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CLOSED VECTOR FIELDS
N. Hicks

We study closed vector fields on a semi-Riemannian mani-
fold. In particular, we study the differential geometry of the
submanifolds determined by a nonvanishing closed field. Ex-
pressions are computed for the Weingarten map, the mean
curvature, the Riemannian curvature, and the Laplacian of the
square of the length of the field. Thus we obtain a necessary
and sufficient condition that the constant hypersurface of a
nontrivial harmonic function be a minimal surface., We obtain
conditions that imply the classical Codazzi-Mainardi equations
hold. We obtain conditions that imply the existence of a repre-
sentation of the manifold as a cross product in which one factor
is a real line. Finally, various special cases are examined,

1. Notation. Let M be a connected C* semi-Riemannian manifold
with metric tensor ¢ , > and Riemannian connexion D [see Helgason
4 or Hicks 7 for definitions]. We summarize the properties of D and
some associated concepts we shall use. The operator D assigns to each
pair of C= vector fields X and Y on an open set U of M, a C* vector
field D;Y called the covariant derivative of Y in the direction X. If
X, Y, and Z are C~ fields on U and f a C~ function (real valued) on
U then we have the following relations between vector fields on U:

DAY+ Z)=D,Y+ D, Z
D(X+Y)Z = DxZ + DyZ
DY = fD:Y
Dy(fY)=(XNHY + fD;Y
Tor (X, Y)=D;Y — DX — |X, Y]
R(X, Y)Z = DyDyZ — DyDyZ — Dy nZ .
We call Tor the torsion on D and R the curvature of D. Since D is
Riemannian, Tor = 0, and D is compatible with the metric tensor, thus
D,Y-D.,X=[X,7Y]
XY, Z>=<KD,Y, Z>+<Y,D;Z>.
We extend the operator Dy, as usual, to be a complete derivation
on the tensor algebra over M. If T"* denotes the set of 7-contravariant

and s-covariant tensors on M, then Dy: T7*— Tm*, If fe T°° then
Dyf=Xf. If YeT*, then D;Y is given by the connexion. If
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we T, then (Dyw)(Y) = X(w(Y)) —w(D;Y). The last equality
contains the seeds of what is meant by a complete derivation which
we explain. Having defined D, on functions, fields, and 1-forms if
pe T, w,eT" for v =1,---,7, and Y;€ T for =1, ---, s, then

X¢(w1; e, W, Yly °t Ys) = (Dx¢)(w1’ ey, W, Yly ) Ys)
+ Z¢(w1’ cecy, Wiy, DXwiy Wityy **y Wy Yl; M) Ys)

+ Z¢(w17 s, Wy, Yl’ ] Yi—lv DXYj7 Yj+1, ) Ys) ’

where all terms are well-defined except the first term on the right side
of the equation.

The symbol 4 will denote the general covariant differentiation
operator 4: T™* — T7™**' which is induced by D. Using the above
notation, (4¢)(w,, ++«, w,, Yy, +++, Y, X) = (Dxd)(w,, +++, w,, Y, ++-, Y,).

Our study will concern linear transformation valued tensors on
M (tensor fields of type 1,1). For completeness, we define a linear
transformation valued tensor A on an open set U of M to be a mapping
that assigns to each point m in U, a linear transformation A,: M, —
M, where M, is the tangent space at m. We say A is C= if it maps
C= fields on U into C= fields; then if X is a C= field on U then the
field (A(X)),, = A4,.(X,,) is C~on U. We define the vector valued 2-form
Tor, by

Tor, (X, Y) = Dy A(Y) — DyAX) — A[X, Y]

and let tr A and det A denote the trace and determinant functions on
A, respectively.

