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PROPERTIES OF SOLUTIONS OF iVth ORDER
LINEAR DIFFERENTIAL EQUATIONS

THOMAS L. SHERMAN

The purpose of this paper is to establish zero properties
for solutions of the general nih order linear differential equa-
tion

(1) Lny = Σ>ri(x)yίί)=0,
i=0

where rn(x) Φ 0 and all the coefficients are continuous.

This work was stimulated by the recent investigations of fourth-
order equations by Leighton and Nehari [11], Barrett [3, 4, 5] and
Howard [8]. For example, if η^a) is defined to be the first point
b > a for which there exist a solution of

( 2) {r{x)ytfT - p(x)y = 0 (r, p > 0, r e C2, p e C)

with four zeros in [α, 6] (counting multiplicities), then it is known [11]
that there is a solution which vanishes with double zeros at a and
Vί(a) (Vi(a) i s termed the first (right) conjugate point of α). If μλ(a)
is defined to be the first point b > a for which there exists a non-
trivial solution of (2) satisfying the conditions y(a) — y'(a) — {ry")(b) =
(ry")r{b) = 0, then it is known [3] that a < μx(a) < η^a) {a is called
the first (left) focal point of μλ{a)). These results were subsequently
extended to general even-order self-adjoint equations by Reid [13] and
Hunt [9].

In § 1 we derive some basic results which are used in later sec-
tions.

In § 2 we extend the definition of conjugate point found in [11].
Using this definition we obtain generalizations (in a direction different
from that of [9] and [13]) of results of [11].

In § 3 we define a notion of focal point for (1) and extend the
discussions of [3, 4, 5] to obtain results similar to those of §2.

In §4 we develop an eigenvalue relationship from which we can
easily obtain a generalization of the following theorem of Leighton
and Nehari:

THEOREM. Equation (2) is disconjugate (i.e., 7]λ(a) does not exist)

Received June 12, 1963. Supported, in part, by the National Science Foundation
under grant NSF G23719. This paper was presented to the Mathematics Department
of the University of Utah in partial fulfillment of the requirements for the degree
of Doctor of Philosophy.

1045



1046 THOMAS L. SHERMAN

on [α, oo; if and only if the minimum eigenvalue of the associated
problem

{ry")" -py = Xy, y(a) = y'(a) = y(b) = y'{b) = 0 ,

is positive for all b > a.

1* Preliminaries* We begin our discussion with a number of
theorems concerning properties of real functions.

For reference we state the following basic lemma, which was proven
by Leighton and Nehari [11].

LEMMA 1. Let u(x) and v(x) be of class C± in (α, b) and let v{x) be
of constant sign (^0) in the interval. If x — a and x — β {a<a<β<b)
are consecutive zeros of u(x), then there exists a constant μ such that
the function u(x) — μv(x) has at least a double zero in (α, β).

This lemma has been extended by Azbelev and Chaluk [1] to the
case where β is allowed to be a double zero of u(x) and a simple zerσ
of v(x). We shall use the method of the latter together with Lemma
1 to prove

THEOREM 1. Let u(x) be a function such that u(x) has a zero
of order n ^ 1 at x — a and a zero of order m ^ 1 at x = 6, and
u(x) is of constant sign (^0) in {a, b). Let v(x) be a function such
that v(x) has a zero of order nx < n at x — a and a zero of order
m1 < m at x = b, and v(x) is of constant sign (=^0) in (a, b). Fur-
ther suppose u(x) and v(x) are both of class CM[a, 6], where M =
max (n19 mx). Then there exists a linear combination z(x) of u(x)
and v(x) such that z{x) has a double zero in (a, b).

Proof. We may as well suppose that u(x) and v(x) are both posi-
tive on (α, b). Let c e (α, b) and let

w(x) = v(x) u(χ) .
u(c)

There exists an hγ e (a, c) such that w{h^) > 0, since, by the zero pro-
perties of u(x) and v(x), w{ni)(a) = v{ni)(a) > 0 and w{i){a) = 0 (i =
0,1, , nλ — 1). Similarly there is an h2e (c, b) such that w(h2) > 0,
since (-l)m^w{m^(b) > 0 and w{i){b) = 0 (i = 0,1, , m, - 1). Also
w(c) — — 1 < 0; thus w(x) has a zero in (α, c) and a zero in (c, b).
Since w(x) is continuous, there exists a and /5(α<α<c</S<6) such
that w{a) — w(β) — 0 and w(x) < 0 on (a, β). Applying Lemma 1 to
the functions w(x) and v(x) on (a, β), have our result.
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THEOREM 2. Suppose τ(x)f(x) e Cn and f(x) eCn in a neighbor-
hood of the point x — a. If f{ί)(a) = 0 (i = 0, 1, , n) and if r(x)
is a bounded function in a neighborhood of a, then (rf){ί)(a) — 0
(i = 0,1, ••-,%).

