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HOLONOMY GROUPS OF INDEFINITE METRICS

H. Wu

This paper studies the holonomy group of a riemannian
manifold whose metric is allowed to have arbitrary signature;
it is meant to supplement the works of Borei, Lichnerowicz
and Berger on riemannian manifolds with positive definite
metric. We first show that each such holonomy group can be
decomposed into the direct product of a finite number of weakly
irreducible subgroups of the pseudo-orthogonal group. Those
weakly irreducible subgroups which are not irreducible (in the
usual sense) we call S-W irreducible. So our investigation is
reduced to that of these S-W irreducible holonomy groups.
We actually construct a large class of symmetric spaces with
S-W irreducible holonomy groups and for the nonsymmetric
case, we give an indication of their abundant existence. On
the other hand, not every S-W irreducible group can be realized
as a holonomy group; this fact is shown by an explicit example.
We then study the closedness question of S-W irreducible sub-
groups in general, and of holonomy groups in particular. It
turns out that algebraic holonomy groups (and hence S-W irre-
ducible subgroups in general) need not be closed in Gln but
that holonomy groups of symmetric riemannian manifolds of
any signature are necessarily closed. Sufficient conditions are
also given in order that an S-W irreducible subgroup be closed.
Finally, we produce various counterexamples to show that many
facts known to hold in the positive definite case fail when the
metric is allowed to be indefinite.

In two exhaustive works [2], [3], Berger has given a complete
classification of possible candidates for irreducible holonomy groups of
riemannian manifolds. (In this paper, "holonomy groups" is synonymous
with "the identity component of the homogeneous holonomy group"
and riemannian manifolds carry metrics of arbitrary signatures. For
all relevant conventions and definitions, see Section 2). Since Borel
and Lichnerowicz have shown [4] that for the positive definite case,
every holonomy group is the direct product of irreducible subgroups of
the orthogonal group, the consideration of irreducible holonomy groups
alone is sufficient for that case. On the other hand, if the metric is
indefinite, the situation becomes different. Defining a subgroup of
the pseudo-orthogonal group PO(V) to be weakly irreducible if and
only if it leaves invariant only proper degenerate subspaces of V, we
have the following simple but basic result.

THEOREM 1. The holonomy group of a riemannian manifold is
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the direct product of a finite number of its normal subgroups which
are all weakly irreducible. This direct product decomposition is
unique (up to order) if the holonomy group possesses a nondegenerate
maximal trivial subspace (see Section 2 for definition).

(This theorem is closely related to those stated in Appendices I and
II at the end of the paper.)

The main concern of this paper will be this class of weakly irre-
ducible subgroups. The sub-class of irreducible subgroups is already
covered by Berger's papers so that we wish to exclude it from our
consideration from now on. We call a weakly irreducible group strictly
weakly irreducible if and only if it leaves invariant a proper (degenerate)
subspace. The first natural question to ask is whether S-W irreducible
(abbreviation for strictly weakly irreducible) holonomy groups exist at
all. It is easy to see that the holonomy group of a two-dimensional
Lorentz manifold is necessarily S-W irreducible because the isotropic
directions are preserved. But dimension 2 has a habit of being the
exceptional case in the general theory, and one would like to have less
trivial examples. The following theorem gives an abundant supply of
them. First we describe a general procedure of sending an arbitrary
Lie algebra g to a symmetric riemannian manifold ikf(g). Let g* be the
vector space dual of g considered as an abelian Lie algebra, and let g'
be the semi-direct product of g and g* with respect to the dual of the
adjoint representation of g. Then the natural pairing between g and
g* induces an inner product on g' which has the same number of
positive and negative squares and which turns out to be ad-invariant.
Once we have this g' equipped with an ad-invariant inner product, we
can imitate the case of compact Lie algebras to construct a symmetric
space M(Q), diffeomorphic to the simply connected group corresponding
to g\ (Cf. [8] for details). With a minor refinement of this technique
and restricting oneself to solvable g, one has the fairly precise:

THEOREM 2. To each solvable Lie algebra g of dimension d can
be associated a riemannian manifold of dimension 2d such that
M — Mo x M1 x x Mk (isometry) where Mo is isometric to an
inner-product vector space, and each M{ for i > 0 is a S-W irreducible
symmetric space diffeomorphic to a euclidean space. If [g, £2?Q] Φ 0,
then k > 0. If furthermore [g, £^2g] Φ 0, then the holonomy group
of at least one of the Mis is solvable but not abelian.

In particular, when g is the matrix algebra of super-triangular
matrices with trace equal to zero, then this M is itself S-W irre-
ducible, i.e. MQ = {0}, and k = 1.

The explicit construction of M from a given g can be quite elabo-
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rate, and it is in general rather tedious to compute the holonomy
groups of the Mis. For this and other reasons to be made clear
presently, we now consider two concrete examples which are not con-
structed by this procedure.

EXAMPLE 3. (a) Rs can be made into a S- W irreducible riemannian
symmetric space whose holonomy group is the following one-parameter
subgroup of SO(2, 1): relative to an orthonormal basis {eu e2, β3} of type
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(b) There exists & S-W irreducible kahlerian symmetric space diffeo-
morphic to RA whose holonomy group is the following one-parameter
subgroup of SO(2, 2): relative to an orthonormal basis {eu e2, β3, e4} of
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Our interest in these spaces lies in the fact that they serve as
a good indication of how pathological S-W irreducible manifolds can be,
i.e., pathological in the light of corresponding situations of irreducible
manifolds. One knows that the full isometry group of an irreducible
(positive definite) riemannian symmetric space is semisimple and coincides
with its full group of affine diffeomorphisms. It will be shown in
Section 7, however, that the full isometry group of the space in Ex-
ample 3 (a) is solvable and strictly smaller than the group of all affine
diffeomorphisms; also the algebra of the full isometry group of the
space of Example 3 (b) has a nontrivial Levi decomposition. Example
3 (b) is of interest in other connections as well: we shall show with
its help that the condition for uniqueness of decomposition in Theorem
1 cannot be relaxed, (thus answering at the same time the question
raised at the end of [15]). Note first that this holonomy group has
an isotropic maximal trivial subspace span {ex + β3, e2 + e4}, i.e., it acts
trivially on this subspace and on no bigger one. Consider M — JB4 x R\
where each factor is equipped with the riemannian structure of
Theorem 3 (b). Choose an orthonormal basis {eu , βj (resp. {fl9 ,/J)
of (Ri, 0) (resp. (0, jβj)), where 0 denote the origin, of the type ap-
pearing in Theorem 3 (b). Then corresponding to this decomposition
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of Λί(o,o) = Ro 0 Ro, we get the usual decomposition of the holonomy
group of M at (0, 0), namely, H = H1 x i72, where i ^ (resp. JBΓ2) is the
holonomy group of the first (resp. second) factor. Now let

W1 = span {e1 - (Λ + / 3 ), e2, β3 + (f + / 3 ), β4} ,

W2 = span {/i + (βi + e3), /2, / 3 - (ex + e3), / J .

Then Λf(o,o) = FPi © TF2 is another decomposition of M(o,o) into mutually
orthogonal nondegenerate subspaces which are each preserved by the
holonomy group. There is, consequently, a corresponding decomposition
of the holonomy group (cf. Appendix I) H — Hi x Hi, such that Hi
(resp. Hi) acts weakly irreducibly on W1 (resp. W2) and acts trivially
on W2 (resp. Wλ). Here are, then, two distinct decompositions of the
holonomy group as a direct product of its normal subgroups. Next,
we shall show—still using Example 3 (b)—in a very striking way the
necessity of the nondegeneracy assumption in the de Rham Decomposi-
tion Theorem, ([15] especially Section 5, (3)). Returning to the notation
of Theorem 3 (b), let UΊ — span {ae1 + βe3, e2 + βj, U2 = span {ex + e3,
ye3 + δe4}, a, /9, T, δ e R. Now if a Φ β, 7 Φ δ, it is easy to see that
j?o = ffi φ U2 and that both Uu U2 are left invariant by the holonomy
group. (If we let a = ~/9, 7 = —δ, Ux and U2 are even both isotropic.)
But we know that R4 in this riemannian structure cannot even be
affinely diffeomorphic to a direct product because of the weak irre-
ducibility of its holonomy group (Main Theorem of [16]). So, we have
an example of a manifold such that its holonomy group leaves in-
variant an infinite number of pairs of supplementary subspaces, but
it is not affinely diffeomorphic to a direct product.

Theorem 2 and Example 3 suggest that there are probably too
many indefinite riemannian symmetric spaces to be classified completely.
For the same reason, it is unrealistic to expect to be able to enumerate
all S-W irreducible subgroups of PO(V) as possible candidates for
holonomy groups. One suspects, however, that not every S-W irre-
ducible group can be a holonomy group, and the following confirms
this.

EXAMPLE 4. There are both closed and nonclosed subgroups of
SO(5, 1) which are S-W irreducible but can never be the holonomy
groups of riemannian manifolds.

This example shows, incidentally, that S- W irreducible subgroups
are not necessarily closed in the general linear group. Since Borel-
Lichnerowicz [4] proved that all holonomy groups in the positive
definite case are closed, one would like to know if this is still true in
the indefinite case. This is a fairly delicate question and we handle it
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exclusively via the Lie algebra. Our solution to this problem is not
complete, but we have probably exhausted all that this algebraic ap-
proach promises to give. The "positive" result in this direction is the
following.

THEOREM 5. The following subgroups of the general linear group
are closed:

(a) Reductive weakly irreducible subgroups.
(b) Weakly irreducible subgroups of PO(V), dim V < 6.
(c) Holonomy groups of affine symmetric spaces.

Part (c) of course includes as a special case the fact that holonomy
groups of riemannian symmetric spaces are closed in the general linear
group. It should be noted that even in the riemannian case, (c) is not
a consequence of (a), as Theorem 2 shows. (In Section 5, a symmetric
space with solvable but nonabelian holonomy group will actually be
constructed explicity as a by-product of something else.) In view of
the fact that the holonomy groups of symmetric spaces can have such
varied properties algebraically, that it should nonetheless be closed
seems quite surprising. Parts (a) and (b) are also optimal, as is clear
from the other results given herein. Our answer to the general question
of holonomy groups of nonsymmetric riemannian manifolds is a partial
one:

EXAMPLE 6. There exists an algebraic kahlerian holonomy group
(see Section 2 for definition) which is a nonclosed subgroup of SO(4, 2).

The question of when an algebraic holonomy group can be realized
as an honest holonomy group of a manifold is a deep and unsolved
problem, (unsolved even in the positive definite case). On the other
hand, we have been able to produce numerous nonclosed algebraic
holonomy groups in various dimensions (that of Theorem 6 being the
simplest) and it seems to us unlikely that the holonomy group of
a general riemannian manifold needs to be closed. Using Nijenhuis'
Theorem [12] (or p. 153 of [10]), one can of course try to substantiate
this statement, but the large amount of computations required for this
task absolutely defeats us.

In the foregoing, only holonomy groups of symmetric spaces have
been considered because they are the easiest to compute. It is also
not difficult to construct nonsymmetric riemannian spaces in low dimen-
sions with S-W irreducible holonomy groups. We give the following
theorem as a sample with a view to counteract the impression that
S-W irreducibility is a special property of symmetric spaces.
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EXAMPLE 7. There exists an analytic riemannian structure on R*
with the same holonomy group as that of Theorem 3 (a). This
riemannian structure is NOT symmetric.

