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AN INTERESTING COMBINATORIAL METHOD IN THE
THEORY OF LOCALLY FINITE SEMIGROUPS

T. C. BROWN

Let X be a finite set, X* the free semigroup (without
identity) on X, let M be a finite semigroup, and let φ be an
epimorphism of X* upon M. We give a simple proof of a
combinatorial property of the triple (X, φ, M), and exploit
this property to get very simple proofs for these two theorems:
1. If ψ is an epimorphism of the semigroup S upon the
locally finite semigroup T such that ψ~\e) is a locally finite
subsemigroup of S for each idempotent element e of T, then
S is locally finite. 2. Throughout 1, replace "locally finite"
by "locally nilpotent".

The method is simple enough, and yet powerful enough,
to suggest its applicability in other contexts.

1* Theorem 1 below was first proved by the author in [1] by a
circuitous and laborious method. In the present paper it drops out
easily from Lemma 2 below, as does Theorem 2, which is new. Lemma
2 was first discovered by J. Justin ([3]) as a generalization of Lemma
1, which is the author's ([2]). The proof given here, however, is
new, and is conceptually quite transparent, though apparently non-
trivial. Justin has used Lemma 2 in an alternative proof of his
generalization of Van der Waerden's Theorem (on Arithmetic Progres-
sions), using Van der Waerden's Theorem in the course of the proof.
The author is inclined to believe that a refined or more powerful ver-
sion of Lemma 2 would yield a proof of Van der Waerden's Theorem
itself.

The construction of a sequence "in the regular way", given below,
has been formalized by R. Rado in [4].

2* Notation and definitions* The symbol X will always denote
a finite set, and X* denotes the free semigroup without identity on
X. Thus X* is the semigroup of nonempty "words" in the "letters"
of the "alphabet" X, with juxtaposition as multiplication. If w =
xλx2 xke X*, where the ^ e l , then the length of w, denoted by
\w\, is k. The symbol Xω denotes the set of sequences on X, regarded
as "infinitely long words" in the alphabet X. If x, y, ze X* and s e Xω,
then xy yy and z are each factors (x is a left factor) of the word xyz
and of the sequence xyzs.

Let H be an infinite subset of X* We indicate now how to
construct a sequence s = axa2 e Xω such that each left factor of s
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is a left factor of infinitely many of the words of H. Such a sequence
is used several times in the proofs that follow, and is said to be con-
structed in the regular way from H.

We choose the α/s inductively. In view of the fact that H is
infinite and X is finite, we choose αx to be an element of X which
occurs infinitely often as the first letter in the words of H, and we
denote by Hι the (infinite) set of those words of H which have aγ as
first letter. Thus aL is a left factor of infinitely many of the words
of H. Now suppose that αx, , ane X have been chosen so that
aλa2 an is a left factor of each word in an infinite subset Hn of H.
Y\fe choose αw+1 to be an element of X which occurs infinitely often
as the (n + l)st letter in the words of Hn, and denote by Hn^ the
(infinite) set of those words of Hn which have an+1 as (n + l)st letter.
Thus aλa2 an+1 is a left factor of infinitely many of the words of H.

3* Two lemmas*

LEMMA 1. Let s = aλa2 ••• e P . Then there exist an element
x e X and a fixed integer k such that for any n there are integers
iι< i2< < in (these depend on n) with x = aiχ = ah = = ain

and ij+ι — i3- <̂  k, 1 ̂  j <̂  n — 1.

Proof. We proceed by induction on \X\, the cardinal of X. If
I -3Γ| = 1, we are through. Assume the result for \X\ = k, and sup-
pose now that \X\ = k + 1, X = {xιt , xk+ι}. Let s = ata, e Xω.
If xk+1 is not missing from arbitrarily long factors of s we are done,
hence we may assume that there is an infinite set H of factors of s
from which xk+1 is missing. Thus Hcz{xl1 •••,%}*, and we construct
a sequence t = bj>2 e {xL, , ίcfc}

ω from H in the regular way. By
the induction hypothesis, there exist an element xe{x19 , xk} and
an integer k such that for any n there are integers iλ < i2 < < ΐw

with x — bh = 5;2 = = δ<n and ίi+L — i3 ^ k, 1 ̂  j ^ ^ — 1. But
every left factor of t is a left factor of words in H, and each word
in H is a factor of s, therefore every left factor of t is a factor of
s, and hence every factor of t is a factor of s, in particular the factor

6^ δ ί2 6ί%. By a translation of indices (perhaps a different
translation for each n) we are done.

LEMMA 2. Let φ be an epίmorphism of X* upon a finite semi-
group M, and let seXω. Then there exist an idempotent eeAl and
a fixed integer k such that for any n there are n consecutive factors
gi, ,9n (these depend on n) of s (i.e., s = ag,g2 gns', where
a, g19 •__• , ^ e Γ , s ' e Xω) with e = φ(gλ) = φ(g2) = ... = φ(gn) and
\g, \ ̂ k,l^j ^n.
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Proof. We proceed by induction on |jfcf| If \M\ == 1, we are
done, so now let M be fixed with \M\ Ξ> 2 and assume the result for
all semigroups with cardinal smaller than that of M. Now with this M
we proceed by induction on \X\. If |JSΓ| = 1 we are through, so we
may assume the result for |JSΓ| = k and now let \X\ = k + 1.

