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FELLER BOUNDARY INDUCED BY
A TRANSITION OPERATOR

S. P. LLoyp

A transition operator T is a nonnegative contraction on
an AL space L such that || Tul|| = || ¢|| for £ =0, The set
A ={feL*: T*f = f} of invariant functions of the adojoint
T* turns out to be lattice isomorphic to C(B) for a certain
hyperstonian compact Hausdorff B, For the transition operator
of a countable state Markov chain, B is the Feller boundary
of the process, and in the general case we call B the Feller
boundary induced by 7. For the general case we exhibit
several Markov processes associated with T such that B appears
as a subset of the state space, These processes involve the
potential theory of T'*., When L is separable there is a quotient
space B, of B and a measure y, with B, as closed support such
that .# is isomorphic to L.(B,,t). There is also a Markov
process whose paths converge to B, with probability 1. However,
we do not obtain the kernel representation of superharmonic
functions as with the Martin-Doob boundary.

2. The Feller boundary., Let L be an AL space (abstract !
space [3, Ch. VI]) and let T be a bounded linear operator on L with
the properties 7' = 0, || T || = || ¢|| for £ = 0, so that || T'|| = 1. When
L is a space of measures our conditions are that T transform proba-
bilities into probabilities. As we will see, there are various discrete
parameter Markov processes associated with T such that T induces
the transition probabilities of the Markov processes, and we call T a
transition operator. Let M be the Banach space conjugate of L, so
that M is an AM space with order unit. The adjoint T* is an oper-
ator on M such that T* = 0, T*1 =1, ||T*|| = 1. Let &~ be the sub-
space of L consisting of the invariant vectors ¢t = Ty of T, and let .7
be the subspace of M consisting of the invariant vectors f = T*f of
T*. We will see that _# corresponds to the space of invariant (or
harmonic or regular or concordant) functions of a Markov process,
while &© corresponds to a certain closed subspace of the invariant
measures of the process. We will be concerned mainly with _.~7.

Let X be the (Kakutani) space of lattice homomorphisms of M
onto the reals, with the topology induced by M, so that M is isometri-
cally linearly and lattice isomorphic to real C(X) on hyperstonian com-
pact Hausdorff X. From now on we identify M with C(X). We repre-
sent M* as the space rca (X) of regular bounded signed Borel measures
on X. For each yereca (X), &(v) will denote the closed support of v.
We denote by «: L — rca (X) the natural injection of L into its second

547



548 S. P. LLOYD

conjugate space; £ is an isometric linear and lattice isomorphism of
L onto the set of normal measures on X, that is, measures which
vanish on nowhere dense sets. From time to time we will consider
the case where L has an F' unit (weak order unit, Freudenthal unit),
that is, an element # = 0 such that = A |A| =0 implies » =0 for
ve L. If w is an F unit then £7 e rea (X) is a category measure, that
is, kw vanishes on nowhere dense sets and is strictly positive on non-
empty open sets. In this event, we may identify L with L(X, 7).
(Here and in every other case, if the o-field is not mentioned then it
is the Borel sets of the compact Hausdorff space involved.)

Our identification of M with C(X) makes T*:C(X)— C(X) an
operator on C(X) with the properties 7* =0, T*1 =1, T*|| = 1.
Such an operator has a representation by a kernel ¢:

(T*f)(@) = Sf(w’)tx(dw’), velX, feCX),

where (i) t,erca (X) is a probability measure for each x ¢ X, (ii) the
mapping ¢t: X —rea (X) is weakly* continuous. We may regard ¢ as
the transition probability of a Feller type Markov process on state
space X. Only the normal measures will be considered as initial
probabilities.

REMARK. If L is given concretely as a space of measures on some
measurable space, it may happen that the corresponding kernel on the
given space is only finitely additive; the regularization of conditional
probabilities by going to a representation space is well known [6].

REMARK. The more general case where only 7= 0,||T| <1 is
assumed can be reduced to the case we treat by the familiar device
of adjoining a terminal state; we omit the details.

The second adjoint T™**:rca (X)— rca (X) is given by

(1) Tery — Stxv(dx), verea(X),

where the integration is in the weak* sense. If v is normal then
T**y is normal; indeed, T**(kp) = £(Tu), pe L. Later on we will
need a stronger version of (1), as follows. For each Borel set Ec X
the function ¢,(E),x< X, is Borel measurable. The integral of this
function with respect to v erca (X) is

(T**v)(E) = gtI(E)U(dw), Borel EC X, v erea (X)

For proof, see [11, p. 175].
Let » be a Banach limit, considered as a finitely additive shift in-
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variant probability on the field of subsets of the positive integers N,.
Consider the operator Q(\): C(X) — C(X) defined by

(2) | T = (1@ f), peL, feCX) .

This is construction of Day [2] as applied to the semigroup of addi-
tive positive integers acting on L, and yields Q(\) as a projection onto
the subspace _#Z of invariant vectors of 7™, and such that T*Q(\) =
QM\T* = Q(\). The properties T* = 0, T*1 =1, ||T*|| =1 of T* im-
ply Q) = 0,Q\)1 =1,|Q(N) || = 1. If A, A\, are Banach limits then
QRMIQMN) = Q).

Such a projection has a kernel representation
@A)@) = | F@)asde),  weX, fe(CX),

with each ¢» erca(X) a probability measure and ¢*: X — reca (X)
weakly* continuous. The adjoint is

(3) Q* (V) = gq;"v(dx), verea (X) .

