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PROPERTIES OF SOLUTIONS OF N*™ ORDER
LINEAR DIFFERENTIAL EQUATIONS

THOMAS L. SHERMAN

The purpose of this paper is to establish zero properties
for solutions of the general n'® order linear differential equa-
tion

(1) Ly =3 rzy® =0,
1=0

where 7.(x) + 0 and all the coefficients are continuous,

This work was stimulated by the recent investigations of fourth-
order equations by Leighton and Nehari [11], Barrett [3, 4, 5] and
Howard [8]. For example, if 7,(a) is defined to be the first point
b > a for which there exist a solution of

(2) (r(x)y")" —pxy =0 (r,p>0,recC,pecl)

with four zeros in [a, b] (counting multiplicities), then it is known [11]
that there is a solution which vanishes with double zeros at a and
n(a) (n(a) is termed the first (right) conjugate point of a). If p,(a)
is defined to be the first point b > a for which there exists a non-
trivial solution of (2) satisfying the conditions y(a) = y'(a) = (ry"')(b) =
(ry”)'(b) = 0, then it is known [3] that a < p(a) < n(a) (o is called
the first (left) focal point of 4(a)). These results were subsequently
-extended to general even-order self-adjoint equations by Reid [13] and
Hunt [9].

In §1 we derive some basic results which are used in later sec-
tions.

In §2 we extend the definition of conjugate point found in [11].
Using this definition we obtain generalizations (in a direction different
from that of [9] and [13]) of results of [11].

In §3 we define a notion of foecal point for (1) and extend the
discussions of [3, 4, 5] to obtain results similar to those of §2.

In §4 we develop an eigenvalue relationship from which we can
eagily obtain a generalization of the following theorem of Leighton
and Nehari:

THEOREM. FEquation (2) is disconjugate (i.e., 1,(a) does not exist)
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on [a, ) tf and only if the minimum eigenvalue of the associated
problem

(ry"y" —vy =M, y(@)=y'(a)=yb) =y'd) =0,

18 positive for all b > a.

1. Preliminaries. We begin our discussion with a number of
theorems concerning properties of real functions.

For reference we state the following basic lemma, which was proven
by Leighton and Nehari [11].

LEMMA 1. Let u(x) and v(x) be of class C, in (a,b) and let v(x) be
of constant sign (#0) in the interval. If x=a and x =5 (a<a<B<b)
are consecutive zeros of u(x), them there exists a constant p such that
the function w(x) — pv(x) has at least a double zero in («, B).

This lemma has been extended by Azbelev and Chaluk [1] to the
case where S is allowed to be a double zero of u(x) and a simple zero

of v(x). We shall use the method of the latter together with Lemma
1 to prove

THEOREM 1. Let u(x) be a function such that u(x) has a zero
of order n=1 at x =a and a zero of order m =1 at x = b, and
u(x) ©s of constant stgn (#0) in (a, b). Let v(x) be a function such
that v(x) has a zero of order m, <<mn at x = a and a zero of order
m, < m at x =">, and v(x) ts of constant sign (+£0) in (a,b). Fur-
ther suppose u(x) and v(x) are both of class Cyla, b], where M =
max (n,, m;). Then there exists a linear combination z(x) of u(x)
and v(x) such that z(x) has a double zero in (a,b).

Proof. We may as well suppose that u(x) and v(x) are both posi-
tive on (a, b). Let ce(a,b) and let

w(x) = v(x) — v—(?l—i-lu(x) .
u(c)

There exists an &, € (a, ¢) such that w(h,) > 0, since, by the zero pro-
perties of u(x) and wv(x), w"'(a) = v"’(a) >0 and w(a) =0 (t =
0,1, ---,n, — 1). Similarly there is an h,€ (¢, b) such that w(h,) > 0,
since (—1)™w™®) >0 and w?®) =0 (¢=0,1,-.-,m, —1). Also
w(c) = —1 < 0; thus w(x) has a zero in (a,c¢) and a zero in (c, b).
Since w(x) is continuous, there exists a and B (¢ < a < ¢ < B < b) such
that w(a) = w(B) =0 and w(x) < 0 on («, B). Applying Lemma 1 to
the functions w(x) and v(x) on («, 8), have our result.
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THEOREM 2. Suppose r(x)f(x)eC, and f(x)eC, tn a neighbor-
hood of the point x =a. If f%a)=0(x=0,1,.--,n) and tf rx)
18 a bounded function in a meighborhood of a, them (rf)®(a) =0
(t=0,1,---,m).

