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ON THE BOUNDED SLOPE CONDITION

PHILIP HARTMAN

Let Ω be a bounded open set in Rn and let <p(x), xedΩ,
satisfy a "bounded slope condition". The latter reduces to
the classical "3-point condition'' if n=2 and occurs in papers
on partial differential equations. The properties of φ(x) are
studied. It is shown, for example, that if dΩeC1 or C1 λ ,
0 < λ S 1, then φ(x) e C1 or C1 λ . Hence, if dΩ e C1'1 is uniformly
convex, then φ(x)y xedΩ, satisfies a bounded slope condition if
and only if φ(x)eC1>ι. The proofs use generalized convex
functions of Beckenbach and, if n > 2, the equivalence of the
bounded slope condition and an "(n + l)-point condition".

Let n ^ 2, x = (x\ , xn) denote a point of Rn and z e R\ so that
(x, z) e Bn+1. Let Ω be a bounded open set in Rn with boundary Γ = dΩ.

DEFINITION (BSC). A real valued function φ(x) defined for x e Γ is
said to satisfy a bounded slope condition (BSC) [with constant K] if, for
every x0 e Γ, there exist two linear functions X±(x) = \±(x, x0) of x,

(1.1) λ±(α?, a?o) = α ± (a; — α?0)

where t h e constants α± — α|(x 0) depend only on x09

(1.2) λ_(^, »o) ~ <p(ί») = λ+(α?, a?) for x e Γ ,

(1.3) 11 α±(α?0) 11 - ( έ I «± i 2 )^ ̂ K ΐoτ xoeΓ .

The definition of a BSC occurs in [4] and is used in [9], [2], [5].
The name "bounded slope condition" was introduced in [9]. This
paper is concerned with characterizations and properties of functions
φ satisfying a BSC. Section 4 dealing with the smoothness of φ uses
generalized convex functions of Beckenbach [1],

It has been pointed out to me by Professor Nirenberg that if
n = 2, a BSC is equivalent to a "3-point condition" occurring in the
calculus of variations and the theory of elliptic partial differential
equations; cf. [7, 49-51 and 62-63] for references to Hubert, Lebesgue,
Haar, Rado and von Neumann. In Section 3, an "(n + l)-point con-
dition" will be defined and shown to be equivalent to a BSC. This
fact will be used in Section 4 on smoothness properties of φ.

Note that, whether or not Ω is convex, any linear function
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(1.4) φ{%) = a.x + c = Σ α ^ " + c f o r

=1

satisfies a BSC (with the choices X±(x,x0) = α (# — #o) + <p(#o) — a.x + c).
If however φ(x) satisfies a BSC and is not the restriction of a linear
function to Γ, then Ω is convex. For, in this case, the linear functions
λ±(x, x0) of x are not identical and (1.1), (1.3) imply that

(α+ — α_) (x — x0) ^ ° for x e Γ ,

hence for a e β . Thus, through every boundary point a;0 of fl, there
is a supporting plane 0 -φ (a+ — aj) (x — xQ) — 0.

In what follows, it will be assumed that Ω is convex. It should
be remarked that, even if Ω is uniformly convex, it does not follow
that a± can be chosen so that a+ (x — x0) = 0 [and/or α_ {x — xQ] S 0]
for xeΓ. For example, let n = 2, β be the disk (x1)2 + (α;2 - I)2 < 1
and <P(E) = ί̂ 1 for (x\ x%) e Γ: (x1)2 + (cc2 — I)2 = 1. By the remark con-
cerning (1.4), φ(x) = x1 satisfies a BSC The unique supporting line of
Ω through the origin is xs — 0. But it is clear that no choice of the
constant α2 satisfies α V ^ φ(x) = x1 = ±[2ίc2 - 2(x2)2]1/2 for all (x1,^2) e Γ
(e.g., for small x2 > 0 and x1 - [2x2 - 2(x2)2]1/2 > 0).

2* Characterizations of (p(x). Let x* e Ω and £* be a real
number. Let C(x*, 2;*) denote the conical surface consisting of the
set of points (x, z) e Rn+1 of the form

(2.1) C(x*, z*): x = x* + ί(α?0 - x*), s = ^* + t[φ(x0) ~ «*] ,

t ^ 0 and xoe Γ, so that C(x*, «*) is the union of the sets of points on
the half-lines from (#*,#*) directed towards (%0, φ(x0)), xQ£ Γ.

THEOREM 2.1. £#£ ΩeRn, π ^ 2 , 60 α bounded open convex set,
Γ = 9β, x* G β (fixed), and φ(x) a function defined for x e Γ. Then
φ(x) satisfies a BSC if and only if the conical surface C(x*,z*)
bounds a convex set Ω(%*, z*) c Rn+1 for large \z* \ (say, for \z*\ ^ N;
in which case, N can be chosen independent of a?*).

