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THE PRINCIPLE OF SUBORDINATION APPLIED
TO FUNCTIONS OF SEVERAL VARIABLES

T. J. SUFFRIDGE

In this paper we consider univalent maps of domains in
C"n =z2). Let P be a polydisk in C», We find necessary and
sufficient conditions that a function f: P-— C” be univalent and
map the polydisk P onto a starlike or a convex domain, We
also consider maps from

D,={z|z]|, <1}cC»

(1) n i/p
s = 1@z -zl =[Sm0 221

into C” and give necessary and sufficient conditions that such
a map have starlike or convex image,

In [4] Matsuno has considered a similar problem for the hyper-
sphere D, c C*. His definition of starlikeness is different from that
used in this paper, but the results show that the two definitions are
equivalent. However, his definition of convex-like is not equivalent to
geometrically convex.

1. Preliminary lemmas. For (2, 2, ---, 2,) = 2¢eC", define |z| =
max,c;<, |?2;|. Let E, ={zeC"|z| <7} and E = E,. Let & be the
class of mappings w: E — C™ which are holomorphic and which satisfy
w(0) = 0, Re[w;(z)/z;] =0 when |z| = [2,]>0,1 < j < n) where w =
(wy, Wy, -+-, w,). The following lemmas are generalizations of Theorems
A and B of Robertson [5, p. 315-317].

LemMMA 1. Let v(z;t): E x I— C™ be holomorphic for each tel =
[0,1], v(2; 0) = 2, (0, t) = 0 and |v(z;t)| <1 when ze¢ E. If

(2) lim [z — o(z; 1)/¢'] = w(z)

exists and is holomorphic in E for some p > 0, then we 2.

Proof. The hypothesis (2) implies that lim, .+ v,(2; t) = 2; (here
V(25 1) = (v,(25 8), V(25 1), - -+, V(25 1)) SO

22, — v 1) _ ., .
z; + vz t) Vil#: t)

is holomorphic for zeE,z; =0 (1 <j<n). By Schwarz lemma,
|v(z; ) | = |2 ] and hence Re [y;(2; t)/2;] = 0 when |z| = [2;| > 0. Setting
P(z; 1) = (Yo, oy + =+ V), (€ E, 2,2, -2, # 0) we observe that
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lim ¥ (z; t)/t* = w(z)
t—0t
for these values of z and using continuity of w we conclude we 7.

LEMMA 2. Let f: E—C" be holomorphic and wunivalent and
satisfy f(0) = 0. Let F(z;t): E x I—C* be a holomorphic function
of z for each telI=10,1], F(z;0) = f(z), F(0,t) =0 and suppose
F(z;t) < f for each teI (i.e., F(E;t) C f(E) for each teI). Let p >0
be such that lim,_ .+ F(z;0) — F(z; t)/t* = F(z) exists and is holomorphic.
Then F(z) = Jw where we.&”. Here F and w are written as column
vectors and J is the complex Jacobian matrix for the mapping f.

Proof. Since F(z;t) < f for each tel, there exists vi: E X [— K
such that f(v(z; t)) = F(z; t) where |v(z;t)| < |z]|. Writing f as a column
vector we have f(v(z;t)) = f(z) + J(v(z; t) — 2) + R(v(?; t), 2) where
IR, 2)|/|] —2]—0as |{ —2]|—0. Hence

F(z0) — Fizt) _ J<z — vz t)> _ Rk, 2)
t° te 74

and the lemma follows from Lemma 1.

2. Starlike and convex mappings of the polydisk.

DEFINITION. A holomorphic mapping f: E— C" is starlike if f is
univalent, f(0) = 0 and (1 — ¢t)f < f for all tel.

THEOREM 1. Suppose f: E— C" is starlike and that J 1is the
complex Jacobian matriz of f. There exists we . such that f=Jw
where f and w are written as column wvectors.

Proof. Apply Lemma 2 with F(z;t) = (1 — t)f(z). Then
f(z) = lim & =& = @) _ 13, FZ 0 = Fz 1)
t—0t t

t—0t t

and the theorem follows from Lemma 2.

We now consider the conclusion of Theorem 1 in component form.
Let J; be the matrix obtained by replacing the jth column in J by
the column vector f,1 <7 < n. Then the jth component w; of w is
det (J;)/det J. Theorem 1 therefore says that if f is starlike then
Re [det (J;)/2;det J] = 0 when [z| = |z;| > 0. Also,

(3) fj=éfiw1+af"w2+---+%wn, l1=j=n
02, 02, 0z,
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and equating coefficients in the power series using (3) we find
w;(2) = z; + terms of total degree 2 or greater .

Now suppose | 2| = |2 | > 0 and let «;, (1 < k < n) be such that 2 =
az?. Then |a,| <1,(1 <k <n). Consider w;(z)/z; = u(z;) where 2
is restricted to the set,

2= (A, Oy +++, Q)2 , l2;] <1.

Then Reu(z;) =0,0< |z;| <1 and w(z;)—1 as z;,—0. Since Reu(z;)
is a harmonic function of z;, we conclude Re u(z;) > 0, |2;| <1 and

(4) Re [w;(2)/2;,] >0 when |z|=]2;]>0.
‘We now prove the converse of Theorem 1.