We will use G to denote the nonsingular linear transformation
induced by the metric tensor that maps M, onto M} for each m. Thus
if X is in M, then G(X)(Y)=<X,Y) for Y in M,; or G(X) =
Cx<{, >=<X, > where C; is contraction by X in the first covariant
slot. We also use the symbol G for the inverse of G. Thus we think
of G as a “switch map” and let the argument it is applied to tell us
which map is being used. A vecter field X will be called closed (or
exact) if G(X) is closed (or exact), and X is geodesic if Dy X =0. A
vector X is nonsingular (not light-like) if <X, X> # 0. If e T™* with
r > 0, then the divergence of 6 is the tensor divde T "¢ defined by
div § = tr 40, where the trace is taken on the last covariant slot and
last contravariant slot. If Z, ---, Z, is a base field of independent
C= vector fields on an open set U in M and z, ---, 2, is the dual base
of 1-forms, then

(dIV 0)(?’017 ey Weg, YD cty Ys)
= 231 (Aﬁ)(wly ey Wiy %5 Yl, cc ey Ys, ZJ) .
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If fe T* then the gradient of f, grad f, is the vector field G(df),
so {grad f, X> = Xf, and the Laplactan of f, 4,f, is the function
div (grad f). A function f is harmonic if 4,f=0, and a field T is
conservative if divT = 0,

2. Operators associated with a vector field. Let 7 be a C*
vector field on M. On each tangent space M,, we define linear maps
AT, BT; and CT by

AnX) = D;T, Bi(X) = Dx(D,;T), and CnX)= R(X, )T .

These maps are C= since D and T are C~. Let U be the open set
of points in M where {T, T> does not vanish. On U, we define the
C=(n — 1) dimensional distribution T* by

(TH, = [Xe M, <X, T>=0].
From the definition of the curvature F we have
Cr = By — A} + [Ar, Dy]
where
[Ar, Dr)(X) = Ar(DrX) — Di(ArX)

and thus [A, D] is a linear transformation valued tensor. By the
standard symmetry properties of the four covariant Riemann Christoffel
tensor, the map C, is symmetric (self-adjoint), and we call it the Riccs
map assoctated with T. The trace of C, is the Ricct curvature of T,
which we denote by Rie (T, T).

Following Bochner [1], we say a field T is restrained if 4T, T><0
at some point or 7" has constant length. Bochner has shown that every
field on a compact manifold is restrained, and in the noncompact case,
a fleld is restrained if its length attains a relative maximum at some
point.

Our main interests in this study are the cases when A, is symmetrie,
or equivalently, T is closed. Since the gradient of any C= function
is a closed field, many closed fields exist.

PropoSITION 1. For any field 7, tr A, = div T and tr[A,, D;] =
—T{div T). If T = grad f, then the Laplacian of f is the trace of A4,.

Proof. Let Z,, --+, Z, be a set of nonsingular orthonormal vector
fields belonging to a Riemannian normal coordinate system at a point
m in M and let w,, ++-, w, be the dual 1-forms of this base. Thus
if e, =<Z,, Z,>, then

tr Ap = 26D, T, Z;) = Swy(D,,T) = tr AT) ,
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and using the fact that D,Z, = 0 at m for any T,

tr [Ag, D;] = 3{AsDyZ; — Dy ArZ;, ZYe,
— 2<DDTZ1T - -DTDZiTy Z’i>ei
= —3TKD,,T, Z;Ye; + 3D, T, Dy Z;ye,
= —T(tr A;) .

ProrosiTION 2. For any field T,

Ric (T, T)=trCr =tr By — tr A} — T(div T) .

Proof. TUsing the fields Z,; in the above proof,
tr Cp = J{R(Z, T)T, Z>e; = Ric (T, T) ,

and the rest of the proposition follows from the linearity of the trace.

ProposiTION 3. For any field T, T has constant length if and only
if (Image A;)C T+.

Proof. For any vector X,
XT, TY>=2ZD;T, TY> = ZA(X), T>.

3. The symmetric case. Throughout this section we assume T
is a closed field, or equivalently, A, is symmetric (by the following
proposition).

THEOREM 1. A field T s closed tf and only if Ay is symmetric.
If T s closed, them T+ 1is integrable on U.

