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HYPERCYCLIC RINGS

WiLLiaM H. CALDWELL

The object of this paper is to provide characterizations
for certain rings R having the property that each cyclic right
R-module has a cyclic injective hull,! Such rings will be called
hypercyclic. Characterizations for left perfect hypercyclic
rings and commutative hypercyclic rings are given in terms’
of their ideal structure and self-injectivity, An example of
a commutative hypercyclic ring without chain conditions is
given to demonstrate that the characterization obtained is
nontrivial,

In §1, the class of left perfect hypercyclic rings is shown to be
precisely the class of uniserial rings. This is done by showing that
they are quasi-Frobenius principal left ideal rings. In §2, commutative
hypercyclic rings are shown to be semi-local, and then commutative
local hypercyclic rings are described.

THEOREM. R is commutative local hypercyclic if and only if
either (a) R is local uniserial or (b) R satisfies the five conditions
(i) The Jacobson radical is o wnil ideal and is the union of an
ascending sequence of proper principal subideals, (ii) Ideals in R
are linearly ordered, (iii) R has monzero socle, (iv) Nonprincipal
ideals are of the form xJ, J = radical, (v) R is injective.

The main result in §1 is a generalization of [3, Th. 2, p. 211].

1. Hypercyclic rings under chain conditions. We first require
some definitions and conventions. First of all, we will reserve the
letters J and S for the Jacobson radical and the socle, respectively,
of R. We will denote the injective hull of My by E(Mg). It is well
known that E(M;) is an essential extension of My, where Ay essential
in Br means that A;NCy =0 for any 0= Cr, S Bz. This will be denoted
A, &'B;. In [2], Bass calls a ring left perfect provided every left
R-module has a projective cover. J is called left T-nilpotent provided
for every sequence {a;} of elements of J there exists an n such that
a8y a, = 0. (Clearly a T-nilpotent radical is nil; however, we
will later give an example of a ring which has a nil radical which
is not T-nilpotent). Bass then gives the following equivalences for
left perfectness.

1 All rings are associative and have identity. Further, all modules Mz are
unital, i.e. m-1=m for all me Mz.

29
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THEOREM P. The following are equivalent.

(1) R is left perfect.

(2) J is left T-nilpotent and R/J is semi-stmple.

(3) R satisfies descending chain condition on principal right
ideals.

(4) R has no infinite sets of orthogonal idempotents and every
nonzero right R-module has monzero socle.

It is easy to see that any left or right artinian ring is right and
left perfect, since a nilpotent radical is clearly T-nilpotent so that
(2) is satisfied. More generally, any semi-primary ring is (both right
and) left perfect. We borrow the following lemma from [3].

LemMMA 1.1. A left perfect hypercyclic ring 1s right self im-
Jective.

Recall that a module M is called a cogenerator for the class of
right R-modules if M satisfies the following property: If A and B
are R-modules and f: Ap — By is a nonzero homomorphism then there
exists g: Bx — My such that gf is nonzero.

It is well known that an injective R-module M is a cogenerator
if and only if M contains a copy of each simple right R-module.
Consequently, a quasi-Frobenius ring is an injective cogenerator; in
fact, it is well known that any left perfect right self injective ring
is a cogenerator. Since a left perfect hypercyclic ring is right self
injective by 1.1, it is a cogenerator.

THEOREM 1.2. If R 1is left perfect and right self injective, then
any injective cyclic R-module 1is projective.

Proof. Since R is perfect, R/J is semi-simple, so
R|J = 3, @ #(R/J),

{e;} orthogonal idempotents and e,(R/J) simple. Lift to a set {e;} of
orthogonal idempotents of R and write R = >»., B e¢;R. Hence each
e;R is an indecomposable injective R-module. Since R is perfect, ¢,R
is the injective hull of its nonzero socle and hence must have simple
socle S;. Then S =372, S; must be finite. We now show that
the socle of any injective cyclic R/I embeds in R. Then, since R/I
is essential over its socle, it will also embed in R, and being injective,
be a summand of R, whence projective.

Let C be a summand of the socle of R/I maximal with respect
to the property that C embeds in B. Such a summand must exist
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since S has finite length. Then there exists D such that CH D =
S(R/I), the socle of R/I. We wish to show, then, that D = 0.

