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INTRINSIC TOPOLOGIES IN TOPOLOGICAL
LATTICES AND SEMILATTICES

JlMMIE D. LAWSON

This paper demonstrates that the topology of a compact
topological lattice or semilattice can be defined intrinsically, i.e.,
in terms of the algebraic structure. Properties of various
intrinsic topologies are explored.

Afvariety of ways have been suggested for defining topologies
from the algebraic structure of a lattice (see e.g. [4] or [12]). If one
is given a topological lattice, a natural question is whether the given
topology agrees with one or more of these intrinsic topologies. Some
results of this nature may be found in [5] or [13]. In this paper we
show that the topology of a compact topological lattice or semilattice
can always be defined intrinsically; these results extend to a large
class of locally compact lattices.

A topological lattice is a lattice L equipped with a Hausdorff topo-
logy for which the operations of join and meet are continuous as
mappings from L x L into L. A topological semilattice is a (meet)
semilattice together with a Hausdorff topology for which the meet
operation is continuous.

If A is a subset of a lattice or semilattice, we define

L(A) = {y:y <: x for some x e A}

and

M(A) — {z: x tS- z for some xe A} .

A subset B of a semilattice is an ideal if L(B) — B. A set A is
convex if x, zeA and x ^ y <̂  z imply ye A. A latt ice L is locally

convex if it has an open base of convex sets. A closed interval is a
set of the form

[α, b] = {x: a ^ x ^ 6} .

For the definition of undefined lattice properties employed in this
paper, the reader is referred to [4].

The topological closure of a set A will be denoted by A*.

1* Intrinsic topologies* The following intrinsic topologies on a
lattice L are considered in this paper.

(1) The interval topology (I). If L has a 0 and 1, the interval
topology is defined by taking as a subbase for the closed sets all sets
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{L(x):xeL} and all sets {M{x):xeL}. If L does not have universal
bounds, then a set K c L is closed if K Π [a, b] is closed in the
interval topology of the sublattice [α, b] for all a, b with a ^ 6.

(2) The order topology (0). A net {xa} in L is said to order-
converge to # if there exist a monotonic ascending net {ta} with a; —
sup ta(ta t a?) and a monotonic descending net {ua} with a? = inf ua{ua \ x)
such that for all α, ίβ ^ #α ̂  wβ. A subset A of L is ciosβd in the
order topology if {xa} c A and xα order converges to x imply that
xeA. Note that if xa order-converges to x, then for any cofinal sub-
set of the domain directed set it remains true that xa order-converges
to x. Hence the order topology may be defined equivalently by de-
claring a set U of L open if x e U and xa order-converges to x imply
xa is residually in U.

(3) The convex-order topology (CO). A subset ί7of L is a basic
open set for the convex-order topology if (i) U is convex and (ii) if
xa order-converges to x, x e U, then xa is residually in U. Again, the
second condition is equivalent to U being open in the order topology.

We now list some easily derived properties of these intrinsic topo-
logies.

PROPOSITION 1. (1) The CO topology is locally convex.
(2) The 0 topology is finer than the CO topology.
(3) Any homomorphism from L to a locally convex lattice that

is continuous in the 0 topology is continuous in the CO topology.
(4) If the 0 topology is locally convex, then it agrees with the

CO topology.

PROPOSITION 2. The 0 topology is finer than the I topology.

Proof. [4, p. 251].

We shall call a topology on a lattice agreeable if (i) the topology
is locally convex and (ii) if ta \ x or ta [ x then ta converges to x in
the topology.

PROPOSITION 3. If τ is an agreeable topology on a lattice L, then
the CO topology is finer than τ.

Proof. Since τ is locally convex, it suffices to show that if a
convex set U is in τ, then it is open in the CO topology. Suppose
that xa is a net that order-converges to x e U. Then there exist
ta j x, ua I x such that for all a> ta <£ xa ^ ua. Since τ is agreeable, ta

and ua are residually in U, and since U is convex xa is residually
in U.
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2* T h e interval topology in complete lattices* The interval

topology has received rather through investigation. In this section
we summarize results concerning its relationship to compact topologi-
cal lattices.

PROPOSITION 4, Let L be a complete lattice.
( 1 ) L is compact in the interval topology.
(2) If {L, τ) is a topological lattice, then τ is finer than the

interval topology.
(3) If L is Hausdorff in the interval topology, then the order

and interval topology coincide.

