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F-SPACES AND z-EMBEDDED SUBSPACES

MARK MANDELKER

A completely regular Hausdorff space is an F’-space if
disjoint cozero-sets have disjoint closures, Here the theory of
prime z-filters is applied to the study of F'/-spaces. A z-em-
bedded subspace is one in which the zero-sets are all intersec-
tions of the subspace with zero-sets in the larger space, It
is shown that every z-embedded subspace of an F'-space is
also an F'’-space, Also, a new characterization of F'/-gpaces
is obtained: Every z-embedded subspace is C*-embedded in its
closure,

F- and F’-spaces were introduced in [4] in connection with the
study of finitely generated ideals in rings of continuous functions;
further results on F’-spaces are found in [1] and [2].

Throughout this paper we shall use the terminology and notation
of the Gillman-Jerison treatise [5]. Only completely regular Hausdorff
spaces will be considered.

As noted above, a subspace Y of a space X is z-embedded in X
if for every zero-set Z in Y there is a zero-set W in X such that
Z=WnY. For example, a C*-embedded subspace is clearly z-em-
bedded; also, a Lindelof subspace is always z-embedded (Jerison, [9,
5.3]). Relations between z-, C*-, and C-embedding have been given
by Hager [7]. We shall find that z-embedded subspaces are of interest
in problems concerning z-filters, and thus in problems concerning F'-
spaces.

The author is grateful to Professor W.W. Comfort for much
helpful correspondence concerning these spaces.

1. Traces and induced z-filters. If Y & X, we define the trace
F 1Y ={ZNY:Ze <} of any zfilter .# on X, and the induced
z-filter F*={ZcZ(X):ZNYe #} for any zfilter &% on Y.

We now consider six basic lemmas in the calculus of traces and
induced z-filters; the first two are easy to verify and the third is
proved in [10].

LEMMA 1. If &7 is a prime z-filter on Y, then 7% is a prime
z-filter on X. [5, 4.12].

LEMMA 2. If Y is z-embedded in X and & 1is a z-filter on Y,
then & = 7 %Y.

LEMMA 3. Let Y be a z-embedded subspace of X. If F 1is a
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z-filter on X every member of which meets Y, then & |Y is a z-
filter on Y. If & s prime, then # |Y is also prime. [10, Th. 5.2].

We shall use _#* and £ to denote the z-filters Z[M*] and Z[0"],
respectively. For example, if pe X, then % is the z-filter of all
zero-set-neighborhoods of p in X. In the next two lemmas we use
induced z-filters and traces to relate ~°% with the corresponding z-filter
on a subspace of X that contains p. The first lemma is immediate.

LEMMA 4. If V is a meighborhood of p in X, then ~7% = (Z°8).
LEMMA 5. If Y is z-embedded in X, and pe Y, then &% = ~7%|Y.

Proof. Clearly ~2|Y = 2. On the other hand, if Zec 2%, there
is We 2% such that WN Y & Z. Since Y is z-embedded, by Lemma
3 2%|Y is a zfilter on Y, and since WN Y is in %Y, so is Z.

LEMMA 6. For any X, and any Y S X, if & and & are prime
z-filters on Y contained in the same z-ultrafilter on Y, then 7% and
&t are contained in the same z-ultrafilter on X.

Proof. If not, then &% and &* contain distinct z-filters ~°7;
hence they, and thus also & and &, have disjoint members, so that
Z”? and ¢ could not be contained in the same z-ultrafilter.

2. Subspaces of F'-spaces. We are now ready to use traces of
z-filters to obtain our first result.

THEOREM 1. Ewvery z-embedded subspace of an F’'-space is also
an F'-space,

Proof. According to [4, 8.13] (see also Theorem 3 below), a
space T is an F'-space if and only if ~°2 is prime for every pe T.

Let Y be z-embedded in an F’-space X. For any pe Y, we have
ot = %Y, by Lemma 5. Since X is an F'’-space, <% is prime,
and hence by Lemma 3, ~72 is also prime. Thus Y is an F"-space.

This result generalizes Corollary 1.6 and Theorem 1.11 of [1] which
give the result in the case of a Lindelof subspace or a C*-embedded
subspace. An example of a z-embedded subspace of an F'-space that
is neither Lindelof nor C*-embedded is the subspace X — Y of the
space X constructed in [4, 8.14].

It is easily verified (see for example [6, 3.1]) that every cozero-set
is z-embedded. Hence as an application of Theorem 1 we find that
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every cozero-set in an F'-space is also an F'-space. Thus we also
obtain an immediate proof of a result in [1, §4]: in any space, a
point with an F'’-neighborhood admits a fundamental system of F'-
neighborhoods.

A zero-set in X need not be z-embedded in X; for example, it is
easily seen that the zero-set D of the space I" of [5, 3K] is not z-
embedded.

The z-filters ~* may also be used to obtain other properties of
F'-spaces. For example, by Lemmas 1 and 4 we see that, as noted
in [1, §4], F’ is a local property, i.e., if every point of X has an F''-
neighborhood, then X is an F'’-space. Since it is clear that any local
property that is inherited by cozero-sets is also inherited by all open
subspaces, Theorem 1 also yields the following result of [1].