Assume to the contrary. Then D has a simple submodule K,
and K must embed in R since R is a cogenerator. Let f:C— R and
g: K— R be the embeddings. Define h: CG K —R@P R by h((c, k)) =
(f(e), g(k)). Then h is an embedding, and since R R is injective,
it must contain as a summand a copy of E(C @ K), the injective hull
of C K, so that E(CE K) is projective. Now R/I also contains as
a summand E(C & K), and if m denotes the projection of R/I onto
E(C@ K) and v denotes the natural map of R onto R/I then wv maps
R onto E(C K). Since E(CEP K) is projective, it is isomorphic with
a summand of R, and since CA K S E(C P K), C P K embeds in R,
contradicting the maximality of C. This contradiction establishes that
C = S(R/I), and, consequently, the theorem. Notice that any cyclic
injective, then, embeds in R in fact, this is what we proved.

If I is any subset of R, we denote by 7(I) and s(I) respectively
the right and left annihilator of I in BR. That is, v(I) = {x e R|Ix = 0}
and s(I) = {xe R|al = 0}. If I consists of the single element x, we
will write (0:2) for »(I).?

We need the following lemma from [5].

LEeMmA 1.3. If R is injective, then finitely generated left
ideals are left annihilators.

THEOREM 1.4. If R s left perfect and hypercyclic, then anni-
hilator left ideals are principal left ideals.

Proof. By Lemma 1.1, R, is injective, so that R satisfies the
conditions of Theorem 1.2. Consequently, every injective cyclic R-
module embeds in R, so that, since every cyclic embeds in an injective
cyclic (its injective hull), every cyclic embeds in E. Hence every right
ideal is the right annihilator of a single element. Let L be any left
annihilator ideal, L = s(I) for some right ideal I in B. Then »(L) =
I =(0:2) for some xc R. Since (0:z) = (0: Rx) = r(Rx), (L) = r(Rx).
But R is injective, so that principal left ideals are left annihilators
and gince L is also a left annihilator, L = s(r(L)) = s(r(Rx)) = Rzx.

THEOREM 1.5. R is left perfect and hypercyclic if and only if
R is uniserial.

Proof. That any uniserial ring is left perfect and hypercyclic
follows from [3, Th. 4.2] and the fact that any artinian ring is perfect

2 More generally, if Az < Bgr, (A:B) = {r€ER|Br = A}
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Conversely, assume R satisfies the conditions of the theorem. Then
R is an injective cogenerator, so that J is the left annihilator of
S (see [8]). Hence, J = Rx for some e R by 1.4. But R is left
perfect, so that J is T-nilpotent, and consequently nil. Thus 2" = 0
for some n. Since J is an ideal, J” = (Rx)" & Rx" = 0, so that
J is nilpotent. But then R is semi-primary, and so is also right
perfect. It follows that R satisfies descending chain condition for
principal left ideals. Let I, =€ I, = I, < --- be an ascending chain of
right ideals of R. Let I, =(0:x,). Then Rz, 2 Rx,2 --- is a
descending chain of left ideals of R which must terminate, so there
is an integer k such that Rx, = Rx,., for every p. But then I, =1,,,
for every p so R is right neotherian. By [3, Th. 4.2] R is uniserial.

2. Commutative hypercyclic rings. In §1 the first result
derived from chain conditions was the injectivity of R;. Commuta-
tivity is also a sufficient hypothesis to guarantee injectivity of a
hypercyclic ring.

LEmMmA 2.1. If R is commutative and R/A embeds in R/B for
any ideals A, B<S R, then B < A.

Proof. If f is the embedding and be B, then f(b+ A) =
f@+ Ay =0.

COROLLARY 2.2. A commutative hypercyclic ring is self-injective.
Proof. If R/I = E(R), R embeds in R/I.
In [7], Osofsky proves the following three lemmas.

LEMMA a. Let {e,|ne N} be a set of orthogonal idempotents in
a right self injective regular ring. Then for every subset A S N,
there is an idempotent K, c R such that:

FEe, =e, for all ne A
Ee,=c¢,E,=0 for all e N~ A
EA + E.N~A = EN .

LEMMA b. Let R be a right-sel f injective regular ring containing
an tnfinite set of orthogonal idempotents {e,|ne N}. Let I = >, eye. K.
For A S N, define E, as in Lemma a. Then the set S,, = {E,|Ae o7},
where each A is infinite, is independent modulo I if and only if for
any finite set {A;|1 =1, -+, n} S .7 A, N U,z 4; s a finite subset
of N, 11 < n.
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LEMMA c¢. Let R be a right self tnjective regular ring which
contains an infinite set of orthogonal idempotents {e,|ne N}. If
I=73,eve.R, then R/I is mot an injective R-module.

Let a’, b, ¢’ designate respectively the lemmas resulting when the
word “commutative” is substituted for “regular” in Lemmas a, b, and
¢. Then a’, b’ and ¢’ are also true.?