Proof. (1) This is a result of 0. Frink. A proof may be found
[4, p. 250].

(2) Since in a topological lattice M(x) and L{x) are closed for
each xe L, and these sets are a subbasis for the closed sets of the
interval topology, the result follows.

(3) See [3] or [15].
The next theorem contains the central results on compact topologi-

cal lattices with the interval topology.

THEOREM 5. The following are equivalent in a compact topolo-
gical lattice (L, τ):

(1) (L, I) is Hausdorff.
(2) τ = 0 = / - C O .
(3) (L, τ) has a basis of open convex sublattices.
( 4 ) (L, τ) has a base of neighborhoods at each

point of closed intervals.
( 5 ) Ify^Lx then there exists z such that x is in the interior

of L(z) and y Sz> and dually.
( 6) Every net has an order-convergent subnet.

Proof. The equivalence of 3, 4, 5 has been shown by E. B. Davies
[6, Theorem 5]. K. Atsumi has shown the equivalence of 1 and 6
[3, Theorem 3]. D. Strauss has shown the equivalence of 1 and 3
[13, Theorem 5]. Conditions 3 and 1 together with part 2 of Proposi-
tion 4 imply τ = I. Part 3 of Proposition 4 further implies I = 0.
Since CO is trapped between I (since / is locally convex) and 0, it
also agrees with them. Hence Conditions 3 and 1 imply 2. Condition
2 easily implies Condition 1 since τ is Hausdorff. Hence the six con-
ditions are equivalent.

We remark that if (L, τ) is compact topological lattice of finite
breadth, then τ = I [5] Hence all the equivalences of Theorem 5
apply to (L, τ). It is known that a finite-dimensional compact con-
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nected topological lattice has finite breadth [9].
For complete distributive lattices one obtains a purely algebraic

description of lattices which are topological lattices in the interval
topology.

THEOREM 6. Let L be a distributive lattice. The following are
equivalent:

(1) L is complete and completely distributive.
(2) L is complete and (L, I) is Hausdorff.
(3) L is complete and L can be embedded in a product of unit

intervals (under coordinatewise order) by an lattice isomorphism which
preserves all joins and all meets.

(4) L admits a topology τ for which (L, τ) is a compact topolo-
gical lattice with enough continuous lattice homomorphisms into the
unit interval (with usual order) to separate points.

(5) L admits a topology τ for which (L, τ) is a compact topolo-
gical lattice with a basis of open convex sublattices.

Proof. Theorems 4 and 5 of [6] imply the equivalence of Condi-
tions 4 and 5. Strauss has shown the equivalence of Conditions 1
and 2 [13, Theorem 7] and the implication of Condition 3 by Condi-
tion 2 [13, Theorem 6] It is readily seen that Condition 3 implies
that L is a closed subset in the product topology of unit intervals
(where the unit internal carries its normal topology); hence L is a
compact topological lattice in its relative topolopy. Since a product
of intervals has a basis of open convex sublattices, the intersection
of this basis with L endows L with such a basis. Hence Condition 3
implies Condition 5. That Condition 5 implies Condition 2 follows
from Theorem 5 above.

THEOREM 7. Lei B be a Boolean lattice. The following are equiva-
lent:

(1) B is complete and completely distributive.
(2) B admits a topology τ for which (B, r) is a compact topologi-

cal lattice.
( 3) B is isomorphic with the Boolean lattice of subsets of some set.
(4) B is isomorphic to a product of {0,1} with 0 < 1.
(5) B is complete and (B, I) is Hausdorff.

Proof. By Theorem 6, Conditions 1 and 5 are equivalent and
imply Condition 2. Strauss has shown Condition 2 implies Condition
1 [13, Theorem 1].

Tarski has shown that Condition 1 implies Condition 3 (see [14]
or [4, p. 119]). If B is isomorphic to all subsets of a set X, then it
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can be identified with {0,1}* by a lattice isomorphism. Hence Condi-
tion 3 implies Condition 4. Since any product of complete chains is
completely distributive [4, p. 120], Condition 4 implies Condition 1.

3* The convex-order topology• In the preceding section we
gave conditions under which a topological lattice had the interval
topology and for which all the intrinsic topologies collapsed to this
topology. The conditions for a topological lattice to have the order
or convex-order topologies are much more general.