The paper is organized as follows. Section 2 summarizes all
definitions and conventions employed throughout this paper. Sections
3-6 give the proofs of the above theorems. The last section, Section
7, contains further comments of a general nature. In two appendices
at the end of the paper are to be found some additions and minor
corrections to [15] and [16].

Finally, I would like to express my deep sense of gratitude to
Professor Armand Borel; his help proved invaluable in the final stage
of preparation of this paper.

2* The following is a list of definitions and notational conventions.
All manifolds and all geometric structures on them are C°°. All mani-
folds and Lie groups are assumed connected unless otherwise specified.
An affine diffeomorphism between two affinely connected manifolds (i.e.
manifolds carrying an affine connection) is a diffeomorphism that pre-
serves the connections. We shall be interested only in globally
symmetric spaces (affine, riemannian or hermitian) so that the adjective
"globally" will be omitted everywhere. Inner products on vector spaces
as well as metrics on manifolds can have arbitrary signatures. A basis
{#i, *' , ed\ of an inner-product space is said to be orthonormal of type
( + , , + , —, , —) OP + 's and (d — p) — fs) if and only if <ei? e3) = δiά

for 1 ^ ί, j ^ p, <em, O = -δmn for p + 1 ^ m, n ^ d, and <βα, ββ> = 0
if a Φ β. A subspace of an inner-product space is said to be non-
degenerate (resp. degenerate, isotropic) if and only if the restriction
of the inner product to it is nondegenerate (resp. degenerate, iden-
tically zero.)

We denote Lie groups by capital Latin letters G, H, K and their
Lie algebras by the corresponding small German letters g, ϊ, £). As
usual, we denote the n-t\ι derived algebra of g by ϋ^wg, i.e. i^'g =
cgίQ — [Q9 g\f ϋ ^ g = &(&n+lQ). Ad and ad denote the adjoint represen-
tations of G and g. We introduce an abbreviation in this connection.
Suppose a Lie subgroup Kξ=G leaves a subspace p of g invariant via
the Ad action, then we denote by Ad^(K) the subgroup of Gί(p) which
is the restriction of Ad(K) to p. Similarly for ad.

In general H is the generic symbol of holonomy groups and £), of
holonomy algebras. We denote (the identify component of) the full
group of isometries of an inner product space V by PO(V) when we
are not concerned with the signature, and by SO(p, d — p) when we
are. The corresponding Lie algebras are then po(V) and 3o(p, d — p).
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PO(V) is a subgroup of the automorphism group Gl(V) of V which is
usually identified with the group of all nonsingular d x d matrices in
the presence of a basis; £o(F) is then a Lie subalgebra of the full
matrix algebra gί(F), which is identified via the same basis with
Hom(F, F).

A subgroup G of PO(V) is said to act weakly irreducibly on Fif
and only if the proper subspaces of V left invariant by G are all de-
generate; if furthermore G does leave invariant a proper (degenerate)
subspace, G is said to act strictly weakly irreducibly (abbrev. = S-W
irreducibly). We also refer to G as a weakly irreducible group (resp.
S-W irreducible group). Note that if a Lie group acts on a vector
space, so does its algebra in a natural way. Thus, all concepts intro-
duced pertaining to the group can be transferred verbatim to the
algebra. The maximal subspace on which G acts trivially is called the
maximal trivial subspaces of G in V. Most of the time, we will deal
with a holonomy group H; in that case H will be understood to be
acting on some tangent space of the manifold and references to the
latter will generally be omitted. Also, we follow the standard practice
of defining a manifold to be weakly (resp. S-W) irreducible if its
holonomy group is weakly (resp. S-W) irreducible.

We now give a series of definitions centering around curvature
tensors. If F: U Λ U—> W is a linear map between vector spaces, we
denote the value of F at x Λ y by Fxy.

DEFINITION 1. A curvature tensor on a vector space V is a linear
map R: V A F-» Horn (F, V) such that

(1) Rxyz + Ryzx + Rzxy - 0 , Vx,y,zeV.

Now suppose on V is defined an inner product <, >. R is called a
riemannian curvature tensor if and only if it further satisfies

(2) <JRxyz, w > = - <z, Rxywy , Vx,y,z,w e V .

(In other words, if and only if R takes value in po(V).) If, in addition,
V possesses a complex structure compatible with its inner product, i.e.f

if there exists a J:V—>V such that J2x = —x, and KJx, Jyy = <#, yy,
Vx, y e V, then R is said to be a kahlerian curvature tensor when it
satisfies (1), (2), and

( 3 ) RxyoJ=JoRxy, Vx,yeV.

We recall that a riemannian curvature tensor automatically satisfies
the identity:

(4) <Rxyz, w> = <Rzwx, yy , Vx, y,z,w eV
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and that a kahlerian curvature tensor automatically satisfies the identity:

(5) R j x j y = R x y Vx,yeV.

This will be made use of below.

DEFINITION 2. A connected Lie subgroup H* of Gί(V) is called
an algebraic holonomy group if and only if there exists curvature
tensors {R\ , Rr) on V such that the Lie algebra ψ of H* is exactly
the linear span of the Riy, all x, y e V, i — 1, , r. An algebraic
riemannian (resp. kahlerian) holonomy group is an algebraic holonomy
group such that the {R1, , i?r} are all riemannian (resp. kahlerian)
curvature tensors. Thus, if an algebraic holonomy group is either
riemannian or kahlerian, it is .a subgroup of PO(V).

REMARK 1. The theorem of Ambrose-Singer [1] implies that the
holonomy group of an affinely connected (resp. riemannian, kahlerian)
manifold is automatically an algebraic (resp. riemannian, kahlerian)
holonomy group. The sufficient conditions for the converse to be true
are not known.

DEFINITION 3. A triple {V, R, H} is called a symmetric holonomy
system if and only if R is a curvature tensor on V and if is a connected
Lie subgroup of Gl(V) such that,

(6) ί) = span {Rxy: x, y e V}

( 7) Rh{x)y + Rxh{y) + [Rxy, h] = 0 , vheϊ,x,yeV.

It is called a riemannian (resp. kahlerian) symmetric holonomy system
if and only if R is furthermore a riemannian (resp. kahlerian) curvature
tensor.

REMARK 2. The epithet "algebraic" has been dropped in this defi-
nition because we shall show in the next section that every such H
can actually be realized as the holonomy group of an appropriate
symmetric space.

REMARK 3. Condition (7) corresponds to the requirement in the
geometric situation that parallel translation of curvature is constant
along closed paths, or equivalently, that differentiation of the curvature
matrix function on the holonomy bundle (Section 2 of [15]) by a verti-
cal vector field is zero. It is well-known that every affine (resp.
riemannian, hermitian) symmetric space gives rise to a symmetric (resp.
riemannian, kahlerian) holonomy system as follows: Consider an arbitrary
tangent space Mm of the manifold M at m, and let the curvature tensor
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field evaluated at m be i?, and let H be the holonomy group at m.
Then {Mm, R, H} is the required object. For a proof of [7] or [10];
(6) is implied by the Ambrose-Singer Theorem.

3* In preparation for the proofs of Theorems 2, 3, and 5, we
collect together here all the facts we need about symmetric spaces.
Basic for us is the following generalization of a theorem of Cartan's
due to Nomizu. It is an immediate consequence of formula (9.6) and
Theorems 13.1, 8.1, 10.2, 10.3 of [13].

PROPOSITION 1. Let G/K be a homogeneous space with G connected
and K closed in G, such that the Lie algebras g and f of G and K
admit a direct sum representation g = ϊ φ m, where m is a vector
space, [m, m] ^ ϊ and [ϊ, m] g m. Then there exists a (unique) canonical
connection on G/K such that it is torsionless and the covariant differen-
tial of its curvature tensor R is zero. This connection is complete.
Furthermore, if we identify the tangent space of G/K at the coset H
with m, then R satisfies:

(8) R x y z = [[x,y], z] , Vx,yyzem

where the bracket is taken in go Suppose in addition that on m is
defined an inner product Q which is invariant under Adm(K), then the
riemannian connection of the left invariant metric on G/K induced by
Q coincides with this canonical connection.

Since G/K is complete in this connection, a standard application of
the Ambrose-Hicks Theorem ([9], Theorem 1, p. 224) yields:

COROLLARY 1. The universal covering manifold of G/K in the
canonical connection of Proposition 1 is an affine symmetric space.
This symmetric space is riemannian if Ad(K) leaves invariant an
inner product on m.

On the basis of this, it is easy to manufacture symmetric spaces
with prescribed holonomy group. Thus, take a symmetric holonomy
system {V, R, H} and we form the vector space g = ί) φ V. Define a
linear map [ , ]: g Λ β —* β by:

ί
[hu h2] = bracket in I9 if hl9 A2 e ί)

[hu x] = h±(x) if h e Ij, x e V

[x, y] = Rxy if x, y e V.

This [ , ] satisfies the Jacobi identity because of (7). Thus, g becomes
a Lie algebra with [V9V] = ί) (in view of (6)) and [§, V] S V. Now
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take a simply connected group G with Lie algebra g and let Hr be the
connected subgroup of G corresponding to ί). On g is defined a Lie
algebra involution σ: h + x —• h — x where h e £) and x e V. This in-
volution induces an involution of the group G, which we also denote
by σ. It is clear then that Hr is the identity component of the fixed
point set of σ in G has hence is closed. Furthermore, G/Hr is simply
connected; one may see this either by elementary arguments or by the
fibre homotopy sequence. Finally if R is riemannian, then (2) implies
that <, > on Fis Ad(iϊr)-invariant. Corollary 1 therefore applies and
M — G/Hr is an affine or riemannian symmetric space in a natural
way, depending on whether or not R is riemannian. In addition (8)
and [V, V] = ί) imply that adv(ί)) is the holonomy algebra, which by
definition 3 and formula (9), is just ί) (where, now, the latter is again
considered as a subalgebra of Ql(V)). So the holonomy group Adv(Hr)>
is just H. Summarizing, we have:

COROLLARY 2. If {V, R, H) is a symmetric (resp. riemannian)
holonomy system, then there exists a simply connected affine (resp.
riemannian) symmetric space whose tangent space at a point can be
identified with V, whose curvature tensor is R, and whose holonomy
group is H.

We want to derive another consequence of this general method of
construction. If M is an arbitrary simply connected affine symmetric
space, then we have seen (Remark 3 of Section 2) that one can associate1

with M, in a canonical way, a symmetric holonomy system: {Mm, R, H}
where H is the holonomy group of M. The remarks preceding Corollary
2 show the existence of a coset space G/K which is simply connected
and which has R for its curvature tensorβ Since G/K and M are both
symmetric and have the same curvature tensor at a point, one may
apply the Ambrose-Hicks Theorem to deduce that G/K and M are
affinely diffeomorphic. We identify M and G/K via this diffeomorphism.
Thus we may express the remarks preceding Corollary 2 in yet another
way:

COROLLARY 3. Every simply connected affine symmetric space M
can be expressed as a "coset-space in reduced form," i.e. M = G/K,
where K £ G are connected Lie groups, K is the identity component
of the fixed point set of a certain involution a of G, and furthermore,
if 9 = f φ P, P being the subspace of Q which is the (—T)-eigenspace
of (dσ)e(e = identity) on g, then [p, p] = ϊ. Consequently, the holonomy
group of M is AdJK).