Proof. The theorem is trivial for n» = 0. For n =1,

[(rfY(@)| = |hm (rf)a + h]i — (rf)a)

_ |jim 7@ + W)fla + ) — r(@)f(@) |
s h

él}}“nijr(a+h);)lgmf(“+h}2“f(“)‘

=M[f ()| =0,
where M = lim,_, |7(x)|. Now using the formula

Z( 1)'Ck, i)(rf)a + (k — i)h)

(rf)*(@) = lim - E

we shall show that (rf)*(a) =0 (1 =k < n). Applying L’Hospital’s
rule, and using the zero properties of f(x) at © = @ and the bounded-
ness of » at * = a, we have

(@) = |lim 3, GDCE Orl@ + & = Oh)fla + & = )h)

h—0 t=0 hk
k=D g e (6= DB — fa)
=M nE g & — )k l
_ k) ( —9)*
SLTECISEER

Since f*(a) = 0, the result follows.

COROLLARY. Suppose f(x)eC,, r(x)f(x)eC,, and r(x)eC in a
neighborhood of x=a. If f¥a)=0 (:=0,1,---,n—1), (rf)™(a)=0,
and r(a) #= 0, then f™(a) = 0.

Proof. Since r(x) is continuous at x = @, we can replace M by
r(a), “<” by “="", and drop the absolute value signs in the inequality
in the proof of Theorem 2, and obtain a valid equality; the result is
then immediate.

In the next theorem and in the remainder of the paper we shall
deal with the equation
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(1) Ly = 5 r@w @ =0,

where 7,(x) #+ 0 and the coefficients r, (¢ = 0,1, --+, n) are real valued
continuous functions.

The following basic existence theorem is apparently sufficiently
well-known so that references to it in the literature are scarce; we
include it here for the sake of completeness.

THEOREM 3. Ifa;ela,b](t=1,-+,k=n—1)and a,<a,<+--<ay,
then there exists a nontrivial solution of (1) which satisfies the bounda-
ry conditions

?/(il)(aJ =0 Uy = Nygy Noggy * 0 ln’lpl
y(w)(az) =0 Ty = Mgy Mgy ** *y Nap,
Y (a,) =0 Vg = Mpyy Wiy * 5 N,

where 0 =, < Mjp < + o+ <n7~p1<n(j=1,---,lc)and2§‘:1p]~§n—1.

Proof. Let y.(x), y(x), «-+,y.(x) be a fundamental set of solutions
of (1). We wish to find a nontrivial set of constants C,, ---, C, such
that y = Cyy, + --- + C,y, satisfies the above boundary conditions.

Applying the boundary conditions to y(x), we have

y‘”n)(al) — Clyi"u’(dz) 4. Cny(nn)(al) =0

y"(a) = Cyi"™(a) + « -+ + Cyi " (a) = 0

.

y(”m)(az) = C1 {”21)((12) + e + Cny;””)(az) =0

y(a) = Cay™i(@) + «++ + Cyi™ (@) = 0

.
.
.

Y(a) = C™o(a,) + +++ + Coy*(a,) = 0

y(a) = Ca™ (@) + -+ + C () = 0.

This is a system of >, p; (i.e., less than %) homogeneous equations
in » unknowns C, ---,C,, and so there always exists a nontrivial
solution.

We shall make repeated use of this theorem throughout the re-
mainder of this paper.
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2. Zero properties of solutions., In this section we shall be
concerned with zero properties of solutions of (1). The principal stimu-
lation for this investigation is the work of Leighton and Nehari [11].
Their concern was with the equation

(2) (r(x)y”)" — pxyy =0,

where r(x)eC,, p(x)eC, and r(x) > 0. They defined the first con-
jugate point of the point @, denoted by 7.(a), to be the minimum
point b > a such that there is a nontrivial solution y(x) of (2) van-
ishing at x = a, with four zeros, counted in their multiplicities, in
[a, b]. They showed that if there is a nontrivial solution with four
zeros on [a, =), then 7,(a) exists. It was then shown that, if p(x) >0
in (2), a solution which vanishes four times in [a, 7,(a)] has double
zeros at @ = a and & = 7,(a) and does not vanish in (a, 1,(a)). Barrett
[3, 4, 5] then extended this work to equations of the form

[(r@)y") + q(x)y'] + pla)y =0,

where 7(2), g(x) and p(x) are all continuous. Hunt [9] and Reid [13]
in turn extended this work to self-adjoint differential equations of
order 2n, defining conjugate point as the minimum point b > a such
that there exists a nontrivial solution with a zero of order » at «
and a zero of order n at b. )

Hanan [7], using a definition of conjugate point similar to that
of Leighton and Nehari, investigated the third order equation

v+ p@y” + o@)y + r@y =0.

Investigations similar to Hanan’s were undertaken by Azbelev and
Chaluk [1].