THEOREM 8. Let (L, τ) be a topological lattice with τ a regular,
agreeable topology. If each xeL has a complete neighborhood, then
T = CO. (A subset is complete if every increasing net in the subset
has a sup in the subset, and dually).

Proof. By Proposition 3, the CO topology is finer than τ.
Conversely, let U be a basic open convex set in the CO topology.

If U&τ, then there exists x in U and a net {xa} converging to x in
(L, τ) such that xa $ U for all a.

Let N be a complete neighborhood of x in r. Let D be the set
of all sequences {Wn: n = 1, 2, •••} satisfying for all n,

(i) xe TΓΛ°, Wn = W* czN
(ii) (Wn V Wn) U (Wn A Wn) c WnU.

If {Wn}, {V%} e D, we define {Wn} ^ {Vn} if Wn c Vn for all n. It is
straightforward to verify that (D, <Ξ) is a directed set. If {Wn}eD,
let W = ΓiW*. Condition (i) implies x e W c N and W is closed.
Condition (ii) implies W is a sublattice. Since τ is agreeable, N is
complete, and W is closed, W has a largest element w+ and a
smallest element w~.

If F is an closed neighborhood of x contained in N, then employing
the regularity of r and the continuity of V and Λ, one can construct
{Vn}eD such that V= V,. Hence v+ e Π Vn c V. Thus the net
{w+: {Wn} eD} is a monotonic decreasing net which converges to x
in the r-topology. It follows from the continuity of the lattice opera-
tions that {w+} I x. Dually {w~} \ x. Hence residually many of the
{w+} and {w~} are in U. Fix {Wn}eD such that w+, we U.

For each n, pick xn e {xa} f)Wn. If m > n, then

V χke v wkdΓywk) v w^ v wm^
k=n k=n \k=n /

c ( V TΓt) V Wm^ V Wm_2 c . . c FF.-t.

Thus for all m > n,ym — VΓ=̂  »* € W»-.i. Since TFW_! c JV, Wn^ is
closed, iV is complete, and the sequence ym is monotonic increasing,
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there exists ane Wn^ such that an = sup{αv k ^ n). The sequence
an is a decreasing sequence contained in JV, and hence converges to
a — mί{an). Since the sequence {an} is eventually in each Wn and
each Wn is closed, we conclude a e W = Π Wn. Hence a ^ w+.

Dually let bn = inf {xk: k ^ n} and b = sup {δw}. Then w~ ^ δ.
Since δw <; αw for all n, W <£ 6 <* α <; w+. Since Ϊ7 is convex, a, be
U. Since αΛ J α and bn\b and a> be U, there exists m such that αm,
bm e U. Since δw ^ α;m ^ am, we have a?m G U. However, this is in
contradiction to xm e {xa} and xaίU for all a.

The next lemma is a standard and easily proved result about
topological lattices (see [7] or [13])

LEMMA 9. Let K be a compact subset of a topological lattice. If
{xa} is a monotonically increasing (decreasing) net in K, then the net
converges to its sup (inf).

THEOREM 10. Let L be a topological lattice which is (i) compact
or (ii) locally compact and connected. Then L has the convex order
topology.

Proof. If L is compact, it is well known via the work of Nachbin
[10] that L is locally convex. This fact together with Lemma 9
implies the topology on L is agreeable and L is complete. The con-
clusion then follows from Theorem 8.

If L is locally compact and connected, Anderson has shown L is
locally convex [1]. Suppose ua [ x. Let Ube a compact neighborhood
of x. Since [x, ua] = (L A ua) V x is connected, if ua is not residually
in U, then cofinally there exists ya in the boundary of U such that
$ ^ Va ̂  wβ. By compactness of U, we can assume by picking subnets
if necessary that {ya} converges to some y in the boundary of U.

Fix some a. If β > a, then yβ <^ uβ ^ ua. Thus yβ A ua = yβ

for all β > a for which yβ is defined. Since yβ A ua converges to y A
ua, we have y A ua = y, i.e., y ^ ua for all ua not in U. Since x —
inf {ua}, y ^ x. Similarly, since each ya ^ x, by continuity of Λ, y ^
x. Hence y — x. But this is impossible since x is not in the boundary
of U. Thus we conclude the topology of L is agreeable. Since L is
locally compact, Lemma 9 implies each point has a complete neighbor-
hood. Hence by Theorem 8, L has the convex order topology.