REMARKS 4. The significance of this corollary lies in the assertion
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of the equality: [p, p] — ΐ. In general, one has only inclusion in an
arbitrary coset space representation of M.

4* We proceed to give the proofs of Theorem 2 and the assertions
of Example 3 in this section. First, we need a simple fact:

PROPOSITION 2. Let G be a simply-connected solvable Lie group
and K an arbitrary connected Lie subgroup of G. Thus G/K is
diffeomorphic to a euclidean space.

Proof. It is a well-known theorem of Chevalley [6] that under
the hypothesis of the theorem, G is diffeomorphic to a euclidean space
and K can be represented as a global slice in G, i.e., there exists a
global coordinate system {xl9 , xd} on G such that K = {k:keG,
xp+i(k) — = xd(k) = 0}. From this the proposition is immediate.

Proof of Theorem 2. Let g* be the vector space dual of g, then
the adjoint representation of g into itself defines a dual representation
φ of g in g*:

M0i)0*}(02) = -g*([9i, 02]) , Vgi, 92 e g, 9* e g* .

Give g* the structure of an abelian Lie algebra and let g' be the semi-
direct product g © 9 * of g and g* relative to φ i.e.,

[(0i, 0?), (02, 02*)] = (bi, 02], <P(0I)02* - φ(gt)gi) Vglf 02e g, 0?, 02* eg* .

Following Bourbaki ([5], p. 131), we shall introduce an ad(Qr)-invariant
inner product on g' as follows:

<(9i, 0ί), (02, 02*)> - 0f(02) + 9Ϊ{91) .

It is clear that this <, > is both nondegenerate and bilinear. (Its
signature is {d, d), d ~ dimg.) One verifies easily that:

, g*)}(gί9 gf), (gt, g?)y

- 02*([0, 0j) - 0f ([0, 02]) + 0*([0i, 02])

- ~<(0:, 0?), {ad(gy g*)}(g2, g*)> .

Thus <, > is <xrf(g')~invariant. Let α = g ' φ g ' be the direct product
of g' with itself, then <, > extends naturally to an inner product on
α, which we shall continue to denote by <, > .

By standard practice, we decompose σ into α = ΰ φ #~, where
& = {(0, 0): 0 e gf) and ??- = {(g, ~g):ge g'} are respectively the diagonal
and skew diagonal of α with respect to g\ It is obvious that [#, ̂ ] s ^,
[̂ -, #~] £ t?, [̂ , ^~] § #-, and that the inner product on ^~ inherited
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from α is αeZ(ι?)-invariant. But instead of considering α, we shall take
only the subalgebra cr - [#-, $~] φ &~ of α. (Cf. (c) of Section 7.) The
space M of the theorem will in reality be A/D where A is a simply
connected Lie group with Lie algebra <r~, and D is the connected sub-
group of A corresponding to [#~, ΰ ~]. For the moment, we try to
obtain a nice decomposition of α~. We note that α~ is a solvable algebra
because g is (and so are g' and α).

Let ΰ-~ — ΰ-Γ φ 0 #f be a decomposition of ϋ~ into mutually
orthogonal nondegenerate subspaces such that each is left invariant by
ad([&~, &-]) and on each of which, ad([&~, &~]) acts weakly irreducibly.
Thus,

Clearly the invariance of each #r under α<Z([#~, #~]) implies that c and
each [#~, #~] is a subalgebra. We claim:

(10) ad(ή acts trivially on #~.

(11) If m ^ %, αd([#«, ??~]) acts trivially on ϋ ~.

To prove (10), first note that <αd([di, d,-])̂ ,,,, <^> = <αd([ώm, cϋΛ])d», ώ,->
for all i, j , m, n, and for da eΰ ~, oc ~ i, j , m, n. This can be proved
the same way that (4) of Section 2 is proved on the basis of (1) and
(2). So, symbolically, one may write for i Φ j that

<ad([#7, &?])#*, ^> - <ad([&~, #ϊ])ΰτ, #7> = 0 .

The last equality is because each ϋ-j is invariant under ad([ΰ-~, &~]) and
because the ϋ ~ are assumed orthogonal to each other. Since n is
arbitrary, the above implies that <(αc£(c)#~, &~y — 0, which in turn im-
plies that ad(c)ϋ ̂  — 0 because <, > is nondegenerate. The proves (10).
For (11), note that by Jacobi identity:

Using invariance, αd([#~, ΰ ~])ΰ~ g ^~; since m ^ n, the right side
vanishes, again because of mutual orthogonality of the #j"'s. Since
<, > is nondegenerate on #n, αd([??m, ̂ m])^7 = 0. So (11) is also proved.

We have therefore shown that:

α- = (c © {θ»«i,...,i [^, ^]}) Φ ^Γ Φ Φ #f)

= c Φ ([^Γ, #Γ] φ ^ ) φ φ ([tff, ^f] φ #f)

with the property that ad(c) acts trivially on each ϋ-j to its right, and
that ad([#ΐ, ΰf]) acts trivially on ^7 if i Φ j . We now perform a final
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reduction on α~. Let us group together all the ϋ ̂ 's such that
ad([&γ, &7~\)ϋ-γ = 0, say, these are the first q of them. Let ϊ0 =
c Θ {0i=:i g [#Γ, #Γ]}, and ft = #f φ φ ^~ For the remaining #r's
(IF there are any left), we shall relabel them to be ft, , pk, and shall
denote [#7, #7] by ϊi# We have finally obtained:

The solvable algebra a~ = [ΰ ~, ΰ ~~] φ #~ can be expressed as a

direct sum of its subalgebras:

(12) \ g0 φ φ gfc

where: g0 = !0 φ p0, [p0, p0] = 0, ad(ΐo)po = 0 and for i ^ 1,

Si = ϊ* Θ Pu ϊi = [ft, ft], 0 ̂  αd^f t S ft .

Furthermore:

αd(fi)ft = 0 if ίΦ j

[#-, ί?-] = !o φ Ii φ φ ϊ*, #" - ft θ ft θ θ Pk

We are now in a position to apply Proposition 1 to construct the
required symmetric spaces. For each gα a-= 0, •••,&, take a simply
connected group (?α whose Lie algebra is gα, and let Ka be the connected
subgroup corresponding to ϊα. Since a~ is solvable, gα and therefore
Ga is solvable for each a. Thus Proposition 2 tells us that each Ga/Ka

is diffeomorphic to a euclidean space. Corollary 1 of Section 3 applies.
So, letting Ma = GJKa, formula (8) implies the curvature tensor of
Mo is null, while the curvature transformations of each Mi9 ί ^ 1, acts
weakly irreducibly by virtue of (12). Since the curvature transfor-
mations span the holonomy algebra, the holonomy group of each Mi
is weakly irreducible and we have the existence of a representation M
as the product of a flat factor and a finite number of weakly irreducible
symmetric spaces. We remark that this product decomposition is an
immediate consequence of the de Rham Decomposition Theorem [15],
and we need not have obtained (12) and (13) first. But for the other
assertions, it is convenient to have the latter, as we shall see right
away.

First, we settle the existence of the Mi9 for i ^ 1, under the
hypothesis that [g, ϋ^g] Φ 0. (Thus we are proving [g, ϋ^g] Φ 0 => k ̂  1.)
This is equivalent to showing k 2: 1 in the decomposition (12) of or.
Now, fg, ^ g ] Φ 0 => [g', ̂ g ' ] Φ 0 => [#~, [ΰ ", #-]] Φ 0, all of those im-
plications being trivial from the relevant definitions. By (13), we have
then, φi=1,...,fc [pi, ϊ j Φ 0. By (12), this is equivalent to k ^ 1.

If now [g, ^ 2 g ] Φ 0, then one obtains as above that
[#-, ^([^~, ^"])] ^ 0. By (13) and the Jacobi identity, it is clear that,
φi=o,...,fc [Pi, [ϊ», ϊ<]] ̂  0, or equivalents, 0 Φ φ ^ , . . . ^ αdp.^, ΪJ, or
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equivalents, 0 Φ @<=1,...,fc [ad^, α ^ . ϊ j . But ϊ, = [pif fc] (by (12)), and
(8) therefore implies that ad^ti) is precisely the holonomy algebra of
Mi9 i ^ 1. So the holonomy algebra, and hence the holonomy group,
of at least one of the ikf/s is nonabelian. It is however solvable be-
cause α~ is, and consequently so is each li9 i — 1, , k.

Now, we shall show that in the event that Jc ̂  1, all M{1 i = 1,
•••, Jc, are S-W irreducible. Suppose not, then at least one of them,
say, Mβ is irreducible in the usual sense; for, by definition, each M {

is weakly irreducible to start with. But then by a theorem of Nomizu
(13], [pβ, pβ] ~ ϊβ Φ 0 => Qβ is semisimple. This contradicts the solvability
of the g s.

Finally we prove that the matrix algebra §>t(d) of d x d super-
triangular matrices with zero trace gives rise to a S~W irreducible
manifold M. As usual denote the vector space dual of §>i(d) by 3t(ώ)*
and let g = §>t(d) © §>ϊ{d)* (s.d. product). By the above construction of
the manifold, (especially (12) and (13)), it suffices to prove that ^ g
acts weakly irreducibly on g via the adjoint representation. We shall
do that, and even a little bit more.

Let Sij denote the d x d matrix whose (ΐ, i)-th entry equals one,
and all other entries equal zero. In the rest of this proof, we adhere
to the convention that all ε^/s considered will have the property that
i < j , and that the diagonal matrices will be explicitly given as eiim

Thus, §t(d) = {εih Σn aiεii- Σn ai = °> ai e Hi a 1 1 h J}> T h e d u a i b a s ί s i n

§t(d)* of the εi5 and ̂ a^^ are defined by:

εi3) = δkiδιk

So, with the same convention on the indices of ε^ as above: §>t(d)* =

{ε**, Σ* <*&*£ Σ* ai = °̂  ai e R> a 1 1 h Λ
To further simplify matters, (ε^ ε^) etc. will denote the transform

of s*ι by εi5 under the dual of the adjoint representation. We also
frequently write εijΊ ε* , etc. in place of (εij9 0), (0, εfy) etc. as elements
of g. In other words, we identify §t(d) with (§t(d), 0) of g, and §t(d)*
with (0, §t(d)*) of g. The following summarizes all bracket operations
in g:

[εij9 ekι] = djk6ii — δiiSkj

[ε(i, εsi] = 0

[efj, ε y = 0

lεπ> ε p J = ε i i ε r i ε r ; — ~ °ii

[επ, ε/r] = ε π ε^ = ε*
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[ δ i i . ε * i l = ε a ε π = 0 ϋ i Φ k , j Φ l

[s t i> ε*-] = εχse*s = 0 if i > j

[ε( i, ε* ] EΞ εiiS* = -ε* if i < j

[ε i r, ε*] Ξ ε { ιε* = 0 if i < j

ίε*v s # Ξ ε i i e ^ = ε*r i f * > 0
leti, ε*] = ε^ ε* = 0

— r C *

We shall make extensive computations on the basis of this set of
formulae and shall not explicitly refer to them again. The first trivial
consequence of this is:

= {εij9 efj, Σi «A*: oίi G R, ^ a, = 0, all i, i} .

Now assume g — ί> φ q, where p, q are vector spaces such that:

( * ) p, q are invariant under αd(ϋ^g).