Proof. We first point out that the hypothesis of Lemma c are
used in [7] only to guarantee that the conclusions of Lemmas a and
b hold. Hence we need only show that a’ and b’ are true.

a’. Since R is injective, R/J as also injective (see (9)), and thus
satisfles Lemma a. Let {E,} designate the idempotents obtained from
the set {e,} of orthogonal idempotents in R/J. Lift* to corresponding
sets of orthogonal idempotents {E,} and {e,} in R.

By Lemma a, Ee, —¢, = xeJ. Then, ¢,x = 2z, so that E.e, =
e,+v =¢e,+e,x=ce,(1+2x). Hence ¢,=FE,e,(1+2)'ckE,R so K., =e,.
The second property in Lemma a’ follows since FE,e, is idempotent
and in J. The same argument as above shows that E, is orthogonal
to E,.,. Now since E, + Ey., — Ey, = KeJE, — E,E,eJ, so that
E, = E,E, as above. Hence E,K = E,_,K =0, and E,K = K. Hence

Ey+ K=FEy+ EK=E(l+K)=E, + Ey_,

sothat ¥y = (E,+Eyv. )1 — K)'e(E,+ Ey.)R,500 = (E,+ E,. )K=
(B, + Ey.)EyK = E K = K.

b’. Let S, be independent modulo I. We know that Lemma b
applies to R/J, so we need only show that if S, is independent modulo
I then it is independent modulo I + J. However, it is easily seen
that {£,} is independent modulo an ideal K is and only if for every
finite subset {£,, |1 =1, -+ -, n} S {E}, EAj N By, S K, J=1, -+, m.
Hence since IS I + J, independence mod I implies independence mod .J,

The converse is proved exactly as in [7].

We use ¢’ to conclude that a commutative hypercyclic ring can
have no infinite sets of orthogonal idempotents, and consequently
must be semi-simple modulo its radical.

THEOREM 2.3. If {e;} is any set of idempotents in a commuta-
tive hypercyclic ring R, and 1f I = >, e,R, then R/I is an injective
R-module.

Proof. Let E(R/I)= R/K. Then R/I embeds essentially in R/K,
so K< I by 1.1. Now if e is any idempotent in R,

3 The author is indebted to Dr. Osofsky who pointed out this fact.
4 This is possible in any self injective ring, see [10].
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1—-eR+K .. R+ K
K = | )
Ef K D%

The sum is direct since R is commutative. Let @: R/I— R/K denote
the embedding. Now for any xe R, if @(x + I)e(eR + K)/K, write
P+ I)=y+ K. Then ye+ K=ey+ K=y + K, so px+1) =
o + Ie. Since @((x + Ie = p(xe + I) = plex + I) = (0 + I) =0
whenever ¢c I, (eR + K)/KN®(R/I) = 0 whenever ec I. Since (R/I) is
essential in R/K,eR < K. Hence IS K. SoI=K. Hence R/Iis injective.

COROLLARY 2.4. If R 1is a commutative hypercyclic ring, then
R/|J is semi-simple.

Proof. Since R is injective, R/J is a right self injective regular
ring, so that R/J is semi-simple if and only if it has no infinite sets
of orthogonal idempotents. Since orthogonal idempotents can be lifted
orthogonally modulo J, R/J is semi-simple if and only if R has no
infinite sets of orthogonal idempotents. However if R has an infinite
set of orthogonal idempotents, {¢;}, and if I = 3 ¢;R, R/I would be
noninjective by Lemma ¢’. This can’t happen by the theorem.

Notation. We will call a commutative loeal hypercyclic ring a
CLH ring.

THEOREM 2.5. A commutative ring R is hypercyclic i1f and only
iof R is a ring direct sum of a finite number of CLH rings.