We shall here be interested in the extension of this work to the
equation (1), using the conjugate point concept of Leighton and Nehari.
Some of the results obtained in this section have been reported inde-
pendently by A. Ju. Levin [12] who uses the methods of Green’s
functions. It should be noted that self-adjointness and assumptions
on the signs of the coefficients have been of fundamental importance
in the work cited above (except for that of Levin); in general we
make no such assumptions here. Following Barrett [2, 3], we make
the following definition:

DeFINITION 1. Equation (1) is said to be disconjugate in [a, )
if there exists no nontrivial solution of (1) which vanishes at a, and
has n zeros, counting multiplicities, in [a, ).

We now prove a basic theorem, special cases of which have been
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used by Leighton and Nehari and Barrett, and a special case of which
was proved by Hanan.

THEOREM 4. Suppose that for each positive integer k there is an
n" order linear boundary operator U,, operating at points by, «--, by,
such that
(i) Q) has a nontrivial solution y.(x) satisfying U, (y.x)) = 0;
(ii) there exist points a, «--, ay, such that
YN a) =0 4 =1, ---, m);
(iii) min b,; < min a;; < Max a;; < max by;
(iv) mi‘in by = ml_in b;; and lmax b = 1rnax by of k< 7.
Then lim,_, (max; b,; — min; b,;) > 0. 1

ReEMARk. If y.(x) is a nontrivial solution of (1) having n zeros
on an interval, counted in accordance with their multiplicities, then
repeated application of Rolle’s Theorem shows the existence of the
desired set of points ay,, G, ** ¢, Ak,

Proof of Theorem 4. Let A, = min,;a,;, B, = max;a,;, C;, = min; b,;
and D, = max; b,;. Conditions (iv) and (iii) assure us that {D,} forms
a decreasing sequence bounded below; hence there is a D such that
D,— D. Similarly {C,} forms an increasing sequence bounded above;
hence there is a C such that C,—C and D = C. We need only show
that equality does not hold.

Let ¢.(x), ¢,(x), -+, ¢.(x) be the fundamental set of solutions of
(1) satisfying ¢{(D) = d,; (4,5 =0,1, -+«,n — 1). Then y,(x) can be
written

Yu(®) = ;1 CinPi(X) .
We normalize y,(x) by letting

Yi(x) = _?!&2_ = i du9:(®) ,

so that >r,d} =1. Then y,(x) is a solution of (1) possessing the

same zero properties as y,(x); in particular, ¥,(x) satisfies condition (ii).

Further, on any closed interval about D, {7,(x)} is a uniformly bounded

and equicontinuous family. Hence there is a uniformly convergent

subsequence {¥,,(x)} whose limit function #(x) is a solution of (1).
Now suppose D = C; then by condition (iii)
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A=IlmA,=1limB, =B.
k—0 k—0
But now by condition (ii), for each j(0 =< j < n), A is a limit point of
zeros of {yi/)(x)}; hence 79 (4) =0 (5 =0,1,---,m — 1), and so y(x)= 0.
This is impossible, since >, d’, = 1, which completes the proof.
We are now in a position to make

DerINITION 2. The first conjugate point 7,(a) of the point a is
the smallest number b > a such that there exists a nontrivial solution
of (1) which vanishes at a and has n zeros, counting multiplicities in
[a, b].

We now establish one of the main results of this section.

THEOREM b. If (1) is mnot disconjugate, them 7(a) exists, and
there is a montrivial solution of (1) which has a total of at least m
zeros at a and 7n(a) and does mot vanish in (a, n(a)).

Proof. The existence of 7,(a) is guaranted by Theorem 4. Let
Y = {y(x) | y(x) is a nontrivial solution of (1) which has = zeros in
[a, n(a)]}, R = {r| there is a y{x)e ¥ with a zero of order » at x = a},
n,=maxre R, M ={m| there is a yc Y with a zero of order #, at
x =a, and m zeros in (a, n,(a))}, m = maxme M, and let é(x)c Y be
a solution with m zeros in (a, 7,(a)) and a zero of order %, at z = a.
Let a=a,<a, < -+ <a,=n(a) be the zeros of é(x) on [a, 7,(a)], with
respective multiplicities n,, #,, + <+, n,. Then %, + %, + +++ + n,_, = M.
Let n=n,+ -+ + n,_,. We claim that ¢(x) exhibits the property
asserted. For suppose the theorem false for #(x), i.e., suppose p > 1.
We shall show the existence of a (x)e Y with a zero of order %, at
¢ = a and a zero of order m + 1 in (a, 7:(a)), which will contradict the
maximality of #. To this end let us consider a nontrivial solution z(x)
of (1) with zeros at a,,a,,---,a, of multiplicitis n,+ 1, n,,+++,n,_, —1,
n — 7 — 1 respectively; such a solution exists (note that p > 1 implies
1, < m — 1) since only » — 1 zeros (counting multiplicities) are specified.
Since the zero of z(x) at «a, is of order n, + 1, z(x)¢ Y, and so z(x)
does not vanish on (a,_;, @,), nor are any of the zeros of multiplicity
greater than that specified. Hence we can apply Theorem 1 to z(x)
and ¢(x) on (a,_,, @,) to obtain a linear combination +(x) with a double
zero at c¢, say, on (a,_;, @,). Now r(x) has zeros at a,, &, <+, @, ,,
Qp_y, €, &, of multiplicities ny, Ny, *++, Npy, My — 1,2, m — 1 — 1; i.e.,
J(x) € Y with a zero at @ of order =, and with a total multiplicity of
m + 1 of zeros on (a,7(a)), contradicting the maximality of ; this
established the theorem.

