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SOME GEOMETRIC PROPERTIES RELATED TO THE
FIXED POINT THEORY FOR NONEXPANSIVE

MAPPINGS

J.-P. GOSSEZ AND E. LAMI DOZO

The main result of this paper asserts that if a Banach
space admits a sequentially weakly continuous duality func-
tion, then a condition introduced by Opial to characterize
weak limits by means of the norm is satisfied and the space
has normal structure in the sense of Brodskii-Milman. This
result of geometric nature allows some unification in the
fixed point theory for both single-valued and multi-valued
non-expansive mappings.

Let K be a nonempty weakly compact convex subset of a real
Banach space X and let T be a nonexpansive mapping of K into its
nonempty compact subsets (i e., D(Tx, Ty) ^ \\x — y\\ for all x, ye K,
where Z>(,) denotes the Hausdorif metric). While the question of the
existence of a fixed point for T remains open, several positive results
were proved recently under various conditions of geometric type on
the norm of X. We list here the conditions we have in mind:

(I) (Browder [5]) X admits a sequentially continuous duality
function FΦ:X, σ(X, X*) -»X*, σ(X*, X) (i.e., a function Fφ such that
<x,Fφ(x)>=\\x\\\\Fφ(x)\\ and \\Fφ(x)\\ = φ(\\x\\) for all xeX, where
φ: R+ —> R+ is continuous strictly increasing with $5(0) — 0 and
^(+oo) = +oo).

(II) (Opial [17]) If a sequence {xn} converges weakly in X to x0,

t h e n l i m in f \\xn — x\\ > l i m inf \\xn — xQ\\ f o r a l l x Φ x0.

(Ill) (Brodskii-Milman [4]) Every weakly compact convex subset

H of X has normal structure (i.e., for each convex subset L of H

which contains more than one point there exists xeL such that

sup{||a; - yW yeL] < sup{| |u - v\\;u, veL}).

When T is single-valued, the existence of a fixed point for T in

K was proved by Browder [5] if X satisfies (I) and if T can be

extended outside if in a nonexpansive way, and by Kirk [12] if X

satisfies (III). A similar situation occurs in the multivalued case

where one also encounters two different approaches: one by Browder

[6] who proved a fixed point theorem under condition (I) and some

additional assumptions, and another by the second author [14] who

obtained the same conclusion under condition (II).

It is a consequence of our main theorem that in both cases the
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second approach is more general than the first1:

THEOREM 1. (I) implies (II) and (II) implies (III). No converse
implication holds, not even when X and X* are supposed to be uni-
formly convex.

Although (II) does not imply (I), there is some result in that
direction, which supports the feeling that the gap between (II) and
(III) is much deeper than that between (I) and (II). To state this
result we define (Io) as (I) except that Fφ is only required to be
sequentially continuous at zero and (Πo) as (II) except that > is re-
placed by ^ .

THEOREM 2. (Io) implies (II0). The converse implication holds
when the norm of X is uniformly Gateaux differentiable.

Theorems 1 and 2 are proved in §2 and §3 respectively. Some
related results and several examples are presented in §4 which shed
more light on the connections between these geometric properties.

In §5 we show that the space cQ endowed with Day's norm, which
is locally uniformly convex (cf. [18]), does not satisfy (III). This
example should be connected with the well-known facts that all uni-
formly convex spaces, as well as the spaces showed by Day and
Lovaglia to be locally uniformly convex but not isomorphic to any
uniformly convex space, satisfy (III) (cf. [3, 6, 11]).

2* The main result* To prove Theorem 1 we need two lemmas
about the duality map JΦ\X —>2X* defined by

J φ ( x ) = {x*eX*;<x,x*>= \\x\\ \\x*\\ a n d | | s * | | = φ(\\x\\)}

for all xe X. In this context condition (I) asserts the existence for
some gauge φ of a sequentially weakly continuous selection for Jφ.
The first lemma follows from the monotonicity of Jφ; it has been
extended in [10] to general monotone operators.