Proof. Assume R is hypercyclic. Since R/J is semi-simple, R
is semi-local (a ring direct sum of a finite number of local rings).
Now if eR is a local component of R and M is an R-module, then
M1 — e) =0 and so maps of ideals I of R into M reduce to maps
of ideals el into M and so R-injectivity of M is equivalent to eR-
injectivity. Also, notice that R/I is an eR module if and only if
(1—e)R = I, that is, if and only if R/I is a cyclic eR-module. Since
R is hypercyclie, every cyclic ¢eR-module eR/el has a cyclic R-injective
hull, and since this must be eR-injective, the eR-injective hull of
eRJel is a cyclic eR-module, so each ¢R is a CLH ring. Conversely,
let R=>,Pe¢,R, where each ¢;R is a CLH ring. Then if I is any
ideal in R, I= >\, eI, so that R/I= > Pe;Rle;l. Consequently
ER/I) = >\, P E(¢;R/e;I). Again we notice that the R-injective hull
coincides with the ¢;R-injective hull of e¢;R/e;I. However each ¢;R is
CLH, so that the ¢;R-injective hull of ¢,R/e,I is isomorphic with ¢;R/A;
for some A; S e¢;R. Hence E(R/I) = >\, DeR/A, =R/>, PA,; is
cyclic and hence R is hypereyclic. This completes the proof. By this
theorem, we can obtain a characterization of commutative hypercyclic
rings by restricting our attention to CLH rings.
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It has been shown that in the presence of certain chain conditions,
hypercyclic rings are actually uniserial. For a uniserial ring every
principal indecomposable left or right ideal has a unique composition
series. We will show that CLH rings have a similar property, specifi-
cally, that ideals in such rings are linearly ordered. In [2], Bass calls
a submodule N of an R module M superfluous provided A + N =M
implies 4 = M for all submodules A of M. It is easy to show that
the radical of a ring is a superfluous submodule of R, and that
submodules of superfluous modules are superfluous.

LEMMA 2.6. If R is a commutative local ring, then cyclic R-
modules are indecomposable.

Proof. If R/IA= C/A@ D/A, then C + D = R, and since every
ideal different from R is contained in J = rad R, either C or D is
superfluous, so that R = C, say, hence DS A and R/A is inde-
composable.

If A is any submodule of an R-module M, a submodule B of M
which is maximal with respect to the property that AN B = 0 is called
a complement of 4 in M., Thus any non-ssential submodule of M has
nonzero complement in M. Clearly, if B is a complement of A, then
APBS M. If M is also injective, then whenever B is a complement
of A, M' = E(A@ B) = E(A) P E(B), so that M is decomposable if A
and B are both nonzero.

THEOREM 2.7. If R ¢s a CLH ring, then ideals in R are linearly
ordered.

Proof. Let A and B be ideals in R. If A/ANB and B/ANB
were both nonzero, then A/ANB would have nonzero complement in
R/ANB. But then A/AN B comp (A/ANB) would lead to a decom-
position of E(R/AN B), and since the injective hull of R/AN B is cyclic,
it is indecomposable by Lemma 2.6. Hence A/ANB or B/JANB =0,
thus AS ANB or BE ANB hence, A S B or BS A.

COROLLARY 2.8. Finttely generated ideals im a CLH ring are
principal.

Proof. Let =« R+ -+ + 2,R. Then by the theorem, there
exists an integer ¢ such that x, RS «;R,j =1,.--,n. Thatis, I = z,R.

DEFINITION. M, is called fatthful provided Mr = 0 if and only
if »=0. (Mr = {mr|meM}).
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In [8], the following lemma is proved, which we find useful.

LemMA 2.9. If R is any ring and {S;|t€ I} a complete set of
representatives of isomorphism classes of simple R-modules, then
Sier D E(S;) is a faithful R-module.

Since clearly any module M with a faithful submodule is itself
faithful, in order to show that an R-module M is faithful, it suffices
to prove that M contains a copy of the injective hull of each simple.

THEOREM 2.10. If R is a CLH ring, then R has a simple socle.

Proof. By Theorem 2.7, we need only show that S == 0. Let
E(R/J) = R/K. Then R/K is faithful by Lemma 2.9, so that (R/K)K =
0 implies K = 0, hence R/J embeds in R so S = 0.

Observe that S is essential in R, since R is indecomposable.

THEOREM 2.11. If xR 1is a cyclic module over a CLH ring R
then any submodule of xR s essential in xR.

Proof. Evident by 2.7.

THEOREM 2.12. Let R be a CLH ring. Then for any tdeal I, R/I
has nonzero socle 1f and only +f E(R/I) = R.

Proof. 1If E(R/I) = R, then R/I embeds in R. Since by Theorem
2.10, S is simple and essential in R, it is contained in every ideal,
hence, the image of R/I has nonzero socle, so R/I does.

Conversely, if R/I has nonzero socle, then E(R/I) contains a
copy of the injective hull of the unique simple, and so is a faithful
R-module, so that if E(R/I)= R/K, then R/K is faithful. But
(R/K)-K = 0 so that K = 0.

It is well known that a module M, is injective if and only if
for every right ideal I in R and each homomorphism @: I-— M there
exists me M such that o(r) = mr for every rel. This condition
will be called Baer’s condition in the ensuing, as it is in [4].