Proof The theorem is trivial for n = 0. For n = 1,

(rf)'(a) \ -

—

lim

lim

ίίm|

(rf){

r(a -

r(a 4

a + /

Vh)f

-h)\

i) —

h

(α +
/

lim
h->Q

(rf)(a)

HOJ l yUϋtj l ^ v

I

f(a + h) — f(c
}

= Λf |/ '(α) |=0,

where iff = lim ,̂, | r(x) |. Now using the formula

= lim
(k - i)

we shall show that (r/)(*'(α) = 0 (1 ^ A; ̂  w). Applying LΉospitaΓs
rule, and using the zero properties of f(x) at x = a and the bounded-
ness of r at x — a, we have

I (r/)'*'(α) I = lim
-0 ΐ=0

k-1

ΐ ! (& — ^ ) !
k-1 (I. η'\k

h i\ (k - i)\ '

Since f{k)(a) = 0, the result follows.

COROLLARY. Suppose f(x) e Cn, r(x)f(x) e Cn, and r(x) eC in a
neighborhood of x = a. If f{i)(a) = 0 (i = 0,1, , n - 1), (rf){n)(a) = 0,
αmZ r(α) ^ 0, then f{n)(a) — 0.

Proof. Since r(#) is continuous at x = a, we can replace M by
r(α), " ^ " by " = ", and drop the absolute value signs in the inequality
in the proof of Theorem 2, and obtain a valid equality; the result is
then immediate.

In the next theorem and in the remainder of the paper we shall
deal with the equation
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(1) Lny = ± nW'ίαO = 0 ,

where rn(x) Φ 0 and the coefficients r{{% = 0,1, , n) are real valued
continuous functions.

The following basic existence theorem is apparently sufficiently
well-known so that references to it in the literature are scarce; we
include it here for the sake of completeness.

THEOREM 3. If^e [a,b] (i = l, ,fc^w — 1) and a1

then there exists a nontrίvial solution of (1) which satisfies the bounda-
ry conditions

y^ia^ = 0 ix = nlu n12, , n1Pl

2/ ( < 2 )(α 2) = 0 i2 = n Ά , n 2 2 y , n2J>2

yHk)(ak) = 0 ik = nku nk2, , nkPk

where 0 ̂  njt < nj2 < < njPj < n (j — 1, , k) and ^*=i PJ <n ~ 1-

Proof. Let y^x), y2(x)9

 # , 2/»(») be a fundamental set of solutions
of (1). We wish to find a nontrivial set of constants Cu , Cn such
that y = C ^ + + Cnyn satisfies the above boundary conditions.

Applying the boundary conditions to y(x), we have

,) + + Cy^ia,) = 0

+ + C^^ia,) = 0

+ + C.yWaJ = 0

+ + Cj/Γ*2'^) = 0

) = 0

- 0 .

This is a system of J^=iPj (i.e., less than w) homogeneous equations
in n unknowns Cu , Cn, and so there always exists a nontrivial
solution.

We shall make repeated use of this theorem throughout the re-
mainder of this paper.
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2* Zero properties of solutions* In this section we shall be
concerned with zero properties of solutions of (1). The principal stimu-
lation for this investigation is the work of Leighton and Nehari [11].
Their concern was with the equation

( 2 ) (r(x)y'T ~ V(x)v = 0 ,

where r(x) e C2, p(x) e C, and r(x) > 0. They defined the first con-
jugate point of the point a, denoted by ^i(α), to be the minimum
point b > a such that there is a nontrivial solution y(x) of (2) van-
ishing at x = a, with four zeros, counted in their multiplicities, in
[α, b]. They showed that if there is a nontrivial solution with four
zeros on [α, co), then η^a) exists. It was then shown that, if p(x) > 0
in (2), a solution which vanishes four times in [α, rj^a)] has double
zeros at x — a and x = fj^o) and does not vanish in (α, ̂ i(α)). Barrett
[3, 4, 5] then extended this work to equations of the form

[(r(x)y"Y + q(x)y']' + p{x)y = 0 ,

where r(x), q(x) and p(x) are all continuous. Hunt [9] and Reid [13]
in turn extended this work to self-adjoint differential equations of
order 2n, defining conjugate point as the minimum point b > a such
that there exists a nontrivial solution with a zero of order n at a
and a zero of order n at 6.