It will be clear from the proof that φ(x) satisfies a BSC if and
only if there exists a convex function p_(x) and a concave function
p+(x) defined for all xe Rn such that the restrictions of ρ±(x) to
Γ = dΩ are identical with φ(x).

Proof. "If". Let z* > 0 be so large that | φ(x0) \ < z* for xoeΓ
and that C(a?*, ±z*) bound convex sets Ω(x*y ±z*). Let z = λ±(x, x0) be
a supporting hyperplane of £?(x*,z*) at the point (xQ,φ(xQ))e C(a?*, ±2*),
corresponding to t = I in (2.1). It is clear that λ±(x, x0) are of the
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form (1.1) and satisfy (1.2). The conical surfaces C(x*, ±z*) have
representations of the form

z — τ+(x) and z = τ_(x)

defined for all xeRn such that — τ+(x), zJ(x) are convex functions.
In particular, τ±(x) are uniformly Lipschitz continuous on compacts,
say, on Ω U Γ. It follows that there exists a constant K satisfying
(1.3).

Proof. "Only if". Let φ{x) satisfy a BSC. For fixed x0 e Γ, let
X±(x, x0) be the linear functions of x in (1.1)—(1.3). Then

where JKΊ is a constant independent of x e Rn and x0 e Γ. Thus

(2.2) P-{x) = sup X_(x, x0) , p+(x) — inf λ+(#, #0) for xQe Γ

exist (finite) for all x and satisfy

(2.3) |p ± (α) | ^ JK:||ί&|| + Iξ for xeRn,

(2.4) ί>±(a?0) = φ(x0) for xQeΓ ,

and T^±(^) are convex functions of x. Since pΛx) — ̂ +(α?) is a
convex function and vanishes on Γ%

(2.4) /0_(a;) ^ p+(x) for x e f l ,

The convexity of T p±{x) and (2.3) imply that ρ±(x) are uniformly
Lipschitz continuous with a Lipschitz constant K on j?\

Let β1^ G i?%+1 denote the convex sets

Or - {(a?, «): z > p^(x)} , fl+ = {(a?, «): z < ρ+{x)} .

For xQ e Γ, let the linear function λ±(x, x0) of x,

(2.5) λ*^, a;0) = ^ ( ^ o ) * ^ — Xo) + ^(^o) ,

be chosen so that z — λ±(x, x0) is a supporting plane of β ± at the
boundary point (x, z) = (a?0, ̂ (α;0)). In particular,

(2.6) l l α ^ l l ^ i Γ ,

(2.7) X~(x, x0) g φ{x) <L x + ( χ , χ0) f o r x e Γ .

Let λ(x, α?o) = <x(xo) (x — #0) be a linear function of x such that
λ(x, xQ) = 0 is a supporting plane for Ω a Rn with the normalization

(2.8) λ(α, x0) > 0 for x e Ω, \\ a(x0) || = 1 .
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In view of (2.5) and (2.6), there exists numbers N > 0 such that
X±(x, xQ) I g N for xe β, xQe Γ. Let z* ^ N and choose numbers

^±(x0) ;> 0 with the property that the linear functions

σ±(x, xQ) = X±(xf x0) ± / ^ ( O λ ^ , a?0)

of x satisfy σ±(x*, xQ) — ±z*. It is clear that \ μ±(x0)X(x^9 x0) \ and
l/\X(x*,xo)\ are bounded for all xoeΓ (and x* e Ω fixed). Thus if
<7±(α;, x0) is written in the form

σ±(x, x0) = ^ ( O ' O ^ — a?0) + <p(̂ 0) ,

there is a constant iΓ0 = KQ(x*) such that

116^)11 ^KQ for x o eΓ.
Also,

6 r _ ( α ; , x Q ) ^ < p ( a ? ) ^ tf+(aj, x 0 ) f o r x e Γ .

Thus, σ±(aj, a?0) satisfy conditions analogous to (1,1) (1.3) with X+.^.K
replaced by σ±9b

±

9 Ko. Corresponding to (2.2), put

(2.9) τ_(x) — sup σ_(x, x0) , τ+(x) = inf σ+(x, x0) for x0 e Γ .

The functions +τ+(α?) are convex. Since r±(α;0) = ^(a?0) for x0 e Γ, τ±(x*)~
±z*, and for x — x* -{• t{x — x0), t ^ 0,

# J > , a?0) ^ —«* + t[φ(x0) + z*] ,

<7+(a?, x0) S «* + ί[^(a?0) - s*] ,

it follows that

τ±(ίc) = ^ * + t[φ(x0) T- z*] for x = x* + ί(α?0 — x*) ,

ί ^ 0. Thus z = τ±(α;) are the conical surfaces C($*, ±«*). Since
these surfaces are convex, Theorem 2.1 is proved.