COROLLARY 1. |1, 84]. Ewvery open subspace of an F'-space ts
also an F'-space.

A space is an F-space if any two disjoint cozero-sets are completely
separated [5, 14N.4]. Since cozero-sets are z-embedded, it is easily
seen that “cozero-set’” is tramsitive, i.e., is S is a cozero-set in X and
T is a cozero-set in S, then T is also a cozero-set in X. Thus it is
clear that a cozero-set in an F-space is also an F-space, as noted in
[5, 14.26]. Hence the analog for F-spaces of the statement above on
fundamental systems is also true, as noted in [1, §4]. We note that
“zero-set” is mot transitive; for example the zero-set D above has
many zero-sets that are not zero-sets of I". But in a normal space,
“zero-set” is transitive.

It is well-known that if X is any locally-compact, g-compact space,
then 8X — X is an F-space ([5, 14.27]; see also {12, 3.3] or [11, Cor-
ollary 1}), and thus for any X, any zero-set (i.e., compact G;) in X that
does not meet X is an F-space [5, 140.1]. Here is an analog for F'-
spaces. For any X, any locally compact G; in X that does not meet X
is an F'-space. To see this, let Y be such a set and let pe Y. Then
p has a compact zero-set neighborhood Z in Y. Since Z is a G, in
Y, it is a compact G, in BX, and hence an F-space. Since F’ is a
local property, Y is an F’-space.

In particular, if X is o-compact, and locally compact at infinity
(i.e., 8X — X is locally compact, see [8, p. 94]), then X — X is an
F'-space.

For example, the space ¥ of |5, 4M] is o-compact but not locally
compact. According to I8, 3.1], a space X is locally compact at in-
finity if and only if the set R(X), of all points of X at which X is
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not locally compact, is compact. Since R(Y) = {0}, 2 is locally com-
pact at infinity; hence 83 — ¥ is an F’-space. However, since 3 — XY
is an open subspace of BN — N, this is a special case of Corollary 1.

For an application not covered by Corollary 1, we consider the
following.

ExampPLE. Let 4, = SR — N. A moment’s reflection shows that
A, is o-compact and that R(4,) = AN — N; hence 84, — 4, is an F'-
space. This example also shows the usefulness of [8, 3.1] in a situa-
tion in which it is not convenient to examine SX — X directly.

The analog of Corollary 1 for F-spaces is not settled. However,
under the continuum hypothesis it is shown in [3, 4.2] that all open
subsets of the particular F-spaces SR — R and SN — N are also F-
spaces.

As to closed subspaces, it is trivial that a closed subspace of a
compact F-space is also an F-space, since it is C*-embedded [5, 14.26].
For locally compact F-spaces we have the following.

COROLLARY 2. Ewery closed subspace of a locally compact F-space
is an F'-space.

Proof. Let X be a locally compact F-space and G a closed sub-
space. It is shown in [5, 14.25] that X is an F-space if and only if
BX is an F-space (this also follows immediately from Lemmas 1 and
3 using the relations ~°%; = (&%) and 2% = &,|X which follow
from [5, 7.12(a)]). Hence BX is a compact F-space and thus cl;;G is
an F-space. Also, X is open in 8X and hence G = X Nel,,G is an
open subspace of cl;;G. Hence G is an F’-space by Corollary 1.

3. Continuous images. Our z-filters also yield a simple proof
of the following result, which is essentially the content of the lemma
in [2].

THEOREM (Comfort-Ross). Amn open continuous image of an F'-
space is also an F'-space.

Proof. Let t:X— Y be an open continuous mapping of an F’-
space X onto a space Y. For any pc X, since £°% is prime, so is its
sharp-image *~”% [5, 4.12], and hence any z-filter containing z*~°% is
also prime [5, 2.9]. If Zet*2%, then t[Z] is a neighborhood of p,
so that Z is a neighborhood of zp; hence *~% & %, and thus 2%
is prime. Hence Y is an F'’-space.
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We note that a closed continuous image of an F’-space need not
be an F’-space. For example, if X is the open unit disk in the plane,
and the compactification BX is the closed disk, then the unit circle
BX — X is a closed continuous image of the F’-space X — X, but
is not an F’-space, since a metrizable F-space must be discrete [5,
14N.3].

4. Induced mappings. In attempting to extend Theorem 1 to the
case that X is an F'’-space and 7:Y — X is a continuous mapping of
Y into X, a reasonable condition which generalizes z-embedding is that
for every zero-set Z in Y there is a zero-set W in X such that Z =
7 [W]. In this case Y is also an F'-space; however, the following
result, an analog of [5, Th. 10.3(b)], shows that this situation is es-
sentially the same as that of Theorem 1.

THEOREM 2. Let 7:Y — X be a continuous mapping of Y into
X, and T’ the induced mapping W —t-[W] of Z(X) into Z(Y). Then
7’ is onto Z(Y) if and only if T is a homeomorphism whose tmage
1s z-embedded in X.