THEOREM 2.13. Let R be a CLH ring, and let I be an ideal of
R such that (0:2) &1 for some xcJ. Then R/I is not injective
unless I = R.

Proof. Assume R/I injective, (0:2) & I. Define ¢: xR — R/I by
@(xr) = r + I. Since xr = 0 implies »e (0:2x) S I, so that » + I =0,
@ is well defined. Clearly ¢ is an R-homomorphism. Since R/I is
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injective, by Baer’s condition there exists m e R such that oar) =
(m + Iaer = mar + I for all xreaxR. But then 1+ I = @(x-1) =
me + I, so that 1 — mael. Since veJ, (1 — mx)'eR, so that 1 =
(1 — max)(1l — ma)*el. Hence, I =R,

COROLLARY 2,14, If R is a CLH »ing and <f J is principal,
then E(R/I) = R for each right ideal I + R,

Proof. Let J=aR. Then S=(0:J)=(0:2) is contained in
every nonzero ideal I, so that by the theorem, R/I is not injective,
hence, R is the only injective cyeclic.

COROLLARY 2.15. If R/S has monzero socle for a CLH ring R,
then E(R/I) = R for each ideal I + R.

Proof. R/S has nonzero socle, so E(R/S) = R by Theorem 2.12,
hence R/S embeds in B. So R/S = xR where S = (0:x). Since S =
0:J),0:2)=(0:Rx) =(0:J). But R, is injective, so that principal
ideals are annihilators by Lemma 1.3, and since J is maximal, it is
an annihilator. Hence, *R=(0:(0:2R) =(0:(0:J)=J, so J is
principal. By Corollary 2.14, the proof is complete.

LEMMA 2.16. Let R be a commutative local ring, 0 +# xe R.
Then xR/xJ is a nonzero simple R-module.

Proof. Since R/(0:x) = «R and
O:2)=J, R/lJ=R/0:2)/J/(0:2) = cR/xJ

is simple.

THEOREM 2.17. Let R be a CLH ring. If I is an ideal in R
such that (R/I), is injective, then I =0 or I = S.

Proof. We show that if R2122S, then R/I is not injective.
Let xel,xz¢ S. Since *R 2 S, there is an element e R such that
0#2=2areS, and so zR = S. Further, since xR # S, and xzR/xJ is
simple by Lemma 2.16, S < «J, so that reJ. But then #(zJ) =
ard =2J = SJ =0, so that xJ = (0:7). If xJ #= (0:7) then 2R &
(0:7) so 02z =uar =0, a contradiction. By Theorem 2.13, since
xJ S I, R/I is not injective.

We will show in a later example that it is possible for both K,
and (R/S), to be injective for a CLH ring R, however, we do not
have enough information to do so now.
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The techniques of Theorem 2.17 allow us to describe exactly the
ideals of a CLH ring. We first have a corollary to Theorem 2.17.

COROLLARY 2.18. Let I be an ideal im a CLH ring R. If I+
0:2) for any x € R, then there is an x € R such that I = (S: ).

Proof. If I=+(0:z) for any x € R, then R/I does not embed in R,
so that E(R/I) is not isomorphic with R. By the theorem, E(R/I) =
R/S, so that R/I embeds in R/S. If f is the embedding, I = (S: %)
where f(1 + I) =2 + S.

THEOREM 2.19. Let I be an ideal im a CLH ring R. Then I is
principal or I = xJ for some x e R.

Proof. We show first that given any element 0 == yc'R there
exists an element ze R such that (S:y) =zR, (S:2) = yR, (0:y) = zJ,
and (0:2) = yJ. Since by Corollary 2.18, every ideal of R must be
of the form (0:x) or (S:x) the proof will be complete.

Let 0 #yeR. Then yR>OS, so there exists ze R such that
yz = 0 is in S. Hence, yzR = S, and so zR S (S:y). However, if
te(S:y) and ¢ ¢ 2R, then zR S tJ so that there is jeJ such that
z=1j. Then zy = ytje SJ = 0, a contradiction. Hence zR = (S: ).
Since yzR = zyR, yR < (S :2) and an argument symmetric to the above
shows that yR = (S:z2). Now since yz¢ S, zJ = (0:y) and (0:2) = yJ.

DEFINITION. An ideal I in a ring R is called nil provided every
element of I is nilpotent.

THEOREM 2.20. If R is a CLH ring, then J is wnil.