For applications, it will be convenient to reformulate Theorem 2.1
in different terms. Let x* e Ω be fixed and x0, x1 e Γ. Suppose that
the half-lines

(2.10) x* + txQ and x* + tx, for t ^ 0

in Rn are not on the same line and so determine a 2-dimensional plane
TΓ2(X0, a?i) G i?% and a convex sector S(α;0, xλ) of τr2(α;0, ^0 with vertex at
x*. Let JΓ01 be the 2-dimensional plane convex curve ΓQ1 = π2(a;0, a J n Γ .
By a point ^01 o/ Γ between x0 and xx is meant a point x01 of the arc
Γ(x0, Xj) — S(x0, xλ) Π /Όi. Introduce rectangular coordinates (ξ, rj) in
the plane πt{x^ xj with x* as origin such that the f-axis, 37-axis, and
the half-line (α?, «) = (#*, ί), ί ^ 0, form a right-hand system. It will
be supposed that the enumeration of x0, x1 is chosen so that the arc
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Γ{xQi Xi) in 7ϋ2(x0y χx) is positively oriented in going from xQ to xx. Let
(£o,%)> (ίi» 37O1 (ί01,̂ 01) ^e the (I, ̂ -coordinates of a?0, â , #01, respectively.

When the half-lines (2.10) are on the same line in Rn, the notion
of a point x01 between x^ and xx yήϊί not be defined.

CoROLLAKY 2.1. £e£ ΩcRn be a bounded open convex set, φ(χ)
a function defined for $ e Γ = dΩf and x* e Ω. Then φ{x) satisfies a
BSC if and only if there exists a number N such that, for \z%)Ί^ N,
the inequality

ξo Vo φ($o)

(2.11) z* ξ01 VK

fl ?1 . .

holds for all points xQ<} xL e Γ and points xQi 6 Γ between them.

See Lemma 3βl and part (b) of the proof oί Theorem 3.1 for
analogous necessary and sufficient conditions.

Proof. It h&s to be verified tha i (2.11) is equivalent to the
"convexity'^ of the cones (2.1), As the cage z* < 0 is similar to
that of z* > 0, consider only the latter. For 2* > 0, it will be
shown that (2.11) is equivalent to the concavity of z in (2.1) as a
function of x.

To verify that z is concave (i.e., that ~~z te convex), it suffices to
consider the situation whetv x varies along a line in Rn. If x varies
along a line which passes through x*, the concavity of the "function
z is clear. Consider a line L in R% whfeϊi άoes not pass through x*.
After ^ suitable translation and rotation of coordinates in the ̂ -space,
it can be supposed that x* = 0 and that the line L anά the point
x* = 0 are in the (cc1, α;2)-plane, OJ3 ^ = ?̂4 = 0. We BOW ignore the
trivial coordinates xz = == x4 = 0 and write (f,^) in place of (V,x2).

It can be supposed that L is the line Li ξ •=. 0 > 0. Consider two
points TΓo = (c, u0), πx — (c,ux) on L, u0 < t6lf and the condition

(2.12) ε(π01) έ fe(^Γo) + (1

for z to be a concave function of ττ01 = (c, uQ1), u01 = ^%0 + (1 — #)u^
0 < ί < 1 .

Let the half-line from, x* toward ττ0,7r2, π01 meet Z7 at a?0 = (ξ0, ηQ)y

«i = (Si»̂ i)> ôi = (foi,%i), respectively, and let to,tutQi denote the unique
positive numbers such that

(2.13) τt3 = t&j, i.e., (c, %) = ίy(fy, %•), for j = 0,1, and 01 .

Correspondingly,
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(2.14) z{π3) = z* + tj[φ(xs) - z*\ for j = 0, 1, and 01 .

From (2.13), t3 = cjξh so that, by (2.14), (2.12) is equivalent to

(2.15) [φ(xQl) - 3*]/ξ01 ^ θ[φ(xQ) - S*]/£o + (1 - θ)[φ{x^ - Z*\lξ

Also, Uj = ίj ̂  = c ^ /fi and w01 = #(Ί£0 — ui) + ^i, so that

Since ^ — ξxη0 > 0, (2.15) is equivalent to

which, in turn, is equivalent to (2.11) when z* > 0. This completes
the proof.