Let $ — aλa2 • • • G P , and let x be a fixed element of X. If # is
missing from arbitrarily long factors of s, then constructing in the
regular way a new sequence from the set of these factors, and argu-
ing as in the proof of Lemma 1, we are done by the induction hy-
pothesis on |X | . Thus we may assume that there is an integer m
and integers ί19 i2, such that x — ah = ai% = and 0 < i j + 1 — iό^m
for j = 1, 2, •••. To simplify the notation, let us assume without
loss of generality that ix = 1.

Next, we take a new (finite) alphabet B = {α ί iα ί i + 1 ••• α^ +1-.i|i =
1, 2, •••} and write s as a sequence in JS". Let φ(x) = p. Then
<p(a,i) — p for i = 1, 2, •••, so the restriction of φ to 5* is an epi-
morphism of B* upon the semigroup pM. If \pM\ < |M| , then we are
done by the induction hypothesis on |Af|, since we can easily find our
way back to s regarded as a sequence in Xω. (Indeed, if the length
of a factor g of s in the alphabet B is ^k, then the length of g in
the alphabet X is ^mϊc.)

Thus we may assume that \pM\ = \M\9 and similarly that \Mp\ =
|Λf|, for αZί p e J I ί (since the fixed element x chosen above was an
arbitrary element of X). Since M is finite, this amounts to saying
that M is a (finite) group.

All we have to do now is to regard M temporarily as a set only,
and apply Lemma 1 to the sequence pφ2 εMω, where Pi = φiμ^ c^),
i — 1,2, . Thus there exist an element pe M and a fixed integer fe
such that for any n there are integrs it < i2 < < ίn with p = ph —
P42 = ί><Λ and i i + 1 - ij^k^^j^n — 1. Setting ^ = a, α i V ̂ 2 =
^•n α*2» » flf» = α<Λ-!+i *' α<Λ»

 t h i s says ^(^) = φ{g,g2) = =
£>(#i#2 0n)> an so β = <p(g2) = ^(^3) = = <p(#J (where e is the
identity of the group M), which is the conclusion we seek.

4* Two theorems*

THEOREM 1. Let φ he an epimorphism of the semigroup S upon
the locally finite semigroup T such that φ~ι{e) is a locally finite sub-
semigroup of S for each idempotent element e of T. Then S is
locally finite.

Proof. First we note that if suffices to consider the case where T

is finite. (For suppose the theorem is true in this case, and let φ be
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an epimorphism (with the required properties) of S onto an arbitrary,
that is, possibly infinite, locally finite semigroup Tf. Let X be a finite
subset of S, and let <(X)> denote the subsemigroup of S generated
by X. It is required to show that <X> is finite. Now ζφ(X)yτ
is a finite subsemigroup of Tr since T' is locally finite, hence restricting
φ to φ~ι{T) we get an epimorphism (with the required properties) of
φ~ι{T) onto the finite semigroup T. By our assumption, φ~\T) is
locally finite, hence, since X(zφ~~ι{T), <X> is finite, as required.)

Therefore we assume that T is finite, and we let X denote a
finite subset of £, <(X> the subsemigroup of S generated by X.

To show that ζX.y is finite, it is convenient to introduce some
additional notation. Let X= {x19 •••,#«}, and let X= {x1? * ,#m} be
a set. If w — xiχ xi/c e X*, let w denote the element xh xijc of
<X>. Thus "removal of bars" is a homomorphism of X* upon <X>.
We shall call a word w e X* contraetible if there is another word
ΰ e X* such that | ΰ | < \w | and % = w. A sequence s 6 Xω is contrae-
tible if s has a contraetible factor. Now ζX.y will be finite provided
every sufficiently long word of X* is contraetible, and this will be the
case provided that every sequence in X ω is contraetible; for otherwise
we could take an infinite set of noncontractible words of X* and, by
then constructing a sequence in the regular way from this set, obtain
a non-contractible sequence.

Thus it remains to show that every sequence in Xω is contraetible.
Let seXω, and define the homomorphism φ from X* into T by

setting φ(w) = φ(w) for w e X * . Applying Lemma 2, we obtain an
idempotent ee T and a fixed integer k such that for any n there are
n consecutive factors g19 * ,gn of s with e = φ{gύ = = <p(j/) and
I <7y| ̂  k, 1 ̂  j ^n. By the definition of φ, we have gu

 m, gn all in
^"'(e), which is locally finite by assumption. Since \gά ^ k\ there are
only finitely many possibilities for the elements gιy ••• ,flfΛ> hence
the element g1 gn always belongs to a certain fixed finite subsemi-
group of φ~\e), no matter how large n is. Thus if n is taken suffi-
ciently large, the factor gλ gn of s will be contraetible. Thus the
sequence s is contraetible. This completes the proof.

THEOREM 2. Let φ be an epimorphism of the semigroup S upon
the locally nilpotent semigroup T such that <P~1(e) is a locally nil-
potent subsemigroup of S for each idempotent element e of T. Then S
is locally nilpotent.

Proof. The proof of Theorem 2 is practically the same as the
proof of Theorem 1. Here instead of showing that every sequence W
in Xω (same notation as in the proof of Theorem 1) has a contraetible
factor, one shows that every sequence s has a factor w with w = 0.
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