LEMMA 1. If X satisfies (I) (for some gauge φ), then Jφ is single-
valued {for any gauge φ).

Proof. The monotone operator Fφ is hemicontinuous by (I), thus
maximal monotone by Minty's classical argument [15]. Since Jφ is

1 It should be noticed that the existence theorems of [12] and [14] have been
recently extended in [13] and [2] where it is only required that T maps the boundary
of K into K.
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also monotone we must have Jφ = Fφ. That Jψ is single-valued for
another gauge ψ follows from the equality Jψ{x) =

The second lemma uses the observation of Asplund [1] that Jφ is
the subdifferential of the convex function Φ(|[α?||) where

Φ(t) = [φ(s)ds,
Jo

i.e.,

Jφ(x) = { α ? * e Z * ; Φ ( | | i / | | ) ^ Φ(\\x\\) + <y - x,x*>VyeX} .

LEMMA 2. If Jφ is single-valued then

Φ(\\x + y\\) = Φ{\\x\\) + [<y, Jφ(x + ty)>dt
Jo

for all x, ye X.

Proof. If Jφ is single-valued then Jφ is the Gateaux gradient of
Φ(||a?||); this follows from a general result in the theory of convex
functions (see [16; p. 66]). But Jφ is easily verified to be hemicon-
tinuous. Consequently the lemma just expresses the fact that a
function of a real variable is the integral of its continuous derivative.

Proof of Theorem 1. Assume (I) and let xn—^x0 (-^ will denote
weak convergence, —> norm convergence). By Lemmas 1 and 2,

Φ(\\xn-x\\) = Φ(\\xn-x0\\)

+ \ <xQ - x, Jφ((xn - Xo) + t(x0 - x))>dt
Jo

for all xe X, so

l i m i n f Φ(\\xn - x\\) ^ l i m inf Φ(\\xn - xo\\) + l i m i n f

The sequential weak continuity of Jφ and the dominated convergence
theorem give

l i m i n f Φ(\\xn - x\\) ^ l i m i n f Φ(\\xn - xo\\)

+ [\\xo-x\\Φ(t\\xo-x\\)dt,
Jo

an inequality which clearly implies condition (II).
The proof that (II) implies (III) relies upon a characterization of

normal structure given in [11]:X satisfies (III) if and only if X does
not contain a diametral sequence {xn} weakly converging to zero (i.e.,
a nonconstant sequence with

(2) d(xn; co {xly , α^-J) — δ({xn}) ,
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where d(xn; co {xly •• ,scn_i}) denotes the distance of xn to the convex
hull of {xlf •••, xn^} and d({xn}) the diameter of {xn}).

Assume that (III) does not hold and take such a sequence. It
follows from (2) that

lim | | x n - y\\ = d({xn})

for all yeco{xn], hence for all ye cδ{xn}< Taking y = 0, we get
lim I la* 11 = δ({xn}), but for each y = xno we obtain lim 11 a?n - α?nJ| =
δ({xn}). This contradicts (II).

We now turn to the last part of Theorem 1. When 1 < p < oo
p Φ 2, Z/(0, 2/7) satisfies (III) since it is uniformly convex, but Opial
[17] showed that even (Πo) does not hold. When 1 < p Φ q < °° the
Hubert product of lp and lq satisfies (II) (cf. [14]; since it is easily
verified that (Io) holds, (II) also follows from Theorem 2 of §3 and
Proposition 1 of §4), but Bruck [7] showed that (I) does not hold.

REMARKS 1. A finite dimensional space whose norm is not dif-
ferentiable provides another example of a space satisfying (Io), (II)
but not (I) by Lemma 1.

2. In the Hubert space case when φ(t) = t, estimation (1) reduces
to an estimation obtained by Opial [17; p. 592].

3* A partial converse* The following simple lemma whose proof
proceeds by taking subsequences will be needed.