3. The (n -f l)-ρoint condition. Let n 2> 2 and ΩaRn be a
bounded open convex set and φ(x) a function defined for x e Γ = dΩ%

DEFINITION (I), (n + ΐ)-point condition. φ(χ) is said to satisfy
an (n + l)-point condition [with constant K] if, for every set of n + 1
points xQ, , xn of Γ, there is a hyperplane

71

(3.1) z = a x + c = 2 α ^ + c

in i2%+1 which passes through the points (x, z) = (x3 , φ(x3-)) for j =
0,1, , n and satisfies

n

\ό.Δ) || α ii = ( ^ I α / = ^

In deciding whether or not φ satisfies an (n + l)-point condition,
continuity considerations show that it suffices to consider only sets of
ft+1 points xQ, , xn of Γ such that (x, z) ~ (χj9 φ(x3))9 j = 0, , n,
determine a unique hyperplane in Rn+1. In particular, if #0, " , ^
are on an (n — l)-dimensional plane ττw_! c i2%, then the restriction of
φ(x) to JΓΠττ%_1 is the restriction of a linear function of #.

THEOREM 3.1. Let Ω c Rn be α bounded open convex set and φ(x)
a function defined for x e Γ = dΩ. Then φ(x) satisfies a BSC if
and only if φ satisfies an (n + ϊ)-point condition.

In the proof, it will be convenient to have the following auxiliary
definition.
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DEFINITION (II). Let n^2, ΩaRn a bounded, open convex set,
Γ = dΩ, φ(x) a function on J7, and 2 5g m S n. The function φ is said
to satisfy an (m + l)-point condition with constant K if, for every
m-dimensional plane πm c Rn containing an interior point of Ω, the
restriction of φ(x) to the boundary of Ωf]πm satisfies an (m + l)-point
condition with a constant K (in the sense of Definition (I) where n = m).

The proof of Theorem 3.1 will be given in several steps: (a),
Lemma 3.1, (b), (c), (d), in which Ωr Γ, φ are as in Theorem 3.1.

(a) φ(x) satisfies an (n + l)-point condition if and only if there
exists a number N with the property that, for every set of n + 1
points xQ, * ,xn of Γ, there is a hyperplane (3.1) passing through
(x, z) — (xj9 φ(Xj)) for j — 0, , n and satisfying

(3.3) a x + c g N for xe Ω .

In fact, if (3.1) is the hyperplane satisfying (3.1) and (3.2), then,
for x e Ω,

I a x + c I = I a (x — χQ) + φ(xQ) \ ̂  K diam Ω + const .

Conversely, if (3.1) is a hyperplane satisfying (3.3) and a Φ 0 then
there is a number cQ > 0 (independent of a) and a pair of points
VQ,VI^^ such that

t = 0 .

Thus, from

and (3.3), | a (y0 - 2ΛΓ, and so || a \\ g 2iV/c0.

LEMMA 3.1. Let Ω, Γ, φ he as in Theorem 3.1. Let xά =
•••,«?*) /or j = 0,1, , % δβ n + 1 points of Γ,

(3.4)

(3.5)

χ.) =

X1 •'

XQ
 # *

xl ••

xl •

xl •

χl •

• xn

• xl

• • /y*n

ti/Q

•• xl

•• xl

z

φ(xo)

φ(χχ)

1
1

1

1

1

1
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Then φ satisfies an (n + l)-point condition if and only if there
exists a number N such that

(3.6) {~1YZΔ{X, z)Δ0(xQ, . . . , xn) ^ 0 for \z\^N,

xe Ω, and all sets of n+1 points xQ, , xn of Γ.

In fact, if there is a unique hyperplane of the form (3.1) passing
through (xjΊ φ{x3)) for j = 0,1, , n, then

Δ{x, z) = ( — ϊ)nΔ0(x0, , xn)[z - (a-x + c)] .

Thus (3.6) for \z\ ^ AT, xeΩ, is equivalent to (3.3).
(b) Let m, 2 ^ m ^ %, be fixed. If φ(x) satisfies an (n + l)-point

condition with constant K in the sense of Definition (I), then it
satisfies an (m + l)-point condition with constant K in the sense of
Definition (II).

This is clear. Theorem 3.1 and its proof will show that the
converse is correct.

( c ) BSC ==> (n + l)-point condition.
Let φ(x) satisfy a BSG and let xQ, •••, xn be n + 1 points of Γ

such that there is a unique hyperplane passing through the points
(Xj, φ{Xj)) for j = 0, , n. This hyperplane necessarily has an equation
of the form (3.1). It will be shown that there exists a number N
satisfying (3.3).

Let N be so large that the conical surfaces C(x*, z*) in Theorem
2.1 bound open convex sets Ω(x*,z*) for every x* e Ω and | z* \ ̂  N.
It will be shown that (3.3) holds for the arbitrary (but fixed) point
x - x*eΩ*β

Suppose first that x* is in the convex closure of the set of points
#o> j χn* Consider a supporting hyperplane ττ+: z ~ a+ x + c+ of the
convex set Ω(x*,N) through the boundary point (xo,φ(xo))eC(x*,N).
Then (x, z) e C(x*, N) implies that z ^ a+-x + c. Hence

(3.7) a-x + c ^ a+-x + c+

holds for x — x0, , xn and hence for all x in the convex closure of
the set of point xQ, , xn. In particular, a x* + c ^ a+ x* + c+ — N.
Similarly, a x* + c*z —N.