Hanan [7], using a definition of conjugate point similar to that
of Leighton and Nehari, investigated the third order equation

y"' + p{x)y" + q{x)y' + r(x)y = 0 .

Investigations similar to Hanan's were undertaken by Azbelev and
Chaluk [l].

We shall here be interested in the extension of this work to the
equation (1), using the conjugate point concept of Leighton and Nehari.
Some of the results obtained in this section have been reported inde-
pendently by A. Ju. Levin [12] who uses the methods of Green's
functions. It should be noted that self-adjointness and assumptions
on the signs of the coefficients have been of fundamental importance
in the work cited above (except for that of Levin); in general we
make no such assumptions here. Following Barrett [2, 3], we make
the following definition:

DEFINITION 1. Equation (1) is said to be disconjugate in [α, oo)
if there exists no nontrivial solution of (1) which vanishes at α, and
has n zeros, counting nςultiplicities, in [α, oo).

We now prove a basic theorem, special cases of which have been
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used by Leighton and Nehari and Barrett, and a special case of which
was proved by Hanan.

THEOREM 4. Suppose that for each positive integer k there is an
n h order linear boundary operator Uk9 operating at points bku , bk3 k9

such that
( i ) (1) has a nontrivial solution yk(x) satisfying Uk(yk(x)) = 0;
(ii) there exist points akl9

 m

 9akn such that

(iii) min bki ^ min aki < max aki ^ max bkί;
i ί ί i

(iv) min bki S min bH and max bj{ ^ max bki if k < j .
i i i i

Then limfc_0 (max,; bki — min^ bki) > 0.

REMARK. If yk(x) is a nontrivial solution of (1) having n zeros
on an interval, counted in accordance with their multiplicities, then
repeated application of Rollers Theorem shows the existence of the
desired set of points akl9 ak2, , akn.

Proof of Theorem 4. Let Ak — min^ aki9 Bk = max^ aki9 Ck = min^ bki

and Dk — max^ bki. Conditions (iv) and (iii) assure us that {Dk} forms
a decreasing sequence bounded below; hence there is a D such that
Dk —-> D. Similarly {Ck} forms an increasing sequence bounded above;
hence there is a C such that Ck—*C and D ^ C. We need only show
that equality does not hold.

Let Φί(x)9 Φ2(%), ' , Φn(
χ) be the fundamental set of solutions of

(1) satisfying Φ^λ{D) = 3i:} (i, j = 0, 1, , n — 1). Then yk(x) can be
written

n

We normalize yk(x) by letting

ΛI //v»\ n

y c2-

so that X?=i d?fc = 1. Then ^A(ίc) is a solution of (1) possessing the
same zero properties as yk(x); in particular, yk(x) satisfies condition (ii).
Further, on any closed interval about D, {yk(x)} is a uniformly bounded
and equicontinuous family. Hence there is a uniformly convergent
subsequence {yki(x)} whose limit function y(x) is a solution of (1).

Now suppose D — C; then by condition (iii)
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A = lim Ak = lim Bk = B .
k-*0 k-*Q

But now by condition (ii), for each j(0 ^ j < n), A is a limit point of
zeros of {ylj-(%)}; hence y{i)(A) = 0 ( j = 0,1, , w — 1), and so y(x) = 0.
This is impossible, since X?=iCί^ = 1, which completes the proof.

We are now in a position to make

DEFINITION 2. The first conjugate point rj^a) of the point a is
the smallest number b > a such that there exists a nontrivial solution
of (1) which vanishes at a and has n zeros, counting multiplicities in
[a, b].

We now establish one of the main results of this section.

THEOREM 5. If (1) is not disconjugate, then rj^a) exists, and
there is a nontrivial solution of (1) which has a total of at least n
zeros at a and η^a) and does not vanish in (a,