COROLLARY. Let ¢(x) be a nontrivial solution of (1) with zeros
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of orders m, and at least n — n, at a and n(a) respectively, where
n, 18 maximael. Then ¢(x) is essentially unique i.e., unique except
Jor multiplication by a constant factor). (We note that a similar
result holds for a (x)eY, not vanishing on (a,n(a)), and with a
zero of maximal order at n,(a)).

Proof. Let +(x) be any such solution. By the maximality of =,
we have ¢™(a) = 0 %= ¢™(a). Consider the solution

x(@) =y (@)g(x) — " (a)y () .

x(x) clearly has a zero of order n 4+ 1 at x = a and a zero of order
n — n, at ¢ = n(a); hence, by the maximality of =, x(x) = 0.

In order to examine the behavior of 7,(a) as a function of a we
prove the following theorems. The principal theorem, Theorem 7, in
this sequence was obtained by Leighton and Nehari [11] for equation
(2) and by Hunt [9] for the special definition of 7, mentioned at the
beginning of this section, for an equation more general than that in
[11].

THEOREM 6. Let a be any point for which n(a) exists; then, for
any b < a, n,(b) exists.

Proof. Let a, be the largest number ¢ = a such that 7,(c) = 7,(a)
(the existence of a, is guaranteed by Theorem 4). Let é(x) be a solu-
tion such that ¢(a,) = 0 and ¢(x) has n zeros in [a,, 7,(a)], Where the
order of the zero of ¢(x) at n(a) is minimal over the set of all such
solutions. Let mg, my, -++, m, be the orders of the zeros of ¢(x) at
a, < o, < - < a,=n(a) respectively. We are supposing m, is minimal.
Let M=my + +++ + m_;, =n — 1. Clearly m, = n — M.

Now suppose the theorem is not true. Let +(x) be a nontrivial
solution of (1) such that +(b) = 0 and +(x) has zeros of multiplicities
Mgy Mgy *= %) My, My — 1, m — M — 1 at a, a -+, a,._,, a,_;, a, respec-
tively. We have specified (counting multiplicities) % — 1 zeros of +r(x)
in [b, n(a)]; hence, since we are supposing 7,(b) does not exist, ()
has zeros only at these points and only of the multiplicities specified.
By Theorem 1, applied to ¢(x) and +(x), there must exist a linear com-
bination ¥(x) of ¢(x) and «(x) with a double zero in (@,_,, @,). Further,
¥(x) has zeros of orders my, m,, <<+, My, m,_, — 1, n — M — 1 at a,
@, +++, &, a, respectively. Hence ¥(x) has n zeros on [a,, 7,(a)]. Now
if »r =1 = m, = m, then Y(x) has a double zero and is also a solution
of a second order equation; hence ¥(x)=0. If r=1=m,and m, >1
then %(y(a)) =0 and Y(x) has n zeros in (a,, 7:,(a)] which contradicts
the maximality of a,. If =1 = m, and m, > 1 then ¥(x) has n zeros
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in [a,, 7.(a)) and vanishes at a,, which contradicts the fact that »,(a’) =
7). In all other cases X(x) has » zeros in [a,, 7,(a)] With a zero of
order » — M —1 < m, at 7(a), which contradicts the minimality of
M,

COROLLARY 1. Let a be any point for which n(a) exists; then,
for any b < a, there exists a solution which vanishes at b and which
vanishes n — 1 times, counting multiplicity, in [a, n(a)].

Proof. The function +(x) constructed in the proof of Theorem 5
is such a function.

COROLLARY 2. Let a be any point for point for which 1,(a)
exists; them no solution has more than n — 1 zeros in [a, ,(a)).

Proof. Suppose this is not true. Then there exists a solution
with n zeros in [a, 7(a)). Hence there is a bela, n,(a)) such that
7,(b) < ni(a); clearly such a b cannot equal a. Then, by Corollary 1,
there exists a solution ¢(x) which vanishes at a¢ and which vanishes
n — 1 times, counting multiplicity, in [b, 7,(b)]. Hence #(x) vanishes
at @ and has n zeros in [a, 7,(b)], which contradicts the definition of
n(a).