THEOREM 2. Suppose f:FE-—C" 1is holomorphic, f(0) =0,J 1s
nonsingular and that

(5) f(z) = Jw,we F .
Then f is starlike.

Proof. Since det J+#0 when z = 0, f is univalent in a neighbor-
hood of 0. It isclear that {»:0<» <1 and f is univalent in E,} = A
is a closed subset of [0,1]. We will show that A is also open and that
if f is univalent in E, then f(E,) is starlike with respect to 0.

Let » > 0 be such that f is univalent in £,, (0 < r <1). Let 2
be fixed, |z| < » and let v(z;t) be such that f(v(z;t) = (1 — t)f(2),
—e < t<t, where ¢ is small and positive and ¢,>0. This is possible
since det J == 0.

Then

v(z; 1) = v(2; 0) + J 7 (—f(2) -t + g(t)
(6) =z —JJw-t + g(t)
v(z; t) =2 — tw + g(t)

by (5). Here |g(¢)|/t—0 as ¢— 0. Using (4), we conclude |v(z;t)]
is a strictly decreasing function of ¢. Hence each point of the ray
1 —-1f(),0<t=<1 is the image of a point v(z; t) € E, for each z such
that [z| = . We conclude that f(FE,) is starlike with respect to 0.
We now show A is open. Observe that f is one-to-one in the closed
polydisk E, for if [z| <|&| =7, 2 = { and f(z) = £(€) then by (6) and
(4) we can conclude that for ¢ positive and sufficiently small there are
functions v({; t), v(z; t) such that v(C; 1), v(2, t) € E,, v({; t) == v(z; t) and
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fE ) =0 —-0f() =1 — f() = f(&, t) which is a contradie-
tion.

We now define a continuous nonnegative function ¢: £ x E— R
(R is the real numbers) such that #(z, {) = 0 if and only if f(z) = f(£),
z = (. We show that ¢ is positive on the closed set E, x E, and hence
has a positive minimum on this set. This will imply f is univalent
in E,.. for some ¢ >0 and hence A is open. For z,{cE, define
G(z, {) = det (a;;) where

fi(zlv Rgy "%, zijj-H’ ) C’n) _fi(zu Roy ***yRj_1y ij R Cn)’ (Zj = Cj)’

2; — &

(zlr Rgy * Zjy Cj+1r ctcy Cn) y (zj = Cg)

a;; o,
0%,

J

and f: (fl’fZ! M '7fn)°
Now set 6(z, 0) = [Gz O)| + S5 | £42) — £5©)]. Then ¢(z, 2) =
| det (J(z) | > 0 while

#(z,0) > 0 when f(z) = f(Q) .

If f(z) = f({) for some z, (e E, z+ { then the columns of G(z, {) are
not linearly independent so G(z,{) = 0 and ¢(z, {) = 0. The proof is
now complete.

THEOREM 3. Suppose f: E — C* 4s holomorphic, f(0) = 0 and that
J 18 nonsingular for all ze E. Then f is a univalent map of E onto
a convex domain if and only if there exist untvalent mappings
fi A =<7 Zn) from the wunit disk in the plane onto convexr domains
in the plane such that f(z) = T(fi(z), [+, [u(z,) where T is a
nonsingular linear transformation.

Proof. It is clear that if f satisfies the conditions given in the
theorem, then f is univalent and f(E) is convex. We will prove the
converse.

Suppose f is a univalent map of E onto a convex domain. Let
A= (4,4, -+, A,) where 4;=20 (1 <j <n) and let

A () = (2,61, 2,642, oo 2,60t
where —1 <¢=<1. Then
F(z; t) = 1/2[f(A,() + FA@)] <f 0<t<1

and F'(z;t) satisfies the hypotheses of Lemma 2 with p = 2. Using
the same notation as in Lemma 2, we have
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F(z):(Fanv"' n)

2F, = 3, 432 g}+zgp

RS o°f;
2}2‘; > A Alzkzl&ﬁ .

(7)

and also F' = Jw, we &°. Hence we find that w; = det J/det J where
JY ig obtained from J by replacing the jth column by F' written as
a column vector. Fixk, 1 <k <mn and choose A, =1,A4,=0,1 + k,
1<!{<mn. Suppose [z]=12;]>0,7 #Fk and 2, = 0. Then w;/z; =0
and since Re (w,/2;) = 0 when |z| = |2;| > 0 we must have w; = 0. We
have therefore shown that for 1 <j <#% and 1 <k < n we have

2azfj %: 5f]r
(8_) & 073, +zkazk 0z, Vi

where Re [v,(2)/2,] = 0 when |z| = |2,| > 0. With & as before, fixl,
1<1<mn,l+#kand choose 4, =1, 4, =¢>0and 4, =0,1 < m < n,
m #* k, l.