It is a consequence of the preceding theorem that a lattice admits
at most one topology for which it is a compact (or locally compact
connected) topological lattice, namely the convex order topology. This
theorem also allows a nice algebraic condition for continuity of homo-
morphisms between compact (or locally compact connected) topological
lattices. It follows that any isomorphism between such lattices is a
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homeomorphism.

PROPOSITION 11. Let L and K be lattices, f a homomorphism from
L into K. If ua I x(ta f x) implies f(ua) \f{x) (f(ta) t/(#)), then f is
continuous if L and K are given the convex order topologies.

Proof. Let U be a basic convex, open set in K. Then f~\U) is
convex in L. Suppose x e f~~ι{U) and {xa} order converges to x. Then
there exists ua \ x, ta \ x such that for all a, ua^xa^ ta. Then f(ua) ^
/(»«) ^ f{Q and by hypothesis f(ua) j f(x) and f(ta) | f(x). Hence since
U is open f(xa) is eventually in U. Thus xa is eventually in f~ι(U).
Hence f~\U) is open and / is continuous.

It is shown in [13] that if (L, τ) is a topological lattice for which
τ is a first countable regular topology for which every point has a in-
complete neighborhood, then τ is finer than the order topology. If
further, τ is agreeable, Propositions 2 and 3 show T is the order
topology. Since in the proof of Theorem 10, it was shown that the
topology of a locally compact connected or a compact topological
lattice is agreeable, it follows that

THEOREM 12. Let L be a compact or locally compact connected
topological lattice which is metrizable. Then L has the order topology.

The theorem for the compact case appears in [7] and [13]. It
is not known whether the theorem remains true without metrizability.

4. Compact semilattices* In this section we give an internal
characterization of the topology of a compact semilattice. If S is a
semilattice we say I is an ideal of S if L(I) —I. If A is an ideal
in S, define A+ by x e A+ if there exists a net xa in A such that
xa ] x.

THEOREM 13. Let S be a compact topological semilattice. An
ideal A of S is closed if and only if A = A+.

Proof. Suppose A is closed. If xe A, then the constant net x is
a monotonic increasing net increasing to x. Hence A c A+. If xa

is a net in A and xa | x, then xa converges to x in the topology of S
(a monotonically increasing net converges to its sup in a compact
topological semilattice). Hence xeA. Thus A = A+.

Conversely let A = A+. Let ye A*. Let D be the set of all
sequences {Wn: n = 1, 2, ,} satisfying for all n,

(i) χewn°, wn = w:
(ii) Wn A Wn c Wf-v



600 J. D. LAWSON

If {Wn}, {Vn} e D, we define {Wn} ^ {Vn} if Wn c Vn for all n. Then
(A ^) is a directed set. If {TFJe D, let TF = Π W%. Then T7 is
closed and is a subsemilattice. Hence W has a minimal element w~.
As in the proof of Theorem 8, {w~:{Wn}eD} is a monotonically
increasing net and w~ \ y.

Fix a specific w~ associated with a {Wn}. Since ye A*, for each
w there exists bn e Wn Π A. Let 3Λ= Am>w δm. Then dTO is an increasing
sequence, each dn e A since A is an ideal, and as in the proof of Theorem
8, dn \ d e W. Since A = A+, d e A. Since w~ <^ d and A is an ideal,
w~ e A. But since the net {w~} \ y, we conclude ye A. Hence A is
closed.

Theorem 13 makes possible an algebraic description of the closure
of an ideal in a compact topological semilattice.

COROLLARY 14. Let I be an ideal of a compact topological semi-
lattice S. Then I* = I++.

Proof. Since Id I*, we have I+ c (I*)+. By Theorem 13, (I*)+ =
/*. Hence /+ c /*. A repetition of the argument with /+ replacing
I shows I++ c I*.

Let yel+ and x ^ y. Then there exists a net {ya} in / such
that ya \ y. Then x A ya ί x and x A ya e / for all α. Thus x e I+;
hence we have shown I+ is an ideal. It is essentially shown in the
proof of Theorem 13 that if ye I*, then ye(L(I+))+. Since I+ is an
ideal L(J+) = I+. Thus y e I++. Hence I++ = J*.