It should be noted that, for n = 2, Corollaries 1 and 2 combine
to give the classicial Sturm separation theorem.

COROLLARY 3. 7(a) s a nondecreasing function of a.

THEOREM 7. n,(a) s an increasing function of a.

Proof. Suppose the theorem is not true. We know by Corollary 3
that 7,(e) is a nondecreasing function of a. Thus there exist a,7,(a),b
and 7,(b) such that a < b and 7,(a) = n,(b). Hence, by Theorem 5 and
Corollary 3, for every x € [a, b], n.(x) exists and equals 7,(a). For each
aela, b] let ¢,(x) be the essentially unique solution which vanishes at
least n times at a and 7,(a), where the order of the zero at 7(a) is
maximal over all such solutions, and ¢.(x) # 0 for x € («, n(a)), as in
the corollary to Theorem 5.

Let S; = {a|¢.x) has a zero of exactly order ¢ at z = n(a)},
t=1,---,m—1). Clearly Ur:'S; =[a,b]. Hence there is a sub-
interval [e¢, d] S [a,b] and an 4(1 < ¢ < %) such that S; is dense in
[¢, d] (see Simmons [14], page 74). Pick the maximum such ¢ and
denote it by m; denote the subinterval [e¢, d] corresponding to this
value of 4 by [a., b.].
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Let {y., ¥s <+-, Y.} be the fundamental set of solution satisfying
yi(n(a)) = 0;;. Now the condition that S, is dense in [a,,bd,] is
equivalent to the condition that the determinant

ym'rl ym+2 e yn

’ ’ r
W _ ym+1 ym+2 e yn
m+1 T .

.

(n—m—1) p,(n—m—1) (m—m—1
Yt Ymoz e YT !

vanish at a dense set of poiants in [a,,, b,.]. This follows since W,,..(a) =0
is the condition for a solution with a zero of order m at 7,(a) to have
a zero of order m — m at a point « # n,(a). Further, since W,., is
continuous, we have W,., =0 in [a,, b,]. Moreover from the maxi-
mality of m we know that

Y+ ym+3 e yn
’ ’ ’
y1n+2 ym+3 e yn
.
.

H
o

Wm+2 =

(n—m—2) p,(n—m—2) (n—m—2)
Ynsz — Ynss e Y

on some subinterval [al, b,] S [a,, b..].
Now consider the differential equation

Y Ymia = Yn
Y Ynis = Yn

(—m—1) p,(n—m—1) (n—m—1)
Y Ymiz e Yn

formed by substituting ¥ for y,., in the equation W,,, = 0. This is
an equation of order » — m — 1 with non-vanishing leading coefficient
W.,.; on the interval [a}, b,,]. The solutions are Y,+is Ymss ***y Yms @
total of % — m — 1 solutions. These are linearly independent, since
W..is = 0 on [al, bl]; hence they form a solution basis. But v,., is
also a solution, since W,., =0 on [a), b,]; therefore ¥, 11, Ym+a ***» Yn
are linearly dependent on [al,b,], which contradicts the fact that
Yy, *++, Y, are solutions of (1) which are independent on [a, b]. This
completes the proof.

3. Zero properties of derivatives of solutions. We now turn
our attention to the behavior of the derivatives of solutions. The
principal motivation for this type of investigation is the work of Bar-
rett [2, 3, 4, 5], in which are references to earlier work in this field.
Barrett [2] discussed the behavior of solutions of the equation

@@)y") + f(@)y =0
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in relation to the boundary conditions y(a) = ¥'(b) = 0; the minimum
such b > a for which these conditions are satisfied was denoted by
t(a), and a was called a (left) focal point of the point g (a). This
discussion was extended to the equation (2), with a focal point being
defined in terms of the first point b > a, for which conditions of the
type y(a) = y'(a) = y"(b) = y"'(b) = 0 are satisfied. This was in turn
extended by Hunt [9] and Reid [13] to more general even order self-
adjoint differential equations of the form

[ra(2)y™]™ + g [(—=1)" i+ (x)yD]D =0 .

Their definition of focal point involved the conditions

ya) =y'(a)= -+ =y"(a)=0
= (r,y™)®) = (r,y™)(b) = «-+ = (r,y™)"="(b) .

It should be noted that the use of the terms “focal point” and “con-
jugate point” stems from considerations in the calculus of variations,
in which field the majority of the investigations have taken place (see
for example Reid [13] and the references in that paper).

In the present paper, we propose to extend the definition of focal
point in a different direction, to which the techniques of differential

equations seem more applicable. To this end we make the following
definition.