Proof. lLet yed, and let I = 3, y"R. Then I =0 if and only
if y is nilpotent, for if y" == 0 for every =, then S & y"R for every
n, so SSI. We will show that the assumption that there is a ye J
such that I =40 leads to a contradiction. We first show that yI = 1.
If I=0, this is obvious, so assume I = 0. Then y"¢ I for any =,
for if so, y"ey"™R so y™ = y"*'r and hence,

v =y d =y —yr)T =@ -y A — )T =0,

a contradiction. Now let tel. Then t = yr for some re R, and if
r¢ I, there is some % such that »R 2 y"R, so that rk = y™ for some
ke R. Hence, y"™ = yrk = tk e I, a contradiction.

This shows that re I, so that teyI, and hence yI = I.

Now by Theorem 2.19, I = 2R or xJ for some xzc R. Assume
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I = 2R for some nonzero xc R. Then 2R = I = yI = yxR, so that
¢ = yaor for some re R. Then 2(1 — yr) = 0, and since yeJ, z = 0,
a contradiction. Thus I = xJ for some nonzero x € B. But if zey"R
for every n, then 2R < I = «J, and zR 2 xJ by Lemma 2.16, a con-
tradiction. Hence, there must exist an integer n such that R 2 y"R.
But then zr = y" for some re R, so yxr = y"*, and since yx ez,
y"*te I, This contradiction establishes that I = 0 so that J is nil.

CoROLLARY 2.21. A CLH ring R is uniserial if and only +f J
is a principal ideal.

Proof. Let R be uniserial. Then every ideal is principal.
Conversely, if J is principal, then J is nilpotent. Since J"/J"*' ig
semi-simple for every =, it must be simple by the linear order on
ideals. Consequently, if p = index of nilpotency of J, then

RoJDJED e DJP D0

is the unique composition series for R. Since R is primary, R is
uniserial.

LeMmA 2.22. Let R be a commutative local ring satisfying the
following:

(1) J is the union of an ascending chain of proper principal
subideals and is nil, but not nilpotent, J = U =K.

(2) Ideals in R are linearly ordered.

(3) S=0.

(4) Ideals in R are of the form xR or xJ.

Then the following are true.

(a) J=J4

(b) For every xe R, xJ is not finitely generated unless xJ = 0.

(c) Jzz{jljz‘juszEJ}-

Proof. (a) Look at J/J®. Since (J/J?)J = 0, J/J* is either 0
or is simple. But if zeJ is such that x¢ J? then 2R 2 J?, so that
xR =J. But J can’t be principal since J is not nilpotent. Thus
JIJ*=0s0 J=J%

(b) If aJ is finitely generated then zJ = zR for some zeR.
Then 2R = xJ = ¢J? = zRJ = zJ, which is impossible unless zR = 0.

(c) Clearly A = {j.5.]5,5.eJ} & J°. If

n
2 = Zaibler, ai,biEJ,
1=1

then by the linear order on ideals, there is an integer %k such that
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ab,eabR,t=1,--- n. But then we can write a,b; = a,b,7;, and

THEOREM 2.23. Let R satisfy the conditions of Lemma 2.22,
Then we conclude

(a) Ideals in R are annihilators.

(b) If p:eaR— R or ¢:xR— R/S, then @ can be given by a
left multiplication.

(e¢) If I vs an ideal in R, then R/I embeds as an essential
submodule of either R orR/S.

(d) (R/S)z ts injective if and only if Ry is injective.

Proof. (a) Let J=U;zR where 2R =S, v,k & x;,,R. Let
I=2xJ. Since S & xR, there is ye R such that 0= 2yc S, and it
follows that «J = (0:y). If I = xR, again there is y e R such that
0+2ycS. To show that xR is the annihilator of yJ, we need only
observe that if z€(0:yJ), then zyJ = 0 so that zyeS. But if
zR 2 xR, then there is an element reJ such that zr = 2. Then
2, =axy = yzr =0 gince yze S and reJ. SozexaR, and 2R = (0:yJ).

(b) Let ¢:2R— R. Then @(xR) = @(x)R is a principal ideal.
Now xr = 0 implies @(xr) = 0 so that @(x)r = 0. Hence, re (0:2)
implies r € (0 : o(x)). However, if (0:2) S (0: o(x)) then o(x)R S =R,
by taking annihilators, hence, there is an element mc R such that
@p(x) = mx, and so @(xr) = mar for all zrexR. Let @:x2R— R/S.
Again @(xR) = (y + S)R where o(x) =y + S. But if ar = 0, then
per)y =0+ 8, so 0:2) = (S:y). Now (0:2) =tJ for some teR.
Since J* = J by Lemma 2.22, tJ*=tJ. But ytJ =S S, so ytJ* < SJ = 0.
Since ytJ* = ytJ, (0:2) = tJ < (0:y). Hence, yR & xR, so y = mx.
Then @(xr) = @(x)r = (mx + S)r = (m + S)xr.