LEMMA 3. Conditions (II) and (Πo) are respectively equivalent to
the analogous conditions obtained by replacing lim inf by lim sup.

Proof of Theorem 2. Assume (Io) and let xn —^ x0. As Jφ is the

subdifferential of <P( | |B |I) we have

n - α?||) ^ Φ(\\xn - xo\\) + <&o - a, Fφ(xn - xo)>

for all xe X, so

lim inf Φ(||α?Λ - a?||) ^ lim inf Φ(\\χn - xo\\) ,

an inequality which clearly implies condition (Πo)
In the second part of Theorem 2, the assumption of uniform

Gateaux differentiability is equivalent to the condition that Jφ be
singlevalued and continuous on X, || || into X*, σ(X*, X), uniformly
on bounded sets; this follows easily from a result of Cudia [8; p. 302].
Under this assumption we will show that if (Πo) holds then for any
φ9 JΦ is sequentially weakly continuous at zero.

Let xn —* 0 and suppose that Jφ(xn) does not converge to zero for
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σ(X*, X). Then there exist zeX, a subsequence {xm} and
such that < z, Jφ(xm) > —> < z, x* > Φ 0. Define

569

f(x) = lim sup - x\\)

f is a continuous convex function on X which assumes its minimum
at x = 0 by condition (II0) and Lemma 3. Hence

_1_
λ

^ 0

and thus

, Vλ > 0 ,

^ 0

as Jφ is the subdifferential of

lim sup < y, Jφ(xm + Xy) > ^ 0 .

Letting λ { 0, limits can be interchanged by the uniformΓcontinuity
of Jφ, and consequently

lim sup < y, Jφ(xm) > ^ 0 VyeX.

In particular <z, x*> — 0, a contradiction.

REMARK. We do not know whether the diίferentiability hypothesis
in Theorem 2 is essential.

4* Further connections* We begin this section by showing that
the following situation holds in general:

do)

where (A) -* (B)[(A) -> (B)] means that (A) implies [does not imply]
(B). Taking into account §2 and 3, it suffices to exhibit a space
satisfying (Io) but not (III). Consider the space I2 endowed with the
norm

\x\\ = max {̂ -
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James [3] proved that (III) does not hold; however the application

x = (x(l), x(2), . . . ) •

'-| if 1-11*11,. ̂

(0, • ;0,x(mJ,0, •••) if

where m0 = inf {m; x(m) = || a?||««»} and x(m0) stands at the mo-th place,
defines a duality function which is sequentially weakly continuous at
zero. Another example of a space satisfying (Io) but not (III) will
be given in §5.

Although (Πo) does not generally imply (II), one can prove the
following proposition which includes Opial's result of [17; lemma 3].

PROPOSITION 1. (Πo) implies (II) when X is uniformly convex.

This proposition as well as Opial's result are no longer true if
the assumption of uniform convexity is weakened to that of local
uniform convexity (see the example in §5).

Proof of Proposition 1. Let xn -± x0 and suppose that

l i m inf ||a?n — x\\ = l i m inf \\xn — xo\\

w i t h x Φ xQ. T h e n

x + x0lim inf < lim inf \\χn — x0

by uniform convexity, which contradicts (II0).

We conclude this section with two results connecting (I) with
two classical rotundity conditions.

PROPOSITION 2. If (I) holds then X has property (A), i.e., xn-+x
whenever xn—*x and \\xn\\ —* \\x\\

Proof. By Lemmas 1 and 2,

Φ(\\x% - a? 11) - Φ{\\xn\\) + [< - x, JΦ{Xn - tx) > dt ,
JO

SO

lim - x\\) = Φ(\\x\\) + Γ < - x, JΦ(x - tx) > dt.
Jo



FIXED POINT THEORY FOR NONEXPANSIVE MAPPINGS 571

Applying Lemma 2 to the last integral, we ge t limΦ(||α;n — x\\) = 0

COROLLARY. If (I) holds and if X is strictly convex, then X has
property (H), i.e., X has property (A) and is strictly convex.