DEFINITION 3. Suppose that there exists a point ¢ > a, an integer
k(0 < k < n), and a nontrivial solution ¢(x) of (1) which has a zero of
order k at # = a and such that ¢*(x) vanishes » — k times, counting
multiplicities, in (a, ¢]. Then the minimum such ¢, over all such solu-
tions for all possible %, which exists by Theorem 4, will be denoted
by f(a).

DEFINITION 4. Suppose that there exists a point ¢ > @, an integer
k(0 < k < m), and a nontrivial solution ¢(x) of (1) such that ¢(x) has a
zero at © = a of order k£ and such that ¢"*(x) has a zero at @ = ¢ of
order » — k. By Theorem 4 there is a minimum such ¢, over all such
solutions for all possible %, to be denoted by p,(a); @ will then be called
the first (left) focal point of f¢,(a).

THEOREM 8. If fi,(a) extists, then p(a) exists and p(a) = fi(a).
Proof. Let U = {u(x)| u(x) is a nontrivial solution of (1) and there

exists a k(0 < k < m) such that u(x) has a zero of order k¥ at x = a and
such that «®(x) has n — k zeros (counting multiplicities) in (a, Z.(a)]},
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K = {k| there is a u(x)e U with a zero of order k¥ at x = a}, m, =
maxke K, P={p| there is a w(x)e U with a zero of order m, at
% = @, and such that u™?(x) has p zeros in (a, Z£,(a))}, P, = max p e P,
and let y+(x) € U be a solution with a zero of order m, at * = a and such
that +™(x) has p, zeros in (a, ff,(a)). Let the zeros of ™0 (x) be of
orders m,, My, + -+, m; at a,,a,,- - -,a; respectively, where a<a,< -+ <a;=
£.(a); by definition of p,, m, + my + +++ + Mm;_, = D,.

Now suppose the conclusion does not hold; i.e., suppose 7 > 1. Let
2(x) be a nontrivial solution of (1) with a zero of order m,+1at x =0
(note that z(x) ¢ U) and with z™(x) having zeros of multiplicities
Myy Mgy +ooy My, My, — L, — my — 1 — p,at @y, ay, <+, Aj_y, Qj_;, A; T
spectively, except that if m,;_, =1 we make no specification at a;_,.
We have specified n — 1 zeros of z(x) and 2 on [a, Z(a)],n — m; — 1
zeros of 2™(z) on [a, fi,(a)], P, zeros of z™(x) on [a, f#(a)), and p, — 1
zeros of 2™'(x) on (a, ff,(a)). Hence by Rolle’s Theorem zo™"(x) has
at least m — m, — 2 zeros on [a, f£(a)], and, in fact, since z(z) ¢ U,
2™(x) has exactly n — m, — 2 zeros on [a, ff(a)]. Therefore, 2"(x)
does not vanish at any point on (a;_,, @;), nor are any of the specified
zeros of multiplicities greater than that specified. We can now apply
Theorem 1 to the functions z™?(x) and +™’(x) on the interval [a;_,, a;],
concluding that there is a linear combination ¥(x) of v(2) and z(x) such
that y™o(x) has a double zero in (a;_,, @;). We now have a nontrivial
solution ¥(x) of (1) with a zero of order m, at x = a, such that y™o(x)
has at least » — m, zeros on [a, f,(a)] (hence y(x) € U), and 3™ (x) has
at least p, + 1 zeros on (a, fZ,(x)) which contradicts the maximal pro-
perty of p,. Hence 5 = 1 and the conclusion holds.

THEOREM 9. If 7n,(a) exists, then p,(a) exists and p(a) < ni(a).

Proof. Let ¢(x) be the essentially unique solution of Theorem 5,
with its zero at a of order %, (where n, is maximal over the orders of
the zero of all nontrivial solutions vanishing » times at a and 7,(a));
then its zero at 7,(a) is of order at least n — n,. By Rolle’s Theorem,
#'(x) vanishes at least once on (a, 7,(a)) and at least n — m, times on
(a, n(a)]. After repeated application of Rolle’s Theorem we find that
¢"0(x) vanishes at least n, times on (a, 7,(a)) and at least » — n, times
on (a,7n(a)]. Hence f(a) exists, by Theorem 4; clearly f(a) = 7.(a),
and by Theorem 8 p.(a) = fi(a).

To show that p(a) < 7(a), suppose p(a) = 7n,(a). Then, by the
above, p(a) = fi(a) = 9, (a). Let R = {r| there exists a w(x)e U with
a zero of order r at x = a and such that #'”(x) vanishes in (a, f,(a))}.
By assumption, f#(a) = 7,(a); hence, by the first paragraph of this
proof, R is nonvoid. Let r, = maxre R. Let S = {s| there exists a



LINEAR DIFFERENTIAL EQUATIONS 1057

u(xz) e U with a zero of order 7, at © = a and such that #"9(x) has s
zeros (counting multiplicities) in (a, fi(a))}. Let s, = maxseS. We
now apply the argument used in the proof of Theorem 8 to obtain a
contradietion.

