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THE PRINCIPLE OF SUBORDINATION APPLIED
TO FUNCTIONS OF SEVERAL VARIABLES

T. J. SϋFFRIDGE

In this paper we consider univalent maps of domains in
Cn(n ^ 2). Let P be a polydisk in C\ We find necessary and
sufficient conditions that a function /:P—>O be univalent and
map the polydisk P onto a starlike or a convex domain. We
also consider maps from

Dp = {z:\z\p< l } c θ

\ Z \ P = \(ZlfZ2, •• , « n ) | p = Σ I ^ I Π ' ^ = X

U=i J

into Cn and give necessary and sufficient conditions that such
a map have starlike or convex image.

In [4] Matsuno has considered a similar problem for the hyper-
sphere D2dCn. His definition of starlikeness is different from that
used in this paper, but the results show that the two definitions are
equivalent. However, his definition of con vex-like is not equivalent to
geometrically convex.

1* Preliminary lemmas* For (z19 z2, , zn) = z G Cn, define | z\ =
max l g ί ^ \z3 \. Let Er = {z e Cn: \ z | < r} and i? = EΊ. Let ^ be the
class of mappings w: E —>Cn which are holomorphic and which satisfy
w(0) = 0, R e lwj(z)/zd] ^ 0 w h e n \z\ = \ z5 \ > 0, (1 ̂  j ^ n) w h e r e w =
(w19 w21 , wΛ). The following lemmas are generalizations of Theorems
A and B of Robertson [5, p. 315-317].

LEMMA 1. Let v(z; t): E x I—+Cn be holomorphic for each te I =
[0,1], v(z; 0) = z, v(0, t) = 0 and | v(z; ί) | < 1 ^/^βπ 2 e £7. 7/

( 2 ) lim \{z - v(z; t))/tp] = w(z)
ΐ->0+

exists and is holomorphic in E for some p > 0, then we^.

Proof. The hypothesis (2) implies that limί_>0+ vd(z; t) = z5 (here
v(z; t) = (v^z; t), v2(z; t), , vn(z; t)) so

2zM vtet)l s {z. t)

z3 + ^-(^ t)

is holomorphic for zeE, z3- ̂  0 (1 <^ j ^ n). By Schwarz lemma,
I v(z; t)\^\z\ and hence Re [ψά(z; t)/zs] ^ 0 when | z \ = | ^ | > 0. Setting

; £) = (f^ α/r2, . . . , ψn)9 (z e E, zxz2- -zn Φ 0) we observe that
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lim ψ(z; t)/tp = w(z)
t-*0+

for these values of z and using continuity of w we conclude we^.

LEMMA 2. Let f:E—>Cn be holomorphic and univalent and
satisfy /(0) = 0. Let F(z; t): E x I-+Cn be a holomorphic function
of z for each tel = [0,1], F(z; 0) = f(z), F(0, t) = 0 and suppose
F(z) t) <f for each t e I (i.e., F(E; t) af(E) for each t e I). Let p > 0
be such that limt_0+ F(z;0) — F(z; t)/tp = F(z) exists and is holomorphic.
Then F(z) = Jw where we^. Here F and w are written as column
vectors and J is the complex Jacobian matrix for the mapping f.

Proof. Since F(z; t) < f for each tel, there exists v: E x I-+E
such t h a t f(v(z; ί)) = F(z; t) where |v(z; t)\^\z\. W r i t i n g / a s a column

vector we have f(v(z; t)) = f(z) + J(v(z; t) — z) + R(v(z; t), z) where
j J?(ζ, z) I/I ζ - z I — 0 a s I ζ - z \ - > 0. H e n c e

F(z; 0) - F(z; t) = jίz - v(z; t)\ _ R(v(z; t), z)
tp \ tp J tp

and the lemma follows from Lemma 1.

2 Starlike and convex mappings of the polydisk*

DEFINITION. A holomorphic mapping f:E-+Cn is starlike if / is
univalent, /(0) = 0 and (1 - t)f < f for all t e I.