PROPOSITION 3. // (I) holds and if X is strictly convex and re-
flexive, then X is locally uniformly convex.

Proof. We have to prove that xn-+x whenever \\xn\\ —> ||α?|| and
ll» + ^»ll"~*2||a?||. Since the balls in X are weakly sequentially
compact, it suffices to see that any weakly convergent subsequence
{xm} converges in norm to x. Let xm-^y. We will show that y — x,
and the proof will follow from Proposition 2.

By Lemmas 1 and 2,

Φ(\\xm + x\\) - Φ(llαJI) = Γ < a, J*(x« + tx) > dt
Jo

going to the limit and applying Lemma 2 to the first member, we get

(3) Γ < x, Jφ(x + tx) > dt = Γ < x, JΛy + tx) > dt .
Jo Jo

The first integral equals \ ||α?||^(||a? + tx\\)dt and the second is major-
Jo

ized by

\\\x\\φ{\\y + tx\\)dt ^ Γ||α?||^(||αj + tx\\)dt
Jo Jo

since \\y\\ ̂  ||a;||; consequently

<x,JΦ(y + tx)> = \\x\\Φ(\\y + tx\\) v i e 10,1] .

But the strict convexity of X means that every nonzero a ; * e l *
assumes its norm at most one point of the unit sphere of X. Thus,
eliminating the trivial case x = 0,

x _ y + tx

\\χ\\ ~ \\y + tx\\

for all t e [0,1] with y + tx Φ 0, an equality which gives y — kx with
k ^ 0. It then follows from (3) that k = 1, which completes the proof,

5. An example* Consider the space c0. The formula

where the supremum is taken over all permutations a of N, defines
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on c0 an equivalent norm [9] which is known to be locally uniformly
convex [18]. We will show that c0 endowed with this norm satisfies
(Io) but not (III).

First recall an equivalent definition of || || by means of the
decreasing rearrangement map D of c0 into I2 (cf. [9]). Given xecQ,
N can be enumerated in a sequence {/Sj in such a way that | x{βι) | ^
x(βί+ί)\ for all ί and that βi^β3- if | x{β%) | = x{β3) | and i ^ j .

Define (Ite)(&) = 2"ix(βi). Then ||α?|| = ||Da?||,2.
We assert that D2: c0—> I1 is a duality function with gauge φ(r) = r

which is sequentially continuous at zero for σ(cQ, I1) and σ(l\ c0).
Indeed D2x is defined by {D2x){βi) = 2~'2ix{βi)1 and we have

x"/y Γ)2/v\> "V O~2inι*2(O\ II Π/vl!2o ll/γ»ll2

\ X, U X s> — / i & X V/J i) — 11 UX 11 j2 — JI «Λ> 11 ,

while for all yec0

oo

^ Γ Σ 2 - 2 % 2 ( / S i ) T T Σ 2 - 2 V ( / s ί ) T / 2 ^ llί/ll 11*11
Li = i J L*=i J

by definition of the norm. Thus D2 is a duality function. The con-
tinuity requirement is clearly satisfied.

To prove that (III) does not hold, we construct a diametral
sequence xn -*> 0 (see the characterization of normal structure men-
tioned in the proof of Theorem 1). Take xx = 0 and, for n > 1,

0 if i ^ 2~ιn(n - 1),

1 if 2~ιn{n - 1) < i ^ 2"1w(w - 1) + w,

0 if i > 2~1n{n — 1) + ^ .

It is immediate that <xn, x*> —>0 for each aj* e Z1, thus a?Λ-»Ό. On
the other hand

δ({%n})2 = sup ||a?w - α;w||2 = sup Σ 2""2ί = Σ 2"2ί

but

n+ι oo

and consequently the sequence is diametral.
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