Consider now the case where x* is not in the convex closure of
the set of points x0, **-,xn. Let B denote the convex closure of x*
and x0, , xn, so that B is bounded by a polyhedron. Since x0, , xn

are not contained in an (n — l)-dimensional plane τrΛ_i, the set BczRn

has interior points. Thus there are n edges on the boundary of B
terminating at x*. Suppose that the enumeration of xQ,---,xn is
such that the line segments [#*#,•], where j = 1, * ,n9 are on the
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boundary of B. Thus B contains the closed "simplex" JB* with
vertices x*,xu , xn.

Suppose, if possible, that xoeB*. Let πn_λ be a supporting
(n — l)-dimensional plane (in Rn) of Ω through the point x0. Then
the face xl9 , xn of B* is not on πn_x (for otherwise x09 , xn e ττ%_1).
Also, x* $ πn_i since x* e Ω. Thus no face of B* is on πn^ and, since
xc is not a vertex of J3*, 7ΓW_! is not a supporting plane of J3*.
Hence πn_x separates at least one pair of vertices of -B*. But this is
impossible since πn_x supports Ω. Hence xo<£B*.

Consequently, B is the union of two simplices, J5* with vertices
xn and Bo with vertices xQ with the commonX , Xij

face xl9 9xnm Thus the diagonal [xox*] of B meets the face xl9 ,xn

of B at some point. Consequently, x* is in the convex closure of
the set of points on the n half-lines x0 + t{xό — xo)9 where t ^ 0 and
j — 1, , w. Let π + : 2 = α+ # + c+ be a supporting hyperplane of
Ω(x*9N) through the boundary point (xO9<p(xQ))eC(x*9N). Then (3.7)
holds for x — x0, , xn, hence on the half-lines x — x0 + t(xό — xo)9t ^ 0
and j — 1, , n9 and consequently for all points (including x = x*)
in the convex closure of the set of points on these half-lines. Thus,
as before, α a;* + c rg α+ #* + c+ — N. Similarly a x* + c ^ —N.
By (a), this proves that φ satisfies an (n + l)-point condition.

(d) (n + l)-point condition => BSC.
Let φ(x) satisfy an (n + l)-point condition with a constant K.

Then φ(x) satisfies a 3-point condition with constant K by (b). Let
τr2 c Rn be a 2-dimensional plane containing an interior point x* e Ω9

and (f, rj) rectangular coordinates on ττ2. Let (f0, T̂ O), (fi, ^ ) , (<f01, ̂ Oi) be
the (f, ^-coordinates of points x0, xl9 x01 of ΓΓ}π2,

(3.8)

(3.9)

Ύji —η φ(Xi)

Then, by Lemma 3.1, there exists a constant N such that

(3.10) z δ o ( x o , x o u x j δ i ξ , y , z ) S 0

for \z\^N and all points (f, )?)6fln ττ2. It follows from Corollary
2.1 that φ(x) satisfies a BSC (for if the origin of the (£, ̂ -coordinate
system is chosen at x* e Ω f) π2, then (2.11) and (3.10) with (ξ, η) = 0
are equivalent). This completes the proof.
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4* Smoothness of φ(x). It will be shown that if φ satisfies a
BSC, then its smoothness (in some sense) is similar to that of a
convex function.

COROLLARY 4.1. Let Ωa Rn be a bounded open convex set and φ(x)
a function on Γ — dΩ satisfying a BSC. Let π2 be a 2-dimensional
plane in Rn containing an interior point of Ω, Γol — π2Γ) Γ, and

(4.1) Γ01:x = x(s)

an arclength parametrization of Γ0l9 Then

(4.2) ψ(s) = φ(x(s))

has a derivative dψ/ds except on a set of s-values which is at most
countable.

It turns out that when one imposes additional smoothness con-
ditions on Γ, the required smoothness on a function φ satisfying a
BSC is correspondingly increased.

COROLLARY 4.2. Let Ω c Rn be a bounded open convex set and
φ(x) a function on Γ — dΩ satisfying a BSC.

( i ) If ΓeC1, then φ(x) e C\
(ii) If Γe O \ then φ(x) e C l λ .
A function on an open set A c Rn is said to be of class C l λ if

it has continuous, first order, partial derivatives which are uniformly
Holder [or Lipschitz] continuous of order λ, 0 < λ < 1 [or λ = 1] on
closed spheres in A. The definition of a hypersurface Γ c Rn+1 of
class C1 λ or of a function φ(x) on Γ of class C1)λ is analogous.