THEOREM 1. Suppose f:E-+Cn is starlike and that J is the
complex Jacobian matrix of f. There exists w e & such that f = Jw
where f and w are written as column vectors.

Proof. Apply Lemma 2 with F(z; t) = (1 - t)f(z). Then

M = lim /(*) ~ (1 ~ *)/(*) = i i m F(z; 0) - F(z; t)

and the theorem follows from Lemma 2.

We now consider the conclusion of Theorem 1 in component form.
Let Jj be the matrix obtained by replacing the jth column in / by
the column vector /, 1 ^ j ^ n. Then the i t h component w5 of w is
det (Jy)/det J. Theorem 1 therefore says that if / is starlike then
Re [det (Js)/z3- det J ] ^ 0 when | z | = | zd \ > 0. Also,

{ 3 ) fj = &LW, + Mlw2 + + y±wn , 1 ^ j ^ n
dz, dz2 dzn
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and equating coefficients in the power series using (3) we find

Wj(z) = Zj + terms of total degree 2 or greater .

Now suppose | z{0) | = | zf | > 0 and let ak, (l^k^n)be such that 40) =
ahzf\ Then | ak | ^ 1, (1 <J k S n). Consider Wj(z)/Zj — u(z3) where z
is restricted to the set,

z = (a19a2, "-,an)z, , | s y | < 1 .

Then Re u{zό) Ξ> 0, 0 < | zά | < 1 and u{zά) ~>1 as zd —> 0. Since Re w(z, )
is a harmonic function of zjf we conclude Re u(zά) > 0, | zά | < 1 and

{ 4 ) Re [Wj-ίs)/̂ -] > 0 when | z \ = \ zό \ > 0 .

We now prove the converse of Theorem 1.

THEOREM 2. Suppose f:E—>Cn is holornorphίc, /(0) = 0, J is
nonsingular and that

{5 ) f(z) - Jw, w e &> .

Then f is starlike.

Proof. Since det J X ) when z = 0, / is univalent in a neighbor-
hood of 0. It is clear that {r: 0 ^ r ^ 1 and / is univalent in Er) = A
is a closed subset of [0, 1], We will show that A is also open and that
if / is univalent in Er then f(Er) is starlike with respect to 0.

Let r > 0 be such that / is univalent in Er, (0 < r < 1). Let z
be fixed, \z\Sr and let v(z; t) be such that f(v(z; t)) = (1 - f)f(z),
— ε<t<t0 where ε is small and positive and t0 > 0. This is possible
since det J Φ 0.

Then

v(z; t) = v(2; 0) + J-^(-f(z))-

(6) = z- J-'.J wt + g(t)

v(z; t) = z — tw +

by (5). Here \g(t)\/t->0 as ί-^0. Using (4), we conclude \v(z;t)\
is a strictly decreasing function of t. Hence each point of the ray
(1 — t)f(z), 0 < t ^ 1 is the image of a point v(z; t) e Er for each z such
that I z ^ r. We conclude that f(Er) is starlike with respect to 0.
We now show A is open. Observe that / is one-to-one in the closed
polydisk Er for if \z \ ^ | ζ | =r r, z Φ ζ and /(β) = /(ζ) then by (6) and
(4) we can conclude that for t positive and sufficiently small there are
functions v(ζ; ί), v(z; t) such that v(ζ; t), v{z, t) e Ery v(ζ; t) Φ v(z; t) and
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f(v(z; ί)) - (1 - t)f(z) = (1 - ί)/(ζ) = /(v(ζ, ί)) which is a contradic-
tion.