Proof. The existence of rj^a) is guaranted by Theorem 4. Let
Y = {y(x) I y(x) is a nontrivial solution of (1) which has n zeros in
[α, y^a)]}, R — {r \ there is a y(x) e Y with a zero of order r at x — a},
n0 — max r e R, M = {m | there is a yeY with a zero of order n0 at
x = a, and m zeros in (α, ̂ i(α))}, m = max me M, and let 0(#) e F be
a solution with m zeros in (a, rj^a)) and a zero of order n0 at x — a.
Let α = α0 < αx < < av — η^a) be the zeros of φ(x) on [α, ̂ (α)], with
respective multiplicities n0, nl9 , wp. Then ^ + n2 + + nv_x = m.
Let w = nQ + + np_ίm We claim that ^(x) exhibits the property
asserted. For suppose the theorem false for Φ(x), i.e., suppose p > 1.
We shall show the existence of a ψ(x) e F with a zero of order n0 at
x = a and α zero of order in + 1 in (α, Ύj^a)), which will contradict the
maximality of m. To this end let us consider a nontrivial solution z(x)
of (1) with zeros at ao,au ,ap of multiplicitis no + 1, ^ , ,%2>_1 — 1,
w — w — 1 respectively; such a solution exists (note that p > 1 implies
w0 < w — 1) since only n — 1 zeros (counting multiplicities) are specified.
Since the zero of z(x) at a0 is of order w0 + 1, z(x) $ Y, and so z(x)
does not vanish on (ap_u ap)9 nor are any of the zeros of multiplicity
greater than that specified. Hence we can apply Theorem 1 to z(x)
and Φ(x) on (ap_u ap) to obtain a linear combination ψ{x) v/ith a double
zero at c, say, on (ap_u ap). Now ^(a?) has zeros at α0, α u , αp_2,
αp_i, c, ap of multiplicities n09 nl9 , np_29 np_γ — 19 29 n — n — 1; i.e.,
τ/r(x) 6 Y with a zero at a of order wo> and with a total multiplicity of
in + 1 of zeros on (a9 rj^a)), contradicting the maximality of m; this
established the theorem.

COROLLARY. Let Φ(x) be a nontrivial solution of (1) with zeros
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of orders n0 and at least n — n0 at a and η^a) respectively, where
n0 is maximal. Then φ(x) is essentially unique i.e., unique except
for multiplication by a constant factor). (We note that a similar
result holds for a ψ(x) e Y, not vanishing on (a, ^(α)), and with a
zero of maximal order at Ύ]x{a)).

Proof. Let ψ(x) be any such solution. By the maximality of n0

we have Φ{no)(a) Φ 0 Φ ψ{nQ)(a). Consider the solution

χ(x) = f^\a)φ{x) - φ™(a)ψ(x) .

χ(x) clearly has a zero of order n + 1 at x = a and a zero of order
n — n0 at x — ̂ (α); hence, by the maximality of n0, χ(x) = 0.

In order to examine the behavior of rj^a) as a function of a we
prove the following theorems. The principal theorem, Theorem 7, in
this sequence was obtained by Leighton and Nehari [11] for equation
(2) and by Hunt [9] for the special definition of η1 mentioned at the
beginning of this section, for an equation more general than that in

[11].

THEOREM 6. Let a be any point for which η^a) exists; then, for
any b < a, rj^b) exists.

Proof. Let a0 be the largest number c ^ a such that ηλ(c) — rj^a)
(the existence of a0 is guaranteed by Theorem 4). Let Φ(x) be a solu-
tion such that Φ(a0) = 0 and Φ(x) has n zeros in [α0, ̂ i(α)], where the
order of the zero of Φ(x) at Ύ]x(a) is minimal over the set of all such
solutions. Let m0, m19 , mr be the orders of the zeros of Φ(x) at
α0 <

 ai < * * * < ar — Vi(a) respectively. We are supposing mr is minimal.
Let M = m0 + + mr_x ̂  n — 1. Clearly mr ^ n — M.

Now suppose the theorem is not true. Let ψ(x) be a nontrivial
solution of (1) such that ψ(b) — 0 and ψ(x) has zeros of multiplicities
m0, ml9 , mr_2, mr_x — 1, n — M — 1 at a09 alf , αr_2? ar__u ar respec-
tively. We have specified (counting multiplicities) n — 1 zeros of ψ(x)
in [b, >7i(α)]; hence, since we are supposing ^(6) does not exist, ψ(x)
has zeros only at these points and only of the multiplicities specified.
By Theorem 1, applied to φ(x) and ψ(x), there must exist a linear com-
bination χ(x) of Φ(x) and ψ(x) with a double zero in (ar_lf ar). Further,
χ(x) has zeros of orders m0, mu , mr_2, mr_γ — 1, n — M — 1 at α0,
a19 , ar_u ar respectively. Hence χ(x) has n zeros on [α0, ̂ (α)]. Now
if r — 1 = m0 — mr then χ(x) has a double zero and is also a solution
of a second order equation; hence χ(x) = 0. If r = 1 = mQ and mr > 1
then Xiη^a)) = 0 and χ(α?) has w zeros in (α0, >7i(α)] which contradicts
the maximality of α0. If r — 1 = m r and m0 > 1 then χ(x) has n zeros
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in [α0, ηx{a)) and vanishes at α0, which contradicts the fact that
rjί(a). In all other cases χ(x) has n zeros in [α0, ̂ (α)] with a zero of
order n — M — 1 < mr at ^(α), which contradicts the minimality of
mr.