(From now on, ad will denote the adjoint representation of g.)

(**) ϊ>nq-{0}

(***) <ϊ>,q>=0.

On the strength of these a assumptions alone, we shall prove that one
of p and q must be zero. This is clearly stronger than the statement
that g is weakly irreducible under ad(£2ΓQ), so that once this is done,
we have proved the theorem. The crux of the matter is contained in
the

LEMMA. I/g = ί>φq such that (*)-(***) are satisfied, then all
elements of the form e^ — $h , ί < j , are either in p or in q.

We first prove this lemma. Since the case d = 2 is quite easy to
verify directly, we assume henceforth that d ^ 3. For the moment,
consider εn — ε22 and suppose

εii - ε22 - ( ( Σ a&λ + Σ aΦa, Σ MΛ + Σ βφίΣ
φ ((1 - ajεn + ( - I - α2)ε22 - X α.ε,, -

ί^3

where Ae p, ΰGq, Σ ί ^ i ^ ^ 0 ^ Σ<=i&i = 0. Of course, we aim at
proving that all α:o , βij9 bu and all α̂  for i ^ 3, in fact vanish. First
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note that if v = Σ* x,εiU xi e R, then (adεmn)(v) = (~xmn + αΛn)εWΛ. Let
now m, n ^ 3, then

= ((-amm + αΛΛ)εWΛ + (α<Zεwn)(0), (adεmn)(h*))

(adεmn)(B) = ((amm - ann)εmn - (adεmn)(g), (adεmn)(h*))

where 0 = Σ * , ; % , ^* = Σί=iM« + Σ ^ ftA> B y virtue of (**), we
conclude that: Vm, w ^ 3, αm m = αΛn, (αdεmj(#) = 0, (αeZεwn)(λ*) = 0.
The second relation implies, as a little reflection will show, that if
ί, j Ξ> 3, aiό — 0 with the exception of a3d, and the third relation implies
that if i, j ^ 3, βi5 = 0 without exceptions. So we may rewrite:

£π — ε22 = A 0 B relative to p 0 q

where

( a2e22 - α^ + ^2 (ε33 + + εdd)

d

+ Σ 0Liάεiά + α3dε3,, J , hMi + Σ A ^
i=i,2 i=i i= l,2

= ((1 - o^su + ( - 1 - α2)ε22 + α j + ^2 (ε3

Clearly either ax Φ 0 or 1 — ax Φ 0 or both. For definiteness, let ax Φ 0.
Suppose 1 — dj^Φ 0, and we shall deduce a contradiction. Consider:

A, = (adε13)(A) = ( ( ~ α 2

B, = (adεl3)(B) - ((α, -
V

+ ; ^
d — 2

A, = (αdε12)(A) = ((—ax + α2)ε12 + fe^s + + aidεid),

J52 = (αώε12)(B) = ((αx - α2 - 2)ε12 - (α:23ε13 + + a2dεld), -{adειz){h*))

3 + cu12ε13 - a3dε2d, ~(adε23)(h*))

where A* = Σί=i M« + Σ i= I,2/δ ί iε? i. Of course, A ^ G ^ and B ^ q , for
ΐ = 1, 2, 3.

Suppose the coefficient of ε13 in Au Bx are both nonzero. Apply
(adεu) to both A1 and B ly and we get that ε 1 4e^Πq, which is absurd.
So at least one of the coefficients of ε13 in Al9 Bx is zero.
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Case 1. — αx — (αx + a2)/(d — 2) = 0 or, a1 — a2 — dalm We again
have to consider two sub-cases separately.

Case la. dax Φ 2. Then — at + a2 ~ — daγ Φ 0 and αx — α2 — 2 —

daλ — 2 Φ 0. So the coefficients of ε12 in A2 and B2 are both nonzero.
In this case, application of (αdε23) to both A>, j?2 gives that ε 1 3 e £ n q ,
again impossible.

Case lδ. ώαx = 2 or aί — a2 = 2. Then,

__ __ α. + αΛ = _J_{2d _ 4) ^ 0
d - 2 / d - 2V

because eZ ̂  3.

Hence the coefficients of ε23 in Az, B5 are both nonzero. Now apply
successively (ade12) and (αdε34) to A3, Bz in that order, and we will get
that ε14 e p f] Cf, contradiction.

λVe conclude that Case 1 is impossible.

Case 2. a1 — 1 + {a1 + α2)/(cί — 2) = 0 or αx — a2 == 2 — rf(l — α^.
As before, we have to consider two distinct possibilities.

Case 2a. d(l — a^ Φ 2. So a1 — a2φ 0, and consequently the
coefficient of ε12 in A2 is nonzero. The coefficient of ε12 in B2~aί —
a2 — 2 = —(I — a±)d Φ 0 because αx Φ 1, by assumption. Hence, the
coefficients of ε12 in both A>, B2 are nonzero, and a contradiction can
be deduced as before

Case 26. d(l — αx) — 2, or αx — α2 = 0. This implies:

_ α 9 - α i ~ α g = ~~d aλ Φ 0
d - 2 d - 2

(α2 + 1) + α* + α* = (rf + 1 ) q 1 ^ 0 .
d - 2 d - 2

So again, the coefficients of ε23 in A3, JS3 are nonzero and there is a
contradiction, as the above shows.

Thus Case 2 is also impossible.
Wre have therefore proved that necessarily ax = 1. We now prove

further that necessarily α2 = — 1 . Suppose the contrary and we con-
sider two cases.
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Case 1. a2 = 1. In this case, the coefficients of ε13 in Au B1 are
respectively —1 — 2/(d ~ 2) and 2/(d — 2), and are nonzero. Deduce a
contradiction as above.

Case 2. α2 Φ 1. In this case, the coefficients of ε12 in A2, B2 are
nonzero, again impossible.

We have demonstrated αx = — α2 = 1. This permits us to rewrite
A and δ in a much neater form: εn - ε 2 2 = 4 φ ί relative to p 0 q
where

A = (eu - ε22 + X α^ε^ + azdε3d, Σ 6,ε* + Σ & A*)
ΐ = l , 2 ΐ = l ι = l , 2

^ = ( - Σ «*,£<,• - a^si, - X 6*6?, - Σ /3.;iε* ) .
i = l 2 ΐ = l ι = l,2

We next prove a12 — 0. Consider (adεΐ2)(A) = (0, —εnεf2 + ε22εf2) = 2(0, ε*2).
Then (***)==> 0 = <(0, εf2), 5> = -alt. In like manner, one shows
^2 3, α:13, α:24, α14 must all vanish, m this order; here, we insist on
the order of doing things because we are appealing to the fact that:
εkj£*ι — 0 if j > I, SijSij = 0 if i < k. Now suppose /312 ̂  0, then
(αdε12)(S) = - ( 0 , /S12(ε* - ε*) - A3ε2*3 βιde&) Ξ Z). Thus <A, Z?> =
— 2/S12 ^ 0, contradicting (***). We next prove As — 0. (adε23)(B) =
( - « Λ , - A8e?2 - As(εί2 - ε*3) + /524ε3* + + β2dεi) = E. By (***),
0 = <A, £'> = — auβu + /323 + β2dau = /S23. In a manner similar to the
demonstration of /523 = 0, one can prove /924, /914, /325, β15, all vanish;
here again the order of demonstration is important, for reasons similar
to above.

Thus, we can write relative to p 0 q:

0(

Suppose a3d Φ 0. (adε13)(B) = aueld => ε l d e q, =>ε$ - ε | d = (adefd){εld) e q,

=>0 = <A, εj - είd> = 1, which is not right. So α3 d = 0. We shall
show finally that b{ = Ovί. For, ε12 = 1/2-(adε12)(A) ep and ε23 =
— (adε23)(A)ep. Once ε12, ε23 are in p, (*) easily implies that ε12, •••,
«id, ε23, , ε2d are all in £. But then, (αds^ίe^ ) = —ε£ + s/$, for
i = 1, 2 and for all j , are in £. Hence if Σ ί 7< = 0, 7* e if, then
Σ ί ^ β ^ G ί̂  So if hi are not all zero, 0 Φ Σ* &»st* e ί> Π q, which con-
tradicts (**). Hence finally (eu — ε22) 6 p.

In the above proof, the indices 1 and 2 play no special role and
it is therefore clear that one can prove εu — εj3 is in either p or q for
arbitrary i and j in exactly the same manner. The lemma is thereby
proved.
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Once we have the lemma, the conclusion of the proof of the
theorem is straightforward. Let g = f ) 0 q satisfying (*)—(***), and
let (εn — ε22) 6 p. As we have seen in the previous paragraph, this
necessitates the fact that: εiy, ε2k are in p for all j ^ 2, k ^ 3. Now,
by the lemma again, we may assume ε22 — ε33 is in either |) or q. If
it is in q, then one proves similarly that: (*) => ε2k, ε3i, for all k > 3,
1^4, are in q. This contradicts that ε2k are already in p. Hence
(ε22 — ε33) e p. We can continue this process and conclude that (ε^ — ε^ )
for all i, j are in p. This means {εid} £Ξ p, for all i, j . Since
(adεtό){εi3) = — ε* — ε* , and (αώε* )(εί/£) = ε*k for j" < k, (*) implies that
all {ε*, ε?fc — ε*r) are also in p. Hence p — {0}.

REMARK 5. It is easy to see that the matrix algebra ϊ(d) of all
triangular matrices is the direct sum of two ideals: span {εn + . . + εdd}
and $t(d). Correspondingly, the manifold associated with ί(d) is iso-
metric to the direct product of the Lorentz plane and the manifold
associated with §>t(d). This is a special case of a general fact, namely,
that if the algebra g is the direct sum of two ideals, then there is a
corresponding decomposition of the manifold M associated with g. Now
suppose we start with a g which is indecomposable, i.e., g is not the
direct sum of two ideals. We do not know if this already implies that
M is weakly irreducible. Note also this phenomenon common to all the
M's so constructed: there is always a distinguished isotropic subspace
that is left invariant by the holonomy group. Using the notation at
the beginning of the proof of the theorem, this is the subspace
{(9*, —9*): #*eg*} of #-.

Proof of Assertions of Example 3. We begin with the simple
observation that a connected G g PO(V) with Lie algebra g leaves a
subspace invariant if and only if g does, and G acts trivially on a
subspace if and only if g annihilates that subspace. We therefore use
g to proves S- W irreducibility since it is much easier to handle g that
G.

(a) Equip a 3-dimensional V with a scalar product of signature
(2, 1) and pick an orthonormal basis {eu β2, β3} of type ( + , + , —). Let

" 1 1 0 "

a — —1 0 1

_ 0 1 0 .

relative to {βj, and consider the 1-dimensional subalgebra £) = span {a}
of §o(2, 1). Exponentiating a, we see that the corresponding 1-para-
meter group H gΞ SO(2, 1) of ί) is in fact the one asserted in the
theorem Define a linear map R:V Λ V—+3o(2, 1) by: ReiH = 0,
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Eei&2 = Rβ2es — a. Check that {V, R, H} is a riemannian symmetric
holonomy system (i.e. verify (1), (2), (6), and (7)) and apply Corollary
2 to obtain a riemannian symmetric space with holonomy group H.
To see that this space is actually J?3, observe merely that the Lie
algebra g — ί) φ V (cf. (9)) is solvable so that Proposition 2 applies.