We now define a continuous nonnegative function φ: E x E-+R
(R is the real numbers) such that 0(2, ζ) = 0 if and only if f(z) = /(ζ),
^ ^ ζ . We show that φ is positive on the closed set Er x Er and hence
has a positive minimum on this set. This will imply / is univalent
in Er+ε for some ε > 0 and hence A is open. For z, CeE, define
G(z, ζ) = det (an) where

^-(zlyZ2y ...,Zd,ζi+1, . . . , ζ j , ( * , = «

and / = (f19f2, ••-,/,).
Now set 0(s, ζ) = I G(z, ζ) | + Σ?=i l / » - /i(O |. Then <5(s, z) =•

I det (J(z) I > 0 while

φ(z,ζ)>0 when f(z)Φf(ζ).

If /(z) = /(ζ) for some z, ζeE, z Φ ζ then the columns of G(z9 ζ) are
not linearly independent so G(z9 ζ) = 0 and 0(z, ζ) = 0. The proof is
now complete.

THEOREM 3. Suppose f:E—>Cn is holomorphic, f(0) = 0 and that
J is nonsingular for all zeE. Then f is a univalent map of E onto
a convex domain if and only if there exist univalent mappings
fj (1 fg j ^ n) from the unit disk in the plane onto convex domains
in the plane such that f(z) = T(f(zι)Jf2(z2) - ,fn(zn)) where T is a
nonsingular linear transformation.

Proof. It is clear that if / satisfies the conditions given in the
theorem, then / is univalent and f(E) is convex. We will prove the
converse.

Suppose / is a univalent map of E onto a convex domain. Let
A = (A19 A2, , An) where A, ̂ 0 (1 ^ j <£ n) and let

At\Z) — \ ^ l ^ λ j ^2^ > " " " > %n@ n )

where — 1 ^ t ^ 1. Then

F(2; ί) - l/2[f(At(z)) + /(A_t(z))] < / 0 ^ ί ^ 1

and F(z) t) satisfies the hypotheses of Lemma 2 with p = 2. Using
the same notation as in Lemma 2, we have
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•- ,Fn)

<7) ~J ίΞΊ~ V"^f + ' Z k l t ,

I O "SΓ1 X ^ A A y <y ® J 3

fe = 2 i = l OZiOZy.

and also î 7 = J ^ , w e ^ . Hence we find that w3- = det J ( i )/det J where
J{j) is obtained from J by replacing the jth column by F written as
a column vector. Fix k,l <^ k ^ n and choose Ak = 1, Aι = 0, I Φ k,
1 <; I <^n. Suppose | z \ = | z3- \ > 0, jf Φ k and ^̂  = 0. Then w3-/Zj = 0
and since Re(w3jz3) ^ 0 when \z\ — \ z3- \ > 0 we must have w3- = 0. We
have therefore shown that for 1 ^ j ^ n and 1 ^ A: ̂  π we have

<8) *M + zM± = ψ+>
oz% ozk ozk

where Re [ψk(z)/zk] ^ 0 when | z \ = | zk \ > 0. With A; as before, fix I,
l<^l<,n, Iφk and choose Afc = 1, Ax = ε > 0 and Am = 0, 1 <£ m ^ w,
m ^ &, ί.

Using (8) we conclude

w> εΨτΊdet J

where G5 is obtained from det J by replacing the jΓth column by the
column 32fjozιdzk(l ^ m ^ n). Hence Re [zkZι/Zj Gj/detJ] ^ 0 when

z\ = \zj\ > 0. Since Re [z^/Zj Gj/det J] = 0 when «A2Z = 0 we see
that G3 = 0 for each i, 1 ^ j g n.

Since the system of equations

has solution

det J ~~ =

we conclude

-^£=- = 0 1 ^ m ^ π .

This implies

{ 9 ) fm(z) — Σ aj,mΦj,m(Zj) 1 ^ 7Π ̂  Π

where ^ i f W is analytic on the unit disk in the complex plane. Using
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(8) we conclude ψj>m = ψ3 tk (1 ^ m, k ^ n) provided the constants ajtm

in (9) are appropriately chosen. The theorem now follows readily
from (8).

EXAMPLE 1. Let f: E-+C2 be given by f(z) = (zL + az\, z2) where
a is a complex number, a Φ 0. Clearly / is univalent. Letting / = Jw,
we find wx = z1 — azl, w2 = z2 so / is starlike provided | a | < 1. Note
that Theorem 3 implies the suprising result that none of the sets f(Er)
is convex (1 > r > 0).