COROLLARY 1. Let a be any point for which Ύ]λ{a) exists; then,
for any b < a, there exists a solution which vanishes at b and which
vanishes n — 1 times, counting multiplicity, in [a, yjiia)].

Proof. The function ψ(x) constructed in the proof of Theorem 5
is such a function.

COROLLARY 2. Let a be any point for point for which
exists) then no solution has more than n — 1 zeros in [a,

Proof. Suppose this is not true. Then there exists a solution
with n zeros in [α, fj^a)). Hence there is a b e [a9 rj^a)) such that
yji(b) < y]i(a); clearly such a b cannot equal a. Then, by Corollary 1,
there exists a solution φ(x) which vanishes at a and which vanishes
n — 1 times, counting multiplicity, in [6, ηL(b)]. Hence φ(x) vanishes
at a and has n zeros in [α, >?i(&)], which contradicts the definition of
ηL(a).

It should be noted that, for n — 2, Corollaries 1 and 2 combine
to give the classicial Sturm separation theorem.

COROLLARY 3. η^a) is a nondecreasing function of a.

THEOREM 7. η^a) is an increasing function of a.

Proof. Suppose the theorem is not true. We know by Corollary 3
that ηx{a) is a nondecreasing function of a. Thus there exist a,fy(a), b
and ηλ{b) such that a < b and ηλ(a) — η^b). Hence, by Theorem 5 and
Corollary 3, for every x e [α, 6], η^x) exists and equals ηj^a). For each
a e [a, b] let φa(x) be the essentially unique solution which vanishes at
least n times at a and ηx{a), where the order of the zero at ηx(a) is
maximal over all such solutions, and ψa(x) Φ 0 for x e (a, ̂ i(α)), as in
the corollary to Theorem 5.

Let Si — {a I Φa(x) has a zero of exactly order i at x ~ ηι{a)}f

(i = 1, , n — 1). Clearly U Ξ 1 St = [α, b]. Hence there is a sub-
interval [c, d] S [α, b] and an i(l Si < n) such that S{ is dense in
[c, d] (see Simmons [14], page 74). Pick the maximum such i and
denote it by m; denote the subinterval [c, d] corresponding to this
value of i by [am, bm].
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Let {yl9 y2, , yn} be the fundamental set of solution satisfying
y{ά\(Vi(a)) = δijm Now the condition that Sm is dense in [αm, bm] is
equivalent to the condition that the determinant

ί/mfl Vm\-2

Vm + l Vm+2

0,{
υm

)nΛ

Vn

Vn

vanish at a dense set of points in [αm, δm]. This follows since Wm+1(a) — 0
is the condition for a solution with a zero of order m at η^a) to have
a zero of order n — m at a point α: ̂  ^(α). Further, since TΓm+1 is
continuous, we have Wm+1 = 0 in [αm, 6m], Moreover from the maxi-
mality of m we know that

Vm+2

Vm+2

Vm+3

Vm+3 y'n

η.{n — m—2) ηΛn—m—2)
έ/w + 2 }Jm+3

,.{n—m—2)

Φ 0

on some subinterval [α^, b'm] s [αm, δm].
Now consider the differential equation

y

V'

Vm+2

Vrn+2

ym + 2

"- yn

• 7/

• y[:-m-l)

= 0

formed by substituting y for ym+1 in the equation Wm+ί = 0. This is
an equation of order n — m — 1 with non-vanishing leading coefficient
Wm+2 on the interval [α'm, b'm]. The solutions are ym+i,ym+i, ---,ym, a
total of n — m — 1 solutions. These are linearly independent, since
Wm+2 Φ 0 on [af

m9 b
r

m]; hence they form a solution basis. But ym+1 is
also a solution, since TFm+1 ΞΞ 0 on [ < , 6^]; therefore ?/m+1, ^/w+2, , i/Λ

are linearly dependent on [a'm, b'm]9 which contradicts the fact that
Vu " >y% a r ^ solutions of (1) which are independent on [α, δ]. This
completes the proof.