Let @ be the equivalence in X induced by _#, that is, z,px, if and
only if f(xz,) = f(x,) for all fe_#. Let Z = X/p be the quotient space,
let : X —Z be the quotient mapping, and for each ¢ X let &, =
0~'(6z) be the ¢ equivalence class containing x. The elements of _#
drop to Z and give a subspace _#, of C(Z) which separates the points
of Z. Let BcZ be the Choquet boundary of _~, [13]. The existence
of the projection Q()\) implies that B is closed, and that _# is iso-
metrically linearly and order isomorphic to C(B)[13, §9] [9][10]. If
xe 6B then (@) &,, and L (q¥) c6~'B for each xec X. Let
q: x — rca(B) be defined by 7,(E) = ¢*(6—'E), v ¢ X, Borel EcB. The
isomorphism of C(B) onto _# is effected by @: C(B) — C(X) given by

(@h)(z) = gh(z)q,,(dz), zeX, heCB) .
The adjoint @*:reca (X)— rca (B) is onto and is given by
O*y = Sqmv(dm), yereca (X) .

This may be interpreted as follows. For v e rca (X) the measure Q*(\)y
has closed support in #—'B and is a balayage of v onto the Choquet
boundary 6—'B of the subspace _# of C(X). If we restrict the domain
of @*(\)y to sets of the form 6—F, Borel Ec B, then we obtain the
measure @*v erca (B). As the notation indicates, this measure is in-
dependent of the choice of the generating Banach limit .
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On the other hand, the balayage Q*(\)v does depend on X, in
general, If we fix A then the set {¢’:2€6~'B} with the relative
weak* topology is a copy of B in rca(X); a different choice of ) will
give a different copy of B.

Consider now the subspace .~ of invariant vectors of 7. If e &
then it is straightforward from (2) that Q*(\)kp = kp¢. Let (&)
denote the closure of U{.”(kp): te <~}. Since each .&“(kpy) is open,
(%) is open. The normal measures with closed support in .&7(.&°)
constitute the norm closed order ideal subspace £, generated by .&~.
It follows from results of Sucheston [14], the author [10], and Namioka
[12] that if pe <~ then the ergodic averages n~ >.; T’y are conver-
gent in norm to v e &2, with @*(\)kx¢ = kv independent of the choice
of M. Moreover, kpu is kv-continuous. It is easy to see that for
rxe (<), q? is independent of r. (Let rpy,— 0, weakly*, with
F(kp) C S () and §,erca(X) the evaluation measure at x. By
what has been said above, Q*(\)xp, is independent of \, as is then
lim, @*(\)rp, = Q*(\)0, = ¢/P.) On the other hand, suppose xe X is
such that ¢ is independent of A on a neighborhood of z. With
xe S (kp) a subset of this neighborhood, Q*(\)ky is independent of
A, the ergodic averages of ku are convergent, Q*(\)kz is normal and
hence Q*kpc k.. It must be the case then that &7 (¢/?) C .7 (&)
for such z.

We turn now to the subspace _# of invariant vectors of T*.
The isomorphism @ of C(B) onto _# serves to lift the lattice and
algebraic operations of C(B) to .#. It is easy to see that the _#Z
supremum and _# product of f,ge _Z are given by Q(\)(f V ¢) and
QM)(f -9), respectively, where in the parentheses the C(X) (pointwise)
operations are intended. These operations do not depend on the choice
of n. The lattice and algebraic operations in _# coincide with those
of C(X) only when _# is a (pointwise) subalgebra of C(X).

Let .4~ be the norm closure of the subspace {¢zt — Tp: e L}. It
is straightforward that .4~ = _# is the weak* annihilator of _#,
and that # = ¢+ = (_#)* is weakly* closed. Let .&# be the
quotient space “# = L/ 4", with elements consisting of equivalence
classes ¢ + 4, pe L. The Banach space conjugate .2#* is isometri-
cally linearly isomorphic to _#. We give & the order induced by
#, and observe that the quotient mapping p— ¢ 4+ _+~ is order
preserving.

THEOREM 1. Space B tis hyperstonian, and pt -+ 4" — @*kp is
an isometric linear and order isomorphism of <Z onto the space

of all normal measures on B.

Proof. We prove first that B is extremally disconnected. Let
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{u,} be any collection of members of _~ bounded below. Since C(X)
is a complete lattice, the infimum v = A wu, exists in C(X). Consider
w = Q(\)v; we will show that w is the infimum of {u,} in 2. First,
note that v < %, and Q(\) = 0 imply w = Q(\)v < QN\)uy = u,. Sup-
pose he 7 is such that » < wu, for all @. Then h <o in C(X) and
hence = QWA < Q\)v = w. It follows that w is the infimum of
{w,} in _Z. Since _# is lattice isomorphic to C(B), space B is
extremally disconnected.

Let {u,} be a monotone decreasing generalized sequence in C(B)
with infimum % in the complete latice C(B). Because @ is order pre-
serving, {®u,} is a monotone decreasing generalized sequence in C(X)
bounded below by @u. Let v be the infimum of {®u,} in the complete
lattice C(X). The measures £L are normal on X, so that lim, (9, kp¢)=
(v, £pt) for each pe L. In particular, 0 = lim, (Qu,, £._47) = (v, £.17),
whence ve_ 7 and @u = Q(\)v = v. Thus for each p#eL we have
lim, (u,, @*kpt) = lim, (Pu,, k1) = (Pu, £p) = (u, @*kp), and it follows
that @*kp is normal on B. Now, @*k_ 4" =0 and _~Z = range®
is total on ., so that ¢ + .7 — @*kp is an isometric linear and
order isomorphism of .7 onto a norm closed subspace of the space
of normal measures on B. Because C(B) is isomorphic to .7Z*, this
‘subspace is total on C(B); a fortiori, the normal measures on B are
total on C(B). This is to say, B is hyperstonian. It is known that
‘when B is hyperstonian then C(B) is the Banach space conjugate
of the space of normal measures on B, and it is straight-forward
that ¢ + ./~ — @*kp is an isomorphism of .ZZ onto the set of all
normal measures on B.

Under the isomorphism, .77 becomes a complete lattice; in fact,
an AL space.

COROLLARY. If L has an F unit m then @*kmw 1s a category
measure for B.