Proof. If X and Y are fields, then

dG(T)X,Y)=XT,Y) - KT, X> —<T,[X, Y]
=LD;T,Y> =Dy T, X>+<T,D;Y — DX — [X, Y]}
={4:X,Y) - <A Y, X>,

since the torsion of D is zero.
If X and Y belong to T+, then

(X, Y], T>=<D;Y — D, X, T>
= XY, TS — <Y, DT> — XX, TS + (X, D;T>
= (X, A,Y> — Y, A, X>=0

since <Y, T> =<X, T>=0. Thus T+ is involutive or integrable (see
Chevalley [2]).
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In the special case T = grad f, then the integral manifolds of T+
on U are precisely the hypersurfaces on which f is constant. We next
investigate the geometry of an integral manifold M’ of T+ through a
point m in U. Since T is normal to M’, we use T to frame M’ locally
(see Hicks [6]). Let ¢ be the function on U which is plus or minus
one according as {7, T') is positive or negative, respectively.

THEOREM 2. Let L be the Weingarten map on M' and take X in
(M) e

L(X) = [T, THI"**eT, TYA(X) — T, A(X)>T]
and the mean curvature H of M’ is given by
H=trL=|T|"[divT — Tlog|T]|]

where | T | = [eXT, TO|'"* is the length of T. Thus M’ is mintmal if
and only iof divT = Tlog|T|.

Proof. Let N = [eT, TH]™* T be the unit normal so
L(X) = DyN = —[eXT, T Ar X, TOT + [T, TO7*ArX .
To compute tr L, let Z,, ---, Z,_, be a nonsingular orthonormal base of

(M'),, and let Z, = N. Letting e, =<Z,;, Z;>, then
H=trL = S (L7, ZYe,
=1
= [T, T S CAnZs, Z,e .

But
<ATZ7L7 Zn>en = <DNT’ N>6 = <DTT7 T>/<T7 T>
= (/2)(IKT, THKT, T> = (1/2)T log &T, T .
Hence, H = (KT, T))*[tr Ay — T'log | T'|].
COROLLARY 1. The constant hypersurfaces of a monconstant har-

monic function are mintmal surfaces vf and only if the gradient of
the function has constant length along its integral curves.

Proof. Let f be harmonic and T = grad f. Then T is closed
and tr A, =divT = 0. Hence H = 0 if and only if <D,T,T>=0 or
T, T>=0.

COROLLARY 2. Let T be a untt field on M which is closed. Then
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the total curvature and mean curvature of the integral manifolds of
T+ are given by K = det Ay and H = divT. Indeed, S = Ay of and
only +f T is a unit field.

The first corollary above suggests the definition of a minimal
harmonic function as a harmonic function whose constant hypersurfaces
are minimal surfaces. This class of harmonic functions has not been
examined as yet, as far as we know, nor has the above result (Corollary
1) been proven before.

ProposITION 4. Let ¢ =<T,T)>. Then grad¢ = 2D,T, which
implies By is symmetric, and
4y = 2tr By = 2[Ric (T, T) + tr A} + T(div T')]
while

(L9)Z,Y) = 2B Z,Y>.

Proof. Consider
dp)X = XXT, T> = AZD;T, Ty = 224X, D,T> .

Hence grad ¢ = 2D, T, and 4,¢ = divgrad ¢ = 2tr B,. The last expres-
sion for the Laplacian of ¢ follows from Proposition 2.
Finally,

(L9)(Z, Y) = [Dy(49)]1Z = 2YLZ, D;T) — 2Dy Z, D;T) = KZ, B,Y .

We have immediately a slight generalization of a result of Bochner [1].

COROLLARY 1. Let T be a closed field such that div T s constant
along the integral curves of T. If T is restrained, then Ric (T, T) < 0
at some point of M or Ric(T,T)=0 on all of M. On a compact
manifold whose Ricct curvature ts always positive there can be no
nontrivial closed field T with T(divT) = 0. On a compact manifold
whose Ricct curvature is monnegative any nontrivial closed field T
with T(div T') = 0 must be a global parallel field with constant length,
zero Ricet curvature, and Ar = 0 (see Proposition 6).

Proof. In these cases,
Ric (T, T) = (1/2)4,¢ — tr A}

which proves the first two statements immediately. If T is restrained,
as in the last statement, then we force Ric (T, T) = 0 and T to have
constant length since R(T, T') < 0 at any point is impossible. Thus ¢
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is constant, 4,0 = 0, and tr A2 = 0 which implies all the eigenvalues
of A, are zero, so A, = 0.