Nov/ clearly £) annihilates (e: + β3) and a trivial calculations shows
that there is no other 1-dimensional invariant subspace of £). As
(e1 + e3) is isotropic, H is S-W irreducible, thereby proving (a).

(b) The existence of the manifold is much the same as in part
(a). Let V be a 4-dimensional inner-product space of signature (2, 2)
and let {eί9 ••o

5e4} be an orthonormal basis of type ( + , + , —, —).
Relative to {ej let ae§o(2, 2) be:

0
1

0

— 1
0

0

0

1
0

1a =
0

0 - 1 0_

and let ί) = span {a}. Its corresponding 1-parameter group in SO(2, 2)

is therefore the one asserted in the theorem. It remains to define the

curvature map R:V Λ V—>3o(2, 2) by:

One obtains the desired symmetric space, which is diffeomorphic to
R4 because g = £) φ V is even nilpotent in this case.

Now define / : V—* V by: Je± — e2, Je2 = — el9 Je3 — ei9 Je4 — —e3.

Cleary aoj — Jo a and J 2 = — J (I — identity). So R is a kahlerian
curvature tensor on V. We can extend this J to other tangent spaces
on R4 either by parallel translation or by left translation by elements
of G. This complex structure is compatible with the metric, and makes
R4 a kahler manifold.

Finally we prove that if is S-W irreducible:

A 1-dimensional subspace of V is left invariant by § if and

(14) only if it is spanned by an element of the form: a(eι + e3) +

H&2 + e4) for some α, & e R.

A 2-dimensional subspace P of V is left invariant by ί) if and

only if is either isotropic, or else has a basis {vl9 v2} of the form:

v1 — aβ1 + be2 + ce3 + de4

v2 = (b — d)(e1 + e3) — (a — c)(β2 + e4), α, 6, c, d e R .

The "if" parts of both assertions are trivial. Conversely, let v — aeλ

+ be2 + ce3 + de4, then
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( * ) a(v) = -{(5 - d)(ei + e3) - (α - c)(e2 + e4)} .

Hence if ί) preserves span {v}, comparison of coefficients gives a = c,
b — d, proving (14). Now, for (15), if P is not isotropic, a does not
annihilate every element in it, and so (*)==> there is a v e P with a Φ c
or b Φ d. Say a Φ c. Then this v ί span {a(v)}9 again obvious from
(*). Hence {v, a(v)} form a basis of P of the required type. This
proves (15).

On the basis of (14) and (15), S-W irreducibility of H is immedi-
ate. In fact, (14) implies that all isotropic 1-dimensional subspaces
are invariant subspaces, and conversely. By (15), if a 2-dimensional
invariant subspace is not isotropic, then it is at least degenerate be-
cause, using the notation there, <vu v2> — <v2, v2> = 0. This com-
pletes the proof of Theorem 3.

5* We now deal with Theorem 5 and Examples 6, and 4, in this
order. These all have to do with the closedness question and for this,
we need the following basic result.

PROPOSITION 3. (a) Let G be a connected Lie group and H a
connected Lie subgroup of G. A necessary and sufficient condition for
H to be closed in G is that the closure of every one parameter sub-
group of H in G is contained in H.

(b) A connected subgroup of the general linear group is closed if
and only if its radical is closed in the general linear group.

(c) Let G be a subgroup of the general linear group. Then its
commutator subgroup SDGr (which corresponds to 3)g) is always closed
in the general linear group.

Parts (a) and (b) are due jointly to Goto [7] and Malcev [11].
(c) is due to Goto [7], and is an easy consequence of (a) and (b).

Proof of Theorem 5. (a) Let G^PO(V) be a reductive, weakly
irreducible subgroup and assume it is not closed in PO(V). By (b) of
Proposition 3, the radical R of G is not closed in P0(V). By (a) of
the same proposition, there exists a one-parameter subgroup h(cx) of R
(with Lie algebra spanned by ae Q) such that its closure h(a) is not
in G. h(a) is then an abelian subgroup and consequently a torus of
dimension Ξ̂ 2. Let a be the Lie algebra of h(a). Because dim a ^ 2,
there exists an element ax in a such that aγ annihilates a proper sub-
space of V. Now, G is reductive, so that its radical R coincides with
its center. Since h(a) g JS, h(a) also commutes with G elementwise.
Hence ad α : restricted to g is identically zero.
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Now, pick an orthonormal basis {e3} of V so that aλ assumes the
form:

~QX 0 0 "

0 Qk

0

0 0

where each ft is a 2 x 2 matrix such that Q€ = I aλ , ai Φ Q

for ΐ = 1, , k. Since αx annihilates a proper subspace of V, 2k < d.
In other words, W = span{β2A.+1, •••, ed} is the nontrivial subspace an-
nihilated by ala In this matrix representation of elements of G rela-
tive to {βi}, let p be the natural projection of g into those matrices
which vanish inside the upper left (2k x 2&)-box and the lower right
(d — 2k) x (d — 2k) — box. Take g e g, and consider [α1} #] = αcί (α:^ .
If ^ ( ^ ) ^ 0, then a trivial computation shows that &*([al9 g]) Φ 0
since a{ Φ 0, V̂  = 1, , k. Thus, a necessary condition for adQa2 — 0
is that: g£ Q=> <^(g) = 0. But then g leaves TF invariant. Since W
is both proper and nondegenerate, this contradicts the weak irreduci-
bility of G.

(b) Let GξΞ PO(V), dim 7 ^ 5 , be weakly irreducible. Assume
that it is not closed, then as in part (a), the closure of its radical,
R, must contain a torus of dimension 2^2. So this already eliminates
the cases of dimension of V equal to 1, 2, 3. We give below the proof
of the case dim V = 5; the case of dim V = 4 is both similar and
simpler.

So G^PO(V), dim V = 5, is both weakly irreducible and non-
closed. Let a be the Lie algebra of the 2-dimensional torus contained
in R. We may assume that relative to a well chosen orthonormal
basis {e%}, a is exactly the linear span of:

a, =

0

-1
0

0
0

a9 —

0

0

0

0
_ 1

0

1

0

0

Then au a2ex and weDenote the algebras of iϋ, R, G by x, x, g.
claim:

(16) adau ada2 map g into x .

For, R is the radical of G, which is invariant in G as is well-known;
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so R is invariant in G because the radical is a characteristic subgroup.
But closures of invariant subgroups remain invariant, hence R is in-
variant in G. Then [x, g]gx, which implies (16).

Relative to {βj, let & be the natural projection of g into those
matrices which vanish outside of the following mutually symmetric
boxes: that consisting of the (1, 3)-, (1,4)-, (2,3)-, (2,4)-th entries and that
consisting of the (3,1)-, (4,1)-, (3, 2)-, (4,2)-th entries. A trivial computa-
tion shows that g£Q=>^(g) = {ada2fo(ada^f(g). So by (16), we get:

(17) fifeg=>^)eg.

Now, if g = {gi3) relative to {ej, then gr = (g - g12a, - gMa2 - &*{g))
is a matrix whose entries are all zero except that (g[δ, g

f

25, g'35, g
f

45) — (g15f

025, 3̂5, 0«). By (17) g' e g. If there is a g e g such that (016, , g,5) Φ 0,
then there is a gf G g such that each entry of gf is zero except that
(0U, , 0«) = (0iβ, , #45) Φ 0. Specifically, let (gί5, <?25) Φ 0. Then
-(ad a^(gr) = g" is a matrix whose only nonzero entries are the (1, 5)-,
(2, 5)-th ones, where they are equal to (gί5, g25) respectively. Thus
(grΎ(eδ) = ±(0i5 + 025)β5, where the sign depends on whether <β5, e5>
= (βi, ^y o r -Kfii, βi> In any case, (#15, g2δ) Φ 0 => g" is not nilpotent.

Now, by definition, g" e [g, x]. Since [x, xj £ x, and we have shown,
that x is an ideal of g, x is therefore a solvable ideal of g and con-
sequently contained in the radical x' of g. (Actually q' = x.) Thus
g" G [g, x'] which is the nilpotent radical of g. Hence g" has to be a
nilpotent matrix, which contradicts what we proved above.

Thus g e g => (glδ, g25) = 0. Exactly the same argument shows that
necessarily also (036, g45) = 0. But this means g annihilates eδ, and G
cannot be weakly irreducible. Then G was closed in PO(V) to start with.

(c) We preface the proof by a general remark on the complexifica-
tion Vc of a real vector space V. We denote the complex general linear
group by Gl(V, C), with Lie algebra QI(V, C) Let aeQΪ(V) and suppose
that its corresponding 1-parameter subgroup h(a) g Gl( V) has compact
closure. Then it is well-known that a is conjugate in Gl(V, C) to a di-
agonal matrix whose entries are pure imaginary or zero. In other
words, there exists a basis of Vc relative to which a is diagonal with
pure imaginary or zero entries. Conversely, if a e QΪ(V) has the property
that its eigenvalues are either pure imaginary or zero and that it is
diagonalizable, then h{a) has compact closure. Hence we have:

Given α:Ggϊ(F), then h(a) is relatively compact in Gl(V) if
and only if there exists a basis {v%} of Vc over C such that
oc(Vi) = ViViy where 1̂  is either pure imaginary or zero, i =
l, ",d.

We now turn to the proof of the theorem. Let M be a given Sym-
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metric space. Since we are only interested in the identity component of
the holonomy group, we may as well assume M to be simply connected to
start with. Corollary 3 of Section 3 applies, and we let M be expressed
in "reduced form" G/K, i.e., there is a group involution σ:G-+G
such that K is the identity component of the fixed point set of σ and

(19) β = * Θfc P, ί] S I , P, P] £fc [p, P] = ϊ.

Here p is the ( — l)-eigenspace of (dσ)β. The holonomy group of M is
Adp(K).

Consider the adjoint representation of G ing, Ad(G)^Gl(o). The
commutator subgroup &(Ad(G)) — Ad(^G) is closed in Gϊ(g), by
Proposition 3 (c). The algebra of &G is ^ g = f φ [ϊ, p], by (19).
Hence K^S^G. Furthermore σ induces an involution in &G which
can be carried to Ad(£&G) as follows: Ad induces an isomorphism of
^rG/Z onto Ad(&G), where Z is the center of &G. The involution
on &G clearly maps Z onto Z itself so that the involution on 2$G\Z
is well-defined. We carry it to Ad(j3?G) via the above isomorphism
and call it σ. We claim that the identity component of the fixed point
set of σ is precisely Ad(K). For this, one notes that in SfG, the
fixed point set of the involution has K as its identity component, be-
cause &Q = ί φ [ϊ, ί>]. Then, in &G\Z, the algebra of the fixed point
set is ϊ/ϊ Π 8 (where 3 is the algebra of Z), and so the corresponding
connected subgroup is KZjZ. But then Ad maps KZjZ isomorphically
onto Ad(K), hence our claim. Thus, Ad(K) is closed in Ad(&G)
which is closed in GI(g). Therefore, Ad(K) is closed in GI(g).

Now, by (19), Ad(K) s Adt(K) x Ad^{K). We are interested in
showing that the projection of Ad(K) onto its second factor is closed.
For this, we need a lemma for the proof of which I am much in-
debted to Professor Borel.

LEMMA. Let a Lie algebra g admit a decomposition satisfying
(19). Suppose aeϊ such that the one-parameter group corresponding
to adp(a) is relatively compact in Gl(p). Then the one-parameter
group corresponding to ad (a) in Grί(g) is also relatively compact.