Proof. A normal measure v = 0 on an extremally disconnected
compact Hausdorff space W is a category measure if and only if
(f,v) >0 for every f =0, f #0, feC(W). Suppose L has an F
unit 7, so that x7 is a category measure for X. If w e C(B) is such
that v = 0, u == 0, then @u e C(X) is such that du = 0, du == 0, whence
(u, ®*krw) = (Qu, k) > 0. Thus @*k7 is a category measure for B.

Theorem 1 and corollary generalize the result of Kendall [8] for
Markov chains.

We now describe a few properties of the representing measures
qP, x ¢ 0B, These properties have their roots in the recurrence be-
havior of the Markov process. It is not our intention to give a
detailed investigation of the Markov process, however, and our argu-
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ments are entirely analytical and topological.

Fix x e #'B; the equivalence class &, is a closed set in the ex-
tremally disconnected space X, and so consists of an open closed in-
terior and a disjoint closed nowhere dense boundary. Suppose
int ©, + @. Then there exists a normal probability measure £x such
that &(kp) Cint ©,. The members of _# are constant on %%,
whence (Qu, k) = u(fx), w € C(B), and there follows @*kp = d,,. By
Theorem 1, @*kp is a normal measure on B, with closed support which
is open. This is to say, fx is an open point of B. We have proved:

THEOREM 2. For xe€67'B, if &, has nonempty interior then 6x
1s an 1solated point of B. We remark that if L has an F unit @
then @*km gives positive measure to every isolated point of B, so
that the number of tsolated points is at most countable.

Fix € 6'B, and decompose ¢!V = v’ + v” into a normal part v’
and a part v whose closed support is nowhere dense. From T**q¢? =
¢’ we obtain T**Y' — V' =" — T**”, Now, T**VY' is normal since
v’ is normal, and vanishes on nowhere dense sets. Testing the right
hand side above with nowhere dense sets we find T**v” = v"” and
hence T**y' =y’. Thus v ek, so that Q*(\)»' =v'. However,
L) &, so that Q*(\)v' = ||v'|| ¢, by (3). There follows v =
| V'] (v + v"); either v" = 0, or ||v'|| =1 and v = 0. We have proved:

THEOREM 3. For x¢c6'B, either S7(q”) ts mowhere dense or
q? s mormal.

We observe that when ¢!* here is normal then ze¢ .&”(%), and
fx is an isolated point of B. With ¢} normal, &, is a recurrence

class for the Markov process, and ¢\* (independent of \) is the ergodic
normal invariant probability for <.

3. Sojourn solutions. Let {x,(®), 2, (®),---} be the random
variables of a Markov process with ¢ as transition probability. If
AcC X is open closed then Prob {z,(w)ec A’ for at most finitely many
n|x(w) = z}, x € X, differs from a function s, € _#Z on a nowhere dense
set. In the terminology of Feller, if A is such that s, = 0 then s,
is a sojourn solution (of T*f = f). The arguments of Feller show
that the sojourn solutions are the extreme points of 72 N{0 < f <1},
and correspond one-to-one to the open closed subsets of B. Let us
trace this connection in our setup.

Let W*: C(X) — C(X) be defined by W'f =y, T*(x.f), f € C(X);
the kernel of W* is wi(E) = y.(2)t.(E N A), Borel Ec X. We may
regard w* as the transition subprobability of the process obtained by
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terminating the ¢ process as soon as it leaves A. If w, = (W*)1,
then w,(x) is the probability that the ¢ process started at « has started
in A and remained in A for n transitions. Clearly, w, = w, = ---,
and we let w denote the infimum of {w,} in the complete lattice C(X).
For every normal probability xy we have (w, £y¢) = lim, (w,, ££t), so
that (w, k) is the probability that the process started with kg will
always be in A. From this it is clear that w < T*w < .--; the lat-
tice supremum is the sojourn solution s,. The methods of Feller [5]
show that there is an open closed subset A™ of B such that s, = @y .
Since s, = Q\)w = w and Q(\)(s, — w) = 0, it must be the case that
w=s, on (¢¥) for each z € —'B. Thus the set {w > 0} either con-
tains .%”(q{”) or misses it entirely, and A~ = BN 0({w > 0}). Suppose
A is such that T*y, = y,; that is, the process started in A is sure to
remain in A. Then w = y,, and A~ = B 0(A4).

Let C be an open closed subset of B. Put u, = @), and C~ =
{u, =1},C” =int C~. From

() = Sw(x’)tx(dx'), reX,

and 0 <wu, <1 it follows that if xeC~ then .&°(t,)cC~, whence
t.(C~) = %o~,x€X. For all £ =0, peL we have

(T** k) (C7) — (£p)(C™) 2 0

and hence (T — g, Yev) = 0, since Y.~ and ).~ have the same integral
over normal measures. There follows ¥, < T*Yew < -+ < Q)Y
From y,. < u, we have Q\)) o~ = %, = @), and hence (C7)"c C. Let
us prove the opposite inclusion. Put .74 = {¢te L: kp is a probability
such that .“(@*kpu)cC}. For pe. 7 we have 1 = (., D*kpt) = (Ug, £L2),
which requires &“(kp) C C™, k¢t being normal. Thus

1= (Yovy 1) = QN Levs £28) = (Lioorny DFEL)

for all e #. This implies (C7)" D C, so we have finally C = (C™)".
Thus for each open closed C < B we may exhibit @y, as a sojourn
solution sg..

4. Quotient processes. Up to this point the raison d’étre for
the Feller boundary B is the isomorphism of _# and C(B). A more
direct connection with the state space of a Markov process would be
of interest, however. What we seek is a Markov process for which
B is a subset of the state space. The quotient space Z of 0: X — Z
contains B as a subset, but T* does not drop to C(Z), in general, so
Z will not do. We look for an intermediate space X — Y — Z such
that T* drops to C(Y) and the projection measures ¢, x € 6—'B, drop
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to (distinct) evaluations on Y. Then the kernel of the dropped T* will
be a transition probability on Y and the Choquet boundary of the
dropped _# in Y will be a copy of the Feller boundary B.