COROLLARY 2. A montrivial closed field has constant length on a
semi-Riemannian mantfold if and only f its integral curves are
geodesics.

Proof. This is trivial since grad ¢ = 2D,T.
The following result applies to any vector field.

PropPoSITION 5. The integral curves of a field T are reparameteri-
zations of geodesics if and only if D,T = ¢gT for some real valued C=
function g.

Proof. 1If the field fT is geodesic (f never vanishes), 0 = D fT =
SIUTAHT + fD,T] and g = —T(log f). Conversely, if D,T = gT then
along each integral curve of 7' we need only solve the linear equation
(Tf) + fg = 0 to obtain f for which fT is geodesic.

COROLLARY. If T 1s closed, nonvanishing, and D,T = gT then
Ric(T)=gdivT — tr A} + T(g — div T).

We now study the case when 7T has constant length on the
hypersurfaces M’.

THEOREM 3. The following four statements are equivalent on the
set U.:

(a) Ay is wnvariant on T+.

(b) T has constant length on any M'.

(¢) D,T s orthogonal to T*.

@ [T,X] s an Tt of X an TH.

Proof. If X is in T then XT,T) = 2{A,;X,TY= XX, D,T>
which shows (a), (b), and (c) are equivalent. Also
CAX, TY =LX, A, TY = TX, Ty — <D, X, T
= DT+ IT,X],T»,

where we extend X to be a C® field in T*. Hence 2{A,X, T> =
{X, T, T> which shows (a) is equivalent to (d).

THEOREM 4. Ifone of the statements in Theorem 3 holds and T
does mot vanish, then the integral curves of T are reparameterizations
of geodesics, grad ¢ = 2D,T = (T log e®)T, and the vector grad ¢ has



148 N. HICKS

constant length on M’', i.e. T log¢ is constant on M'. Moreover,

the mean curvature of M' is constant tf and only if div T is constant
on M'.

Proof. Letting grad ¢ = fT then T¢ = 2ZD,T,T>=<fT,T) =
fé. If T+ 0, then ¢ 0, so f= (T9)/¢ = T log ep. The integral curves
of T are reparameterizations of geodesic by Proposition 5.

Letting X be a C* field in 7%, then

Xf= XT(log¢) = [X, T]log ¢ + T(Xlog ¢) =0

since [X, T] is in T+ and ¢ is constant on M'.
The last statement of the conclusion follows from Theorem 2.

COROLLARY. If grad ¢ does not vanish on M, then the hyper-
surfaces M' are precisely the constant hypersurfaces of ¢ if and only
if one of the statements in Theorem 3 1is true.

We return to the study of the geometry of the hypersurface M’.
Recall the fact that if L is the Weingarten map of an oriented
nonsingular hypersurface in a semi-Riemannian manifold, then the
Codazzi-Mainardi equations hold on the hypersurface if and only if
Tor, = 0. In the following theorem, we write Ay = 4T which is
admissable by the identification of linear transformations with tensors.
of type 1,1.

THEOREM 5. On the set U, the following three statements are
equivalent:

(a) The Codazzi-Mainardy equations hold on M.
(b) Tor,, = 0 on vectors in T+.
(¢) RX,Y)T=0 for all X,Y wn T+.

Proof. Let D’ be the induced Riemannian covariant differentiation
on M’, thus for fields X and Y in T4,

D,Y = DLY — {LX, Y>rN

by the Gauss equation (see Hicks [7]), where »r = <N, N> =e.

Using the Gauss equation and Theorem 2, a straightforward
computation yields,

Tor; (X,Y) = DY(LY) — DY(LX) — L(IX, Y))
= [T, TH]™* Tor,r (X, Y)
— [T, T Tor 4 (X, Y), THOT
=|T | Tory(X,Y),
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since Tor, (X,Y) = DAY — DA, X — AX, Y] = R(X,Y)T and
{R(X,Y)T,T>=0 by the skew-symmetry of the covariant Riemann-
Christoffel curvature tensor. Thus Tor,, (X, Y) has no component
orthogonal to M’ and the conclusion now follows.