Proof. For any zero-set W in X we have t-[W] = [Wnt[Y]],
where W N 7[Y] is a zero-set in 7[Y]. Thus in proving the necessity
we may assume that v is onto X. Any two distinct points p, and 7,
of Y have disjoint zero-set-neighborhoods of the form ¢-[W,] and
[ W,], where W, and W, are zero-sets in X; it follows that W, and
W, are disjoint and hence 7p, = 7p,. Thus 7 is one-to-one. In both
Y and X the closure of a set is the intersection of the zero-sets
containing it. It follows that for any subset E of Y, we have
cl,E = t[clyt[E]]. Thus t[cl,E] = cl;7[F], and 7 is a homeomor-
phism. The sufficiency is clear.

5. Characterization of F'’-spaces. We now give a characteriza-
tion of F'-spaces in terms of z-embedded subspaces (see condition (4)
below), and include for convenience several other known characteriza-
tions. Characterization (5) is due to Comfort, Hindman, and Ne-
grepontis [2, Th. 1.1], while the others are from [4] and [5].

THEOREM 3. For any X, the following are equivalent.

(1) For every pe X, the ideal O® [resp. z-filter <77] is prime.

(2) The prime ideals [resp. prime z-filters] contained in any
given fived maximal ideal [resp. fized z-ultrafilter] form a chain.

3) Given pe X and f e C(X), there is a mneighborhood of p on
which f does mot change sign.
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(4) Ewvery z-embedded subspace is C*-embedded in 1its closure.

(5) Ewery cozero-set is C*-embedded in its closure.

(6) For each feC(X), pos f and neg f have disjoint closures.

(7) Disjoint cozero-sets have disjoint closures (i.e., X 1s an F'-
space).

Proof. As in [5, 14.25], the equivalence of (1), (2), and (3) follows
directly from [5; 7.15, 14.8(a), 14.2(a), 2.8, 2.9].

(2) implies (4). Let Y be z-embedded in X. According to [5,
6.4], Y is C*-embedded in cl Y if every point of cl Y is the limit of
a unique z-ultrafilter on Y. Let _, and _, be z-ultrafilters on Y
converging to the same point p in ¢l Y. By Lemma 1 the induced z-
filters .#Z%and _#Z% are prime. Let Ze _~Z% thus ZNYe_»~. If Vis
any neighborhood of » in X, then V' Necl Y contains some member of
.2, 15, 6.2]; hence VNeclY meets ZNY and thus VNZ= @. It
follows that pe Z. Thus _#% is contained in the z-ultrafilter _.2%,
and similarly _#% By hypothesis, 2% and _#% are comparable. If,
say, Z%< _«% then since Y is z-embedded, we have by Lemma 2,
A= ZHNY S ZEHY = _#, so that _#Z, = _#,. Hence Y is C*-
embedded in ¢l Y.

(4) implies (5). As noted in §2, every cozero-set is z-embedded.

(5) implies (6). Put T = cly(pos f Uneg f). Put g =1 on pos f
and ¢ = —1 on neg f, and extend ¢ to he C*(T). Since h =1 on
cly(pos f) and A = —1 on cly(neg f), these closures are disjoint.

(6) implies (7). If X — Z(f) and X — Z(g) are disjoint, then
X — Z(f) S pos(f* — ¢°) and X — Z(g) = neg(f* — ¢°).

(7) implies (1). If Z and W are zero-sets with ZU W = X, then
X — Z and X — W are disjoint cozero-sets and thus have disjoint
closures. Hence int ZU int W = X, and thus Ze &’ or We £*. By
[5, 2E], <77 is prime.

We may use Theorem 3 to obtain an alternative proof of Theorem
1 as follows. Let Y be z-embedded in an F’-space X. Let T be a
z-embedded subspace of Y. Then T is z-embedded in X, and thus
C*-embedded in cl,T, hence in cl,T. Thus Y is an F’-space. Still
another instructive proof may be based on condition (2) and Lemmas
6 and 2.

Theorem 3 also yields the following extension of [1, Th. 1.8].
Any F'-space with a dense normal z-embedded subspace vs an F-space.
The proof given in [1] serves here as well.

The above characterization of F’-spaces in terms of z-embedded
subspaces has an analog for F-spaces, [7]; it may also be obtained from
our characterization of F'’-spaces as follows.
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COROLLARY (Hager). A space X is an F-space if and only if
every z-embedded subspace is C*-embedded.

Proof. According to [5, 14.25], X is an F-space if and only if
every cozero-set is C*-embedded in X. Since a cozero-set is z-embedded,
the sufficiency is clear. Now let X be an F-space and Y a z-embedded
subspace. Since X is z-embedded in BX, so is Y. Since BX is an
F-space, it follows from Theorem 3 that Y is C*-embedded in ¢l,, Y.
The latter space is compact, hence C*-embedded in SX. Thus Y is
C*-embedded in 8X, hence in X,
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