(¢) Let I =aJ. Then there is a ye R such that I= (0:y).
Then R/I = yR under r + I— yr, so R/I embeds in R.

Let I = xR. R/xR = R/xJ/xR/xJ, and since R/xJ = yR as above
xR/xJ = S, R/I = yR/S. Thus R/I embeds in R/S.

To see that the embeddings above are essential, one need only
notice that if meR or R/S, then mR contains or is contained in
the image of R/I, so that if mRN®(R/I) = 0 then mR = 0.

(d) Notice that by virtue of (b), we need only show that maps
of ideals of the form zJ are given by left multiplications in order to
show that R or R/S satisfies Baer’s condition. Also, if {;} is the set
of generators of the radical, then @ is completely determined by its
action on {xx;}, that is, if we can show that @(xx;) = maxx; for every
1, we will know that ¢ is determined by left multiplication by m.

Now if A is any ideal in R with a maximal sub-ideal B, then by
the linear order on ideals, A = xR for any x € A such that x¢ B. On
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the other hand, any ideal of the form xR has maximal submodule z.J
as in Lemma 2.16, so that A has a maximal submodule if and only if
A is principal (finitely generated, by the linear order on ideals). We
see that the nonfinitely generated ideals in R are precisely the ideals
of the form xJ for any zeR,x¢S. Now since aJ is not finitely
generated it has no maximal submodule, and consequently, its nonzero
image under homomorphism to R or R/S cannot have a maximal
submodule and so must be not finitely generated. Consequently, if
@:xJ — R, then @(xJ) =yJ for some yeR, and if ¢:zJ— R/S,
@(xJ) = yJ/S for some ye R.

Assume first that R is injective, and let ¢:xJ— 2J/S be an
R-epimorphism. Then @; = (¢ restricted to zx,R) determines a map
from xzx;R into yJ/S, and the maps @, have the property that if
1 = j, then @,(r) = @,(r) for all r in ax,;R. Since ;R & x,,,R, there
is an element ¢, € J such that z;,,t; = ;. By (b), there exists m; e R/S
such that o@,(zzr) = max,r for all xxrcaox,R. Let m, =3, + S.
Then @(ax,r) = @(xxr) = mxxr, so that o(ax;) = xx,7,--S. However,
xw; ., t; = xx;, so that

PXx;4it;) = P@T;1)t = (X%, + S
= ;. Jint + S = aw; 5 + S

Hence xx,5;, — xx,5;1, = xx;7;€S. We now define a new map from
zJ into R by giving its values on {xz;}. Let @(xx;) = 2w;7;.,. Then
@ will be well defined provided @H(xx;) = P(xwx;.,)t;. But

PETi41)t; = (@Ti4Ji2)ti = (@1 i — TXs3 70 0)E;
= B4 Jimbi — Wit = XX Ji0y

since x;.,t; = 2;+, and xx;4,7;., € Sand t; € J. Thus @ is a well defined
R-homomorphism of xJ into R. Since R is injective, there is an
m e R such that @(xj) = maJ for all 25 exJ. We assert that o(xj) =
(m + S)xg for all ajexJ. Again, this will be true provided @(zx,;) =
(m + s)xx; for every integer ¢. However, that o(zz;) = zx,5;, + S =
x%;7:+, + S was shown above, and wxx;7;., = mxx;, so that o(zx;) =
max; + S = (m + S)xwx;. Consequently R/S is injective.

Conversely, assume that R/S is injective, and let @: xJ — yJ be
an epimorphism, If v denotes the natural map from yJ onto yJ/S,
then vp is a mapping from «xJ onto yJ/S. Since R/S is injective,
there is z€ R such that vp(xj) = (2 + S)xj for all xjexJ. We show
that the map @ is defined by @(xj) = zxj for all xjcxJ. Since

zxj + S = vo(xg) = o(xg) + S, p(xf) — zaJ e S.

Now jed =J*={4.9.17.,J.€J} by Lemma 2.22, so that there are
a,beJ such that 7 = ab. Then
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P(x)) — zxj = P(xad) — zxab = @(xa)b — zxab = (P(xa) — zxa)b ,

and since @(xa) — zea € S and b e J, (@(xa) — zxa)b = 0, so that ¢(xj) =
zxg for all xjeaxJ. This completes the proof of (d), and thus of the
theorem.

We now come to our main result.

THEOREM 2.24. Let R be a commutative local ring. Then R is
CLH if and only if either (A) R is uniserial, or (B) R satisfies the
following conditions:

(1) J is the union of an ascending chain of proper principal
subideals, and J is nil.