Dually, we find " < C(X) with the properties

(i) o7 is a closed subalgebra of C(X),

(ii) if few then T*f e ,

dii) .z cv,

(iv) for some A, if f e then for each xe6'B, f is constant
on “(¢g.r).

A " satisfying (i)-(iv) will be called suitable. It is clear that
the intersection of all suitable &~ is the smallest suitable 7°. As it
turns out, for each choice of A\ there is also a largest suitable 27",

Some general considerations first. Let 27° be suitable. The con-
stants are in _, so %" contains the constants. Thus 97~ is isometri-
cally algebraically isomorphic to C(Y), where Y is the quotient
v: X — Y of the equivalence in X determined by 2. With 6:C(Y)—
C(X) the induced injection onto <", the adjoint &#*:rca (X) — rca (Y)
maps the normal measures on X onto a closed subspace in rca (Y)
which we shall call the special measures. The special measures are
total on C(Y), but they will not be normal, in general, and Y is not
necessarily hyperstonian. If v, € v, in rea (X) then it is easy to see
that 6*y, € 6*y,, so that O*L,(X,v)c L(Y, 0*v),verca(X). On the
other hand, {f-6¢*v: f € C(Y)} is dense in L,(Y,0*v), and since f-0*v=
6*@f-v) and O f-ve L(X,v), it follows that O*L,(X, v) — L(Y, 6*v)
is onto. (By f-p¢ we mean the measure with Radon-Nikodym deriva-
tive d(/f -p)/dpe = [)

From condition (ii), 7% drops to an operator S: C(Y)— C(Y) with
the properties S = 0, S1 = 1; the kernel of S is the transition proba-
bility of a Feller process on Y. From #S = T*® we have S*0* =
O*T**, and one sees that S* sends special measures into special
measures. It is not necessarily the case that S is an adjoint, however.

From condition (iii), _#, = {f e C(Y): Sf = f} is isomorphic to _~".
Moreover, for every Banach limit )\, Q(\) drops to a projection Q,(\')
in C(Y) onto _#,. By condition (iv), if x€6—'B and A\ = A then
6*q? = qif = 5, with y = vz; the set of such y is the Choquet boundary
of _#, and is a copy of the Feller boundary B in Y. If gerca(Y)
is a special measure then .7 (Qf(M)p) C BC Y, and Qf(\)x is a normal
measure on B in its relative topology. (However, Q¥(\)¢t need not be
normal on Y; indeed, B may be nowhere dense in Y.)

THEOREM 4. For given \, the set ;' = {f eC(X): for each
xe07'B, f is constant on .7 (q”)} is the largest suitable . A charac-
terization is 777" = {f € C(X): Q\)(fg) = QV[QMN) f-Q(\)g] for every
g C(X)} in terms of a weak averaging identity.
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Proof. It is straightforward that condition (i) is satisfied. Each
fe _# is constant on each &, a fortiori on S“(¢’) C &,, x€67'B, so
that condition (iii) is satisfied. From Q*(\) = Q@*(\)T** we have

¢ = Stx,q;”(dx'), re X,

form which it should be clear that .&7(t,.) < .S (¢\¥) for o' — & (¢). If f
is constant on .&”(q{’) then (T* f)(x') = S f(x")t,.(dx") is constant for

2’ e (qP). In other words, T*f e ;' if f e %, and condition (ii)
is satisfied.

If fe > then f—QN\)f =0 on “(¢¥) for every xcb6'B,
whence QO\)[g(f — Q\)f)] =0 for every geC(X). Conversely, if
QN[g(f — Q) f)] = 0 for every g € C(X) then QN)[(f — Q) f)*] =0,
which requires f — Q\)f =0 on S (q¥) for all xef'B and thus
fe 737, Since QMN)[gQN)f] = QMN[Q(N)g-Q(\)f], we have shown
that 77" ={f € C(X): QN(S 9) = QIV[QMN) f - Q(V)g] for every g € C(X)}.

The subalgebra <7;’ depends on the choice of . A smaller sub-
algebra is obtained by requiring that (iv) hold for every .

THEOREM 5. ¥ = {f e C(X): for each \ and each xec60~'B, f is
constant on F(q)} is suitable. Equivalent characterizations are
7" ={f eC(X): for each x€67'B, f 1s constant on J, (@)} and
7 ={f e C(X): QN (f9) = QMIQMN) [ -Q(\)g] for every g e C(X) and
every Banach limit \}.

Proof. It is clear from ™" = N, 7; that " is suitable. Now,
QN + ) = 3Q(\) + 4Q(N,), and one sees that if f e ™ then f is
constant on S (¢) U & (¢*') for every pair A, A, and hence on
U;-“(¢%), and this for each x€6~'B. The third characterization of
77" ig clear from Theorem 4.

If fe>™ then for x € 6~'B the constant value of f on .&7(¢%") is
necessarily (Q(\)f)(x), and this must be independent of A. This is to
say, if f e ™ then {T*"f} is weakly* almost convergent, in the sense
that for each pe L, {(¢, T*"f)} is an almost convergent real sequence.
It follows that the dropped projection @, on C(Y) is independent of
A, and for each feC(Y) and special measure v, {(S"f, v)} is almost
convergent to value (Q,f, v).

We say that fe C(X) is a weak* potential if {T*"f} is weakly*
convergent. The familiar considerations of the Riesz theorem [11,
p. 179] show that a weak* potential f is the sum f= Nu + f, of a
pure potential

Ny =w*—=lim@Q+ T+ -+« + T*"u,
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the charge necessarily being u = (1 — T*)f, and an invariant function
fo=w* —lim T*"f = Q) S,

necessarily independent of A. The set of weak* potentials is a norm
closed subspace of C(X); a suitable pseudonorm is

p(f) = || Lim Sup T*"f — Lim Inf T*"f|| ,

with Lim Sup = A/ formed with the lattice operations in C(X).

