a
stochastic transition matrix P of a Markov Chain. When it is further
known that P is actually doubly stochastic, then Sinkhorn's result
shows that numbers {xl9 "-9xn;ylf •••,#„} exist such that A can be
renormalized by dividing the ith row by x{ and the i t h column by y3-
to obtain a doubly stochastic matrix. However, if one considers the
maximum likelihood equations for the restricted case in which P is
known to be doubly stochastic one observes that the proper normalized
form of A (relative to the maximum likelihood approach) is a doubly
stochastic matrix B = {bi5) with b{j — aiS(Xi + yj)~λ. The existence of
such a normalization follows straightforwardly from the proof of the
above theorem. To see this, consider the function K(u,v) = [v*1 —
(1 — u)-1]-1 defined on the triangular region u > 0, v > 0, u + v < 1.
This function is nonnegative and continuous on this triangle. Moreover,
both K(u, ) and K( ,v) are strictly increasing functions wherever
defined and the ranges of K(u,-) and K(-,v) are respectively (0,oo)
and (^[1 — v]"1,™) for each fixed u and v. Let X1 and λ2 be the same
discrete measures as used in the proof of the above corollary. The
functions R(x: hn,gn) and C(y: hn,gn) then become finite sums. The
only change required in the proof is that one must show that the
points (hn(x),gn(y)), for all n ^ 1 and all x and y, are well defined
and contained in a compact subset of the domain of K. That this is
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true follows from the assumptions on the monotonicity, continuity and
range of K, combined with the fact that the integrals are finite sums.
Actually, because of these properties, it is clear that K(hn{x),gn{y)) is
bounded by me"1 for all n and y.
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