Using (8) we conclude

_ 2RGy 2 .
wj—sdetJ + O(&) 4 # k)
where G; is obtained from detJ by replacing the jth column by the
column 0%, /02,02,(1 < m < n). Hence Re [7,2,/7;-G;/det J] = 0 when
|z] = |%;] > 0. Since Re[z,2,/2;-G;/det J] = 0 when z,2, =0 we see
that G; =0 for each 5,1 <j < .
Since the system of equations

g = Ofn l<m=<
2 T2 P T Gaon, =m=n

has solution

, G; .
=23 = 1<757<
Pi = JetJ =J=n
we conclude
fim— =0 l1<m<n.
Ozlazk
This implies
(9) fm(z) == Z{ aj,m¢j,m(zj) 1 g m g n
=

where ¢, , is analytic on the unit disk in the complex plane. Using



246 T. J. SUFFRIDGE

(8) we conclude ¢,,,, = ¢;,, (L < m, k < n) provided the constants a;,.
in (9) are appropriately chosen. The theorem now follows readily

from (8).

ExaMPLE 1. Let f: E— C* be given by f(z) = (2, + az3, z,) where
a is a complex number, a = 0. Clearly f is univalent. Letting f = Jw,
we find w, = 2, — azi, w, = 2, 8o f is starlike provided |a| < 1. Note
that Theorem 3 implies the suprising result that none of the sets f(E,)
is convex (1 > r > 0).

ExAMPLE 2. Let f: E— C* be given by f(z) = (2.9(?), 2.9(?)), g: £ —
C where g is holomorphic, 0 ¢ g(F). Then f = Jw implies

(10) wl/z1:w2/22:1+[ ag +zzag]/g
022

and f is starlike if and only if Re (w,(2)/2,) = 0, z€ E. Conversely, one
can show that if f: E— C? is holomorphic, f = Jw where we.&” and
w,/z, = w,/z, then there exists g: £ — C, g holomorphic, 0¢ g(E) such
that (10) holds and f = ((@.2, + ax®,)g, (b2, + b.2,)9), (@b, = a,b). In
these cases the intersection of the polydisk E with an analytic plane
az, + Bz, = 0 maps into an analytic plane é§f, + vf, = 0. Interesting
choices of g are g(z) = (1 — 22)™" and ¢g(?) = [ — 2)1 — z,)]".

3. Extension to convex and starlike maps of D,. Since the
details of the proofs for the results in this section are similar to those
in §'s 2 and 3, we omit the details. We wish to find lemmas which
apply to D, (D, is defined in equation (1)) in the same way that
Lemmas 1 and 2 apply to the polydisk. The crucial point is that given
equation (6) with 0 = ze D, we wish to conclude

|v(z;t) |, = |2], when 0<i<e

for some ¢ > 0. This will be true provided 3}7_, |z, — tw; |? < 3%, |2;|”
for ¢ sufficiently small. That is

Z!z P(L — 2t Re w;/z; + t* | w;/z; Iz)’”’2+2t”|w |"<le I”

zﬁéo
or
(S v Re |zl Re wifzy) + 3,0 ]) < 0
2570

when ¢ is sufficiently small, ¢ > 0. Hence we define &, for p =1 by
we P, if w: D,cC"—C", w(0) = 0, w holomorphic and
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Refle-lzjl”/zjzo if p>1
11) ’?
Re X w;-|2;1/z; — X1 |w; | =0 ifp=1,
J=1 z;=0

2570

zeDm w = (wU Way wn)‘

We now have the following lemmas and theorems which correspond
to the lemmas and theorems of §§2 and 3.

LEMMA 3. Let v(z;t): D, x I—C™ be holomorphic for each tel,
v(2,0) =2,v0,%) =0 and |v(z;t)|, <1 when ze D,. If

lim [(z — v(z; ©))/t"] = w(z)
t—0t
exists and is holomorphic in D, for some o > 0, then we . F,.

LEmMMA 4. Let f: D,—C™ be holomorphic and wunivalent and
satisfy f(0) = 0. Let F(z;t): D, x I—C" be a holomorphic function
of 2z for each tel, F(z, 0) = f(z), F(0;t) = 0 and suppose F(z;t) <t
for each tel. Let o0>0 be such that lim, .+(F(z; 0) — F(z; t))/t* = F(2)
exists and is holomorphic. Then F(z) = Jw where we F,.

THEOREM 4. If f: D,— C" s starlike then there evists we &,
such that f = Jw. Conversely, if f: D,—C™, f(0) = 0, J is nonsingular
and f = Jw, we . P, then f is starlike.

THEOREM 5. Let f:D,—C" f(0) =0 and suppose J is non-
singular. Then f(D,) is convex if and only if F' = Jw where we &,
for each choice of A = (A, A, --+,A,),A;Z0Q=Z7=Zn) and F is
given by (7) with ze D,.

Now set p = 2. It is easy to see that Theorem 4 above is equiva-
lent to Matsuno’s Theorem 1 [4, p. 91]. Consider f:D,— C* given
by f(2) = (2, + az3, 2). Theorem 5 shows that f(D,) is convex if and
only if |a| =< 1/2 while Matsuno’s Lemma 3 [4, p. 94] implies f is convex-

like if and only if |a| < 3V 3 /4. This shows that convex-like is not
equivalent to geometrically convex.
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