3* Zero properties of derivatives of solutions* We now turn
our attention to the behavior of the derivatives of solutions. The
principal motivation for this type of investigation is the work of Bar-
rett [2, 3, 4, 5], in which are references to earlier work in this field.
Barrett [2] discussed the behavior of solutions of the equation

(p(χ)vΎ + f(χ)y = o
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in relation to the boundary conditions y(a) = y'(b) — 0; the minimum
such b > a for which these conditions are satisfied was denoted by
μ^a), and a was called a (left) focal point of the point μ^a). This
discussion was extended to the equation (2), with a focal point being
defined in terms of the first point b> a, for which conditions of the
type y(a) — y\a) = y"{b) — y"\b) = 0 are satisfied. This was in turn
extended by Hunt [9] and Reid [13] to more general even order self-
adjoint differential equations of the form

[rn(x)y{nT] + Σ [ ( - l ) w + < + 1 ^ ( α 0 ϊ / ( < ) P = 0 .

Their definition of focal point involved the conditions

y(a) = y'(a) = . . . = y^\a) = 0

It should be noted that the use of the terms "focal point" and "con-
jugate point" stems from considerations in the calculus of variations,
in which field the majority of the investigations have taken place (see
for example Reid [13] and the references in that paper).

In the present paper, we propose to extend the definition of focal
point in a different direction, to which the techniques of differential
equations seem more applicable. To this end we make the following
definition.

DEFINITION 3. Suppose that there exists a point c > α, an integer
k(0 < k < n), and a nontrivial solution φ(x) of (1) which has a zero of
order k at x — a and such that Φ{k)(x) vanishes n — k times, counting
multiplicities, in (α, c]. Then the minimum such c, over all such solu-
tions for all possible k, which exists by Theorem 4, will be denoted
by A(α).

DEFINITION 4. Suppose that there exists a point c > α, an integer
k(0 <k <ri), and a nontrivial solution φ(x) of (1) such that Φ(x) has a
zero at x — a of order k and such that φ{k)(x) has a zero at x = c of
order n — k. By Theorem 4 there is a minimum such c, over all such
solutions for all possible &, to be denoted by /*i(α); α will then be called
the first (left) focal point of μ^a).

THEOREM 8. If μ^a) exists, then μ^a) exists and μ^a) = μ^a).

Proof. Let U — {u(x) \ u{x) is a nontrivial solution of (1) and there
exists a k(0 < k < n) such that u(x) has a zero of order k at x = a and
such that u{k)(x) has n — k zeros (counting multiplicities) in (α, /^(α)]},
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K = {k I there is a u(x) e £7 with a zero of order & at x — α}, m0 =
max & e if, P = {p I there is a M(CC) e £7 with a zero of order m0 at
a? = α, and such that u{rno)(x) has p zeros in (α, μ^a))}, pQ = m a x p e P ,
and let r̂(cc) e Ϊ7 be a solution with a zero of order m0 at x = a and such
that ψimo)(x) has p0 zeros in (α, β^a)). Let the zeros of ψ{mo)(x) be of
orders m l f m2, , my at αx,α2, , c^ respectively, where α < α x < <a3: —
A(α); by definition of p0, mx + m2 + + m$_x = JV

Now suppose the conclusion does not hold; i.e., suppose j > 1. Let
z(x) be a nontrivial solution of (1) with a zero of order m0 + 1 at x — 0
(note that #(#) g U) and with £(mo)(ί£) having zeros of multiplicities
mu m2, , mj_ly m5_x - 1, % - m0 - 1 - p0 at αx, α2, , α, _2y α ^ , aά re-
spectively, except that if m ^ = 1 we make no specification at αy_lβ

We have specified n — \ zeros of 3(α?) and £(mo) on [α, βγ{a)\, n — m0 — 1
zeros of 2{mo)(#) on [α, /Zi(α)], p0 zeros of z{mo)(x) on [α, /Zi(α)), and p0 — 1
zeros of a;(Wo)(x) on (α, ̂ (α)). Hence by Rolle's Theorem z{mQ+1)(x) has
at least n — m0 — 2 zeros on [α, /^i(α)], and, in fact, since z(x) $ U,
zimo)(x) has exactly n — m0 — 2 zeros on [α, /?i(α)]. Therefore, ^(wo)(x)
does not vanish at any point on (α.,•_!, α^), nor are any of the specified
zeros of multiplicities greater than that specified. We can now apply
Theorem 1 to the functions z{mo)(x) and ψ{mo)(x) on the interval \a^u α̂  ],
concluding that there is a linear combination χ(x) of ψ(x) and z(x) such
that χ(mo)(x) has a double zero in (a3 _lf α,). We now have a nontrivial
solution χ(x) of (1) with a zero of order m0 at x = α, such that χ(mo)(x)
has at least n — m0 zeros on [α, / î(α)] (hence χ(a ) e U)f and χ(mo)(x) has
at least p0 + 1 zeros on (α,/^(a?)) which contradicts the maximal pro-
perty of p0. Hence j — 1 and the conclusion holds.