REMARK. Let φ(x) satisfy a BSC and let the conical surfaces
C(x*,z*), 2* = ±N, have the equations

C(x*, ±N): z = τ±(x) for all x

[cf. the proof of Theorem 2.1]; so that τ±(x) = φ(x) for xeΓ. Then,
in case (i) of Corollary 4.2, τ±(x) has continuous partial derivatives
except at x = x*; in case (ii), these partial derivatives are uniformly
Holder continuous of order λ on compacts not containing x — a?*.
Thus suitable modifications of τ±(x) near x = x* give functions on Rn

which are respectively of class C1, C1 λ and which are identical with
φ on Γ.

The arguments in [5] show that if Ω is uniformly convex (whether
or not Γ 6 Cljl) and if φ is the restriction to Γ of a function on Rn

of class C1'1, then φ satisfies a BSC; cf. [8, 625-628] and [2], where
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Γ and φ are of class C2. Conversely, if Γ e C M (whether or not Ω
is uniformly convex), then, by Corollary 4.2 (ii), a necessary condition
for φ to satisfy a BSC in that φ e C M . Thus we have

COROLLARY 4.3. Let Ω e Rn be a bounded, open set with a
uniformly convex boundary Γ — dΩ of class C M . Then a necessary
and sufficient condition for a function φ(x), x e Γ, to satisfy a BSC
is that <p(x) e C M .

Γ is called uniformly convex if there is a constant c > 0 such
that through every x0 e Γ', there is a hyperplane πn_λ c Rn satisfying
dist (x, π % _ 0 ^ c\\x — xo\\2 f o r x e Γ.

The "sufficiency" does not hold if Ω is not uniformly convex, but
is only strictly convex. For example, let n — 2 and let the "lower"
portion of Γ be on the curve x2 = (xιf near the origin and let
φ(x) = (x1)2 for (x\ x2) e Γ. Then there is no choice of constants α1, a2

such that a'x1 + α2α;2 ^ (x1)2 for small | x1 \ and (a?1)2 = I %211/2 & 0.

The following remark will not be used below but it may be of
interest to note that if ΓeC2,φe C2 and if Γ01: ζ = ζ(s), rj == ̂ (s) and
ψ(s) are is in the proof of Corollary 4.1 below, then condition (2.11)
is equivalent to

ψ(s) - z* ζ{s) η{s)

ψ'(8) ξ'(8) 7/(8)

Ψ"(S) £»(*) V"(S)

for all 2-dimensional plane sections ΓQ1 of Γ. This fact makes it clear,
for example, that if Γ eC2

f φe C2 and Ω is uniformly convex, than φ
satisfies a BSC.

Proof of Corollary 4.1. Choose a coordinate system in Rn such
that τr2 is the plane x3 — — xn — 0 and with the origin at a point
x* in τr2 Π Ω. Write (ί, 57) in place of (x\ x2). Let ζ = f(s), 37 = ^(s),
where 0 ^ s ^ s0, be an arclength parametrization of Γol.

Choose an s-interval, say 0 g s g a < sOy such that the radius
vector [the line from the origin to (£(s), η(s))] moves through an angle
less than π as s varies from 0 to a. Then, if ξ, η is a pair of
arbitrary numbers and 0 g sx < s2 g α, the linear equations

df(s2) + ^ ( s O = ζ , Ciί(s2) + c2^(s2) = η

have a unique solution for cu c2. In the terminology of Beckenbach
[1], this means that the linear family F of functions c£{s) + c2η(s) is
a 2-parameter family on the interval 0 ^ s ^ a.
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Let ψ(s) be defined by (4.2), i.e.,

Then (2.11) implies that ψ(s) — z* is F-concave and ψ(s) + z* is F-
convex, where z* = N > 0. In other words, if

(4.3) /±(s) - c1±f(8) + c2±^(s)

is a linear combination of £(s), η(s) such that /±(s) = ψ(s) + 2;* at
s = sl9 s2 where 0 ^ st < s2 ^ a, then /+(s) ^ α/r(s) — 2*, /_(s) ^ ^(s) + 2*
for §i ίg s ^ s2; cf. the proof of Corollary 4.2, n > 2, below.

Let 0 < s0 < (X. By [6], there exist elements (4.3) of F which
support ψ(s) =F 2* in the sense that

(4.4) /±(s0) = ψ(s0) T z* ,

(4.5) fjβ) - z* ^ f (s) ^ /+(s) + z* for 0 ^ s ^ α

see also [3] for generalizations and references to Bonsall, J. W. Green
and Reid.