If feC(X) is superinvariant, f = T*f, then f is a potential with
nonnegative charge v = (1 — T*)f = 0. We denote by .97 the set of
superinvariant functions in C(X). Then .9 is a closed wedge in
C(X). It is well known that if f,ge. % then fAge 9% . Using
the formula (f, — g) A (fe — 92) = [(fi + 92) A (fe + 9)] — (9. + g2), We
see that the subspace 9% — 9% of the potentials is a lattice. It is
straightforward that fe 2 — 9 if and only if |1 — T*)f| is a
charge such that N|(1 — T*)f | is bounded. If we call N|(1 — T*)f |
the variation of f then .2 — S are the potentials of bounded
variation. (An example below will justify the appellation.)

THEOREM 6. 277 = {norm closure of 9% — 2% in C(X)} is suit-
able, and is the smallest suitable 2~ containing the superinvariant
Sunctions in C(X).

Proof. Since o — 9 is a lattice in C(X) containing the con-
stants, 2" is a norm closed subalgebra of C(X) containing the con-
stants, by the Stone-Weierstrass theorem. If we can show that
2~ — 9 has properties (ii)-(iv) then straightforward approximation
arguments will establish (ii)-(iv) for °*. First, if fe 9~ is super-
invariant then T*f is superinvariant, whence T*fe % — % if
fe o — 2% . Next, # =2 N(—2), whence .7 C 2% C. % — % .
Finally, if fe 9% then f = T*f = .-- = Q(\)f, whence f — Q(\)f = 0.
Since QM\)[Sf — Q(\)f] =0, it must be the case that f— Q\)f =0
on .%“(¢{”) when x€6'B. The same is true for fe % — % . Thus
% — 2 and hence 7% has properties (ii)-(iv).

THEOREM 7. Z77"={feC(X): for somex, w*—lim T*"| f—QN\)f|=
0} is suitable. If f e then the defining relation is satisfied for
every n. A weak averaging characterization of ¥ 1is given by
7" ={f e C(X): w* — lim T*"[g(f — Q) S)] = 0 for each ge C(X)}.

Proof. We observe first that #”"” is a norm closed subspace of
C(X); a suitable pseudonorm is p(f) = || Lim Sup T%*" | f — QS| ]l.
Since |T*f —QMNT*f| = [T*(f — QM) | = T*[f —QMN)f|, we have
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T*f ey if fe™”, and condition (ii) is satisfied. It is obvious
that condition (iii) is satisfied. If f e ™" then for every \,,

Q) | f = QS| = w* — lim T | f — QM)f| = 0,

whence f — Q(\)f = 0 on .&“(¢) for each x €6~ B and each »,. Not
only is condition (iv) satisfied, but ™" < " and the defining relation
for 7' is independent of A. From |T**(f — QN\)f)| £ T* | f — QS|
if follows that each f e 7" is a potential. It remains to show that
27" is an algebra. First, we observe that if f ¢ 9 then f—Q\)f =0
and T**(f — Q\)f) | 0, s0o 22" C 7. Since " is closed, 7 " C 7.
Suppose f,ge ¥”'". Then

| fg — QO(f9) | = [ flg — QN)g) + (f — QVRMN)g
+ QM) -QMN)g — QM)(S9) |
=[Flllg — QMg | + gl |f— QNS

+ QM- Q(N)g — QN(f9) | .
Since ™" < #”” we have Q\)(f9) = QM)A f-Q(V)g], and the last
term on the right hand side in the above inequality is of the form
[h — Q| with & = Q\)f-Q(\)g. Now Q\)f, Q(\)g € ', so we have
hey oy, and finally fge ”’. Thus condition (i) is satisfied.
A weak averaging characterization of 77" is given by

7" ={f e C(X): w* — lim T*"[g(f — Q(\)f)] = 0 for each ge C(X)}.

To see this, we observe first that each f e ™" satisfies the condition
in braces. Suppose f e C(X) satisfies the condition. With

g=f—QNf,
we have
w* — lim T*"(f — QM) f) =0,
and since
T | f — QNS | = [T*(f — Q)]
we obtain f e ¥,

As we saw in §3, for each open closed subset C of B there is an
open closed subset C~7 of X such that y,w < T*Yev < -+ [QN) Y~ =
@y.. Since —YX,.€.% , each of ' — ¥ above contains each such
Ye~. In each of Y’ — Y™, the set C, = vC"~ is an open closed subset
of Y such that C = BN C,; moreover, X < S¥;, < -+ 1Q(MXs, for

the topology induced by the special measures.
Finally, we let " be the intersection of all 2" satisfying con-
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ditions (i)-(iv) for all .. As we have shown, the set of such 27" is not
empty, and 277" exists. It may described as follows. Put _z, = _#,
define _~, for odd » as the linear span of all products fg with f,
g € A, and define _Z, foreven n = 2 as _#, = span (_#Z,_,, T*_#,_,).
If f,9eU,. +, then fgeU. , and T*f e, +,; 7" is the norm
closure of U,.7,. The author has not been able to obtain a more
intrinsic description of 7.

The following examples will illustrate the considerations involved
above. Let N=/{..., —1,0,1, ---} be the integers, and let L be I(N),
the norm closed span of the point measures {d,:ncN}. Let T be
determined by 79, = 0,.,, € N. Then X is the Stone-Cech compacti-
fication SN of N. Any Banach limit A may be regarded as a T** in-
variant probability A’ on AN, with &“(\') C BN, where N, = {1,2, ---}.
The only T* invariant functions in C(X) are the constants. The
projection @(\) has the form Q(\)f = (f, \')-1, whence ¢¥ = \' for all
x € X. The Feller boundary consists of a single point, and 6—'B = X.
It is known that U,.”(\) is relatively nowhere dense in SN, — N,
as is each (V') [1]. If we fix » and collapse .“(\') to a single point
B, we have Y’, above, If we collapse [, ~"(\)]~ to a point B then
we have Y”. Each member of C(Y”) is almost convergent on N,.
(Not every almost convergent sequence appears in C(Y ), however;
e.g., f(n) = (—1)" extends to a function which is =1 on AN with
(f,\) = 0. This function cannot be constant on S“(\').) It is clear
that 27" consists of the functions such that lim,_ .. f(n) exists. Space
Y’ is N compactified with SN_ — N_ at —oo and the one point B
at +oo. The superinvariant functions on AN are the functions mono-
tone decreasing on N, .% — 9% consists of the functions of bounded
variation on N, and 2" are the functions such that lim,_,. f(») and
lim,__.. f(n) exist, not necessarily equal. Space Y* is the two point
compactification of N, with B the point at +oco. The only functions
in 77" are the constants, and Y’ is the one point B. In Y’ — Y%,
the special measures are just [(/N); in each instance, C(Y) is not the
conjugate space of the special measures.