A principal application of Theorem 13 is an algebraic or intrinsic
method of defining the topology of a compact topological semilattice.
It is known that if S is a compact topological semilattice, then the
space of all closed ideals S' of S ordered by inclusion and considered
as a subspaces of 2s is a compact distributive topological lattice;
furthemore the mapping sending s into L(s) is a topological isomor-
phism from S into S' (see e.g. [8, Theorem 1.2]). Since the closed
ideals of S can be identified algebraically as those ideals for which
I = I+ and since the topology of S' can be defined algebraically as the
convex-order topology (Theorem 10), the topology of S is determined
by its algebraic structure.

THEOREM 15. Let f be a homomorphism from a compact topologi-
cal semilattice S onto a compact topological semilattice T. If f has
the property that for xa | x,f(xa) ί/(») and for ya | y,f(ya) \f{y), then
f is continuous.

The proof of this theorem breaks down conveniently into several
steps.
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(i) If t e T, /^(t) has a least element. Since / is a homomor-
phism f~ι{t) is a semilattice. Hence it is a monotonically decreasing
net indexed by itself. Since S is compact, the net monotonically
decreases to some s. Hence by hypothesis f(s) = t. Thus s is a least
element for f~γ{t).

(ii) If A is an ideal, f(A)+ =f(A+). Suppose yef(A)+. Then
there exists a net ya\y where ya ef(A) for all a. There exists wa e
A such that f(wa) = ya for each a. There exists xa, the least element
of f~\y<a\ hence xa ^ wa. Since A is an ideal, xaeA. If a ^ β,
then /(αα Λ α?*) = /(&«) Λ f(xβ) = ya A yβ = ya; hence xa Axβe f~\ya).
Since #α is the least element of /-%«), xa — xa A xβ. Hence the net
xa is increasing* Since S is compact, xa | x for some xeA+. By
hypothesis /(aβ) |/(«), i.e., ya\f(x). Thus p=f(x) e/(A+). Conversely,
let t = /(s) ef(A+). Then there exists a net sa | s, sα e A for each α:.
By hypothesis f(sa) ]f(s). Hence tef(A)+. Thus / (^) + - / ( ^ + ) .

(iii) / induces a homomorphism /' : S' —> T', the lattices of closed
ideals of S and ϊ7 resp. If A is a closed ideal of S9 define f'{A) to
be f(A). Since / is onto, f(A) is an ideal. Also f(A)+ = /(A+) = /(A);
hence /(A) is closed, i.e., f{A) e T\ Always f(A (J B) = f(A) U f(B)
and f(A Γ\ B) a f(A) Π /(J?). Suppose t ef(A) Π /(£); then there exists
aeA, beB such that f(a) = t =/(δ). Let α? be the least element of
/"x(ί); then a? ̂  α, α; ̂  b. If A and 5 are ideals, then xeAΠB.
Hence t = f(x) ef(A n B). Thus /(A n B ) = /(A) Π f(B).

(iv) / ' preserves limits of increasing and decreasing nets.
In S' and T' the limit of a decreasing net is just the intersection.

An argument similar to the one just given to show / ' preserves finite
intersections will show / ' also preserves arbitrary intersections. If
{Aa} is an increasing net in S'9 then the limit is ( U i J * and the
limit of f(Aa) is (U fAa))\ Now /((U Aa)*) = /((u Aa)++) - (/U Aa))++

(by two applications of (ii)) = (l)f(Aa))++ = (\jf(AJ)*. Hence / '
preserves limits.

(v) The homomorphism / is continuous. Theorems 10 and 11
imply that / ' is continuous. Since S and T are embedded in S' and
Tf, f restricted to their images is continuous. But this restriction
of / ' is just /.

COROLLARY 16. Let h be an isomorphism from a compact topo-
logical semilattice S onto a compact topological semilattice T. Then
h is a homeomorphism. Hence a fixed semilattice admits at most one
topology for which it is a compact topological semilattice.

Proof. Clearly h and h~ι preserve limits of increasing and de-
creasing nets. Hence the conclusion follows from Theorem 15.

For any two compact topologies, the identity mapping must be a
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homeomorphism. Hence the two agree.
Anderson and Hunter [2] have studied some classes of groups and

semigroups in which each automorphism is continuous; this property
they call van der Waerden property. Corollary 16 shows that compact
semilattices are such semigroups.
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