EXAMPLE 2. Let f:E-+C2 be given by f(z) = (z^Os), z2g(z)),
C where # is holomorphic, 0 g #(£7). Then / = Jw implies

(10)

and / is starlike if and only if Re (^(z)/^) ^ 0, ze E. Conversely, one
can show that if / : E-+C2 is holomorphic, / = Jw where w e & and
wjz1 = w2/z2 then there exists g:E—>C,g holomorphic, 0 £ g(E) such
that (10) holds and / = ( ( α ^ + a2z2)g, (b^ + b2z2)g), (αx62 =̂  ̂ δ j . In
these cases the intersection of the polydisk E with an analytic plane
azγ + βz2 = 0 maps into an analytic plane S/Ί + yf2 = 0. Interesting
choices of # are g(z) = (1 — z^)-1 and gr(z) = [(1 — zx)(l - ^s)]"1.

3* Extension to convex and starlike maps of Dp. Since the
details of the proofs for the results in this section are similar to those
in §'s 2 and 3, we omit the details. We wish to find lemmas which
apply to Dp (Dp is defined in equation (1)) in the same way that
Lemmas 1 and 2 apply to the polydisk. The crucial point is that given
equation (6) with 0 Φ zeDp we wish to conclude

I v(z; t)\p<L\z\p w h e n 0 < t < ε

for some ε > 0. This will be true provided
for t sufficiently small. That is

zά — < Σ?=i I ZJ

- 2* Re wj/zj + f I w,./zs \ψ12 + Σ
0

wd < ± | zά

or

Re

when ί is sufficiently small, ί > 0. Hence we define ^ p for p ^ 1 by
w e ^ p if w: DpaCn-> Cn, w(0) = 0, w holomorphic and
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(ID
Re2>; K IM -Σi\w,\ 2:0

zeDp,w = (w19 w2, , wn).

We now have the following lemmas and theorems which correspond
to the lemmas and theorems of §§ 2 and 3.

LEMMA 3. Let v(z; t): Dp x I—+Cn be holomorphic for each tel>
v(z, 0) = z, v(0, t) = 0 and \ v(z; t) \p < 1 when z e Dp. If

lim [(z - v(z; t))/tp] = w(z)

exists and is holomorphic in Dp for some p > 0, then w e &v.

LEMMA 4. Let f:Dp—+Cn be holomorphic and univalent and
satisfy /(0) = 0. Let F(z; t): Dp x I—+Cn be a holomorphic function
of z for each tel, F(z, 0) = f(z), F(0; t) = 0 and suppose F(z; t) <J
for each tel. Let ρ>0 be such that \imt^0+(F(z; 0) - F(z; t))/tp = F(z)
exists and is holomorphic. Then F(z) = Jw where w e &\.

THEOREM 4. If f: Dp—+Cn is starlike then there exists we^p

such thatf— Jw. Conversely, iff: Dp—>Cn,f(0) = 0, J is nonsingular
and f — Jw, w e &p then f is starlike.

THEOREM 5. Let f: Dp—*Cn,f(0) = 0 and suppose J is non-
singular. Then f(Dp) is convex if and only if F = Jw where w e &P

for each choice of A — (Aly A2, , An), Aά ^ 0 (1 ^ j ^ n) and F is
given by (7) with z e Dp.

Now set p = 2. It is easy to see that Theorem 4 above is equiva-
lent to Matsuno's Theorem 1 [4, p. 91]. Consider f:D2—>C2 given
by f(z) — (zi + azli zz) Theorem 5 shows that f(D2) is convex if and
only if | a \ ̂  1/2 while Matsuno's Lemma 3 [4, p. 94] implies / is convex-

like if and only if | a \ ̂  3α/"3"/4. This shows that convex-like is not
equivalent to geometrically convex.
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