For another example, let L and X be as above, but with 79, =
10, , + %0,.., € N. Again, the only invariant functions are the con-
stants. The projection measure ¢ is independent of x e X and is a
Banach limit on AN with half its support in AN, and half in BN._.
In Y’ and Y, the two ends of SN are stuck together along .&“(¢'?)
and [U:S7(@F)], respectively. If f e C(X) is such that lim,_.. f(r) =
lim,., . f(n) then f e, by the central limit theorem. However,
7' ig larger than this; e.g., if f(2") =1 for me N, and f(n) =0
for the other ne N then fe 2", so that Y’ is larger than the one
point compactification of N. The superinvariant functions are the
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functions concave on N, and the only bounded ones are the constants.
Thus ™% = 2™ = constants and Y = Y* = {B}.

REMARK. The nice boundary for this example is probably the
two point compactification. It seems likely that to get it one must
consider unbounded superinvariant functions, which do not fit our
framework.

5. The separable case. We make the assumption now that the
Banach space L is separable. Under this assumption, L will have an
F unit 7, and £7 will be a category measure on X; L is isomorphic to
L(X, kr). The measure @*kr is a category measure for B, and the
space of normal measures on B is isomorphic to LB, @*kx).

When L is separable the quotient space .<Z = L/_1~ of §2 is also
separable, as is then the isomorphic LB, ®*kr).

It is well known that this implies that the weak* topology of the
unit ball of C(B) is metrizable. Let E,= B, E, --- be a countable
collection of open closed subsets of B such that {x,} is total on
LB, @*kr). Define &: B— B, by

E(z)zzi__xgtjz), zeB,

so that B, is a closed subset of the Cantor set. Let &:C(B,) — C(B)
be the induced injection. For each n there is an open closed subset
F, of B, such that y; = Z),,, whence the range of 5 is the norm
closed subalgebra of C(B) generated by {x;}. If ca(B, are the set
functions countably additive on (B,, Borel sets), then each member of
ca (B,) is regular. The adjoint Z*:rca(B)— ca (B, sends @*krw to a
measure 7, = 5*@*kxw in ca (B,) with &(1,) = B,. As we have noted
before, the mapping Z*L.(B, ®*krw) — L,(B,, ©,) is onto. Suppose v,
and y, are distinct members of L,(B, @?*krx). Then v (E,) = v,(E,) for
at least one n, {1, } being total. Since v(E,) = (Z*v)(F,) with F, as
above, we have (Z*v)(F,) # (Z*v,)(F,) for at least one n, whence
E*y, and E*y, are distinct members of L,(B,, 7). This is to say, the
mapping 5*L,(B, ®*krw) — L,(B,, ,) is an isomorphism; it is clearly iso-
metric and order preserving. It follows that L.(B,®*trw) is isomor-
phic to L.(B, m,). But B is hyperstonian with @*kw as category
measure, and it is known that L.(B, ®*kzw) is isomorphic to C(B).
We have proved

THEOREM 8. Suppose L is separable, with © as F unit. Then
there is a closed subset B, of the Cantor set and a measure mw, with
S (m,) = B, such that

(i) the Feller boundary B is the Boolean space of the measure
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algebra (B,, Borel sets, ),
(ii) C(B) and hence _# 1is isometrically algebraically and lat-
tice 1somorphic to L.(B,, T,)

(iii) the space LB, ®*kw) of mormal measures on B is isomor-
phic to L(B,, ).

This result is close to that of Feldman [4] concerning the Martin
boundary of a countable state space Markov process.

An extension of our arguments will give a more detailed model.
We consider one of the quotient spaces Y discussed in §4. We will
require that the elements of 22~ be potentials, so 2~ will be one of
2" — 7, The mapping 0*L,(X, kw) — L(Y, ®*kr) is onto the set
of special measures, and LY, #*km) is separable. The topology in
C(Y) induced by L,(Y,0*kr) is just the relative weak* topology of
7" < C(X), and the unit ball is metrizable. Let {f’} be a countable
set in C(Y) which is total on L,(Y,0*kr). We have

[i=(fi = Qi) + Qufj

with f} — Q,f; =0 on BCY and Q,f; invariant. We replace f; by
fi=f— Q,f} and we replace the invariant parts by a countable
system {g,} such that (i) #g, = @), for some open closed subset E,
of B, (i) {f;}U{g:} is total on L(Y,@*kr), (iii) {Xz} is total on
L(B, ®*kr). We normalize so that || f;|] = 1.
Let I° be the Cartesian product of a countable collection of in-
tervals [—1,1]. We metrize [* with the familiar
S i

d(z/’ zl') — Z‘_iz_;_;Tz_L_, z,, 2" e Ie .
Define 7: Y — K by

Ny = (fi(w), 9.(v), (), 9:(%), ---), yeY;

the range K of 7 is a closed subset of I°. Let B, be the subset
{n(y):yeB} of K. For ye BCY we have

77(y) = (Oy Xﬁl(y)y Oy XEz(y)y °c ')y ye B ’

and if we define

Iy

He) =238
if
z = (fl! guny g2, _,.)eIw

then the restriction of &, to B,c K is a homeomorphism of B, onto
the subset B, of the Cantor set described at the beginning of the
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present section. (We assume that the families {E,} are the same, of
course.)