COROLLARY 1. If &(x) is a montrivial solution of (1) with a zero
of order k at x = a and such that ¢“(x) has a zero of order m —k
at x = p(a), where k is maximal over all such solutions, then ¢ (x) =0
wn (o, t(a)] €@ =0,1, -+, k —1) and ¢%(x) = 0 in (a, 1(a)).

Proof. Theorem 8 tells us that ¢®(x) = 0 in (e, tt(a)); and if
¢ (x) = 0 at some point z € (a, ()], (0 =7 =<k — 1), Rolle’s Theorem
allows us to conclude that there is a point 2, € (a, p.(@)) Where ¢ (x,)
is zero.

COROLLARY 2. The conclustons of Theorems 8 and 9 are wvalid
under the weaker conditions that there exists a montrivial solution
&(x) of (1) satisfying the following: ¢(x) has a zero of order q at
x = a, and either

(1) ¢(x) has n — 1 zeros (counting multiplicities) on [a, ) and
there exists a (1 = p =< q) such that ¢'”(x) vawnishes at least once
past the (n — 1)** zero; or

(ii) there ewists a p(0 < p = q) such that ¢ (x) has n — q zeros
(counting multiplicities) on (a, «).

Proof. As in the proof of Theorem 9, Rolle’s Theorem guarantees
the existence of f,(a). The remainder of the proof is identical with
that of Theorem 8.

4. An eigenfunction result. The basic relationships between
conjugate points of equation (2) and eigenvalues of the associated
boundary value problem were investigated in detail by Leighton and
Nehari [11]. Subsequently Howard [8], using variational methods, dis-
cussed the relationships between focal points of (2) and eigenvalues of
an eigenvalue problem, with focal point boundary conditions, associated
with (2), making various assumptions on the coefficients. Barrett [3, 5]
extended these results to fourth order equations of more general form.
These results were extended by Reid [13] to more general even order
self-adjoint differential equations.

After obtaining a general relationship between the solutions of
(1) and those of

(3) Liy = 3 (-Di(ra)® = 0
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(the Lagrangian adjoint equation), we shall derive an eigenvalue rela-
tionship, from which we will develop a disconjugacy criterion. It
should be noted that Theorem 10 is but a part of the more general
theory of boundary operators ([10, Chapter 9], [6, Chapter 11]) in-
cluded here to demonstrate the intimate relationship between boundary
value problems associated with equation (1) and those associated with
equation (3).

THEOREM 10. If wu(x) is a solution of (1) with a zero of order
exvactly k at * =a and a zero of order m — k at x = b, then there
exists a nontrivial solution v(x) of (3) having a zero of order k at
x=>band a zeroof order n—k at x =a. Further, if k ts maximal
in the semse of Theorem 5, then v(x) is essentially unique (t.e., unique
except for multiplication by a constant factor).

Proof. The operators L and L* in the equations (1) and (3) are
connected by Green’s identity:

wL,, w) — (u, Liv) = Sb(anu — uLiv)dw
( 4 ) : i—1 13

— ?;{ (;ZS (—1)j(v7',-)("’(x)u”—f—“(x)>'a

Let % be the solution of L,y = 0 whose existence we have assumed; let
v be a nontrivial solution of L)y = 0 with a zero of order n — k — 1
at x =a and a zero of order k at ® =b. Then, upon applying Theorem
2, (4) becomes

0 = (—1)~ur, )"+ (@yu®(a) .

Since u™(a) # 0 by hypothesis, this implies that (vr,)"* *(a) = 0; hence,
by the corollary to Theorem 2, v"*(a) = 0, and w»(x) has a zero of
order n — k at ¢ = a.

To prove the second part of the theorem suppose % is maximal
and v(x) is not unique; i.e., suppose that there are two nontrivial
solutions v,(x) and v,(x) of (3) with zeros of order n — k at z = «a,
and zeros of order k at x =b. Either v,(x), v,(x) or a linear com-
bination of »,(x) and v,(x) has a zero of order k¥ +1 at 2 =b and a
zero of order m — k at a. Let v(x) be the nontrivial solution of (3)
with a zero of order at least » — k at * = a and a maximal order
zero, at x = b. Interchanging the roles of % and v in the previous
argument, we find that there is a solution w(x) with a zero of order
k+1at x=a and a zero of order n — k —p at ® = b, where p > 0;
this contradicts the maximality of k.