Proof. By (18), we may assume a C-basis {/Ji^<^ so chosen in
pc that

(adpa)(fi) = μji , i = 1, , d ,

where each μ{ is either pure imaginary or zero. Since [p, p] = ϊ,
[ρc, pc\ = ΐc. So {[/<,/ilh^ ̂ d span ϊc. We subtract from the latter a
C-basis {[/e, fβ]}{aβ)eAχB for tΰ. Define kaβ = [fa, fβ]. Then we have:
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(adfa)(kaβ) = [a, [fa, fβ]\

375

[(adpa)fa, fβ]

= (μa + uβ)[fa,fβ]

Clearly, \aβ so defined are all either pure imaginary or zero. So relative
to the C-basis {kaβ, fi}(a,β)eAχB,i^i^d of 9C, (ad a) is diagonal with either
zero or pure imaginary entries. The lemma now follows from (18).

Returning to the proof of the theorem, suppose Adp(K) is not
closed in Gl(p). By Proposition 3 (a) as well as the usual argument,
there is an a e ϊ such that the one-parameter subgroup h(a) correspond-
ing to (adpQί) has compact closure h(a). h(a) is in Gl(p) but not in

Adp(K). By the lemma, the one parameter group ti{a) corresponding
to (ad^a) also has compact closure in GI(g). So for a suitable choice
of basis {e3} in g, we know that the matrix of (ad a) has the form:

ada =

adpa

0

0

adχa

m

Q,

where

0

-λ.

S,

0
and Sη =

-μ, 0

are 2 x 2 matrices such that λ* Φ 0 for all 1 ^ % ^ p, μd Φ 0 for all
we may assume that there is some^ j ^ k. Since h(a) g Ap

. such that exp A is not in Adp(K), where A is the d x d matrix:
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0

and q < p. Let {μiχ, , μiχ} be the set of all μ'fi commensurable
with λi, ' λ j ; for convenience, let these be {μl9 , μι}9 where I g k,
i.e., λi, , λg, ^i, , μι are linearly dependent over the integers.
We claim that if B is the following (d + m) x (d + m)-matrix:

73

0

then exp B cannot be in Ad(K). For if it were, ad^B = A and A will
be in αdp(ϊ), which contradicts exp A £ Adp(iT). But from the form
of αc£ α, the standard arguments show that exp B is a torus contained
in h'(a), which is itself a torus in GI(g). Hence h/(a) ξ£ Ad(iί), and
this shows that Ad(K) is not closed in Gϊ(g). This flatly contradicts
the fact established above, that Ad(K) is closed in GI(g). So,
had better be closed in

Proof of Assertions of Example 6. Take an inner product space
of dimension 6 with signature (4, 2) and let {ej be an orthonormal
basis of type ( + , + , + , + , — , — ) . Let £)* = span {a, β, Ύ, S} be the
subspace of 3o(4, 2) such that relative to {βj:

a =

0

— r

0

r
0

0
2

0

2

0

0
2

2

0

β =

0

0

0

0

0

0
^

0

1

0

1

0

- 1

0

0

0

1

1

0

- 1

0
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7 =

0
0

2.

0

1

0

0
0

0
_ ] _

0

1

1
0

0
1

0

1
0

0
1

δ =

0
0

0

- 1

0

1

0
0

1

0

- 1

0

0
- 1

1

0

0

0
- 1

1

0

Here r e R is arbitrary for the moment. Note that since: [a, 7] =
(7 — 2)δ, [a, δ] = — (r — 2)7, [7, δ] = — 2/3, and all other brackets are
zero, ϊj* is in fact a solvable subalgebra of 3o(4, 2). We denote as
usual its corresponding connected subgroup by if*. Now, define
R:V Λ Vr->Ij*S&>(4l2) by:

R.x.% = rβ

= 0

2β

We claim that this is a kahlerian curvature tensor, i.e., one has to
verify (l)-(3). (2) is true by definition. For the proof (1), one goes
through 20 such identities, and we leave that out. For (3), define
J: V —* V by Jβ 2 ί f l = e2i+2, Je2ί^ = — β2i+1, i = 0, 1, 2. It is then clear
that J 2 = - I and Jo Rxy = Rxy o J" for all a j e F . Therefore H* is
an algebraic kahlerian holonomy group.

So far, r is arbitrary. If we let it take on irrational values,
then a corresponds to a Kronecker line dense in a 2-dimensional torus,
which cannot be in if*. Proposition 3 (a) tells us that if* is not
closed in SO(4, 2) in this case.

REMARK 6. Theorem 5 (c) tells us that for irrational r, {V, R, H*}
cannot be a symmetric holonomy system, in view of Corollary 2 of
Section 3. However, it may be interesting to point out that when
(and only when) r = 1, {V, R, H*} is indeed symmetric, and we have
therefore a concrete example of a hermitian symmetric space whose
holonomy group is solvable but not abelian.

Proof of Assertions of Example 4. We will prove the theorem
in this order: construct the algebra g of the group G, show that G
cannot be the holonomy group of a riemannian manifold, and finally
prove that G is S-W irreducible. The bulk of the proof lies in demonst-
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rating S-W irreducibility.
Let V be an inner product space of signature (5, 1), and {et) is

an orthonormal basis of type ( + , +, +, +, +, —). Consider the sub-
space Q of §o(5,1) spanned by the following matrices (relative to {e<}):

0 1

-1 0

a =
0

— r

r

0

0

0

0

0

0 1

0

0

0

0

0

0

0

1
0

0

0

0

1
0

0

0

7 =

1 0 0

- 1 0 0

0 0

-1 - 1

0 0

0 0

0

0

0

1

- 1

0

0

0

0

0
0

- 1

0

0
0

- 1

0

0

β —

0

0

0

0

0

0

0

1

_ 1

0
0

0

- 1

0

0
0

0

- 1

Again we let r e R be arbitrary for the moment. Clearly [a, β] = 7,
[a, 7] = —β, [a, δ] = re, [a, e] = —rd, and all other brackets are zero.
Hence g is a subalgebra and let G S £0(5, 1) be its corresponding
subgroup.

Now, suppose r is irrational. By the same argument used in the
proof of Theorem 6, G is not closed in Gϊ(V). Suppose r is rational,
then we claim G is closed. For the only element of g tangent to the
maximal compact subgroup £0(5) of £0(5, 1) is a, which is easy to
see. But a corresponds to a circle in this case. Hence the closures
of all one-parameter subgroups of G are in G, which implies G is
closed by virtue of Proposition 3 (a).

We have therefore found both closed and nonclosed subgroups by
varying r. It will be convenient for later purposes if we restrict
ourselves to the case:

(20)
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regardless of whether r is rational or not. The following arguments
apply so long as (20) holds. So, we shall be proving the theorem
simultaneously for both closed and nonclosed G's. First, we shall show
that G cannot even be an algebraic riemannian holonomy group. By
Remark 1 of Section 2, a fortiori, it cannot be a genuine holonomy
group.

Suppose it is, there exist then riemannian curvature tensors
R\ ••-, Rs on V such that:

(21) span {Rk

e.e.}1£i<j^ = g, λ; = 1, - , s .

Let R be any one of the Rk and we claim:

(22) span {22βlβi}I<itϊ=12. £ span {β, 7, δ, e} .

Suppose (22) were false. Let 1 = 1. So there exists 0 Φ t e R
such that Reie = ta + {β, , ε}. Here, {β, , ε} stands for some
linear combination of β, 7, δ, ε. According to (1),

i^e/3 + Rβje3ei + Re^j = 0 .

By above,

{ta + {£, . . . , ε}}β3 + Re^e, + Re^ej - 0 ,

and t Φ 0. Now, all (1, 3)-th entries of elements of g are zero, and
so (4) of Section 2 implies that Reiez = 0. So the above is equivalent
to {ta + {/9, , ε}}e3 + Re e1 — 0. But g maps e± into the span of
{&>, β5, β6}, and β, 7, δ, ε all move β3 into the span of {β5β6}. Hence if
we take the inner product of the above equation with β4, we get
ζ£ta)e3, e4y = 0; i.e., -tr = 0, ==> ί = 0 by (20). This contradiction proves
(22) for I = 1. The proof for I = 2 is exactly the same.

In a similar fashion, one has:

(22)' span {Rφj}ι<jtl=3t4 £ span {β, 7, δ, ε} .

The proof of this differs from that of (22) only in using

Reief, + Rejeieχ + Reine3 = 0

and at the end take inner product with β2. So combining (22) and
(22)', we have:

span {Rk

He)i<ό £ span {β, 7, δ, ε} for i = 1, 2, 3, 4, fc = 1, , s. But
since the (5, β)-th entry of every element of g is zero, (4) implies
Re5β6 = 0. Together, these imply

span {R^jhsiKte* £ span {/5, 7, δ, e} for k = 1, , s.

This contradicts (21). Hence we have proved that g is not the algebra
of an algebraic riemannian holonomy group.
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Finally, we turn to the proof of S-W irreducibility of G, for
which we must determine ALL invariant subspaces of g. The proof
is fairly tricky, even if elementary, so we present it in detail.

(23) The only invariant 1-dimensional subspace of G is span {e5 — e6}.

Proof of (23). Let span {u} be preserved by g and let

U = (Ul9 , Uδ) = ΣiiUiβi .

By definition,

a{u) = (u2, —uu ruA, —ruz, 0, 0) .

Thus a(u) e span {u} => uλ = u2 — u3 — u4 — 0. Hence u — uδe5 + uβeβ.
Now, β(u) = (uδ = u^e, e span {u} => u5 + u6 = 0, => u = u5 (e5 - β6), u{

arbitrary. Conversely, span (e5 — eQ} is clearly preserved by g.
'5

(24) There are no invariant 2-dimensional subspaces.

Proof of (24). Let P = span {u, v) be a 2-dimensional invariant
space, and we will show this is impossible. As usual, u — (uly , uQ),
v ~ (vlf , v6). We show first:

( * ) a(u) g span {u} .

For, suppose the contrary, then u = u5e5 + uQeQ. But

a(v) e P ==> a(v) — av + bu

for some a,beB,=> (avu av2, av3, av4, av5 + bu5, av6 + bu6) (v2, —vlf rv4,
— rvs, 0, 0). Equality of the first four terms implies

Vi = V2 = Vo = V, = 0 .

So v = vbe5 + v6e6. Since also β(v) e P, => ̂ 5 = — v6, and

Altogether, they imply that u, v are dependent
So by (*) we may assume that P = span {u, a(u)}. Now

a2(u) eP=> a2(u) = α^ + 6α(?^)

for some α, heR,=>(-uu —u2, -r2u3, ~ r % 4 , 0, 0) = (α% + but, au2 ~
bul9 au3 + bru,, aw, — bruSi auδ, bu6). If a = 0, we may assume 5 ^ 0
since otherwise

a\u) = 0, => u, = ^2 = M3 = u4 = 0, => α(u) e span {u},

contradicting (*). Hence in the event that a = 0, δ ^ 0. Consequently,
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equality of the first two terms above ==> — uλ = bu2 = τ"ux ==> ux = 0 by
(20), ==> by virtue of the equality of the first terms that u2 = 0.
Similarly, equality of the third and fourth terms

=> —τ2us — bru, — bhιz ==> u3 = 0 => u 4 = 0 .