The induced injection H:C(K)— C(Y) has as range the closed
subalgebra of C(Y) generated by the coordinate functions {f;) U {g.}.
The adjoint H*:rca(Y)—ca(K) sends @*kmw to o = H*0*kmw, and
F(p) = K. The measure Q;*6¢*kr on Y, which is the relative cate-
gory measure @*kwr for BC Y, becomes 7, = H*QfOkm e ca (K) with
() = B,C K, and L(B,, 7,) is isomorphic to L,(B,, 7).

It will be convenient to use ¢’ = @*kxw + Q;O*kxw as the reference
measure in Y, so that H*t' = o’ = p + 7, is the reference measure in
K. The mapping H*L(Y,7')— L(K, p’) is onto. If v, and v, are
distinct members of L.(Y,7’) then (h,v,) # (h,v,) for at least one
he{f;} U{g:,}. But these are just the coordinates in K; we have
H*y, + H*y, and the restriction H*L(Y, ') — L(K, p’) is an isomor-
phism. Let J: L(K, o')— L(Y, ') be the inverse, so that H*J =1
and JH*y = v for ve L (Y, 7'). It should be obvious that JL,(K, p) —
L(Y,0*krw) and JL(K, w,) — L(Y, Qf0*kr) are subisomorphisms. The
adjoint J*: L.(Y, ") — L.(K, 0') does several things. First, it is a
straightforward matter to show that L.(Y,z’) is isomorphic to the
weak* closure of " in C(X); J* is in effect an isomorphism of this
closure onto L..(K,0’). This may be described as follows. If fe L.(Y,7’)
then there is a sequence {u,} in the linear span of {f;} U {g.} such
that w* — limwu, = f. Each u, is the image u, = Hv, of wv,c C(K),
and J*f = w* — limwv,. We extend the definition of H to L.(K, 0’)
by HJ*f = f, and have J*H = 1. Next, the restriction of J* to C(Y)
produces an isomorphism of C(Y') onto a subalgebra of L.(K, o’) which
we denote by <. Finally, the restriction of J* to HC(K) is an iso-
morphism of HC(K) onto C(K).

The transition operator S* on rca(Y) sends the special measures
L,(Y,®*kx) into special measures and is the identity on LY, QF0*kr),
from which it is easy to see that S* sends L(Y,7’) into L(Y, 7).
By virtue of the isomorphism J we obtain a transition operator
U: L(K, p')— LK, p') according to U= H*S*J. Since K is closed in I°,
the kernel of U may be determined as a regular conditional probability,
and a Markov process with K as state space can be defined in the
usual way. Only the probabilities in L,(K, p) will be considered as
initial propabilities. The process in K is not necessarily a Feller process.

If £eC(Y) isinvariant, f = Sf, then J*f € <& will be invariant
for U*: L.(K, p') — L.(K, p'). Conversely, if g € L.(K, 0') is invariant
then Hyg ¢ L..(Y, z') will be invariant for the extension of S to L..(Y,7’)
(viz., the restriction of T* to the weak* closure of 77".) Since every
invariant function in C(X) is in ¥, we must have Hge C(Y). This
is to say, every U* invariant function in L.(K, po’) is in fact an ele-
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ment of <#. The restriction of these invariant functions to B,Cc K
gives an isomorphism onto L.(B,, 7,), in turn isomorphic to C(B) and
. . The projection @, in C(Y') gives rise to a projection @,: L..(K,0)—
LK, 0') onto the U* invariant functions, according to @, = J*Q;H.
Here, Q) is the extension of @, to L.(Y,7') (viz., the restriction of
Q(\) to the weak* closure of ".) It is easily verified that Q; sends
L(K, p) into L(K, p’), implying that @, is an adjoint. Using this
and the fact that B, c K is homeomorphic to a closed subset of the
Cantor set, we may represent the action of @, by a regular kernel:

(Qf)(x) = Sf(w’)ql(x, da'),  wekK, feLK, (),

where q,(z, F) is a countably additive probability in Borel £ K for
each v e K and a Borel function of x e K for each fixed Borel £ C K.
For each x e K we have .%“(q,(%, -)) C B,, of course.

We examine now our assumption that each 6f, f ¢ C(Y) is a po-
tential. We have

(8", v) — (Quf, V)
for each special measure v e L,(Y,, #*kw) and each f e C(Y), so that
(f, S*"v) — (f, Q¢v), f e C(Y),ve L(Y,0%km) .
Dropping to K, we obtain
(9, H*S*"Jp) — (9, H*QF Jp), g € C(K), pre L(K, p) .

If we use the fact that S* operates on LY, 7’) we obtain H*S*"J =
U", so we have

(9, U"p) — (9, H*Q¢Jp), 9 € C(K), ne L(K, o) .

This is to be interpreted as follows. Let {z(w), z(®), ---} be the
random variables of the Markov process with K as state space,
peL(K, p) as initial probability, and U as transition operator. Then
U"p is the marginal distribution of z,(w). The relation above is the
assertion that this sequence of marginal distributions converges weakly*
in ca (K) to the measure H*QjJreca(K). This measure will have
support in B, C K, and will be an element of LB, 7,), but not neces-
sarily of L,(K, p).

Now we get down to cases. For Y above we take the space Y*
of §4. We choose the separating family {f]} so that each fle .o
Then each member of {f;}U{g,} is superinvariant, & = Sk for all
he{f;}U{g.). It is straightforward that if {z,(w), 2, (®), ---} is the
Markov process in K discussed above, then for each fixed ¢ the i-th



FELLER BOUNDARY INDUCED BY A TRANSITION OPERATOR 563

coordinate process [z,(w)];, [2(®)];, - -+ is a supermartingale relative to
the increasing o-fields of the Markov process. We invoke the super-
martingale convergence theorem: z,(w) converges with probability 1 to
a random variable z(w) ¢ K. (It is essential to the argument that the
number of coordinates is countable, of course.) The discussion of the
preceding paragraph shows that the limit point z(w) has H*QyJp as
distribution, and lies in the boundary B, with probability 1. Thus
we have obtained a model in which the process converges to a point
of the boundary with probability 1.