Since Γol is a (plane) convex curve, ζ(s) and η(s) are differentiate
except possibly on a countable set of s-values. Choose s = sQ so that
f = df/cίs, ^' = dη/ds exist at s — s0. Note that

[Ms) + «*] - [fΛs) - «*]

is nonnegative for 0 ^ s ^ a and vanishes at s ~ sQ. Hence fi(s0) —
fL(s0). Consequently (4.5) implies that φ'(s0) exists (and is /+(s0) =
/I(So)). This proves Corollary 4.1.

Proof of Corollary 4.2, ^ = 2. It is clear from the proof of
Corollary 4.1 that if Γ e C1, then ^'(s) exists for all s. It is also
clear that the coefficients c1±, c2± in (4.3)-(4.5) are determined by the
linear equations

Ci±ζ (So) + ^2±V (So) = ^ (So) + ^* ,

Ci±5'(s0) + C2±η'(s0) = α/r'(s0) .

The determinant ζ(so)η'(sQ) — f'(so)^(so) is bounded away from zero for
0 <* s0 ^ a. Also α/r(s0) q= z*,ψ'(s0) are bounded (in fact, the boundedness
of ψ'(sQ) follows from the fact that φ(x) is uniformly Lipschitz con-
tinuous). Thus there exists a constant M such that the functions
1 c1± I, I c2± I of s0 are majorized by M.

For δ > 0, let

ω(δ) = sup (I ξ'(s) - ξ'(8ί) I

for I s - sx I g <?, 0 g s < s1 ^ α. Thus
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\fL(8)-fϊ(80)\£Mω(\s-8Q\).

Consequently, by (4.5),

I ψ(s) - f (β0) - φ'(so)(s - s0)

Interchanging s, s0 and adding gives

This proves Corollary 4.2 if n = 2.

Proof of Corollary 4.2, n > 2. When w > 2, it is necessary to
estimate the degree of continuity of the directional derivatives of
φ not only in the direction of the derivative but also in directions
orthogonal to it.

It suffices to deal with φ(x) in a neighborhood of a given point
of Γ. Choose a coordinate system in Rn with the origin at such a
point and such that Ω is in the half-space xn ^ 0. Then, in the
neighborhood of the origin, Γ has a parametrization of the form

(4.6) for \xJ s* e, 1 =

where ζ is of class Cι or C1>λ in case (i) or (ii).
Write ξ for (ξ\ , Γ"1), where ξ* = x* for i = 1, , n - 1 and

ψ(ξ) — φ(χ) = ̂ ) ( | j ζ(j)) for a; e JΓ. It has to be shown that ψ is
correspondingly of class C1 or Clfλ. The proof of Corollary 4.1 shows
that ψi — dψ/dζ\ i — 1, « , ^ — 1, exist at every point.

Let 7 > 0 be chosen so that

(4.7) * = (0, . . . , 0 , 7 ) e f l .

Let xy = (fy, ζ(fy)) = (^-, , a j), where i = 0,1,
of Γ. The analogue of (3.4) is

•, n, be ^ + 1 points

(4.8) Λ(*o, •••,«.) = (-

and that of (3.5) is

(4.9) J(&*,s) = (-1)%4

/v»l /y Ί
«V2 *VQ

/y." /γf
Jj\ J/Q

n^n /«»
tΛ/2 *VQ

/v»W sy*n

Jjn JjQ

X\

where τ = φ(x0) — ̂  and a;* = (0,

•

•

,0,

XQ

xΓ1

Λ.re—1

7 ) .

χl-

Thus

7

7

7

(3.

τ

9*0 -

φ(*») -

6) holds

z

z

for z
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±N, I x) I S ε, and j , k = 0,1, , n — 1.
In (4.8) and (4.9), consider 7, s, α?A, •••,&« as fixed for the moment

and £0 (or rather f0 = (£j, , gΓ1)) as variable. In (4.9), let τ be
replaced by

(4.10) /±(ί0) - go h ± ξ ϊ + cn±[ζ(f0) - 7] ,

where c1±, •• , c Λ ± are chosen, if possible, so that

(4.11) f±(ξj) = ^(αj j ) — «, J2J = ±N, j = 1, * ,n .

Then the analogue of the determinant (4.9) vanishes and so, Δ(x*,z)
is not changed if the last column is replaced by τ — f±(ξ0), 0, -- ,0.
In this case, we conclude from (3.6) that τ = φ(x0) + N satisfies

=P ΛΓ) - /±(f0)] s o .

Thus according as

(4.12) z/0(x0, x1? , a?n)J0(α?*, xu , xn) > 0 or <0 ,

we have

(4.13) φ(xo) - N £ f+(ξ0) or φ(x0) - N ^ f+(ξ0)

and

(4.14) φ(Xo) + N ^ Mξ0) Or φ(Xo) + N£fMo).