We now derive an eigenfunction relationship between equations
(1) and (3).
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THEOREM 11. Consider the adjoint n™ order linear differential
operators L, and L} and the adjoint problems

(5) Ly =y, Uy=0,
(6) Ly =y, Uy=0,

where U and UT are self-adjoint or regular adjoint linear homogeneous
boundary operators and N ts a parameter. Suppose further that
Green’s function for (5) has only simple poles. Let the etgenfunctions
of (5) and (6) be ¢, x) and o7 (x) respectively, mormalized so that
(¢;, 87) = 1. Let f(x) and g(x) be any two functions such that L,g
exists, Ug = 0, L f exists, and UTf = 0. Further let a, = (f, ¢;) and
b, = (g, ¢) and let \; be the ith eigenvalue of (5). Then

(f, Log) = Sy abr, .

Proof. We freely use the well-known properties of problems (5), (6)
(see for instance Ince [5] Chapter 11, and Coddington and Levenson [6]
Chapter 12).

(£, Lug) = (S aut, ,,g) = S aiér, Log)
= S adlish, 0) = S ai( st 3 bi6s)
= 35 a 3,007, 6)
= % amé i = %aibixi :

If we specialize this result to the self-adjoint case, letting f=g¢g
in (7), we obtain

(8) (f, Lo f) = X aihs .

Further suppose L,y = 0 assumes the special form

(9) Ly = [r.(x)y™]™ + ”Z_l [(— 1)+t (z)y ] = 0
i=0

where 7,(x) >0 (1 =0,1, ---, n).
We now state a disconjugacy criterion due to Reid [13].

THEOREM (Reid [13]). FEquation (9) is disconjugate in the sense
of Reid (i.e., mo solution possesses two nth order zeros) on the interval
[a, «) if and only if for all values b on (a, <) and all functions
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y(x) such that y(x) e C,_[a, b], y(x) ts absolutely continuous on [a, b],
(y™)? is integrable on [a, b] and y(x) has n™ order zeros at x =a
and x =b, (y, L,y) > 0 (where L,y is as in equation (9)).

Using this result we prove the following theorem. (Our impression
is that Theorem 12 ig in the literature, but the author has been unable
to find it).

THEOREM 12. FEgquation (9) ts disconjugate in the semse of Reid
tf and only if the minimum eigenvalue \, is positive (all functions
are assumed to be of the class described in the above theorem of Reid).

Proof. Suppose (9) is disconjugate. Letting f(x) = ¢,(x) in (8)
and applying the theorem of Reid, we have 0 < (¢,, L,$,) = \,, since
(¢;, #;) = 0;;. The sufficiency is immediate from equation (8).

BIBLIOGRAPHY

1. N. V. Azbelev, and Z. B. Chalyuk, On the question of the distribution of the
zeros of solution of a third order linear differential equation, Mat. Sbornik, 51 (1960),
475-486 (Russian).

2. J. H. Barrett, Disconjugacy of second-order linear differential equations with non-
negative coefficients, Proc. Amer. Math. Soc. 10 (1959), 552-561.

3. , Disconjugacy of a self-adjoint differential equation of the fourth order,
Pacific J. Math. 11 (1961), 25-37.

4, , Fourth order boundary value problems and comparison theorems, Ca-
nadian J. Math 13 (1961), 625-638.

5. , Two-point boundary problems for linear self-adjoint differential equations
of the fourth order with middle term, Duke Math. J. 29 (1962), 543-554.

6. E. A. Coddington, and N. Levinson, Theory of Ordinary Differential Equations,
McGraw-Hill, New York, 1955,

7. M. Hanan, Oscillation criteria for third-order linear differential equations, Pacific
J. Math. 11 (1961), 919-944.

8. H. Howard, Oscillation criteria for fourth-order linear differential equations,
Trans. Amer. Math. Soc. 96 (1960), 296-311.

9. R. W. Hunt, The behavior of solutions of ordinary, self-adjoint differential equa-
tions of arbitrary even order, Pacific J. Math. 12 (1962), 945-961.

10. E. L. Ince, Ordinary differential equations, Dover, New York, 1956.

11. W. Leighton, and Z. Nehari, On the oscillation of solutions of self-adjoint dif-
ferential equations of the fowrth order, Trans. Amer. Math. Soc. 89 (1958), 325-377.
12. A. Ju. Levin, Some questions on the oscillations of solutions of linear differential
equations, Doklady Akad. Nauk. 148 (1963), 512-515 (Russian).

13. W. T. Reid, Oscillation criteria for self-adjoint differential systems, Trans. Amer.
Math. Soc. 101 (1961), 91-106.

14. G. F. Simmons, Introduction to topology and modern analysis, McGraw-Hill, New
York, 1963.

UNIVERSITY OF UTAH