Instead of Y* let us use Y’’. We have (S"|f;]|,v)— 0 for each
ve L(Y(Y,®*kr). In the process {z(®,), z,(w), ---}, the coordinate
processes [z,(®)];, [2.(®)];, -+ for even values of ¢ are martingales, and
for odd values of 7 converge in probability to 0. Thus p — lim z,(w) =
2(w) exists with probability 1; that is, lim, Prob {d(z,(®), 2(®)) = ¢} = 0
for each ¢ > 0. Moreover, the distribution of the limiting random
variable z(w) is H*QyJpre L(B,, m,), and the limiting point z(w) lies
in the boundary B, with probability 1.

The examples of § 4 indicate the difference between the two models.
On a recurrence class the only superinvariant functions are the con-
stants, and in K* each recurrence class in X is collapsed to a point
of the boundary B®. A random point in a recurrence class is already
in B, and convergence to the boundary is trivial. The structure of
the transient classes is preserved in K™, however, and the convergence
to a boundary point with probability 1 is meaningful. In K’ the
recurrence classes need not be trivial, depending on the size of ",
A random point in a recurrence class is converging in probability to a
boundary point. It cannot converge with probability 1, of course,
since it must keep moving to cover the recurrence class. Only the
null recurrent classes will be represented in a nontrivial way.

6. The general state space. We describe now the problem which
motivated the present investigation, and sketch the extent to which
the preceding results are applicable. Let (X,, # ) be a measurable
space, and let P(x, ) be a transition probability for (X,, & ). That
is, P(x, E') is a countably additive probability measure in Fe . & for
each fixed ze X, and is an % measurable function of x for each
Ec . For the space L we take the space ca (X,, & ) of countably
additive set functions on &, and we let T be

(Tu)(E) = §P<w, Byuds), Ees, peca(X, o).

The space X is quite large and unwieldy, and its connection with
X, would appear to be somewhat remote. We may simplify as follows,
however. Let peca(X,, %) be any initial probability. If we define
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Y= 2Ty, then pe L(X,, & , ) and
TLI(XOy y{—‘y M') - LI(XO’ ﬁ‘) #’) .

If X, is (k) in X then L.(X,, .7, ) is isomorphic to C(X,) so
that X, is just the Boolean space of the measure algebra (X,, &, ).
The intersection 6—'B N (k') is the Choquet boundary of the in-
variant functions in L.(X,, &, ), and . (¢*ky') is the Feller
boundary for the action of T on L,(X,, & , ). Thus the big Feller
boundary B contains the Feller boundary for each initial probability
u; each such piece has a category measure.

The various quotient structures associated with X have substruc-
tures associated with each initial probability p¢. If & is countably
generated then each L,(X,, &, ) will be separable, and §5 applies.
We now show how the quotient boundaries can be related to X, in a
more direct fashion.

Let B(X,, & ) be the algebra of &% measurable functions on X,,
with pointwise operations and supremum norm. We define

P:B(X,, ¥ ) — B(X,, &)
by

Pf(x) = Sf(w')P(x, da’), welX, feB(X, F).

The Banach space conjugate of B(X,, & ) is the space ba (X,, &) of
finitely additive set functions on &, and T above is the restriction
of the adjoint P* to the subspace ca (X,, & ) of ba (X,, ).

Let o7 ={feBX,, & ):f= Pf} be the superinvariant func-
tions, let %, be the norm closure of the lattice .9, — .97} in B(X,, %),
and let ¥ © . be the smallest o-field with respect to which every
function in 275 (or %) is measurable. With the initial probability 2
chosen and fixed, the action of T on L(X,, &, t) gives a transition
operator for (X,, &) and every invariant function in L.(X,, &, t) is
in L(X,, &, ). If fe 2, then for each real ¢ we have

A AN ()
5

Lirzer = ljlnél
pointwise and boundedly, from which one sees that .97, is total on
L(X,, &, (), whence %, is weakly* dense in L.(X,, &, t).

Let {&;} be a countable set in .97 chosen according to the recipe
of §5 for {f;} U{g.}. Let d be the pseudometric on X, defined by
d@, ) = 327 | b)) — hi(e”)|, o, 2" eX,.

Each h,; is continuous on X,, and {k;} is total on L,(X,, &, ). We
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let K denote the completion of X, with respect to d (more precisely,
the completion of X, after points at distance 0 are identified). It is
straightforward that this K is homeomorphic to K* of §5, the basic
space L being L(X,, &, t'). There is a closed boundary set B,C K
and a measure 7w, with B, as closed support such that the set of in-
variant functions in L.(X,, &, t), isomorphic to the invariant func-
tions in L.(X,, &, ), is isomorphic to the whole of L.(B,, 7).

Let {z,(w), x(w), ---} be the random variables of the process with
(X,, &) as state space and any ve L(X,, &, ) as initial probability.
Then lim z,(w) = z(w) € K exists with probability 1, the limit z(w) lies
in the boundary B, c K with probability 1, and the marginal distribu-
tions T"y of x,(w) tend to the distribution v’ of 2(w) in the sense that
(T, f)— (v, f) for each feC(K). The kernel of the projection
@, serves as a Poisson kernel for the invariant functions. That is,
for each invariant function f in L.(X,, &, ¢) we have

f) = faha, de),  ae X,

with f, e L.(K, ¢') being the invariant function in L.(K, 0') uniquely
determined by f.

If we use 7" instead of &/"" in the construction we obtain a
completion in which x,(w) converges to a point of the boundary in
probability instead of with probability 1.

We have thus obtained several features of the Martin boundary
[7]. There remains the problem of a kernel representation for super-
invariant functions, and other considerations of potential theory. Fur-
ther progress along these lines will be presented elsewhere.
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