So again, α(u) G span {u}.
We have therefore proved that if a\u) = an + 6α(%), then α Φ 0,

Then equality of the coefficients of

e5, e6 => uδ = uQ = 0 => u = (uu u2y u5, u, 0, 0) .

But β(u) = (0, , 0, —ul9 u2) = cu + dα(u) for some

c, d 6 R => ux = ^2 = 0 .

Applying δ to ^ gives similarly %3 = t64 =• 0, and this again contradicts
M being a basis element of P. (24) is thereby proved.

(25) A 3-dimensional subspace is invariant if and only if it has a

basis {u, v, w) of the form:

u = (uu u2, uz, u>, A, -A)

v = (u2i -uu ru4, —ruz, 0, 0)

w = (0, •••,0,5, - B )

where %, , u4, A, B G i ί are arbitrary.

Proof of (25). Let P be a 3-dimensional invariant subspace. Since
the maximal subspace on which a leaves invariant every 1-dimensional
subspace is span {eδ, β6}—which is only 2-dimensional—we can certainly
find aueP such that a(u) ί span {u). Hence if u = (uu , u6), nλ Φ 0
for some i e {1, 2, 3, 4}. For the sake of definiteness, let i = 1 for the
moment. So % = (^, , uQ)y ux φ 0, and

v = α(u) = (w2, — %1? r^4, - r % 3 0 , 0)

are lineary independent elements of P. Consider

w = β(u) = (M6 + ^6, 0, 0, 0, -uu u,) e P .

We claim that {u, v, w} are linearly independent. If not, there would
exist a, be It such that w = an + bv. In other words:

u5 + u6 = auλ + ?m2; 0 = au2 — 5^x; 0 = au3

0 = OM4 — 5r%3; —u1^ au5; u1 — au6 .

The last two equations imply a Φ 0, and
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uδ + u6 = 0 => h Φ 0, u2 Φ 0

by virtue of the first equation. So the first two equations imply

au1 + bu2 =• 0, au2 — hux — 0, => α2ux = — h(au2) = —6(6^)

= — 62u1? => α2 = — 62 ,

which cannot be. Thus {u, v, w} is a basis for Pβ We now show that
necessarily u5 + u6 = 0. For τ<» e P ==» there exist m, n,le R such
that 7(^) = mw + nv + Iw. Writing things out term by term as before,
we have:

0 = mv,! + nv2 + I(^5 + u6); 0 = m^2 — nux\ 0 =

0 = m^ 4 — nrud; uλ =

If uδ + u6 Φ 07 the last two equations would imply m = 0, => by virtue
of the second equation that n = 0, =>l = 0 by virtue of the first,
==> τ(v) = 0o But this contradicts ^ ^ 0 since y(v) = (0, , 0, ^ ] ? — ^ ) .
Thus, % + ^ 6 = 0 and consequently:

u = (uu u2, u3, u4, u5), u± Φ 0

v = u2, —vu ruiy —ru3y 0, 0)

w = 0, -•-, 0, - ^ , πx)

constitute a basis of the desired form. Now, if we had assumed
earlier that u2 Φ 0, u3 Φ 0, uΔ Φ 0 respectively, we would then have let
w — y(u), δ(u), ε(u) resp., and would have applied β, δ, ε, to v resp.
to get also the fact that u5 + u6 — 0. We would still have obtained
a basis of the form above. This proves completely the existence of
the form above. This proves completely the existence of the basis as
claimed. Conversely, it is trivial that such a three dimensional sub-
space as preserved by g. (25) is proved.

It remains only to observe that (23)-(24) imply that there exist
proper invariant one and three dimensional subspaces of g and that
they are all degenerate. So G is S-W irreducible as claimed.

6. We conclude the proofs of the theorems announced in Section 1
by turning to Theorem 1 and Example 7. They are both straightforward.

Proof of Theorem 1. It is clear that the tangent space Mm of
M at m admits a decomposition into mutually orthogonal invariant
subspaces of the holonomy group H: Mm = M°m 0 Ml φ - © Ml, such
that H acts trivially on M°m, and acts weakly irreducibly on each
Ml

mj i = 1, , pa Parallel translation of these subspaces over M gives
rise to (p + 1) involutive distributions on M which, by Proposition 3
of [15], induces a local isometry of M at each point to a direct pro-
duct which is compatible with the above decomposition of Mm. (Cf.
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Appendix II.) Hence the subgroup of H generated by "small enough"
closed paths is a direct product. To show that H itself is actually
a direct product of its normal subgroups H\ i ~ 1, , p, such that
each Hί acts weakly irreducibly on Mi,, and acts trivially on all
Mi, j Φ i, one must take care of arbitrary null homotopic paths. For
this, one can employ the Factorization Lemma (p. 284-5 of [10]) in
the same way as in the positive definite case. The details are given
in p. 183-4 of [10], so we omit them.

Now if the maximal trivial subspace of H in Mm is nondegenerate,
the above decomposition of Mm is unique up to order. This last as-
sertion is part of the Full de Rham Decomposition Theorem [15], a
detailed statement as well as proof of which are given in Appendix I.
It is then easy to see that the corresponding decomposition of H is
also unique up to order.

Proof of Assertions in Example 7. Let 0 be the origin of R3

and let (uu u2, us) be the canonical coordinates of iϊ3. We adopt the
convention that 2^ = d/dui9 and et = (djdu^φ), i — 1,2, 3.

We new impose a riemannian structure on iί3 from which the
holonomy group will be computed directly. The metric and its inverse
are:

g = {g{Eit Es)} =

1

"1

+ ui
0

t't'2

- K
0

-ui

0
1

0

0

1

0

— u\

0
_ 1 _J_ η,i

JL ^^ (Λ/2

0

For the definitions and expressions in local coordinates of the
Christoffel symbols Γ)k, the curvature tensor RE.E. and its covariant
derivatives DEkRE.Ej, we refer once and for all to [10]. A computa-
tion then gives:

1 22

•* 2 3

= Γlχ =

— I 12 —

= /Is =

= /Is =

= r\z =

0
2n\

0

0

-2u\

Γϊ! =

Γl, =

ί 13 =

^ 22 —

* 23 —

0

2 u 3

2

0

0

Γl* = — 0 Γ 2 —

Since Γ)λ + Γ% = 0 vi, i, we see that DEj(Eλ + E,) = 0,j = 1, 2, 3.
Thus £7i + JE73 is an auto-parallel vector field on Rs, which implies that
ί) must annihilate (e1 + β3). By a simple matrix computation,
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ϊj £ span {a} ,

where

0 1 0 "

a — - 1 0 1

0 1 0

relative to {βj. Another computation shows that RElEs = 0 but that
REXE2 — RE2E5 = ( — 6̂ 2) OL Φ 0 relative to {!%}. Ambrose-Singer's holonomy
theorem implies immediately that Jj is exactly span{^}, and conse-
quently , H is the holonomy group of Theorem 3 (a).

Finally, DE2(REiE2) = (12u2)a Φ 0. So, this riemannian manifold is
not symmetric.

REMARK 7. This riemannian connection is unfortunately not com-
plete. (It would have been complete if we had replaced u\ by u\
everywhere in the definition of g, in which case, the manifold is just
the manifold of Theorem 3 (a)). For, let 7: [0, a) —> J?3 be a geodesic
and write y(t) = (ux{t), u2(t), u3(t)). Then, 7 satisfies the differential
equations of geodesies which in this case reduce to:

[ — u'3) — 0

< - 2u\(u[ - u[f = 0

< - < = 0

Λvhere the primes denote differentiation with respect to t. Now if
u[ — u'3 = k Φ 0, the second equation becomes u" = 2k~u\ which contains
a particular family of solutions of the form (kt + 6)"1, b arbitrary.
This family clearly has a singularity at ί = —b/k, proving incomple-
teness. It would be interesting to have an example of a complete riem-
annian manifold which is both S-W irreducible and nonsymmetric.

7* Miscellaneous remarks*

(A) Let M be a simply connected symmetric space of dimension
d and let Im be the group of all isometries of M leaving me M fixed.
If felm, then (df)m is an isometry of Mm onto itself such that if
(df)m = 9, 9~~loRg(x)g<v)og = R x y f o r a l l x,ye Mm, R b e i n g t h e c u r v a t u r e
tensor of M at m. Furthermore (df)n completely determines /. (This
is a general fact true for an arbitrary afRnely connected manifold.
The usual proof for complete positive definite riemannian manifold
does not carry over to the general case. Instead, one shows that
if fu /s a r e two affine diffeomorphisms of M onto itself such that
Mm) = fjm) and (df^m = (df2)m for some meM, then the set
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{n .neM, ft(n) = f2(n), (dfX = (df,)n)

is both open and closed.) Thus f—»(df)m is an isomorphism of Im

onto a subgroup ^ m of PO(Mm) S Gl(Mm). J^m is called the linear
isotropy group of M at m. We claim:

(26) ^ = {g e PO(Mm): g-1 o Rg{x)g{y) o g = Rxy, VX1 y e Mm} .

We have remarked already that ^ m is contained in the right side.
The reverse inclusion is an easy consequence of the Ambrose-Hicks
Theorem [9] plus the that an affine diffeomorphism which induces an
isometry between two tangent spaces is itself an isometry. Hence
(26) is provedβ Now, the set of curvture tensors on Mm (see Defini-
tion 1) form a vector space ϋ^, and if g e Gl(Mm), then Q —> gQ such
that (gQ)xy = g"1 o Qgix)g{y) o g defines an action of Gl(Mm) on 3?. By
(26), ^fm is just the set of elements in PO(Mm) leaving R fixed under
this action. In particular:

(27) ^ is a closed subgroup of PO(Mm).

Now let h be an element of the Lie algebra of ^m. Since (exp h)
R — R, one sees without difficulty that

Rh(x)v + Rxh{y) + [Rxy, h] = 0, vx, yeMm .

In other words, (7) of Section 2 is satisfied. Hence,

(28) The Lie algebra of ^ym is the set of elements of po(Mm) which
satisfy (7) of Section 2.

(B) On the basis of (A), we can compute the full isometry group
G of the symmetric spaces of Example 3. In general, given a sym-
metric space M9 standard arguments show that the Lie algebra g of
G is isomorphic to g = ϊ φ Mm, where ϊ is the Lie algebra of «^, and
the bracket operation is defined by (9) of Section 2. (Note that (28)
insures that g is in fact a Lie algebra.) Therefore, to compute G,
it suffices to compute g, for which it in turn suffices to compute ϊ.
Here, we can avail ourselves of (28) and straightforward matrix cal-
culations. We merely state the results.

For the space of Example 3 (a), ϊ = ϊ, the holonomy algebra.
Therefore, as noted in the proof of Example 3 (a), the full group of
isometries of this space is solvable.

For the space of Example 3 (b), ϊ is strictly bigger than the
holonomy algebra; in fact ί coincides with the centralizer of ί) in §o
(2, 2). Precisely, relative to the same basis as in the statement of
the theorem, let:
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σ* =

0
0

1

0

0

0

0

1

0
0

0

- 1

0

0

1

0

1
0

0

0

0

1

0

0

0
__]_

0

0

Γ"

0

0

0

Go =
—

0

1

0

1

0
1

0

0

- 1

0

- 1

0

1
0

0

0

0
0

0

- 1

0

- 1

0

- 1

0
0

1

0

1"

0

1

0

Then span {ψ} = £) and ϊ = span {ψ, σu σu cr3}. Note that in this case,
g admits a nontrivial Levi decomposition:

span {σu σ2, σ3} φ span {ψ, elf β2, e3, e}

where span {σl9 σ2, σ3} is a Levi subalgebra.