THEOREM 9. // η^a) exists, then μ^a) exists and μ^a) < η^a).

Proof. Let Φ(x) be the essentially unique solution of Theorem 5,
with its zero at a of order nQ (where n0 is maximal over the orders of
the zero of all nontrivial solutions vanishing n times at a and y]ι{o))\
then its zero at η^a) is of order at least n — n0. By Rolle's Theorem,
Φ'(x) vanishes at least once on (α, ̂ (α)) and at least n — n0 times on
(α, yjίia)]. After repeated application of Rolle's Theorem we find that
Φ{no)(x) vanishes at least n0 times on (α, η^a)) and at least n — n0 times
on (a, ^(α)]. Hence μ^a) exists, by Theorem 4; clearly μ^ά) ^ ^i(α),
and by Theorem 8 μjμ) — μ^a).

To show that μ^a) < ^(α), suppose /^(α) ^ 5?i(α). Then, by the
above, μλ{a) — μ^a) — ηj^a). Let R — {r \ there exists a u(x) e U with
a zero of order r at x = α and such that w(r)(#) vanishes in (α, &((&))}.
By assumption, ^(α) = ^(α); hence, by the first paragraph of this
proof, R is nonvoid. Let r0 = max reR. Let iS = {s \ there exists a
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u(x) e U with a zero of order r0 at x = a and such that uiro)(x) has s
zeros (counting multiplicities) in (α, μ^a))}. Let sQ — max s e S. We
now apply the argument used in the proof of Theorem 8 to obtain a
contradiction.

COROLLARY 1. If Φ(x) is a nontrivial solution of (1) with a zero
of order k at x — a and such that φ{k)(x) has a zero of order n — k
at x — μ^a), where k is maximal over all such solutions, then ψ{ί)(x) Φ 0
in (α, μ^a)] (i — 0,1, , k — 1) and φik)(x) Φ 0 in (α, μ^a)).

Proof. Theorem 8 tells us that Φ{k)(x) Φ 0 in (α, μ1{a))\ and if
φM(x) — 0 at some point x e (α, μ^a)], (0 ̂  i S k — 1), Rolle's Theorem
allows us to conclude that there is a point x0 e (a, μ±(a)) where Φ{h)(x0)
is zero.

COROLLARY 2. The conclusions of Theorems 8 and 9 are valid
under the weaker conditions that there exists a nontrivial solution
Φ(x) of (1) satisfying the following: Φ(x) has a zero of order q at
x — a, and either

( i ) Φ(x) has n — 1 zeros (counting multiplicities) on [α, ©o) and
there exists a p(l ^ p ^ q) such that φm(x) vanishes at least once
past the (n — l ) s ί zero; or

(ii) there exists a p(0 f§ p ^ q) such that φ{P)(x) has n — q zeros
(counting multiplicities) on (α, oo).

Proof. As in the proof of Theorem 9, Rollers Theorem guarantees
the existence of /^(α). The remainder of the proof is identical with
that of Theorem 8.

4* An eigenfunction result* The basic relationships between
conjugate points of equation (2) and eigenvalues of the associated
boundary value problem were investigated in detail by Leighton and
Nehari [11]. Subsequently Howard [8], using variational methods, dis-
cussed the relationships between focal points of (2) and eigenvalues of
an eigenvalue problem, with focal point boundary conditions, associated
with (2), making various assumptions on the coefficients. Barrett [3, 5]
extended these results to fourth order equations of more general form.
These results were extended by Reid [13] to more general even order
self-adjoint differential equations.

After obtaining a general relationship between the solutions of
(1) and those of

(3) iί» = Σ(
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(the Lagrangian adjoint equation), we shall derive an eigenvalue rela-
tionship, from which we will develop a disconjugacy criterion. It
should be noted that Theorem 10 is but a part of the more general
theory of boundary operators ([10, Chapter 9], [6, Chapter 11]) in-
cluded here to demonstrate the intimate relationship between boundary
value problems associated with equation (1) and those associated with
equation (3).