THEOREM 6. On the set U, let P be a two dimensional subspace
of M' with nonsingular orthonormal base X, Y Then
K(P) = K'(P)
— [T, TXX, XXY, VAKX, XXAY, ¥ — (AX, YY)

relates the Riemamnnian curvature of P with respect to M and M.

Proof. The general Gauss curvature equation (see Hicks [6]) states
that

tan R(X, Y)Z = R'(X, Y)Z — r(LY, ZYLX — {LX, Z5LY) .

Using Theorem 2, a straightforward computation yields the result.

COROLLARY. If M 1is Riemannian and T = grad f, m in U, and
x, Y, -+ are a set of Riemann normal coordinates at m such that
0/0x and 0/0y span the subspace P im M), then

K= Ke) [ 2L 2L (L)

at m.

Proof. Let X =0/6xand Y =0/0y. Then<{A,X,Y>,=<D:T,Y>=
XT,Y>= X, (Yf) since (D;Y), = 0.

We now show the tensor Tor,, represents a condition on the
holonomy of the distribution 7.

THEOREM 7. Let M be Riemanmian, complete, connected, and
simply connected. Let T be a nonvanishing closed field such that
AT has no torsion. Then M is diffeomorphic to a product M' x R,
where M' is the (n — 1) dimenstonal integral submanifold of T+
through a point m in M and R is the real line. Hence the orbit space
M|T is diffeomorphic to M’.

Proof. Since M is simply connected its restricted homogeneous
holonomy group is equal to its homogeneous holonomy group H. The
Lie algebra of H is generated by the linear transformations R(X, Y)
on M, for all vectors X and Y in M,, (see Nomizu [8]). Since Tor,, =
0,R(X,Y)T =0 for all X and Y hence R(X, Y) is invariant on T*.
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Since H 1is contained in the special orthogonal group SO(%, R), which
is compact, the exponential map is onto. If A is in H, then h =
exp R(X,Y) for some X and Y in M,, and thus A(T‘) is contained in
T-. We now apply the result of DeRham [3] to get M = M’ x N.
Since M is Riemannian and complete, N is diffeomorphic to the real
line or the one dimensional torus. Since M is simply connected, N is
diffeomorphic to E.

4. Special cases. We conclude with some special cases that follow
from the above results. We will always assume the field T is nontrivial,
nonsingular, and closed.

ProposiTION 6. If A, = 0, then T is a geodesic field with constant
length, zero divergence, and zero Ricci curvature. If 7T lies in the
plane section P then K(P)= 0. Thus there is no pair of conjugate
points along the geodesics determined by 7. The distribution T+ is
integrable and its integral manifolds M’ are flatly imbedded in M (i.e.
L =0on M'). Hence M’ is a geodesic submanifold of M. If M is
Riemannian, complete, and simply connected, then M is isometric to
the product M’ x R.

ProprosITION 7. If B, = 0 and T is geodesic then T has constant
length ¢ and Ric (T') = —tr A} — T(div T). When M’ is defined it has
total curvature zero and mean curvature (1/¢)div 7. If M’ is defined
and flat everywhere, then A, = 0 and Proposition 6 is applicable.

ProposiTioN 8. If B, = 0 and the integral curves of T are repara-
meterizations of geodesics with D,T = ¢T, then at points where g and
T do not vanish, M’ is flat and the Ricei curvature of T is zero.

In proving Proposition 8 one shows at points in U where ¢ does
not vanish then A,T = D,T = (div T)T by applying Proposition 6 to
D,T. Furthermore, at such points 0 = B,T = [T(div T') + (div T')*|T
so tr Ay = (divT)* = —T(div T) and Ric(T) = 0.

ProprosiTION 9. If B, = 0 and the integral curves of T are not
reparameterizations of geodesics, then Proposition 6 may be applied to
D,T. Moreover T*T, T is constant, hence there can be at most one
point on each integral curve of T where the length of 7T has a critical
point. If the integral curves of T are parametrically complete (defined
for all parameter values), then M cannot be compact.

Notice in Proposition 9 the length of T is not constant along any
of its integral curves, for 0 = 7XT, T> = ZD,T, T implies D,T = gT
by Theorem 4, which implies the integral curves of T are geodesics
by Proposition 5.
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