(2) Ideals in R are linearly ordered.

(3) S=0.

(4) Ideals in R are of the form xR or xJ.

(5) Ry s injective.

Proof. Let R be CLH, and assume R is not uniserial. We have
already shown that conditions (2) through (5) are satisfied using
Theorem 2.7, Theorem 2.10, Theorem 2.19, and Corollary 2.2 respectively,
hence we need only show (1). Let {x;} be a collection of elements of
J such that z; has index of nilpotence =;, n, < n, < %, ---. Such
elements must exist since J is nil by Theorem 2.20, and if J were
nilpotent, B would be uniserial (RDJ DJ*--- DJ* =0 the unique
composition series). We assert that J = U7« R. Since J is not
principal by Theorem 2.21, the ideals x;R are properly contained in .J.
Let yeJ, n = index of nilpotency of . Choose 4 such that n; > n.
Then yR < ;R for if not, ;R S yR by (2) and so z = yr, whence
2 = y"r™ = 0, contradicting the choice of n;,. Hence J C |Jr «;R and
so (1) is satisfied.

Conversely, since any uniserial ring is hypercyclic, we need only
show that conditions (1)-(5) imply that R is CLH. However, this is
a trivial consequence of Theorem 2.23.

We are now in a position to give an example of a nonartinian
hypercyclic ring, which will show that the assumption of chain con-
ditions was necessary in order to obtain the equivalence of hypercyclic
and uniserial.

ExamMpPLE. Let K be a field,  an indeterminate over K, and let
W = {{a;} |{a;} a well ordered sequence of positive real numbers}.
Form the ring T = {3\, a:x%|a; e K, {a;}e W}, Then T is a local
ring, commutative, and J(T') = {3 ax*ie T |, > 0}. Furthermore,
if r=3>2,ax%eJ(T), and «, is the minimal element of {«;}, then » =
%k ek, and since ¥ = S\0@x% T = @) 4 D @ X%, 7 8
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regular in T. Consequently, if z,y e J(T), z = 2%, y = xfr, with »,, r,
regular in T, and if a > B, z = 2%r, = xfrax*fror;y' = yae*fro;teyT,
so that 2T < yT. Hence the ideals in T are linearly ordered, and
2T/zJ(T) is simple. Now let I be any ideal in J(7T'). Then the set
A = {aecReals|z*e I} is a nonempty set of reals bounded below by 0.
Let « be the greatest lower bound of A. There are two cases:

Case 1. ac A. Then 2°¢ I, and if B < a, then x2f¢ I, so that
2?T 2 I by the linear order, and so I = z*T is principal.

Case 2. ag¢ A. Then x*¢ I, But if afel, then z" eI for every
v > 8, so that since « = g.l.b. A,2**# ¢ I for every 5 > 0. Consequently,
2 J(T) & I, and since x*T/x*J(T) is simple and 2T 2 I, I = 2*J(T).

Let R = T/xJ(T). Then R inherits the properties of having a
linear order on ideals and having two kinds of ideals, zR or zJ.
Furthermore, R has simple socle S = aT/xJ(T) and J(R) is nil, since
if x*r + zJ(T) e J(R) and na > 1, then

(x*r + zJ(T))" = ™" + xJ(T) = 0 + xJ(T) .

Hence, in order to show that R is a CLH ring, we need only show
that R is injective (or R/S is injective). However, in [6] it is
shown that every homomorphic image of T is a self injective ring.
Consequently, we have exhibited an example of a nonartinian CLH ring.

Notice that our example of a nonartinian CLH ring has the
property that R/S has no socle, and consequently cannot be a CLH
ring itself. This raises the question of when are homomorphic rings
of hypercyclic rings again hypercyclic.

THEOREM 2.25. Let R be commutative. Then every homomorphic
image of R ts a hypercyclic ring +f arnd only 1f R is uniserial.

Proof. Let R be uniserial. Since every homomorphic image of
a unigerial ring is uniserial and since every uniserial ring is hyper-
cyclic, every homomorphic image of R is hypercyclic.

Conversely, assume every homomorphic image of R is hypercyclic.
If e¢R denotes one of the local components of R, and ¢S denote its
socle, e¢R/eS must be a local hypereyclic ring, and must consequently
have nonzero socle. By Theorem 2.12, ¢R/eS embeds in e¢R so that eJ
is principal. By Corollary 2.21, ¢R is uniserial. Since R is, then, a
direct sum of uniserial rings, R is uniserial and the proof is complete.
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