If the points x\, , α?% are not in an (w — 2)-dimensional plane
7Γ%_2, then Λ0(x*, xl9 , x%) =£ 0. It will be supposed that xlf , xn

are enumerated so that

(4.15) Λ(»*,»i, ••-,»,)> 0 .

Then the coefficients C£± of (4.10) can be uniquely determined so that
(4.11) holds. The alternative (4.12) is now equivalent to

(4.16) 40(a?0, xlf , O > 0 or <0 .

This, in turn, is equivalent to

the line segment [x*x0] does not or does meet the

(4.17) πn_x determined by xl9 —, xn] i.e., x0 is or is not

on the same side of πn_λ as x*.

Let x1 = (ξl9 ζfa)) be fixed and h > 0 small. Choose ξ5 = heά_l+ ξl9

for i = 2, , w, where ey — (0, , 0,1, 0, , 0) and the 1 is in the
i-th place. Correspondingly, x5 = (ξj9 ζ ( ^ )). Then (4.15) holds (e.g.,
if χ1 — 0, then A{x*, xu , a;Λ) reduces to jh^1 > 0). The equations
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(4.11) for ck± are equivalent to

~ 7] =Σ±
(4.18) A = 1

ci±Λ + cn±[ζ(ξj+ί) -

for i = 1, , w — 1. For these choices of c ft±, the first inequality
in both (4.13), (4.14) hold if the segment [x*#0) does not meet πn^
containing xu , xn.

If the last n — 1 equations of (4.18) are divided by h and h—> 0,
it follows that the solutions c1±, * , c Λ ± of (4.18) tend to the unique
solutions of the equations

Σ cklζi + c . j ζ f o ) - 7] - ψ(ςx) T N,
(4.19) fc=1

Cj

for j = 1, , ^ — 1, where ζ, = dζ/dζj. Also, the 7Γ%_1 containing
a?i, , xn tends to the tangent plane of Γ at xl9

Thus, if c1±, •• , c Λ ± are chosen as the solution of (4.19), then, in
addition, to (4.19),

(4.20) /__(£) - N £ ψ(ζ) ^ MS) + N

for all ξ, \ξj\ ^ e. Actually, one first obtains (4.20) for all ζ such
that x = (ς, ζ(<J)) is not on the tangent plane πn_x to Γ at cc1# By
continuity considerations, (4.20) holds also for the limits of such points.
On the other hand, if πn_x Π Γ contains interior points, then φ{x) is
a linear function of x e πn_x Π Γ and (4.20) is trivial for those ζ for
which x = (f, ζ(ζ)) e πn_t Π Γ.

Let ω(δ) be a monotone majorant for the degree of continuity of
ζ. — dζ/dξj, j — 1, -,n — 1. Then arguing as at the end of the proof
of the case n — 2, it is seen that there is a constant M such that
the degree of continuity of the partial derivatives of f±(ξ) — N is
majorized by Mω(δ). (For in the matrix of coefficients of (4.19), the
first row is the vector x1 — x* from the point x* to the point x1 e Γ,
the second row is the vector (1,0, , 0, ζ ^ ) ) which is a tangent
vector to Γ at xu etc., so that the determinant of this matrix is
bounded away from zero). Thus,

(4.21)
n—1

Σ Ψk(ξd(ξk - ξϊ)
k=l

g Mω(δ)δ ,

where

(4.22) δ = max (I ί 1 --^

As in the proof in the case n = 2, this implies that

•n—l I

Ί I



510 PHILIP HARTMAN

Σ [ψ *(f) - Ψk(ζi)](ξ" - £ϊ) S 2Mω(δ)d
k = l

In particular,

(4.23) I ψk(ξ) - ψk(ξ + δβ&) I g

The relations (4.19), (4.20) show that

(4.24) I [f+(ξ) + N]~ [/_(£) ~N]

Let k Φ j and let

fi, £* = & + Seif ζs = ζί + δe3- + δek, ξ4 = fx

be the vertices of a square. By (4.20), the quantity

is bounded from above by

ί/+(£i) + N] + [/+(£,) + N ] - [/.(&) ~N]~ [/_(£,) - ΛΓ]

and there is an analogous bound from below. Hence, by (4.24),

Since (4.23) implies that

) \ S 2Mω(δ)δ

and similar relations hold if ψ is replaced by / + , it follows that

δ I t , ( ί i ) ~ t*(&) I ^ δ IΛfcίft) ~ /+*(?«) I + 16Mα>(25)5 .

Consequently

I ψ k ( ξ i ) - ψ k ( ξ i + δej) I g 18Mω(2δ) k Φ j .

This, together with (4.23), proves Corollary 4.2 for n > 2.
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