THEOREM 10. // u(x) is a solution of (1) with a zero of order
exactly k at x = a and a zero of order n — k at x — b, then there
exists a nontrivial solution v(x) of (3) having a zero of order k at
x — b and a zero of order n — k at x — α. Further, if k is maximal
in the sense of Theorem 5, then v(x) is essentially unique (i.e., unique
except for multiplication by a constant factor).

Proof. The operators L and L+ in the equations (1) and (3) are
connected by Green's identity:

S δ

(vLnu — uLtv)d
a

tCΣ
= l \j=o

Let u be the solution of Lny = 0 whose existence we have assumed; let
v be a nontrivial solution of Liy = 0 with a zero of order n — k — 1
at x = a and a zero of order k at x — b. Then, upon applying Theorem
2, (4) becomes

0 = (-ly-^vrj^-^ia^^ia) .

Since u{k)(a) Φ 0 by hypothesis, this implies that (vr^)n~u~\a) — 0; hence,
by the corollary to Theorem 2, v{n~~k~l){a) — 0, and v{x) has a zero of
order n — k at x = a.

To prove the second part of the theorem suppose k is maximal
and v(x) is not unique; i.e., suppose that there are two nontrivial
solutions vx{x) and v2(x) of (3) with zeros of order n — k at x — a,
and zeros of order k at x — b. Either vλ(x), v2(x) or a linear com-
bination of vx(x) and v2(x) has a zero of order k + 1 at x = b and a
zero of order n — k at a. Let v(x) be the nontrivial solution of (3)
with a zero of order at least n — k at x — a and a maximal order
zero, at x — b. Interchanging the roles of u and v in the previous
argument, we find that there is a solution u(x) with a zero of order
k + 1 at x = a and a zero of order n — k — p at x — 6, where p > 0;
this contradicts the maximality of k.

We now derive an eigenfunction relationship between equations
(1) and (3).
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THEOREM 11. Consider the adjoint nth order linear differential
operators Ln and L~i and the adjoint problems

( 5 ) Ly = Xy , Uy = 0 ,

( 6) L+y = Xy , U+y = 0 ,

where U and U+ are self-adjoint or regular adjoint linear homogeneous
boundary operators and X is a parameter. Suppose further that
Green's function for (5) has only simple poles. Let the eigenfunctions
of (5) and (6) be Φ^x) and Φt{x) respectively, normalized so that
(Φij Φΐ) = 1. Let f(x) and g(x) be any two functions such that Lng
exists, Ug — 0, Lif exists, and U+f = 0. Further let a{ = (f, φ{) and
hi = (g, φf) and let \ be the ith eigenvalue of (5). Then

(f, Lng) = Σ aibiXi .

Proof. We freely use the well-known properties of problems (5), (6)
(see for instance Ince [5] Chapter 11, and Coddington and Levenson [6]
Chapter 12).

/ C O \ OO

(f, Lng) = Σ ai^> Ln9 = Σ ai{Φΐj Lng)

7 = 0

= Σ ai\ Σ
io o

If we specialize this result to the self-ad joint case, letting f — g
in (7), we obtain

/ o \ ("FT ~f\ > S Λ fl^Γk

i=Q

Further suppose Lny = 0 assumes the special form

it—1

V *s) -^nV ~~ V^n\p^)y \ ~r /1 Y\ J-j r^yxjy J = u
2 = 0

where r^x) > 0 (i = 0,1, , n).
We now state a disconjugacy criterion due to Reid [13].

THEOREM (Reid [13]). Equation (9) is disconjugate in the sense
of Reid (i.e., no solution possesses two nth order zeros) on the interval
[a, oo) if and only if for all values b on (a, °o) and all functions
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y(x) such that y(x) e Cn_\a, b], y(x) is absolutely continuous on [α, 6],
(yin))2 is integrable on [a, b] and y(x) has nth order zeros at x = a
and x — 6, (y, Lny) > 0 (where Lny is as in equation (9)).

Using this result we prove the following theorem. (Our impression
is that Theorem 12 is in the literature, but the author has been unable
to find it).

THEOREM 12. Equation (9) is disconjugate in the sense of Reid
if and only if the minimum eigenvalue λ0 is positive (all functions
are assumed to be of the class described in the above theorem of Reid).

Proof. Suppose (9) is disconjugate. Letting f(x) — φo(x) in (8)
and applying the theorem of Reid, we have 0 < (φ0, Lnφ0) — λ0, since
(φi9 φj) = δtf. The sufficiency is immediate from equation (8).
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