(C) Still referring to the decomposition g = ϊ 0 Mm of (B), since
ad([Mmi Mm]) is the holonomy algebra ((8)), and ad(t) is the linear
isotropy algebra, it is clear that the holonomy algebra is an ideal in
the linear isotropy algebra, i.e., H is invariant in ^m. Since H can
be solvable without being abelian, we see that ^ym is not always re-
ductive, in contrast with the positive definite case.

We note, in this connection, another anomaly of ^ym. It can hap-
pen that the linear isotropy group of a direct product of two weakly ir-
reducible symmetric spaces is itself weakly irreducible. Hence, while
the holonomy group of a symmetric space may be nondegenerately re-
ducible, ([15] or [16]), the linear isotropy group can nonetheless be
weakly irreducible. This explains why in the proof of Theorem 2, we
chose to work with the subalgebra α~, rather than with α itself.

To show this explicitly, let M = j?4 x jR4, where each factor is
given the symmetric space structure of Theorem 3(b). Let

K , e<} span(/?4, 0) and {fu , /J span(0, R4

0),

where j?4, is the tangent space at the origin, and {ê } and {/J are the
kind of basis which occurred in the statement of the theorem. To
avoid confusion, let M] = span {elf , ej and MQ = span {fu , /4},
so that

Mo = *o = Mo1 ©

W e n o w m a k e u s e of p a r t ( B ) . L e t a ( r e s p . β) b e t h e 8 x 8 m a t r i x

w h o s e p r o j e c t i o n o n t o t h e u p p e r l e f t ( r e s p . l o w e r r i g h t ) 4 x 4 b e x b e

e q u a l t o ψ (a s in (B)) a n d e q u a l t o z e r o e l s e w h e r e . L e t σu σ2, σ3,

( r e s p . σ[, σ'2, σ
f

3) b e t h e 8 x 8 m a t r i c e s w h o s e p r o j e c t i o n s o n t o t h e u p p e r
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left (resp. lower r ight) 4 x 4 box be equal to the σu σ2, σB respectively
of par t (b), and equal to zero elsewhere. Further , let

7 =
J_

0
_ ] _

0

0

0

- 1

0

- 1

1

0

1

0

0

1

0

1

1

0

1

0

0
1

0

1

- 1

0

- 1

0

0

0
_ ] _

0

- 1

0

0

0

1

- 1

0

- 1

0

0

0

0

- 1

1

0

1

0

0

1

0

1

- 1

0

0

0

0

-1

0

-i

1

0

1

0

Then clearly, the holonomy algebra of M equals span {a, β}, and one
sees without difficulty that the linear isotropy algebra

ϊ = span {a, β, y, δ, σu σ2, σ3, σί, σ'2y a'} ,

the crucial fact here being:

[a, 7] = [a, 3} - [0, 7] = L8, δ] = 0 .

We claim ϊ is weakly irreducible. In fact, one proves first that
span {a, σu σ2, σ3} has only one invariant subspace in M}, namely,
span{βx + e3, e2 + β4}. Similarly, the only invariant subspace of

span {/3, σ'lf σ'2, σί}

in Mξ is span {ft + /3, f2 + /4}β Now if P is a subspace of Mo left
invariant by f, by considering the action of span {a, σu σ2, σ3} and
span {β, σ[, σ'2i σ'3} on P, one sees easily that P is not of dimensions 1
or 3. If P is two dimensional, then it is one of the above, and if it
necessarily isotropic. Hence, ϊ is weakly irreducible, and so is

(D) We retain the notation of (A). In analogy with the defini-
tions of Jm and ^ , we let Γm be the group of all affine diffeomor-
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phis four dimensional, then it is the direct sum of the above. So P is
phisms of M onto itself leaving m fixed, and let ^~m

f be the isomorphic
image of Γm in Gl(Mm) under /—>(<£/)«. Then again, the theorem of
Ambrose Hicks easily implies that

% = {ge Gl(Mm): g~ι o E
g{x)g{y)

o g = α, y e Mm} .

The same reasoning as in (A) shows that:

(29) ^J is a closed sudgroup of Gl(Mm) and the Lie algebra o

is the set of elements of Ql(Mm) which satisfy (7) of Section 2.

According to Nomizu [13], when M is positive definite riemannian
and is irreducible, then J?m and ^ / coincide. Passing on to the
indefinite case and replacing, naturally, irreducibility by weak irre-
ducibility, we see that this is no longer the case:

(30) The group of all affine diffeomorphisms of a weakly irreducible
riemannian symmetric space onto itself is, in general, strictly
bigger than the group of all isometries.

To show this, it suffices to verify in a particular case that

We take the space of Example 3 (a). It was already remarked in (b)
that the algebra of <J^ is just span {α}, where

a —

0 1 0 "

- 1 0 1

0 1 0

By a straightforward matrix computation, using (29), it can be seen
that if

"2

0

2

0
1

0

0

0

o_
then the algebra of ^rj is span {a, β}. Hence the claim.

(E) Simons proved in [14], Theorem 8, that for an irreducible
positive manifold of dimension ^ 3 , parallel translation of curvature
being constant along closed paths is equivalent to its being constant
along arbitrary paths. We see, from the proof of Theorem 7, that
Simons' theorem is not true for weakly irreducible manifolds. For,
if we denote the curvature tensor of that space at a point p of JBa
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by R, then {jRJ, R, H) is a symmetric holonomy system (see the proof
of Theorem 3 (a)), and so by Remark 3 of Section 2, parallel transla-
tion of curvature is certainly constant along closed paths in that
space. But that space is not symmetric.

(F) Finally, we would like to point out a curiosity. In the posi-
tive definite case, parallel translation preserving inner product implies
that if a 1-dimensional subspace is left invariant by the holonomy
group, then it is necessarily acted on trivially, i.e., every invariant
1-dimensional subspace is held fixed. While parallel translation still
preserves inner product in the indefinite case, the isotropic vectors
have an extra bit of freedom, and it is natural to ask if an invariant
1-dimensional isotropic subspace cannot be expanded and contracted by
the holonomy group. The answer is yes: both for symmetric space
and nonsymmetric spaces. For the symmetric case, an example is
afforded by the space of Remark 6 of Section 5. There, both (e3 — e5)
and (β4 — e6) are not annihilated by the holonomy algebra, but they
both span invariant subspaces. For the nonsymmetric case, one can
put a riemannian metric on RB such as:

+ (*)! __L Of \^ .1 , 01^ fί ίoί 1 ni \2 01^

0 1 0

— (ux + u3f — u\ 0 — 1 + {ux + u3f + u\

(We use the notation of the proof of Example 7.) It is a straight-
forward computation that REiEi(E1 + Es) = fij(E1 + E3) where fid Φ 0
for all i, j . This shows that span {e1 + e3} is invariant, but the action
of H on it is certainly nontriviaL

APPENDIX I

We stated in Section 5, (5) of [15] that the Full de Rham Decom-
position Theorem (Section 5, (5)-A) can be proved in the same way as
in the positive definite case. It has come to our attention that this
is not entirely correct, and we now carefully restate it here—to bring
the terminology up-to-date—and supply the missing link in the proof.

THE FULL DE RHAM DECOMPOSITION THEOREM. Let M be a com-

plete, simply connected riemannian manifold and suppose the maximal
trivial subspace M^ of H in Mm is nondegenerate. (H denotes the
holonomy group.) Then

(1) Mm admits a decomposition into mutually orthogonal sub-
space which is unique up to order:
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where each Mi is left invariant by H, and H acts weakly irreducibly
on each Mi, 1 S i S p.

(2) M is isometric to a direct product M° x M1 x x Mp

which is unique up to order, where Mj, 0 ^ j ^ p, is the maximal
integral manifold of the distribution obtained by parallel translating
Ml over M. Moreover, M° is flat, and M\ 1 S i S P is weakly
irreducible.

( 3 ) His the direct prodct ofitsu normal subgroups H1 x x Hp

which is unique up to order, where each Hι is the holonomy group
of Mι, 1 ^ i ^ p. Each Hι is a weakly irreducible group and Hι

acts trivially on Mi, for k Φ i.

Proof. It is the uniqueness of Mi 0 Mi 0 0 Ml that requires
a new proof. All the rest then follows from this uniqueness fact.

Let H = H1 x x Hp be the decomposition of H associated
with the above decomposition of Mm. Let Mm = M°m 0 Nλ

m 0 - 0 Nr

m

be a second decomposition. For simplicity, let N be any one of the
Nί, 1 ^ ϊ ^ r, It suffices to prove that N — Mi, for some a e {1, •••,#}.

Take 0 Φ ne N, and let n — (%, , np) be the expression of n
relative to Mi 0 0 Mg, i.e., % e Mi for all i, 1 ^ i ^ p. Let
na Φ 0 for some a. Since the maximal trivial subspace Mi has been
split off, there exists a ga e Ha such that na Φ ganae Thus, since Ha

acts trivially on Mi if k Φ a, we have:

0 Φ (na - gana) = (n - gan) e N Π Mi.

We claim N Π Mi is nondegenerate.
If not, there exists v e N Π Mi such that <v, ri> = 0 for all

w G JV Π Mi. Take an arbitrary s e N, s — (su , sp) such that

and take an arbitrary g eH, g = (gu , gP) such that

g.eH^l^i^p .

As above, (s — gas) eNf] Mi. Thus ζv, s — gasy = 0, i.e.,

O, >̂ = <y, 9asy .

Trivially, ζv, gasy = ζv, gsy because gs — (g1s1, , g ^ ) and the de-
composition M£ 0 Mi 0 0 Ml is orthogonal. So ζv, s> = <>, ^s>,
or equivalently, ζ$v, s> = ζv, s> for all se N, g £ H. But the restric-
tion of <, > to N is nondegenerate, hence gv = r for all geH, which
implies v e Mi, contradiction.

So N Π Mi is nondegenerate. Now H acts weakly irreducibly on
Mi, so that of necessity N Π Mi = M2; otherwise, AT Π M2 will be a
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proper nondegenerate subspace of ilf« left invariant by H. Reversing
the roles of N and Λf£ we have N Π Ml = N. Thus N = Λβ, and
our claim is proved.

APPENDIX II

The statement of Theorem 3 of [16] is incorrect, but can be rec-
tified simpiy as follows. Recall that a distribution T is auto-parallel
with respect to a connection iff the parallel translation of Tp along
any curve to another point q e M coincides with Tqm We say that a
pair of supplementary auto-parallel distributions in an affinely-connected
manifold M induces a local affine decomposition of M if and only if
around each point me M, a neighborhood can be found which is affinely
diίfeomorphic to a neighborhood of (m, m) of the direct product of
the integral manifolds to the distributions through m. Similarly for
local isometric decompositions. The correct version of Theorem 3 of
[16] is then:

THEOREM. The following are equivalent for a riemannian M:
(1) There exists a pair of supplementary auto-parallel distribu-

tions which induce a local affine decomposition of M.
( 2 ) There exists a pair of supplementary auto-parallel distribu-

tions which induce a local isometric decomposition of M.
(3) The identity component of the holonomy group is nonde-

generately reducible.
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